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Energy distributions of an ion in a radio-frequency trap immersed in a buffer

gas under the influence of additional external forces
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An ion held in a radio-frequency trap interacting with a uniform buffer gas of neutral atoms develops a

steady-state energy distribution characterized by a power-law tail at high energies instead of the exponential

decay characteristic of thermal equilibrium. We have previously shown that the Tsallis statistics frequently used

as an empirical model for this distribution is a good approximation when the ion is heated due to a combination

of micromotion interruption and exchange of kinetic energy with the buffer gas [Rouse and Willitsch, Phys. Rev.

Lett. 118, 143401 (2017)]. Here, we extend our treatment to include the heating due to additional motion of the

ion caused by external forces, including the “excess micromotion” induced by uniform electric fields and rf phase

offsets. We show that this also leads to a Tsallis distribution with a potentially different power-law exponent from

that observed in the absence of this additional forced motion, with the difference increasing as the ratio of the

mass of the neutral atoms to that of the ion decreases. Our results indicate that unless the excess micromotion is

minimized to a very high degree, then even a system with very light neutrals and a heavy ion does not exhibit a

thermal distribution.

DOI: 10.1103/PhysRevA.97.042712

I. INTRODUCTION

Ultracold atoms, ions, and molecules are of great interest

in atomic, molecular, and chemical physics, from testing fun-

damental concepts with precision spectrosopic measurements

to investigating the nature of elementary chemical reactions

[1–7]. By reducing the kinetic energy of the particles to reach

temperatures below 1 mK, cross sections and reaction rates

can be measured with high resolution. For neutral atoms, the

combination of Doppler, Sisyphus, and evaporative cooling

enables reaching temperatures as low as the nanokelvin regime.

Charged particles, however, are usually trapped in much

smaller numbers, and so evaporative cooling no longer offers

a route to extremely low temperatures. It may seem possible to

prepare a sample of ultracold atoms at the desired temperature

and bring the ions into thermal contact with these atoms in a

hybrid trapping setup to reduce their energy to an equally low

temperature via cooling collisions [3–6]. While it is true that

in each collision the ion may transfer energy to the atom, there

is a complication due to the experimental techniques usually

employed to trap ions. If the charged particles are held in a

radio-frequency (rf) trap, then the ion’s motion consists of a

spectrum of frequency components, containing low-frequency

secular motion and high-frequency micromotion. A collision

with a neutral atom leads to a randomization of the phase and

amplitude of this motion, and the outgoing trajectory of the ion

may correspond to a higher average energy than the trajectory

before the collision even if the ion’s velocity is reduced to zero

by the collision [8–10].

This effect is typically referred to as micromotion inter-

ruption and has two important consequences. First, the mean

energy of the ion may be several times larger than that
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predicted if it was in thermal equilibrium with the atomic

cloud, and second, the ion’s energy no longer follows a thermal

distribution [8,10]. The observed distribution has frequently

been empirically modeled using Tsallis statistics [8,11,12],

fE(E) =
(

nT

〈β〉

)−k−1
Ŵ(k + nT + 1)

Ŵ(k + 1)Ŵ(nT )

Ek

( 〈β〉E
nT

+ 1
)k+nT +1

,

(1)

where E is the energy of the ion, Ek represents the density of

states [k = 2 for a three-dimensional (3D) harmonic oscilla-

tor], Ŵ(x) is the Gamma function, 〈β〉 is a scale parameter, and

the Tsallis exponent nT parameterizes the degree of departure

from thermal equilibrium, with nT → ∞ corresponding to

thermal equilibrium. At high energy, this distribution exhibits

an asymptotic decay of the form E−(nT +1), while in the

limit nT → ∞ Eq. (1) converges to a thermal distribution.

Tsallis statistics emerge as a limiting case in the formalism

of superstatistics, in which a system is viewed as being in

an instantaneous thermal equilibrium but with a fluctuating

temperature, in which case 〈β〉 represents the mean value of

the “inverse temperature” β = 1/(kBT ) [13]. Regardless of

the exact nature of the fluctuations of the temperature, it can be

shown that Tsallis statistics arise as a first-order approximation

to the energy distribution, and in the special case in which

the temperature follows an inverse-Gamma distribution, this

approximation becomes exact for all energies [13]. We have

previously demonstrated that the inverse-Gamma distribution

is a good approximation for the distribution of the secular

temperature of an ion immersed in a uniform neutral buffer

gas undergoing Langevin collisions, thus leading to Tsallis

statistics for the ion’s secular energy distribution [14]. We

now extend our treatment to include the case where there is

an additional component of motion due to the presence of

external forces, such as the “excess micromotion” (EMM)
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of the ion [15]. Such forces usually arise from experimen-

tal imperfections, e.g., electric fields from patch potentials,

which are ubiquitous in realistic settings unless carefully

compensated. We present an overview of the motion of an

ion in a rf quadrupole trap subject to an additional spatially

independent force and clarify the differences between the

intrinsic micromotion due to the rf field and the additional

motion induced by the combination of these external forces and

the trapping potential, including in-phase excess micromotion

as a special case. From this, we derive analytical expressions

for the mean steady-state energy when the ion interacts with a

neutral buffer gas which may be used to evaluate the effects of a

wide range of forms of forced motion of the ion. Furthermore,

we show that the presence of this motion alters the power-law

exponent by contributing an additional source of additive noise,

with the effect becoming more pronounced at low neutral-to-

ion mass ratios. This has implications for, e.g., experiments

employing lithium as a buffer gas [16,17], since unless excess

micromotion is compensated to a very high degree it cannot

be assumed that the ion will exhibit a thermal distribution.

The results of our analytical model for the mean energies and

values of nT are compared to numerical simulations and show

excellent agreement.

II. THEORY

A. Ion motion

1. Basic equations

The classical motion of a single ion in a rf quadrupole

trap with no other external forces has been described in detail

elsewhere [18–20] and so we provide only a brief description of

the standard equations to establish notation. A list of the most

commonly used symbols is given in Table I for reference. The

combination of two quadrupole potentials, one static and one

proportional to cos(�t), results in the homogenous Mathieu

differential equation describing the motion of an ion in the

trap,

r̈j (τ ) + [aj − 2qj cos(2τ )]rj (τ ) = 0, (2)

TABLE I. Table of symbols.

Symbol Definition

aj ,qj Mathieu stability parameters.

� rf drive frequency.

τ Dimensionless unit of time, τ = �t/2.

c2m,j Fourier series coefficients of the Mathieu functions.

βj Mathieu characteristic exponent.

Wj Wronskian, Wj = ce(aj ,qj ,0)ṡe(aj ,qj ,0).

Aj Amplitude of the intrinsic motion.

φj Phase of the secular motion.

Ej Secular energy.

gj (τ ) External, spatially constant force.

mi,mb Mass of the ion and buffer gas, respectively.

m̃ Mass ratio = mb/mi .

fx(x) Probability distribution of the random variable x.

nT Tsallis (power-law) exponent.

n∗
T Estimate of nT from the multiplicative model.

n̂T Estimate of nT from the method of moments.

where τ = �t/2,j ∈ (x,y,z) and aj ,qj parameterize the static

and time-varying fields, respectively. We assume throughout

that the values of aj and qj result in stable motion [20].

For |qj | � 0.1, an approximate solution to Eq. (2) may be

found by treating the ion as undergoing harmonic motion in a

static pseudopotential superimposed by small high-frequency

oscillations, referred to as the secular motion and micromotion,

respectively [18]. This adiabatic approximation is not accurate

enough for our purposes and so we use the exact solutions to the

Mathieu equation. We take the pair of fundamental solutions

ce(aj ,qj ,τ ) and se(aj ,qj ,τ ) as defined in Ref. [20] and which

stand for cosine elliptic and sine elliptic. For brevity, we denote

these cej (τ ) and sej (τ ). The solution to Eq. (2) is

rj (τ ) = rh,j (Aj ,φj ,τ ) = Aj [cej(τ ) cos φj − sej(τ ) sin φj ],

(3)

where we have parameterized the two constants of integration

in terms of an amplitude Aj and a phase angle φj by analogy

to the harmonic oscillator, and the index h indicates that this is

the solution to the homogenous equation. The function cej(τ )

may be expanded into a Fourier series of the form [20]

cej(τ ) =
∑

m

c2m,j cos[(βj + 2m)τ ], (4)

where βj is the characteristic exponent. The coefficients are

functions of aj ,qj , and m, and are normalized such that
∑

m c2
2m = 1 [20]. The series for sej(τ ) is defined analogously

to Eq. (4) in terms of sine functions. Substituting these

expressions into Eq. (3) and simplifying the result produces

rh,j (Aj ,φj ,τ ) = Aj

∑

m

c2m,j cos[(βj + 2m)τ + φj ]. (5)

The m = 0 term of this series describes oscillations at the

frequency of the secular motion of the adiabatic approximation

[18]. We therefore identify this term as the secular motion,

which is harmonic oscillations at the secular frequency

ωj = 1
2
βj� and amplitude c0,jAj . The remaining terms with

m �= 0 are motion at frequencies given by ωj + m� with

amplitudes c2mAj . Under typical trapping conditions, i.e.,

qj < 0.5, the amplitude of these terms is much smaller than the

amplitude of the secular motion. Thus, these are collectively

referred to as the micromotion of the ion [18]. To distinguish

this from the excess micromotion discussed in the next section,

we adopt the convention that the micromotion proportional to

Aj is the intrinsic micromotion (IMM), and the sum of these

terms and the secular motion is the intrinsic motion. As a result

of the time-dependent trapping potential, the ion’s energy is not

a constant. However, we may define a time-conserved energy

from the secular motion of the ion, i.e., the secular energy,

Ej =
mi

2

�2

4
A2

jβ
2
j c

2
0,j , (6)

where mi is the mass of the ion [18].

2. Forced motion

Experimentally, it is likely that the ion will experience

additional forces apart from the trapping potential, requiring

the introduction of corresponding terms in Eq. (2) [15]. The

simplest case is when these forces are independent of the
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position of the ion but may depend on τ . Labelling the sum of

these forces gj (τ ) and including this term in Eq. (2) produces

the inhomogenous Mathieu equation,

r̈j (τ ) + [aj − 2qj cos(2τ )]rj (τ ) = gj (τ ). (7)

The general solution to Eq. (7) can be written in the form [21],

rj (τ ) = rh,j (Aj ,φj ,τ ) + rf,j (τ ), (8)

which is the sum of the solution to the homogenous equation,

i.e., Eq. (3), and a term rf,j (τ ) describing the response of the

ion to the additional force. We will refer to rf,j (τ ) as the

“forced motion” of the ion by analogy to the forced motion

of a harmonic oscillator. The forced motion is given by [21]

rf,j (τ ) = −
cej(τ )

Wj

∫

sej(τ )gj (τ )dτ

+
sej(τ )

Wj

∫

cej(τ )gj (τ )dτ, (9)

where Wj = cej(0) ˙sej(0) is the Wronskian. In contrast to the

intrinsic motion, this additional forced motion does not depend

on Aj ,φj , and consequently, the time-averaged kinetic energy

of the forced motion may be orders of magnitude larger than

the secular energy [15]. Throughout, we assume that rf,j (τ ) is

a periodic function and remains bounded at all times.

The numerical results presented in this work employ a time-

independent external force, gj (τ ) = gj , which, for example,

represents the effects of a uniform static electric field [15].

Substituting this into Eq. (9) and evaluating the integrals

produces

rf,j (τ ) =
gj

Wj

∑

l

∑

m

c2l,jc2m,j

βj + 2m
cos[2(m − l)τ ]. (10)

The m = l terms correspond to a constant offset of the ion’s

position while the m �= l terms are oscillations at multiples of

�. It is convenient to parameterize the effects of this force in

terms of the displacement due to the m = 0,l = 0 term,

�rj =
gj

βjWj

c2
0. (11)

If the force is due to an electric field E then

gj =
1

mi

4

�2
QiE · r̂j, (12)

where Qi is the charge of the ion and r̂j is a unit vector.

Substituting this into Eq. (11) and expanding Wj to first order

in m, Wj ≈ c2
0,jβj , we find

�rj =
1

mi

4

�2

QiE · r̂j

β2
j

, (13)

in agreement with the result given in Ref. [15]. The sum of

the next two largest terms, m = 0,l = ±1, give oscillations

with a magnitude of approximately �rjqj/2 at a frequency of

� and are in phase with the rf trapping field. This is distinct

from the intrinsic micromotion, the components of which have

amplitudes proportional to Aj , are sensitive to the phase of

the secular motion φj , and occur at frequencies offset from

multiples of � by the secular frequency. For consistency with

the literature, we will refer to this specific form of forced

motion as “in-phase excess micromotion,” but we stress that

because this motion is independent of Aj , it is fundamentally

different from the intrinisic micromotion, may well be orders of

FIG. 1. (a) The trajectory of an ion in an rf trap with � = 3 ×
2π MHz, qx = 0.1, and ax defined such that the secular frequency is

given by 100 × 2π kHz. The red (lower) curve shows the motion in

the absence of an external force, whereas the blue (upper) trajectory

includes a static, spatially independent force generating an offset of

�x = 1 μm from the trap center. In both cases, the amplitude of the

intrinsic motion is given by Ax = 1 μm. (b) The numerical Fourier

transforms of the trajectories shown in panel (a).

magnitude larger than the secular motion, and plays a different

role during collisions. Figure 1 shows numerically simulated

trajectories of the ion and their Fourier transforms for a fixed

amplitude with and without EMM.

3. Collisions in the friction model

As another example of the difference between IMM and

EMM, and to motivate the rest of this work, we consider the

effects of a damping force proportional to the velocity of the ion

which may represent effects such as frequent collisions with

atoms of a light buffer gas [18]. The corresponding Mathieu

equation is

r̈j (τ ) + 2μj ṙj (τ ) + (aj − 2qj cos 2τ )rj (τ ) = gj (τ ), (14)

where μj is the dimensionless form of the friction coefficient

[18]. The solution is (see Appendix A)

rj (τ ) = Aje
−μj τ [ce(ãj ,qj ,τ ) cos φj − se(ãj ,qj ,τ ) sin φj ]

+ rf,j (τ ), (15)

where ãj = aj − μ2
j , and rf,j (τ ) is found through the variation

of parameters. The most significant result of the introduction

of damping is that the intrinsic motion exhibits an exponential

decay toward zero. In contrast, the forced motion due to a

constant or periodic g(τ ) does not exhibit this decay; see

Appendix A. This is another example of the difference between

the IMM and forced motion—if cooling is present, then the
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intrinisic micromotion eventually decays to zero whereas the

forced motion does not.

In reality, the amplitude of the intrinsic motion is prevented

from reaching zero as a result of heating of the ion by recoil

during collisions or the existence of other heating mechanisms.

The energy transferred in each collision is a random quantity

and so the secular energy of the ion must be treated as a random

variable. In the model of frequent collisions with light atoms

and in the absence of forced motion, this leads to a Gaussian

distribution for the position and velocity of the ion and hence

Ej follows a Boltzmann distribution, consistent with a particle

in thermal equilibrium with a heat bath [22]. In the opposite

regime, in which collisions take place infrequently and with

atoms of a non-negligible mass, the friction model considered

above is no longer valid. Furthermore, the observed energy

distributions are no longer adequately described by thermal

statistics, but instead exhibit a power-law tail [8–10,12,14]. It

is therefore necessary to investigate the effects of each collision

in more detail to explain these results.

B. Ion-neutral collisions

To simplify the problem, it is assumed that collisions are

classical, short range, and instantaneous such that the ion’s

trajectory is defined at all times by Eq. (7). The trajectory after

the collision must therefore have the same general form as

Eq. (8), but with the constants of integration Aj ,φj updated to

new values,

r ′
j (τ ) = rh,j (A′

j ,φ
′
j ,τ ) + rf,j (τ ), (16)

where primes indicate postcollision quantities. Note that since

rf,j (τ ) does not depend on Aj ,φj , it is identical before and

after the collision, whereas both the magnitude and phase of the

intrinsic motion may be altered. For an instantaneous collision,

the ion’s position must remain unchanged. Equating r ′
j (τ ) and

rj (τ ) and then subtracting rf,j (τ ) from both sides produces

rh,j (A′
j ,φ

′
j ,τ ) = rh,j (Aj ,φj ,τ ). (17)

Next, we consider the velocity after a collision. We assume a

model of elastic, hard-sphere collisions in which the postcol-

lision velocity is given by [8–10,14]

v′ =
1

1 + m̃
v +

m̃

1 + m̃
vb +

m̃

1 + m̃
R(v − vb), (18)

where bold-faced variables indicate vectors, e.g., v =
(vx,vy,vz)

T , vb is the velocity of the colliding particle of buffer

gas, m̃ = mb/mi is the buffer gas-to-ion mass ratio, and R is

a rotation matrix determined by the scattering angles. As with

the position, the velocity of the ion is given by the sum of the

intrinsic and forced motion, vj (τ ) = vh,j (Aj ,φj ,τ ) + vf,j (τ ),

where the forced term is independent of Aj ,φj and so is

unchanged by the collision. We therefore obtain

v′
h =

1

1 + m̃
vh +

m̃

1 + m̃
(vb − vf )

+
m̃

1 + m̃
R[vh − (vb − vf )]. (19)

Taken together, Eqs. (17) and (19) indicate that the problem is

equivalent to that of an ion with no forced motion colliding

with a particle of velocity vb − vf . This is similar to the

frame transformation used in Ref. [23] in which the intrinisic

micromotion is assigned to the buffer gas, but in the present

case is performed only for the forced motion and is valid for

all qj .

Using the procedure detailed in Ref. [14], we obtain a set of

coupled equations for A′2
j and hence the secular energies after

a collision,

E′
j =

∑

(k,l)∈(x,y,z)

(ηjkl

√

Ek

√

El + a1,jkl

√

Ekvb,l

+ a2,jklvb,kvb,l + a3,jkl

√

Ekvf,l

+ a4,jklvf,kvf,l + a5,jklvf,kvb,l), (20)

where the coefficients ηjkl and ai,jkl describe the transfer of

energy between the motion along the three coordinate axes and

between the different components of the ion’s velocity and the

velocity of the buffer gas. The coefficients of this expression

depend on the elements of the random rotation matrix R, the

set of phases φj , and the time of collision τ . As Supple-

mental Material to this article, we provide a MATHEMATICA

notebook containing details of this procedure and the full form

of Eq. (20) [24].

To gain a better understanding of the collision process, it

is useful to average over the collision parameters to obtain

the mean postcollision energy for a given set of precollision

energies, 〈E′
j |Ex,Ey,Ez〉. To do so, we must introduce some

further assumptions. The Langevin model of collisions has

been shown to be accurate for the classical trajectories con-

sidered here [9,10] and so we adopt this. This results in two

useful simplifications. First, the rotation matrix R is isotropic

in this model and so is uncorrelated from the velocity of the ion

and neutral particle. Second, collisions occur at a uniform rate

which is independent of the energy of the ion, and so τ can be

assumed to follow a uniform distribution. We assume that the

density of the buffer gas is low and uniformally distributed

in space, which results in collisions occurring with equal

probability at all points in the ion’s trajectory, such that φj

follows a uniform distribution. We also assume that the velocity

of the buffer gas follows Maxwell-Boltzmann statistics and is

characterized by a fixed temperature Tb. Both the density and

the temperature of the buffer gas are taken to remain constant;

i.e., the heating of the buffer gas due to the collisions is assumed

to be negligible. With these assumptions, the averaging can be

performed over φj , vb,k , τ , and the elements of the isotropic

random rotation matrix by integrating the coefficients over

the distributions of each of these variables in turn; see the

Supplemental Material [24] for details. The coefficients of

the terms in Eq. (20) where k �= l average to zero, as do the

c1,c3,c5 coefficients, significantly simplifying the expression.

The remaining terms are given by

〈E′
j |Ex,y,z〉 =

∑

k∈(x,y,z)

[

〈ηjk〉Ek +
〈

a4,jkv
2
f,k

〉]

+ κjkBTb,

(21)

where the coefficients are defined as

〈ηjk〉 =
δjk

m̃ + 1
+

m̃κj (3δjk + 1)

6β2
k c

2
0,k

Mj [ ˙cek(τ )2 + ˙sek(τ )2]

(22)

and
〈

a4,jkv
2
f,k

〉

=
m̃mi�

2κj

24
(3δjk + 1)Mj [vf,k(τ )2]. (23)
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In the above expressions, δjk is the Kronecker delta, κj is

defined by

κj =
m̃

(1 + m̃)2

β2
j c

2
0,j

W 2
j

, (24)

and the operator Mj is defined as

Mj [h(τ )] = lim
L→∞

1

2L

∫ L

−L

h(τ )[cej(τ )2 + sej(τ )2]dτ. (25)

In principle, the above procedure may be adapted to arbitrary

distributions for the velocity of the buffer gas by averaging

over these in place of the Maxwell-Boltzmann distribution.

This would allow for an investigation of the results when,

e.g., Fermi-Dirac or Bose-Einstein statistics are required to

correctly characterize the buffer gas. In practice, however, such

statistics become relevant at collision energies low enough so

that a classical description of the motion may no longer be

valid. Moreover, at such low energies the long-range nature

and finite duration of the ion-neutral interaction introduces

an additional heating effect from dislocating the ion from its

position in the rf field. At higher collision energies, this heating

effect becomes less significant [25]. To simplify both the

analytical model and the numerical calculations, we proceed

by assuming that the energy of the ion is large enough so that

these effects can be neglected.

The mean energy after a large number of collisions can be

calculated from Eq. (21) as follows. Averaging over the pre-

collision energies, corresponding to setting 〈E′
j |Ex,Ey,Ez〉 →

〈E′
j 〉 and Ej → 〈Ej 〉, produces

〈E′
j 〉 =

∑

k

〈ηjk〉〈Ek〉 + 〈ǫj 〉, (26)

where 〈ǫj 〉 is the sum of the energy-independent terms arising

in the averaging procedure. Depending on the values of the

〈ηjk〉, the mean energy will either increase with every collision

or tend toward a finite value for which 〈E′
j 〉 = 〈Ej 〉. In the latter

case, substituting this equality into Eq. (26) and solving for the

mean energies produces
⎛

⎝

〈Ex〉
〈Ey〉
〈Ez〉

⎞

⎠ =

⎛

⎝I3 −

⎛

⎝

〈ηxx〉 〈ηxy〉 〈ηxz〉
〈ηyx〉 〈ηyy〉 〈ηyz〉
〈ηzx〉 〈ηzy〉 〈ηzz〉

⎞

⎠

⎞

⎠

−1⎛

⎝

〈ǫx〉
〈ǫy〉
〈ǫz〉

⎞

⎠,

(27)

where I3 is the 3 × 3 identity matrix. The mean total kinetic

energy, 〈Ej,K〉, of the ion including the contributions from the

micromotion and the forced motion can then be evaluated from

the values of 〈Ej 〉 (see Appendix B),

〈Ej,K〉 =
〈Ej 〉

2β2
j c

2
0,j

∑

m

c2
2m(β + 2m)2 +

1

2
mi

�2

4
v2

f,j , (28)

where v2
f,j is the mean-square velocity of the forced motion.

For simplicity, however, we will continue to use the secular

energy, since for low mass ratios and low values of qj this is

approximately equal for each axis, whereas the time-averaged

energy is significantly larger for axes with qj �= 0 compared to

axes with qj = 0 [10]. It is possible that the matrix inversion

in Eq. (27) cannot be performed or results in a negative energy,

corresponding to a breakdown of the assumption that 〈E′
j 〉 =

〈Ej 〉 and implying that the mean energy does not converge to

FIG. 2. (a) The analytically calculated value of the mean secular

energy 〈Ej 〉 for j = x (blue solid line), y (red dashed line), and z

(black dotted line) as a function of the neutral-to-ion mass ratio, m̃,

due to the presence of excess micromotion (EMM) and collisions

with a buffer gas of temperature Tb = 0 K. The points indicate the

results obtained from numerical simulations (106 iterations for each

value of m̃). The trap parameters correspond to an ideal linear trap with

qr = 0.2, az = 0.000 625 and the excess micromotion is generated by

a uniform electric field with a magnitude of ≈0.5 V/m, corresponding

to a displacement of the ion from the center of the trap by 100 nm along

the x axis. The inset shows the trend as m̃ → 0. Error bars represent

the standard error of the mean calculated from the numerical data and

are typically smaller than the size of the symbols. (b) As in panel (a),

but with a buffer gas temperature of Tb = 100 μK and no EMM. In

both figures, the vertical asymptote indicates the point at which the

mean energy diverges; see main text for details.

a fixed value. The mass ratio at which this occurs for a given

set of trapping parameters is referred to as the critical mass

ratio [10], and since it is independent of the ǫj , it is unchanged

when forced motion is present.

We now focus on the case of in-phase EMM in an ideal linear

quadrupole trap defined by qr and az, taking qx = −qy = qr ,

qz = 0, and ax = ay = −az/2. The constant offset in the ion’s

position caused by the spatially independent force does not

appear in either Eq. (17) or Eq. (19), and so the most significant

effect is the oscillations described by vf,j (τ ) ∝ sin(2τ ). Hence,

the present results can also be adapted to the case of excess

micromotion due to an rf phase offset, which also results in

forced motion with the same form of the velocity [15]. In

Fig. 2(a), the predicted mean secular energies for the case

of excess micromotion along the x axis and Tb = 0 K are

shown and compared to the results of numerical simulations
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(see Appendix C for details), while the results in the absence

of EMM but with a nonzero buffer-gas temperature (Tb =
100 μK) are shown in Fig. 2(b) for comparison. At low mass

ratio, there is a clear difference in the qualitative behavior of

the mean energies obtained for the two cases. In this regime,

forced motion leads to one high-energy component (Ex) and

two components with lower energy (Ey,Ez), and in the limit

m̃ → 0 these all converge to 0. In contrast, a nonzero value of

Tb results in two high-energy components and one low-energy

component which converge to nonzero values as m̃ → 0. Note

that the radial and axial components have different mean values

even in this limit. As the mass ratio increases, the transfer of

energy between the motion along the x and y axes becomes

more efficient such that in both cases there are two high-energy

and one low-energy component. We may therefore predict that

the differences between the two cases will be most significant

at low mass ratio. In both cases, all energies diverge at the

same mass ratio ≈1.2, confirming that the critical mass ratio

is unaffected by the presence of forced motion.

III. ENERGY DISTRIBUTIONS

It has previously been established that the distribution of the

ion’s energy does not, in general, follow a thermal distribution

regardless of whether or not forced motion is present and that

it closely follows Tsallis statistics in both cases [8–10,12,14].

Before proceeding further, we must first confirm that the

Tsallis distributions obtained through numerical simulations

can be successfully predicted from our analytical model for

the collision process. To simplify matters, we investigate the

distribution of the total secular energy E = Ex + Ey + Ez by

making the change of basis,

Ex = E sin2 θρ cos2 φρ,

Ey = E sin2 θρ sin2 φρ,

Ez = E cos2 θρ,

(29)

where θρ,φρ ∈ [0,π/2) describes the relative distribution of

the total energy E between the three axes. The advantage of

this basis is that it allows E to be factored out of expressions

involving
√

Ek

√
El in Eq. (20), e.g.,

ηjxy

√

Ex

√

Ey = Eηjxy sin2 θρ sin φρ cos φρ . (30)

Summing over j in Eq. (20), applying this change of basis, and

neglecting terms with a mean value of zero, we obtain

E′ = ηE +
∑

j

[

a2,jvn,j +
∑

k

(

a4,jkv
2
d,k

)

]

= ηE + ǫ,

(31)

where η contains the ηjkl multiplied by functions of θρ,φρ .

As a consequence of the random rotation of the trajectory

during a collision, these two angles evolve on a faster timescale

than E. Therefore, the correlations between E and θρ,φρ

can be neglected and these angles averaged over, resulting in

the linear recurrence relation Eq. (31) for a single variable.

However, since these angles reflect the distribution of energy

between the axes, their mean values will differ depending on

the presence and form of forced motion, leading to a change

in the distribution of η. That is, while the ηjk are independent

of the form of the additive noise, η is not. Note that, however,

for any given collision η and ǫ are approximately independent

of each other and of E.

A. The existence of the steady state

We now move on to the question of finding the energy

distribution of the ion given that it evolves in each collision

according to Eq. (31). Linear stochastic recurrence relations

of this form have been widely studied [26–30] and so we

summarize the relevant results. First, if Tb = gj (τ ) = 0 such

that ǫ is always zero, then E′ = ηE. Note that in this model,

E = 0 represents a fixed point, i.e., an absorbing state, since

for E = 0 and any value of η the result of a collision is

E′ = E = 0. The energy after n collisions is given by [14]

E(n) = E(0)

i=n
∏

i=1

η(i). (32)

Here, we use the notation x(n) to indicate the value of the

variable x at collision number n. We assume that collisions are

infrequent enough that there is no correlation between them,

and so the η(i) are independent and identically distributed.

By taking the logarithm of both sides of Eq. (32), we find

ln E(n) = ln E(0) +
∑

n ln η(i), and so ln E(n) undergoes a

random walk with steps of size ln η [29]. The long-term

behavior of ln E(n) therefore depends on the sign of 〈ln η〉
to determine in which direction this random walk is biased.

If 〈ln η〉 > 0, then ln E(n) → ∞ as n → ∞. Conversely, if

〈ln η〉 < 0, then ln E(n) → −∞ in this limit, and so the ion’s

energy tends toward zero. Using the terminology of Ref. [30],

we refer to the 〈ln η〉 < 0 situation as the contractive case and

〈ln η〉 > 0 as the divergent case.

For large n, the product
∏

η(i) = �η,n follows a log-normal

distribution and the distribution of E(n) may be found by

averaging over the initial conditions [31]

fE(n)
(E(n)) =

∫ ∞

0

1

E(0)

f�η,n
(E(n)/E(0))fE(0)

(E(0))dE(0). (33)

Evaluating this integral requires specifying the initial en-

ergy distribution; see Ref. [14] for the result whenE(0) follows a

thermal distribution. The energy distribution obtained through

this method does not converge to a steady state as the number

of collisions increases, which is a known property of an un-

bounded purely multiplicative random process [26,29,30,32].

In the contractive case, each collision on average reduces the

energy of the ion no matter how small it may already be, while

if 〈ln η〉 > 0 the energy increases on average in each collision.

Establishing a steady-state distribution requires either that

the energy is bounded from below in the contractive case or

bounded from above in the divergent case [29]. For the model

considered in this work, there is no upper bound on the energy

and so we will not consider the divergent case further, although

we note that a nonuniform buffer gas can introduce an upper

bound [23]. There is, however, a lower bound if at least one of

gj (τ ) or Tb are nonzero, since if this is true, then ǫ may take a

nonzero value. Consequently, if E ≪ ǫ, then after a collision

E′ = ǫ and so the convergence toward E = 0 is interrupted.

This applies if ǫ has a nonzero probability to take any nonzero

value, no matter how small the resulting value may be. This
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is a result of the fact that when E → 0, it will eventually

become smaller than any nonzero value of ǫ. In terms of

the random-walk analogy used in Ref. [29], the presence of

ǫ corresponds to the introduction of a barrier preventing the

energy from reaching the absorbing state at E = 0, altering

the boundary conditions of the problem and hence leading to

a different distribution. The combination of the drift toward

this barrier due to η (in the contractive case) and the reflection

from it leads to a steady-state energy distribution exhibiting

a power-law tail [29]. In contrast, the tail of the distribution

obtained from Eq. (33) depends on the initial conditions of

the ion and does not exhibit a power-law tail for an initially

thermal distribution [14,33].

If the ion’s initial energy is large compared to ǫ, then it may

take a large number of collisions for E to reach the regime in

which ǫ contributes significantly to the outcome of a collision.

Consequently, for a small number of collisions, the distribution

may be close to the one obtained when ǫ is always zero [29].

An order-of-magnitude estimate for the number of collisions

required for ǫ to become relevant to the dynamics may be found

as follows. We denote this number of collisions nǫ , assume that

〈η〉 < 1 and that E(0) ≫ 〈ǫ〉, and approximate that 〈E(n)〉 ≈
〈η〉n〈E(0)〉. By setting 〈E(nǫ )〉 = 〈ǫ〉, we obtain

nǫ =
ln(〈ǫ〉/〈E0〉)

ln(〈η〉)
. (34)

As 〈ǫ〉 → 0, the required number of collisions for the ad-

ditive term to have an effect increases but remains finite as

long as 〈ǫ〉 �= 0. For typical trapping parameters q = 0.1,a =
0.000 625, m̃ = 0.1 and in the absence of excess micromotion,

we find 〈ǫ〉 ≈ 0.25kBTb and 〈η〉 ≈ 0.92 [14]. Thus, for an ion

with an initial temperature of 1 mK and a hypothetically very

low buffer gas temperature of Tb = 1 fK, Eq. (34) predicts that

the ion’s energy will be of the same order of magnitude as ǫ

after approximately 360 collisions. This does not mean that the

distribution has reached the steady state by this point, but rather

that E is in the regime in which ǫ can no longer be neglected.

In Fig. 3, we plot the energy distributions obtained under these

conditions for a varying number of collisions and compare

these to the distributions obtained for the same parameters with

Tb = 0 K. For the distributions corresponding to between 1 and

250 collisions, there is little difference between Tb = 0 and

Tb = 1 fK, since the ion’s energy is significantly larger than the

additive term due to the temperature of the buffer gas. However,

at greater collision numbers it can be seen that this is no longer

the case, and a clear difference is visible at 360 collisions, in

agreement with the above prediction that this is when ǫ alters

the dynamics. For Tb = 0 K, the distribution continues to move

toward lower values of E as the number of collisions increases,

but for Tb = 1 fK the distributions for 500 and 1000 collisions

are largely identical to each other and are significantly different

to the distributions obtained for the same number of collisions

at Tb = 0 K. This is due to the influence of the lower bound

on the energy caused by ǫ, which in this case prevents E from

reaching values more than a few orders of magnitude lower

than 10−15 K. We reiterate that since E otherwise decreases

without limit, any nonzero value of ǫ is sufficient to produce

a lower bound and a distribution with a power-law tail after

a sufficiently large number of collisions, while if ǫ is always

zero, then this lower bound does not exist and a qualitatively

FIG. 3. The energy distribution of an ion in a linear rf trap with

qr = 0.1,az = 0.000 625, colliding with a buffer gas of neutral-to-ion

mass ratio m̃ = 0.1 after n collisions. The ion’s initial energy is taken

from a thermal distribution with a temperature of 1 mK, and the buffer

gas temperature is set to either (a) Tb = 0 fK or (b) Tb = 1 fK. The

inset in panel (a) shows the distributions obtained for n = 500 and n =
1000 collisions, which are not visible on the scale used for the main

figure. 1 000 000 simulations are performed for each combination of

collision number and Tb to produce the numerical distributions.

different distribution is obtained due to the change in boundary

conditions. Although these two distributions are initially close

(for the same initial conditions), they diverge as the number

of collisions increases. From this point on, we assume that at

least one of Tb or gj (τ ) are nonzero and that the ion’s energy

distribution has reached the steady state.

The form of the energy distribution does not depend on the

units of energy apart from a constant scaling factor. That is, if

the energy follows a distribution fE(E) and we define Ẽ = aE

where a is a positive constant, then the distribution of Ẽ is given

by [31]

fẼ(Ẽ) =
1

a
fE(Ẽ/a). (35)

Since ǫ also has units of energy, it follows that we may

choose these units such that a nonzero value of ǫ has an

arbitrary magnitude without altering fE(E) beyond applying

this scaling transformation. This means that multiplying ǫ by

a fixed constant is equivalent to changing the units of energy

and therefore effectively applies a scaling factor to fE(E).

This property is why the magnitude of ǫ is unimportant in

establishing the steady state, since we may always define units
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FIG. 4. (a) The energy distribution of an ion in a rf trap with q =
0.1,a = 0.000 625, colliding with a buffer gas of neutral-to-ion mass

ratio m̃ = 0.1 after 1000 collisions with a buffer gas of temperature

Tb = 1 fK (blue circles) or Tb = 1 MK (red squares) in the absence of

excess micromotion. (b) As panel (a), but with Tb = 0 K and excess

micromotion parameterized by an offset of either �x = 1 pm (blue

circles) or �x = 1 m (red squares) along the x axis. The energies

obtained have been rescaled by the mean energy for that distribution

to make the similarity between the two distributions more apparent.

of energy in which ǫ is large, and it is reasonable to assume that

the existence of the steady state does not depend on the units

in which the energy is measured. The exception is if ǫ = 0

in all cases, since then it will not be nonzero in any units of

measurement. A particularly useful choice is to measure the

energy in units of the mean energy, that is, taking a = 1/〈E〉,
assuming that this exists and is not equal to zero. Doing so, we

find that if gj (τ ) = 0, then the same distribution for E/〈E〉
is obtained for any nonzero value of Tb; see Fig. 4(a) for

a comparison of Tb = 1 fK and Tb = 1 MK. Likewise, the

same result is obtained when setting Tb = 0 K and varying

the amount of EMM; see Fig. 4(b) for offsets of 1 pm and

1 m. Note, however, that if both Tb and gj (τ ) are nonzero

simultaneously, then rescaling one does not have the same

effect, which we will discuss in more detail later.

B. Tsallis statistics

The exact form of the steady-state energy distribution

fE(E) depends on the distributions fǫ(ǫ) and fη(η) but can

be approximated by Tsallis statistics, that is, Eq. (1), when the

heating is due to a nonzero value of Tb. This result was derived

in our previous work, Ref. [14], by employing the formalism

of superstatistics, in which the energy distribution is taken to

be of the form [13]

fE(E) =
∫ ∞

0

Ek 1

Ŵ(k + 1)

1

(kBT )k+1
e−E/(kBT )fT (T )dT .

(36)

Equation (36) expresses the energy distribution fE(E) as a

thermal distribution averaged over the steady-state probability

distribution of the secular temperature, T , and is related to the

Laplace transform of the distribution of the inverse tempera-

ture. The value of T is altered in each collision according to

T ′ = ηT +
〈ǫ〉

(k + 1)kB

, (37)

where the assumption has been made that the fluctuations in

E due to ǫ lead to an approximately constant increase in the

temperature with each collision [14]. That is, the variance of

the additive term in the temperature domain is assumed to

be negligible. This does not require that the additive term

itself is small, only that the inverse Laplace transform of

ǫ has a very narrow distribution. The steady-state form of

fT (T ) corresponding to Eq. (37) is approximately given by

an inverse-Gamma distribution, and evaluating Eq. (36) using

this distribution produces Eq. (1) [13,14,34]. This distribution

is defined by three parameters, 〈β〉, k, and nT . Of these, k and

nT are dimensionless, while 〈β〉 has units of inverse energy

and so may be set to an arbitrary value by redefining the

units of energy. That is, substituting the Tsallis distribution

into Eq. (35) produces

fẼ(Ẽ) =
(

nT

〈β〉

)−k−1
Ŵ(k + nT + 1)

Ŵ(k + 1)Ŵ(nT )

1
a

(Ẽ/a)k

( 〈β〉
nT

Ẽ
a

+ 1
)k+nT +1

,

(38)

and the factor of a may be absorbed by defining 〈β̃〉 = 〈β〉/a.

Note that nT and k are left unchanged by this rescaling, and

so the overall shape of the distribution is unchanged, as can be

seen in Fig. 4.

The value of k depends on the effective density of states.

In the ideal case, this is simply the density of states for

a three-dimensional harmonic oscillator, leading to k = 2.

However, as noted in the previous section, the mean energy

for each axis differs such that not all degrees of freedom are

equal. In the extreme case when the energy of one axis is

much greater than the others, e.g., Ex ≫ Ey,Ez, then E ≈ Ex ,

and so is approximately a one-dimensional system. Hence, the

density of states would be much closer to that expected for a

one-dimensional harmonic oscillator, k = 0. In practice, this

effect is sufficiently small that we will simply assume that

k = 2 except for the purposes of fitting the Tsallis distribution

to numerical data, for which k is treated as a free parameter

(Appendix C). Thus, all that remains is to predict the value

of nT .

C. Estimation of the Tsallis exponent

If T follows a linear stochastic recurrence relation with a

constant, nonzero additive term, i.e., Eq. (37), and if η has

some probability of being greater than 1, then the tail of fT (T )

follows a power law of the form T −(ν+1), where ν is defined by

〈ην〉 = 1 [29,30]. If fT (T ) exhibits a power-law tail, then, by

the properties of the Laplace transform, fE(E) has the same
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power-law tail, which for Tsallis statistics is fE(E) ∼ E−(nT +1)

for large E [33]. In Ref. [14], we obtained an estimate for

nT , which we here denote n∗
T , by requiring that it satisfies

〈ηn∗
T 〉 = 1. In this treatment, the exponent is solely defined by

the properties of the distribution of the multiplicative noise

η. However, as discussed previously, the distribution of η and

hence the value of n∗
T depends on φρ,θρ , which describe the

distribution of the energy between the axes of motion. That

is, if more of the total energy E is associated with the motion

along an axis with a large value of qj , then the value of η

will typically be larger than if most of the energy is along

an axis with a value of qj close to zero due to the greater

amount of intrinsic micromotion in the first case. When the

heating is due to a nonzero value of Tb, this leads to a small

but non-negligible effect on n∗
T ; see Ref. [14]. Forced motion

leads to a much greater change in how the energy is distributed

between the axes of motion, as was shown in the previous

section. Therefore, even if Eq. (37) continues to accurately

model the dynamics, we expect some difference in the value

of n∗
T obtained when forced motion is present as a result of the

increase in the energy of one axis relative to the others.

In general, if T is a random variable then the resulting

superstatistical energy distribution may be approximated by

Tsallis statistics, even if there is no multiplicative noise [13,35].

Moreover, if ǫ has a heavier tail than η, then the power-law

tail of E is defined from fǫ(ǫ) and not fη(η) [30]. Thus,

since n∗
T is calculated from fη(η), it may produce an incorrect

estimate for the power-law tail and hence for nT if the additive

fluctuations are larger than the multiplicative fluctuations. We

therefore introduce another estimator for nT by matching the

moments of the Tsallis distribution to the analytical mean and

mean-square energy, which does not require the assumption

that the deviation from a thermal distribution is caused by the

multiplicative noise. The mean value of the Tsallis distribution

is given by

〈ET 〉 =
(1 + k)

〈β〉
nT

nT − 1
(39)

for nT > 1. The mean energy in terms of the collision parame-

ters may be calculated using Eq. (27), and by equating 〈ET 〉 =
〈E〉 = 〈Ex〉 + 〈Ey〉 + 〈Ez〉 we obtain an equation relating nT

to the mean energy. We require a second equation to eliminate

〈β〉, which is obtained from calculating the second moment

of the Tsallis distribution 〈E2
T 〉 and equating this to 〈E2〉 =

∑

j

∑

k〈EjEk〉,(j,k) ∈ (x,y,z). The 〈EjEk〉 are found by

multiplying together E′
j and E′

k as given by Eq. (20), averaging

over all the collision parameters and solving for the steady

state, analogously to the mean energy. These second-order

moments diverge at a lower mass ratio than the first-order

moments, and in terms of the Tsallis distribution are defined

only for nT > 2. This requires small values of m̃ and qj and

so we primarily focus on this regime from this point onward.

In terms of these mean energies, we find

n̂T =
(2 + k)〈E〉2 − 2(1 + k)〈E2〉
(2 + k)〈E〉2 − (1 + k)〈E2〉

, (40)

where n̂T indicates that this is an estimation and is exact

only if the distribution exactly follows Tsallis statistics with

a known value of k, which following the discussion in the

FIG. 5. The energy distribution for an ion exhibiting excess

micromotion colliding with a buffer gas of temperature Tb = 0 K

(blue, solid line) and without excess micromotion colliding with

a buffer gas of temperature Tb = 100 μK (red, dashed line) for

(a) m̃ = mb/mi = 0.1 and (b) m̃ = mb/mi = 0.5. The data have

been scaled by the analytically calculated mean energy to make the

difference between the two distributions more apparent. The trapping

parameters are given by qr = 0.2, az = 0.000 625, and when present

the excess micromotion is defined by a static electric field such that

the equilibrium position is displaced by 100 nm along the x axis. The

solid lines indicate the predicted Tsallis distributions while the dotted

line gives the distribution for an ion in thermal equilibrium. Each

distribution is obtained from 10 000 000 iterations of the numerical

simulation and binned into logarithmically spaced bins, normalized

by the bin width.

previous section we assume is given by k = 2. If the value

of n̂T is in good agreement with n∗
T , then we may take this

as evidence that the power-law tail is caused primarily by

the multiplicative noise. However, if these estimates do not

agree, then this indicates that another source of noise must be

responsible for the deviation from thermal statistics.

To confirm that the use of Tsallis distributions and the

values of n̂T from Eq. (40) are accurate, the distributions

obtained from numerical simulations are compared to the

distribution predicted using n̂T for m̃ = 0.1 [Fig. 5(a)] and

m̃ = 0.5 [Fig. 5(b)], finding good agreement. At low mass

ratio m̃ ≈ 0.1 and for the trapping parameters employed (qr =
0.2,az = 0.000 625), it is generally assumed that the ion will

exhibit a thermal energy distribution. It can be seen in Fig. 5(a)

that this is approximately true in the absence of forced motion,

for which the numerical data and predicted Tsallis distribution

are both close to a thermal distribution. However, this does not

hold when there is forced motion. The distribution still closely

follows Tsallis statistics, but with a more pronounced power-

law tail, i.e., a smaller value of nT . As the mass ratio increases,

the distribution for nonzero Tb also deviates from a thermal

distribution as expected; see Fig. 5(b). At high energies, a small

042712-9



I. ROUSE AND S. WILLITSCH PHYSICAL REVIEW A 97, 042712 (2018)

FIG. 6. A comparison of the analytically estimated and numer-

ically simulated values of the Tsallis exponent nT as a function of

mass ratio for a buffer gas with Tb = 0 K and a static electric field

resulting in an offset of 100 nm (blue, lower) and a buffer gas with a

temperature of Tb = 50 μK with no offset (red). The data points give

the values found from maximum-likelihood estimation performed on

the numerical data. The error bars indicate the calculated standard

error and are typically smaller than the size of the symbols. The

blue (lower) and red solid lines show the predicted value of the

exponent from the analytically calculated mean and mean-square

energy, denoted n̂T in the main text. The dashed and dotted lines show

the prediction from the multiplicative coefficient η, n∗
T , for the thermal

and forced cases, respectively [14]. The trap parameters are given by

qr = 0.1, az = 0.000 625, and 200 000 simulations are performed for

each data point.

deviation from the Tsallis distribution can be seen, typically

accounting for 0.1% of the data set. This is likely a result of the

approximations made during the derivation of Tsallis statistics

in Ref. [14] and the assumption that k = 2. Nonetheless, the

bulk of the distribution is adequately described by the present

treatment, and it is clear that there is a difference between the

two cases.

In Fig. 6, we compare the exponents obtained from numeri-

cal simulations to both the predicted value due to multiplicative

fluctuations from Ref. [14], n∗
T , and the predicted value from

Eq. (40), n̂T , as a function of mass ratio, both including and

excluding EMM. It can be seen that n∗
T is a good predictor

for the observed exponent in the absence of forced motion,

as was demonstrated in Ref. [14]. Furthermore, at high mass

ratio it also successfully predicts the exponent when forced

motion is present, which is found to approach the value in the

absence of forced motion. However, at low mass ratio there is

no longer an agreement between nT and n∗
T , demonstrating that

the multiplicative model with an additive constant developed

in Ref. [14] does not fully explain the dynamics in the regime

of a low mass ratio with forced motion. In contrast, n̂T remains

reasonably accurate over all mass ratios. Both n̂T and the

numerical simulations show that at low mass ratio the Tsallis

exponent does not diverge to infinity if the ion is subject to

forced motion; i.e., a thermal distribution is not obtained in

this case.

D. Additive fluctuations due to forced motion

The discrepancy at low mass ratio between the value of

nT obtained from numerical simulations compared to the

FIG. 7. The energy distribution obtained for an ion in a linear rf

trap (qr = 0.1, az = 0.000 625) interacting with a buffer gas of mass

ratio m̃ = mb/mi = 0.1 in a time-dependent trapping potential with

excess micromotion corresponding to an offset of 100 nm along the x

axis (blue circles), compared to the distribution obtained for an ion in

a harmonic pseudopotential colliding with atoms with a velocity given

by vx = sin(2τ ) (red squares). The frequencies of the pseudopotential

trap are set equal to the secular frequencies of the rf trap. The solid line

indicates the distribution for a three-dimensional harmonic oscillator

at thermal equilibrium.

value estimated from fη(η), n∗
T , implies that the multiplicative

fluctuations due to the micromotion interruption are not the

only cause of the deviation from thermal statistics when forced

motion is present. Thus, another source of fluctuations in

the temperature must have an influence on nT . We therefore

re-examine the assumption in Ref. [14] that the additive

fluctuations lead to a fixed increase in the temperature with

each collision. In Eq. (19), it is demonstrated that the velocity

of the forced motion may be assigned to the buffer gas, but

there is an important distinction between the thermal motion

of the buffer gas and the forced motion in that the latter

does not follow a thermal distribution. To lowest order, the

velocity of the in-phase EMM, i.e., the derivative of Eq. (10)

with respect to τ , is described by vf,j (τ ) = |v| sin(2τ ). When

sampled at random collision times, v2
f,j follows a bimodal

distribution with peaks of equal height at 0,|v|2, in contrast to

the single peak for a thermal distribution [36]. To demonstrate

the importance of this, we perform simulations of an ion in

a time-independent harmonic trap, i.e., in the pseudopotential

approximation, undergoing collisions with a buffer gas with

a velocity given by v = |v| sin(2τ ). This leads to the results

shown in Fig. 7, with the distribution close to that found when

forced motion is present in an rf trap. Thus, a nonthermal

velocity distribution of the buffer gas is sufficient to cause the

deviation from thermal statistics for the ion even in the absence

of the time-dependent trapping potential.

As a toy model to better understand this situation, we

assume that each collision samples one of the two peaks of

the distribution of v2
f as if the ion had collided with a buffer

gas of temperature either 0 or Tb with equal probability. The

temperature then evolves according to

T ′ = ηT + B〈ǫ〉/(3kB), (41)

where B takes values of 0 or 1 with equal probability, and ǫ

is defined as for a thermal buffer gas with temperature Tb. In

this model, we may view the temperature of the ion as being
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FIG. 8. A comparison of the energy distributions obtained for an

ion in a linear quadrupole trap defined by qr = 0.1, az = 0.000 625

interacting with a buffer gas of mass ratio m̃ = mb/mi = 0.1. Three

cases are illustrated: forced motion and a buffer gas temperature of

Tb = 0 K (blue circles), a fixed buffer gas temperature of Tb = 50 μK

(red diamonds), and a buffer gas temperature which is randomly

chosen in each collision from either Tb = 0 or 50 μK with equal

probability (green squares). 10 000 000 simulations are performed

for each of the three cases.

subject to dichotomous noise in addition to the multiplicative

noise, leading to a different distribution than the one obtained

for a fixed atomic temperature [37,38]. However, as shown in

Ref. [13], the energy distribution obtained will still approach

Tsallis statistics as long as the ion’s energy remains low.

To test this interpretation, in Fig. 8 we show the energy

distribution for a simulation in which the atomic temperature

is chosen from either Tb = 0 or 50 μK with each collision,

which produces a distribution close to that observed in the

presence of forced motion and which is noticeably different to

the one obtained for the same trapping parameters with a fixed

buffer gas temperature. It is interesting to compare this to the

system discussed in Ref. [39], in which an ensemble of ions

underwent a combination of laser cooling with rare collisions

with background gas leading to a large amount of heating.

Neglecting the heating due to photon recoil, this situation is

equivalent to Eq. (41) with B biased such that it has only a

small probability of taking the value 1 and η fixed to a constant,

which we demonstrated leads to Tsallis statistics [39].

So far, we have considered only one of the two sources of

additive fluctuations at a time. That is, either EMM is present

and Tb = 0, or the buffer gas has a finite temperature and there

is zero EMM. In this case, the exponent is independent of

the magnitude of the fluctuations, since changing Tb or gj

while the other is set to zero is equivalent to multipling the

energy by a constant which simply rescales the underlying

distribution without changing its form, and so nT remains

unchanged [31]. In the more realistic case in which both forced

motion and a non-zero buffer gas temperature are present, the

value of nT obtained depends on the relative proportions of

each. In Fig. 9, we show the results of applying an electric

field of varying magnitude while keeping the temperature of

the buffer gas fixed at a nonzero value. It can be seen that the

analytical predictions given by n̂T are in good agreement with

the numerical values obtained, and further that for a buffer

gas at a temperature Tb = 50 μK only a small electric field

is required to tune the exponent from one limit to the other.

FIG. 9. The Tsallis exponent nT as a function of the applied

electric field for a fixed buffer gas temperature of 50 μK from

numerical simulations (points) and the predicted trend calculated

from the mean and mean-square energy, n̂T , (line) for qr = 0.1,az =
0.000 625 over a range of values of the neutral-to-ion mass ratio,

m̃ = mb/mi . Error bars show the estimated standard error. 200’000

iterations of the numerical simulation per data point.

As noted in Ref. [15], uniform electric fields of a magnitude

1 V/m may easily develop during an ion trapping experiment

and this is already sufficient to significantly alter the observed

Tsallis exponent. Furthermore, since this effect applies even

at very low mass ratios, it cannot be assumed that in these

cases the ion will exhibit a thermal distribution unless the

EMM is compensated to a high degree of accuracy such that

it contributes a negligible amount of energy compared to the

thermal energy of the buffer gas.

Finally, let us briefly address the heating effect described

in Ref. [25], which arises due to the finite time of interaction

between the ion and the atom during which the ion can be

displaced in the rf field. By itself, this serves to produce

a lower bound on the energy of the ion analogously to the

effects of nonzero values of Tb and vf,j (τ ). Moreover, it has

been shown numerically and experimentally that at a mass

ratio of m̃ ≈ 1, this effect does not lead to a change in the

observed power-law exponent [12], in agreement with the

results obtained here that at high mass ratio the power-law

tail is a result of the multiplicative fluctuations. At low mass

ratio, however, we have shown that nT is sensitive to the

nature of the additive noise, and the heating effects due to

long-range ion-atom interaction may alter the observed value

of nT in this regime if it dominates over the other additive

contributions.

IV. SUMMARY AND CONCLUSIONS

We have extended previous models of the ion-neutral

collision process of an ion in a radio-frequency trap immersed

in a buffer gas to take into account the motion of the ion

due to external forces in addition to the trapping potential,

providing analytical expressions for the mean steady-state

energy of the ion, and confirmed that the distribution may

be modeled by Tsallis statistics when this motion is present,

in agreement with previous experimental findings [12]. We

have demonstrated that at low neutral-to-ion mass ratio the

effects of excess micromotion result in a lower value of

the Tsallis exponent, i.e., a more pronounced power-law tail

compared to the exponent observed with the same trapping
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parameters in the absence of forced motion. We have shown

that this is a result of the nonthermal additive fluctuations

due to the forced motion. Our results open the possibility

for tuning the achieved energy distribution simply by ap-

plying a uniform electric field across the trapping region,

allowing for deterministic control of a nonequilibrium steady

state.
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APPENDIX A: THE INHOMOGENOUS DAMPED

MATHIEU EQUATION

The equation of motion for an ion in a rf trap in the presence

of both an external force and damping is

r̈j (τ ) + 2μj ṙj (τ ) + (aj − 2qj cos 2τ )rj (τ ) = gj (τ ). (A1)

Defining rj (τ ) = e−μj τpj (τ ) and substituting this into

Eq. (A1) results in an inhomogenous undamped Mathieu

equation,

p̈j (τ ) + (ãj − 2qj cos 2τ )pj (τ ) = gj (τ )eμj τ , (A2)

with ãj = aj − μ2
j . The general solution is given by

pj (τ ) = Aj [ce(ãj ,qj ,τ ) cos φj − se(ãj ,qj ,τ ) sin φj ]

+pf,j (τ ), (A3)

where pf,j (τ ) is found through the variation of parameters

[21],

pf,j (τ ) = −
ce(ãj ,qj ,τ )

Wj

∫

se(ãj ,qj ,τ )eμj τgj (τ )dτ

+
se(ãj ,qj ,τ )

Wj

∫

ce(ãj ,qj ,τ )eμj τgj (τ )dτ, (A4)

with Wj = ce(ãj ,qj ,0)ṡe(ãj ,qj ,0). Therefore,

rj (τ ) = Aje
−μj τ [ce(ãj ,qj ,τ ) cos φj − se(ãj ,qj ,τ ) sin φj ]

+ rf,j (τ ), (A5)

where rf,j (τ ) = pf,j (τ )e−μj τ . As a first case, we take gj (τ ) =
gj , i.e., a constant force leading to in-phase excess micromo-

tion. Evaluating Eq. (A4) using the Fourier series definitions

of the Mathieu functions, then multiplying by e−μj τ to obtain

rf,j (τ ) results in

rf,j (τ ) =
gj

Wj

∑

m,n

c2mc2n

(βj + 2m)2 + μ2
j

{(βj + 2m)

× cos[2(m − n)τ ] − μj sin[2(m − n)τ ]}, (A6)

from which it can be seen that the amplitude of motion does not

decrease over time, although the damping does slightly alter

the amplitude and introduces a term in quadrature phase with

the rf drive.

Next, we take an oscillating external force gj (τ ) =
gj sin(αjτ + ϕj ). In what follows, we assume that this force is

off-resonant, that is, αj �= βj + 2m for any integer m, since in

the resonant case the ion’s trajectory is unstable. The resulting

forced motion is

rf,j (τ ) =
gj

2Wj

∑

m,n

c2mc2n

{

(αj + βj + 2m) sin[τ (αj + 2m − 2n) + ϕj ] + μj cos[τ (αj + 2m − 2n) + ϕj ]
(

α2
j + 2αj (βj + 2m) + β2

j + 4βjm + 4m2 + μ2
j

)

+
(−αj + βj + 2m) sin[τ (αj − 2m + 2n) + ϕj ] − μj cos[τ (αj − 2m + 2n) + ϕj ]

(

α2
j − 2αj (βj + 2m) + β2

j + 4βjm + 4m2 + μ2
j

)

}

.

(A7)

This, again, does not exhibit a decay over time. The largest

term of this motion is typically for m = 0,n = 0, and in the

undamped case (μj = 0) this produces

rf,j (τ ) ≈
βjgjc

2
0

Wj

(

β2
j − α2

j

) sin(ατ + ϕj ). (A8)

Thus, applying a position-independent oscillating force to

the ion produces oscillations at the same frequency and in

phase with this external force. The special case αj = 2,ϕj = 0

corresponds to an external force of the form sin �t , which in

Ref. [15] is used as an approximate model for the effects of a

phase difference between rf electrodes.

APPENDIX B: TOTAL KINETIC ENERGY

OF AN ION IN AN RF TRAP

In the main text, the ion’s energy is characterized in terms of

the secular energy, which represents the energy associated with

the lowest-frequency mode of motion. The procedure used to

calculate the effects of a collision, however, requires only that

this energy be proportional to A2
j , and so also applies to the

time-averaged kinetic energy of the intrinsic motion used in

Ref. [10]. Furthermore, for the purposes of, e.g., calculating

reaction rates, the total time-averaged kinetic energy, including

contributions from the secular motion, instrinsic micromotion,

and forced motion, may be required, as this represents the

kinetic energy available during collisions. The velocity of the

ion is

vj (τ ) = Aj [ ˙cej(τ ) cos φj − ˙sej(τ ) sin φj ] + vf,j (τ ), (B1)

where dots indicates the derivative with respect to τ . To

simplify the notation, we define

vh,j (τ ) = Aj [cos φj ˙cej(τ ) − sin φj ˙sej(τ )], (B2)

where the index h indicates that this is the solution to the

homogenous equation. The average kinetic energy is given

042712-12



ENERGY DISTRIBUTIONS OF AN ION IN A RADIO- … PHYSICAL REVIEW A 97, 042712 (2018)

by [10]

Ej,K =
1

2
mi

�2

4
�[vj (τ )2], (B3)

where the prefactor of �2/4 handles the conversion from the

units of time used in the Mathieu equation to SI units, and the

operator �[h(τ )] is defined by

�[h(τ )] = lim
L→∞

1

2L

∫ L

−L

h(τ )dτ. (B4)

We may write Eq. (B3) as

Ej,K =
1

2
mi

�2

4
(I1 + 2I2 + I3), (B5)

where

I1 = �[vh,j (τ )2], (B6)

I2 = �[vh,j (τ )vf,j (τ )], (B7)

and

I3 = �[vf,j (τ )2]. (B8)

To evaluate I1, we use the Fourier series definitions of the

Mathieu functions to write

vh,j (τ ) = −Aj

∑

m

c2m,j (βj + 2m) sin[(βj + 2m)τ + φj ].

(B9)

Using this expression, we may evaluate I1 term by term to

produce

I1 = A2
j

1

2

∑

m

c2
2m,j (βj + 2m)2. (B10)

Note that 1
2
mi

�2

4
I1 corresponds to the time-averaged kinetic

energy of the intrinsic motion and is proportional to A2
j [10].

For the ion’s trajectory to remain bounded, the forced motion

cannot contain any frequency components which coincide with

the frequencies of the intrinsic motion [21]. That is, when

expressed as a Fourier series, it cannot contain terms with

frequencies given by β + 2m for any integer m. Hence, when

vf,j is written in terms of a Fourier series and substituted into

I2, this integral must average to zero due to the orthogonality

of sine and cosine functions [20]. The third integral cannot be

evaluated without specifying the external force and so we shall

simply denote this result as v2
f,j . Thus,

Ej,K =
1

2
mi

�2

4

(

∑

m

[

A2
j

1

2
c2

2m,j (βj + 2m)2

]

+ v2
f,j

)

.

(B11)
Recall that the secular energy of the ion is given by Ej =
mi

2
�2

4
A2

jβ
2
j c

2
0,j . Hence,

Ej,K =
1

2
Ej

∑

m

c2
2m,j (βj + 2m)2

β2
j c

2
0,j

+
mi

2

�2

4
v2

f,j . (B12)

Since Eq. (B12) is a linear function of Ej , we may obtain the

ensemble average simply by replacing Ej by 〈Ej 〉, which is

obtained as described in the main text.

APPENDIX C: NUMERICAL METHODS

The numerical simulations were implemented in a C++
program and were performed via matrix propagation for the

reasons of speed and computational accuracy as described

in Ref. [8], adapted to take into account the motion due

to an additional, spatially independent force [21]. For the

simulations performed in this work, the collision rate is a

constant but this may be altered to model a varying collision

rate due to an energy-dependent cross section or a nonuni-

form buffer gas density distribution [9,23]. The density and

temperature of the buffer gas is fixed for these simulations;

see Ref. [9] for a discussion of how they may be updated

after each collision to model the heating of the buffer gas

by the ion. The Mathieu functions were evaluated up to

the m = ±5 Fourier terms with coefficients calculated using

Miller’s algorithm, and the characteristic exponent was found

through numerical integration [20,40]. The energy drift in the

absence of collisions after 300 propagations was found to

be E300/E0 < 10−5 for q = 0.5. The extraction of nT from

numerically calculated values of the energy was performed

using maximum likelihood estimation (MLE) to avoid the

systematic errors introduced by performing linear regression

on the tail of the binned data, and furthermore eliminating

the need to choose appropriate bin sizes and a cutoff point

[41,42]. This estimation treats k,nT ,〈β〉 as free parameters

to be found from the unbinned data and is performed using

MATHEMATICA [43]. The errors on the parameters found via

MLE are calculated from the estimated Fisher matrix [31]. The

analytical expressions for the mean energies were evaluated

using MATHEMATICA’s built-in implementations of the Mathieu

functions (see Supplemental Materials), which were also used

to validate the implementations in the C++ program.
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