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Abstract

Recently, the Internet-of-Things technique is believed to play an important role as the foundation of the coming Artificial 

Intelligence age for its capability to sense and collect real-time context information of the world, and the concept Arti-

ficial Intelligence of Things (AIoT) is developed to summarize this vision. However, in typical centralized architecture, 

the increasing of device links and massive data will bring huge congestion to the network, so that the latency brought by 

unstable and time-consuming long-distance network transmission limits its development. The multi-access edge computing 

(MEC) technique is now regarded as the key tool to solve this problem. By establishing a MEC-based AIoT service system 

at the edge of the network, the latency can be reduced with the help of corresponding AIoT services deployed on nearby 

edge servers. However, as the edge servers are resource-constrained and energy-intensive, we should be more careful in 

deploying the related AIoT services, especially when they can be composed to make complex applications. In this paper, we 

modeled complex AIoT applications using directed acyclic graphs (DAGs), and investigated the relationship between the 

AIoT application performance and the energy cost in the MEC-based service system by translating it into a multi-objective 

optimization problem, namely the CA3 D problem — the optimization problem was efficiently solved with the help of heuristic 

algorithm. Besides, with the actual simple or complex workflow data set like the Alibaba Cloud and the Montage project, 

we conducted comprehensive experiments to evaluate the results of our approach. The results showed that the proposed 

approach can effectively obtain balanced solutions, and the factors that may impact the results were also adequately explored.

Keywords Edge computing · Internet-of-things · Service deployment

1 Introduction

The rapid development and evolution of Artificial Intelli-

gence (AI) theory and technology have brought a revolu-

tion to current information technology architectures. Espe-

cially, Internet-of-things (IoT) is one of them that faces both 
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challenges and opportunities because of its role as the data 

source of the real-world. The concept of Artificial Intel-

ligence of Things (AIoT) is the combination of Artificial 

intelligence technologies with the Internet of things infra-

structure to achieve more efficient IoT operations, improve 

human-machine interactions and enhance data management 

and analytic. According to the report of GSMA1, the global 

total of cellular IoT connections is forecasted to reach 3.2 

billion by 2024. There would be no doubt that the tremen-

dous increasing connections will create a huge AIoT applica-

tion market that draws the attention of the world. Based on 

the IoT technology, a reliable publish/subscribe interaction 

framework can be established between IoT devices and AIoT 

application developers so that high-quality data can be col-

lected systematically. Traditionally, this collecting process 

is conducted with the end-cloud mode, the widely distrib-

uted but resource-constrained IoT devices only need to sense 

and upload the real world information to the cloud, and the 

cloud will handle the data processing. However, the latency 

brought by long-distance transmission and traffic congestion 

of huge data in the network, as well as the high cost like 

energy consumption brought by data pre-processing limits 

its wide application in the typical centralized architecture.

Fortunately, Multi-access Edge Computing (MEC) tech-

nique is proposed to solve the aforementioned problems 

[1–3]. Specifically, MEC is a novel paradigm that emerges 

recently as a reinforcement of mobile cloud computing, 

to optimize the mobile resource usage and enable wire-

less network to provide context-aware services [4, 5]. With 

the help of MEC, computation and transmission between 

mobile devices and the cloud are partly migrated to edge 

servers. Therefore, users can easily connect to their nearby 

edge servers via wireless network [6] and offload their tasks 

to them. The short-distance connection between users and 

edge servers can dramatically reduce the latency, and the 

computation capability of the edge servers is quite qualified 

to finish those conventional tasks. What’s more, with the 

help of the container platforms in the limelight like Kuber-

netes, it will be easy to manage services (e.g. the data 

pre-processing services) in the MEC environment. However, 

these advantages cannot be the excuse of the carelessness 

in planning the multi-source AIoT sensing and analysing 

tasks — if the related services are not assigned to appro-

priate hosts, it may even obtain lower-quality result with 

much higher cost. More critically, as the edge servers are all 

resource-constrained [7, 8] and energy-consuming [9–12], 

there would be no enough resources for them to run if the 

data pre-processing services are not deployed on appropriate 

edge servers. Thus, it becomes more and more important to 

design a service deployment scheme as well as a resource 

allocation scheme to balance the quality and cost. The main 

contributions are summarized as follows: 

1. We investigated the development of artificial intelligence 

of things technology and discussed the feasibility of 

adopting the multi-access edge computing architecture 

to optimize the performance of the AIoT systems.

2. We modeled the complex AIoT application with a 

directed acyclic graph, so that the execution of an AIoT 

application could be decomposed to several ordered AI 

services.

3. Based on the proposed application model, we con-

structed an appropriate metric to measure the AIoT 

application system, and mathematically modeled the 

service deployment problems which aimed to optimize 

the performance and the cost under the constraints edge 

resources as a multi-objective programming problem.

4. We designed and implemented an MOEA/D based algo-

rithm to solve the problem, and conducted a series of 

experiments to evaluate the performance of the solu-

tions. The results verified the improvement achieved by 

the proposed algorithm compared with other existing 

baselines. Besides, different configurations of the system 

were also investigated to explore the impacts of related 

factors.

The rest of this paper is organized as follows. Section 2 

introduces how multi-access edge computing techniques can 

be used in optimizing AIoT applications with the example 

of a famous AI model. Section 3 shows some representa-

tive research works about service placement and resource 

allocation in MEC environment. Section 4 presents defini-

tions, concepts and components of the problem to be solved. 

Section 5 describes the approaches we adopted to solve this 

problem. Section 6 shows the experimental results including 

the factors that affect our algorithms. Finally, Sect. 7 con-

cludes our contribution and outlines future work.

2  Motivation scenario

Recently, AI research has become more and more structural 

and systemic with the prosperity of deep learning (DL) the-

ory and tools recently. With the help of mature libraries like 

Tensorflow, PyTorch, MindSpore, etc., researchers and devel-

opers can easily build their own models like building blocks. 

One main factor that facilitates this popularization lies on 

the common structure of these deep learning models – the 

directed acyclic graph (DAG) based computation workflow. 

There are many existing examples in AI research exhibiting 

the DAG structures. For example, Fig. 1 shows the structure2 

1 https:// www. gsmai ntell igence. com/ 2 https:// d2l. ai/ chapt er_ recom mender- syste ms/ deepfm. html
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of DeepFM, a famous recommendation model proposed to 

predict click-through rate (CTR). Specifically, in this model, 

features of different fields are collected and wrapped as input, 

transformed to dense vectors with several embedding lay-

ers, and then are separately sent to the factorization machine 

(FM) and multi-layer perceptron (MLP) layers to generate the 

final output — we can clearly observe the data dependency 

and logic dependency in Fig. 1.

Generally, these DL-based AI models can be deployed 

on cloud servers with sufficient resources, and the data col-

lected by IoT devices are uploaded to these servers together 

for further inference. However, long-distance communica-

tion between IoT devices and cloud servers may cause una-

voidable delays. At the same time, there is no need to upload 

the context information collected in different regions to the 

cloud instead of processing it on-site. Therefore, if different 

components of an AI model are reasonably deployed using 

the multi-access edge computing architecture, the data trans-

mission efficiency will be improved and the performance of 

AI tasks in the IoT environment will be greatly ameliorated.

3  Related work

3.1  Service placement in MEC

The issue of service placement is not a novel one, since 

how the services are placed will dramatically affect the 

performance of a parallelism and distributed system, espe-

cially when the definition of performance varies in different 

scenarios — the optimal placement strategies are usually 

derived according to the objectives that people mainly focus 

on. For example, Ouyang et al. addressed the service place-

ment challenge in terms of the performance-cost trade-off 

[13]. They applied the Lyapunov optimization technique to 

study the edge service performance optimization problem 

under long-term cost budget constraint. Similarly, Pasteris 

et al. considered the heterogeneity of edge node character-

istics and user locations in optimizing the performance of 

MEC by placing multiple services [14]. They partitioned 

each edge node into multiple slots, where each slot con-

tains one service, and proposed a deterministic approxima-

tion algorithm to solve it after reducing the problem to a 

set cover problem. Roy et al. went further on the similar 

topic by introducing the users’ path prediction model in 

such a scenario [15]. They formulated the service replica 

placement problem as a multi-objective integer linear pro-

gramming problem, and used binary particle swarm optimi-

zation algorithm to achieve near-optimal solutions within 

polynomial time. Yuan et al. used a greedy approximation 

algorithm to solve the service placement problem under the 

constraints of computing and storage resources [16]. They 

also adopted a 2-time-scale framework to reduce the higher 

operating costs caused by frequent cross cloud service 

migration. To achieve dynamic service placement, based 

on Lyapunov optimization method, Ning et al. proposed an 

approximation-based stochastic algorithm to approximate 

the expected future system utility, then a distributed Markov 

approximation algorithm is used to determine the service 

configuration [17]. Han et al. focused on the online multi-

component service placement in edge cloud networks [18]. 

Considering the dependency between service components, 

they analyzed the delay of tree-like services solved the prob-

lem by an improved ant colony algorithm.

3.2  Resource allocation in MEC

The resource allocation issue follows after deciding the 

appropriate edge server to place service instances. The 

resource allocation issue is important and it is widely 

discussed in the research of communication and distrib-

uted system, especially in the research of computation 

offloading, the key problem of the MEC paradigm. For 

example, Yu et al. considered a cloudlet that provides ser-

vices for multiple mobile devices [19], and they proposed 

a joint scheduling algorithm that guided the sub-carrier 

allocation for Orthogonal Frequency-Division Multiplex-

ing Access (OFDMA) system and CPU time allocation 

for the cloudlet. Wang et al. also tried to explore the 

relationship between cost and resource. They formulated 

computation offloading decision, resource allocation 

and content caching strategy as an optimization prob-

lem, considering the total revenue of the network [20]. 

Focusing on saving energy of mobile users, Shuwaili 

et al. proposed a resource allocation approach over both 

communication and computation resources, while You 

et al. [21] also considered the resource of the cloud. Guo 

et al. took the average packet delay as the optimization 

goal of the edge container resource allocation problem 

Fig. 1  The workflow of DeepFM
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[22], and proposed a delay-sensitive resource alloca-

tion algorithm based on A3C (asynchronous advantage 

actor-critic) to solve it. Bahreini et al. expressed the edge 

resource allocation problem (ERP) as a mixed integer 

linear problem (MILP) [23], proposed an auction-based 

mechanism, and proved that the proposed mechanism is 

individually rational, resulting in non-jealous allocation. 

It solves resource allocation and monetization challenges 

in MEC system. Yang et al. studied joint computing par-

tition and resource allocation for delay-sensitive applica-

tions in MEC system [24]. They proposed a new efficient 

off-line algorithm, namely multi-dimensional Search 

adjustment Algorithm (MDSA), to solve this problem. 

In addition, they designed an online method, Coopera-

tive Online Scheduling (COS), which is easy to deploy 

in real systems.

In summary, these researches are quite valuable because 

they shed light on the fundamental concepts and inspired 

the thoughts of related topics in application deployment in 

MEC environment. However, the relationship among service 

placement, resource allocation, application performance and 

the energy consumption is still under the sea. Therefore, we 

go further by combining the resource allocation and ser-

vice placement problems together to explore the trade-off 

between application performance and the energy consump-

tion based on these works, and apply a simple but effective 

heuristic approach that optimizes the system in the end (See 

Table 1).

4  System model and problem description

Although the example in Sect. 2 has given a brief illustra-

tion about the scenario, more details like costs, capacities 

and the cases of multi-application are ignored for briefness. 

Therefore, we will give a complete system model and then 

describe the performance-cost optimization problem.

4.1  Server and network

In a typical AIoT system, the remote server or cloud server 

is responsible for processing all the IoT context information 

sensed by IoT devices distributed in specific areas. However, 

it will be much different when introducing the edge-cloud 

system. In an edge-cloud system, a set of edge servers H = 

{ h
1
 , h

2
 , ..., h

n
 } will be located to collect n different types of 

context data in these specific sensing areas, while each of the 

edge server is equipped with cloud-like computing and stor-

age capability. The edge servers can easily extract the useful 

information from received data and perform analysis with 

their resources. In general, it is the mobile base station that 

acts the role of edge server [25]. To make full use of the 

resources of these edge servers, they further make up an 

edge-side ad-hoc computing cluster. For every edge server hj 

∈ H , it can receive the information collected by IoT devices 

(the set of these devices is denoted with Uj ) around, and the 

average transmission rate between edge server hj and IoT 

devices in Uj is ve
j
 . Meanwhile, if it is necessary, data may be 

routed to and processed by any anther reachable edge server 

via the connection between edge servers. Formally, we use 

bj,k to describe the average transmission rate between the j-th 

edge server (source) and the k-th one (target). Since all edge 

servers can communicate with the cloud in an edge-cloud 

system, we use vc
j
 to denote the average transmission rate 

between the cloud server and the j-th edge server. Particu-

larly, we set bj,k = ve
j
 if the source is Uj and set bj,k = vc

j
 if the 

target is the cloud for simplification. The computing resource 

available on server hj is described as �⋆

j
 , which means the 

workloads (e.g., data size in bit) the server can handle on 

average within one second (bps). Without loss of generality, 

here we just consider the computation resource like CPU 

because most data processing tasks are computation-sensitive 

and the storage resource is adequate. The researchers can 

easily extend it by introducing more kinds of resources and 

their corresponding estimation models.

Table 1  Symbol Description

Symbols The physical meaning of the notations

H the set of edge server, |H| = n

hj the j-th server in H

Uj the set of IoT devices in the serving area of hj

ve
j

the average transmission rate between hj and devices 

in Uj

vc
j

the average transmission rate between hj and the cloud

bj,k the average transmission rate between hj and h
k

�⋆

j
the available computing resource of hj

S
ℝ the service set of the ECC system, |Sℝ| = m

s
i

the i-th service in S

S
� the virtual services that collect context-aware data 

around different edge servers, |S� | = n

S = S
ℝ
∪ S

� the set of real services and virtual services

c
i the i-th service in S�

I
i

the average input data size of s
i

O
i

the average output data size of s
i

w
i

the average workload of s
i

�
k
j,i

the resource that hj allocates to s
i

G the AIoT application set of the system, |G| = K

G
k
= (S

k
, E

k
) the k-th AIoT application in |G|

pk
i

the edge server index where the service s
i
 in AIoT 

application G
k
 is placed on

F
k
(s

i
) the precursor set of service s

i
 in AIoT application G

k

�j the energy conversion rate of hj

1032 Peer-to-Peer Networking and Applications (2022) 15:1029–1044
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4.2  DAG‑based AIoT application

Edge servers use program modules with specific functionali-

ties to finish data processing tasks, and these program mod-

ules are usually called services. A service can be launched 

as an instance with the help of popular PaaS technology like 

Kubernetes. Here we assume Sℝ = { s
1
 , s

2
 , ..., s

m
 } is the set 

of services that are involved in the edge-cloud system for 

information processing, and assume S� = ( c
1
 , c

2
 , ..., c

n
 ) is the 

virtual service set which stands for the collection of context 

data on the IoT devices in different regions. Evidently, these 

virtual services are closely bounded with the edge servers. 

For example, sv

z
 should be deployed on edge server hz . For 

every s
i
 ∈ Sℝ

∪ S
� , we use I

i
 to describe the average size of 

data received by s
i
 , O

i
 to describe the average size of data 

generated by s
i
 , and w

i
 to describe the average workload of 

processing the received data. Apparently, I
i
 and w

i
 will be 

zero when s
i
∈ S

� because we treat the IoT devices as data 

generator here.

However, these atomic services cannot handle the scenar-

ios individually where requirements are complex. Therefore, 

people develop service composition technology by putting 

them together and invoke them in a certain order. Gener-

ally, we can use G = ( S
′

 , E), a directed acyclic graph (DAG) 

to describe an AIoT application with its business logic by 

revealing the execution order of its related services. Here 

S
′

 ⊂ Sℝ
∪ S

� is the related service set, and E = { < s
i
 → sj > 

| s
i
,sj ∈ S

′

 } is the set of edges. By using the services in G 

according to the vertex topological order, and treating the 

output of s
i
 as the input of sj for all s

i
 → sj ∈ E as a relay race, 

the AIoT application denoted with G can be executed step 

by step. Obviously, for any two individual services s
i
 , sj ∈ S

�

 , 

the output of s
i
 will be the input of sj if si → sj ∈ E , and we 

can approximately assume that Ij = O
i
 in this case.

4.3  AIoT application deployment scheme

Obviously, there will be more than one AIoT application in 

an edge-cloud system. If we assume there are K AIoT appli-

cations G = ( G
1
 , G

2
 , ..., G

K
 ) in the system, and G

k
 = ( S

k
, E

k
 ) 

stands for the k-th AIoT application which uses several ser-

vices in S
k
 = S�

k
∪ S

ℝ

k
 (the involved virtual and real services 

of the k-th AIoT application), we should consider how these 

applications can be deployed next.

Usually, given an arbitrary AIoT application G
k
=(S

k
, E

k
 ) 

in G , we use a placement vector pk={pk
i
 }
|Sℝ

k
|

i=1
 (it’s not neces-

sary to consider the placement of service in S� because they 

are context-aware and bounded with the edge servers), and 

a resource allocation matrix �k={�k
j,i

 }
n,|Sℝ

k
|

j=1,i=1
 to describe the 

deployment scheme of the k-th AIoT application, where 

pi ∈ [1, n] is the index of the selected edge server to deploy 

service s
i
 and �j,i is the resource allocated to service s

i
 on 

edge server hj . As the selected edge server belongs to H, and 

the used resource cannot exceed the maximum capacity, we 

will have the following constraints ∀s
i
 ∈ Sℝ

k
:

To demonstrate the concepts above, here use a system with 

3 AIoT applications in Fig. 2 to help understanding. In the 

(1)

1 ≤ pk
i
≤ n

K
∑

k=1

m
∑

i=1

�
k
j,i
≤ �

⋆

j

Fig. 2  An example of deploying 

3 AIoT applications

cloud server
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example shown in Fig. 2, we can find that there are 4 edge 

servers which cooperate with each other and connect to the 

cloud making up an edge-cloud system. Particularly, as these 

4 edge servers locate in different places and serve different 

users, the collected data will have different contexts (shown 

in c
1
 , c

2
 , c

3
 , c

4
 ). To make full use of the collected context-

aware data, there are 3 AIoT applications G
1
 = ({c

1
,s

1
,s

3
 }, { c

1
 

→ s
1
 , s

1
 → s

3
}), G

2
 = ({c

1
,c

2
,s

1
 , s

2
 , s

3
 , s

5
},{c

1
 → s

2
 , c

2
 → s

1
 , s

1
 

→ s
3
,s

3
 → s

5
,s

2
 → s

5
 }) and G

3
 = ({c

4
,s

1
,s

3
,s

4
,s

5
},{c

4
 → s

1
,s

1
 → 

s
4
,s

1
 → s

3
,s

4
 → s

5
,s

3
 → s

5
 }) listed in the box, which stand for 

3 different DL-based AI models in with specific data source 

(e.g. the first AIoT G
1
 receives the data c

3
 from h

3
 ) in DAGs, 

to complete the data analysis tasks. Typically, these AIoT 

applications are deployed on the cloud, so all the context-

aware data collected by IoT devices will be processed after 

being uploaded to the cloud. However, in the MEC paradigm 

the services involved in these AIoT applications can be sepa-

rately deployed on the edge servers. Therefore, we can find 

that services s
1
-s

5
 (in colored circles) are deployed in edge 

server h
1
-h

4
 . In this scenario, the collected context-aware 

data c
3
 will firstly processed by s

1
 on h

3
 and then by s

3
 on h

1
 

(shown with the red curve) to implement the function of G
1
.

4.4  AIoT application performance evaluation

AIoT applications will keep running on the edge servers to 

sense the world by collecting the configuration of the physical 

world in the service systems. Hence, it is vital for the AIoT 

application developers to improve the performance of their 

applications, and the average time cost of the applications in 

the system will be a representative indicator to measure the 

system performance. Taking advantage of the dependency in 

DAGs by adding a dummy service s#

k
 to G

k
 so that all the end 

services in G
k
 with 0 out-degree are directed to it, the comple-

tion time of s
i
∈ S

ℝ

k
 can be represented as:

and completion time of s
i
 ∈ S�

k
 will be TC(s

i
) = 0, where 

F
k
(s

i
) is the precursor set of service s

i
 in AIoT application 

G
k
 . For example, given an AIoT application G

1
 which is 

composed with three AIoT services in sequential order as { s
1
 

→ s
2
 → s

3
 }. We assume that service s

1
 is currently deployed 

on edge server h
3
 , while s

2
 on h

2
 and s

3
 on h

1
 . In this case, 

the used data will be collected by sensor c
2
 in h

2
 ’s serving 

area. Therefore, we can have S� = { c
2
 }, Sℝ = { s

1
 , s

2
 , s

3
 }, E 

= { c
1
 → s

1
 , s

1
 → s

2
 , s

2
 → s

3
 }, F

1
(s

1
) = { c

2
 }, F

1
(s

2
) = { s

1
 }, 

F
1
(s

3
) = { s

2
 }. To calculate the total time cost of running G

1
 , 

we need to calculate Tc
(

G1, s1

)

 first:

(2)

TC(Gk, si) =
wi

�
k
pi,i

+ max {TC(Gk, sz) +
Oz

bpz,pi

|
|
sz ∈ F(si)}

As the c
2
 is a sensor to collect data, it is obvious that 

T
c
(

c
2

)

= 0 . Meanwhile, the s
1
 is the closest service to input 

end, so the input data is I
1
 , which is equal to the output data of 

sensor c
2
 , namely O

c
2

 . Next, we start to calculate Tc
(

G1, s2

)

 . 

According to recursive expression in Eq. (2), we will have

Because s
2
 only has one precursor s

1
 , only Tc

(

G1, s1

)

+
O1

b3,2

 

is used in this case. But if there are more precursor nodes, 

then we should choose the one takes the most time because 

it will be the bottleneck. Similarly,

Finally, the output data obtained by s
3
 is transmitted to 

the cloud, so we have

In this way, we can use the value of TC(G
k
, s

#

k
) to evaluate 

the time cost of the k-th AIoT application. Based on it, if the 

collected IoT context data packages are uploaded and used 

by the AIoT application with the frequency fk , the average 

time cost of the applications in this edge-cloud system will 

be represented as:

4.5  Energy consumption model

It can be found that the driving force of the multi-access edge 

computing paradigm lies in its widely distributed, large-scale 

available edge resources (in order to complete as many tasks 

as possible locally). However, this feature will also result in 

the consumption of a large amount of energy when main-

taining these edge servers. For example, in a typical multi-

access edge computing scenario with base stations as edge 

servers, the power consumption of a single edge server will 

reach 2.2∼3.7×103 W. Considering the about 9.3 million base 

stations in China, the total power consumption may be as 

high as 2.046∼3.441×1010 W. High energy consumption has 

brought great challenges to the promotion and popularization 

of the MEC paradigm. Therefore, here we also consider the 

energy consumption of running AIoT applications.

(3)T
c
(

G1, s1

)

=
w1

�3,1

+ T
c
(

c2

)

+
I1

v
e

3

(4)T
c
(

G1, s2

)

=
w2

�2,2

+ T
c
(

G1, s1

)

+
O1

b3,2

(5)T
c
(

G1, s3

)

=

w3

�1,3

+ T
c
(

G1, s2

)

+
O2

b2,1

(6)T
c
(

G1, s#

)

= T
c
(

G1, s3

)

+

O3

v
c

1

(7)T(G) =

K
∑

k=1

fk ⋅ TC(Gk, s#

k
).
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Generally, the major energy is consumed in the process 

of computing. The computation energy is influenced by the 

clock frequency of the chip, and some techniques like the 

dynamic voltage scaling (DVS) technology [26] can use this 

property to adaptively adjust the energy consumption. In 

CMOS circuits [27], the energy consumption is proportional 

to the supply voltage. Moreover, it has been observed that 

the clock frequency of the chip f is approximately linearly 

proportional to the voltage. Therefore, the energy consump-

tion can be expressed as E ∝ f 2 [28]. At the same time, as f 

is proportional to the allocated resource, we can model the 

energy consumption expense C(G) of running applications:

4.6  Problem definition and formulation

Based on the introduction of related concepts, now we can give 

the definition of the context-aware AIoT application deploy-

ment (CA3 D) problem clearly. In this CA3 D problem, the 

AIoT application developers would like to have an appropriate 

deployment scheme so that the average time cost of their appli-

cations can be minimized, as well as the energy consumption 

expense in an given MEC-based architecture. Therefore, we 

can now formulate the CA3 D problem as follows:

5  Approach

It is not hard to find that the objectives depend on the value 

of decision variables p and � , and the bounded integer con-

straint for pk
i
 makes the optimization problem mix-integer and 

nonlinear. Meanwhile, the requirement of optimizing both the 

application time cost and deployment cost (energy consump-

tion) makes the problem to be a multi-objective optimization 

problem (MOOP). These properties challenge the solving of 

our CA3 D problem. Therefore, we turn to the heuristic method 

like MOEA/D [29] and try to find some sub-optimal solutions.

(8)C(G) =

K
∑

k=1

n
∑

j=1

m
∑

i=1

�jwi(�
k
j,i
)2.

(9)

P ∶ min
x=(p,�)

F(x) =

(

T(G), C(G)

)

s.t. 1 ≤ pk
i
≤ n

K
∑

k=1

m
∑

i=1

�
k
j,i
≤ �

⋆

j

Typically, an MOOP is solved with a decomposition strat-

egy, which decomposes the original problem into several 

scalar optimization sub-problems and optimizes them simul-

taneously [30, 31]. For example in the classic MOEA/D 

method, the Tchebycheff decomposition is used to measure 

the maximum weighted distance between the objectives and 

their minimums z∗ = ( z∗
T
 , z∗

C
):

, where 0 ≤ �
C

, �
T
 ≤ 1 and �

C
 + �

T
 =1 are the constraints 

for weight vector � = ( �
T
 , �

C
 ). Obviously, the shorter the 

distance between f (x) and its minimum is, the closer will 

the x be with the optimal solution. And with the weight vec-

tor, we can finally search the Pareto optimum in an iterative 

way. Algorithm 1 shows the detailed operations in solving 

the problem with the MOEA/D. In this process, each sub-

problem will be optimized by using information from its 

several neighbors.

It can be found in Algorithm 1 that several evolutionary 

operators like crossover and mutate are involved. Actually, 

MOEA/D provides the possibility to use traditional evolu-

tionary algorithms like Genetic algorithm (GA) [32] to solve 

multi-objective problems. Therefore, we borrow the operators 

in GA, a kind of meta-heuristic algorithm inspired by the pro-

cess of natural selection, to solve our target problem. There-

fore, after encoding the decision variable p and � as p = ( p1

1
 , 

..., p1

m
 , ..., pK

1
 , ..., pK

m
 ) and � = ( �1

1,1
 , ...,�1

1,m
 , ..., �1

n,1
 , ...,�1

n,m
 , ..., 

�
K

1,1
 , ...,�K

1,m
 , ..., �K

n,1
 , ...,�K

n,m
 ) and combining them to get x , the 

genetic algorithm will be embedded to Algorithm 1 with these 

operators. Obviously, the crossover operator makes it possible 

to obtain better solutions, and the mutation operation gives the 

algorithm the ability to avoid premature convergence.

For the sake of simplicity and variable-controlling, we 

adopt the same parameter configuration for the following 

evolutionary algorithms including MOEA/D, that is, the 

initial population is N = 200, the number of iterations is 

MAX_ITER = 200, the mutation probability is p
m
 = 0.1 and 

the crossover probability is p
c
 = 0.8. Meanwhile, the initial 

population is generated randomly. In the pseudo-code of 

the algorithm, we can clearly see that the main complexity 

of the MOEA/D algorithm comes from the for loop in lines 

22-32, that is, to update their neighboring solutions for each 

individual where the number of individuals is N, the number 

of adjacent solutions is N
A
 . For each objective function, 

the same operation needs to be performed. And there are 

two objective functions in our algorithm, namely T(⋅) and 

C(⋅) . Thus, we can obtain that in an evolutionary iteration, 

the time complexity of the algorithm is O(N ∗ N
A
) , and the 

overall time complexity is O(MAX_ITER ∗ N ∗ N
A
).

(10)gte(x|�, z
∗) = max{�T |T(x) − z∗

T
|, �C|C(x) − z∗

C
|}
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6  Experiments and analysis

To fully explore the impacts of the solution derived from the 

MOEA/D based algorithm, we partially use the dataset of 

Alibaba Cluster data3, which is published by Alibaba Group. 

It contains cluster trace of real production, and several con-

tainers are composed in DAG to finish complex tasks. Besides 

this, we also generate our experimental synthetic data with 

settings shown in Table 2 to perform our evaluations. What’s 

more, to make the result convincing, the network and service 

parameters in this table are set close to reality. Besides the 

comparison with baselines, a series of comprehensive experi-

ments were conducted on the simulation data in this section 

to explore the impact of different factors.

Meanwhile, to the best of our knowledge, the CA3 D 

problem is the first attempt to consider the deployment of 

AIoT services as well as optimizing the resource alloca-

tion strategy in the MEC environment, none of the existing 

approaches in former research works can be directly adopted 

in our problem. Thus, we select the following intuitive and 

representative strategies as baselines: 

1. Equality-sensitive Deployment (ESD). In the equality-

sensitive deployment strategy, resources of edge servers 

will be allocated in an equal way to the service instance 

of all the application G
k
 ∈ G . This strategy is simple but 

easy to implement. It is practical in many cases so that 

it is used on plenty of real-world distributed systems.

2. Frequency-based Deployment (FBD). In the frequency-

based deployment strategy, service instances of AIoT 

applications will be placed on the most frequent edge 

servers where the related services are mainly used in 

these areas. Meanwhile, the resources of edge servers 

will be allocated according to the frequency so that 

the most frequently used services will have the most 

resource. It is an unbalanced but useful strategy, it 

addresses the on-premise property of the MEC paradigm.

3. Workload-aware Deployment (WAD). In the work-

load aware deployment strategy, service instances will 

be placed on the busy edge servers, and resources of 

edge servers will be allocated according to the work-

load of services, so that the heaviest services will have 

the most resource. WAD is a reinforcement of the FBD 

strategy because it distinguishes the burden of different 

requests.

4. Transmission-aware Deployment (TAD). In the trans-

mission aware strategy, resources of edge servers will be 

allocated according to the communication service place-

ment preference because the transmission time cost is 

usually the major part that affects the performance.

With these settings in Table 2, we illustrate the average 

expense and service response time for these approaches in 

Fig. 3, and their running times in Fig. 4.

As we can see in Fig. 3, MOEA/D’s optimization of the 

objective function shows its excellent capability to achieve 

a good balance between the performance and consumption. 

Different from the Pareto curve generated by the proposed 

algorithm, the results of baselines are scattered in this fig-

ure: among the baselines, TAD is significantly better than 

the other three strategies in terms of performance optimiza-

tion, but the corresponding cost is also much higher. This is 

because the communication quality is often the main factor 

that affects the time cost. On the other hand, the expense 

in TAD will also increase when the resources of the server 

with better communication quality are all allocated. ESD is 

close to one solution of ours in the optimization of multi-

objectives, but there is still a small gap. This is because 

evenly distributed resources among servers can play a pos-

itive role in the control of deployment expense — when 

there are not many requests, ESD also brings a splendid 

load balancing effect. However, our method can optimize the 

Table 2  System Configurations

Param Value Param Value

(m, n) (9, 10) K 8

d
O

i
N (5,12 ) MB ve

j
N (20,10

2 ) MB/s

w
i N (20,10

2)×10
4 MI Bj,k N (20,10

2) kMB/s

�j N (10,12) �j N (2,0.2
2)×10

4 MIPS

3 https:// github. com/ aliba ba/ clust erdata/
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deployment of services and the resource allocation of each 

server in a more fine-grained manner so that it can achieve 

better results than ESD. In addition, our method can select 

the parameter configuration on the Pareto optimal curve 

according to different scenarios, and all the optimal solu-

tions of the curve can achieve the best effect while ( T(G) , 

C(G) ) is balanced. Contrary to its good performance, the 

MOEA/D takes time to calculate the value of the decision 

variables. The running time under different problem scales 

(namely, the number of services, number of edge servers 

and number of IoT applications) are shown in the Fig. 4. As 

the problem scale increases, the running time also increases. 

But from the convergence of our method illustrated in Fig. 5 

(the GEN in Fig. 5 means the evolution generation of the 

population.For example, the curve labeled with GEN=115 

means this is the curve that shows the result of the algorithm 

after the 115-th iteration), we can find that the early-stop 

trick will be capable here as the curve after 179-th genera-

tion is almost approximate to that after 195-th, while the 

result Pareto curve is gradually moving to the direction of 

better performance with increase of generations. The com-

parisons above show the difference between our approach 

and other heterogeneous approaches. In these comparisons, 

some of the baselines are representative but not designed to 

solve this specific problem. Thus, as MOEA/D is one of the 

evolutionary algorithms, the other kinds of algorithms are 

also applied on this CA3 D problem to check whether it is 

appropriate to select the MOEA/D in solving this problem. 

The comparisons between these evolutionary algorithms are 

shown in Fig. 6. From Fig. 6 we can find that these algo-

rithms approximately show the same capability in balanc-

ing the system performance and cost (except the MOEAD-

DE algorithm) while the MOEA/D algorithm shows small 

advantages on the Pareto frontier.

For multi-objective optimization, one of the widely 

used indicators to measure the performance of the algo-

rithm is HV (hyper-volume), which represents the hyper-

cube formed by the individual in the solution set and the 

reference point in the target space volume. Hyper-volume 

can simultaneously evaluate the convergence and distri-

bution of the solution set, which means the larger the 

HV value is, the better the overall performance of the 

algorithm will be. Based on the same data and hyper-

parameter configuration, we run our algorithm 200 times 

Fig. 3  The comparison with 

baselines
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and finally get the histogram of its distribution as shown 

in Fig. 7. Besides the histogram, the violin-plot is also 

demonstrated on the upper left corner of this figure to 

provide a clearer visualization. It can be seen that almost 

80% of the HV data are above 0.70, indicating that our 

algorithm has good convergence and can get a nice result 

at the most of time.

Fig. 5  The convergence with 

the increasing of iterations
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Besides the data set from Alibaba Cluster, here we also 

evaluate our approach on some more complex data struc-

tures or workflows like the Montage project4, which is an 

astronomical image mosaic engine, to illustrate the good 

portability of our method. The modules (in red ellipse) of 

Montage work together in the order shown in Fig. 8. Obvi-

ously, it is a more complex service-based application and it 

can also be deployed in the MEC system. In Fig. 9, we used 

Montage’s DAG data to test our algorithm on the number of 

services of different scales. With the increasing of service 

number from montage-1 to montage-3, the Pareto frontiers 

are shown in Fig. 9. It can be seen from the results that the 

approach can also work to generate the optimal frontiers in 

the complex situations.

6.1  Impacts of system configurations

The above comparisons show that the MOEA/D based algo-

rithm will be practical in solving such a context-aware AIoT 

application deployment problem in MEC-based systems. 

Besides the comparison between approaches, we will further 

discuss the effects of various factors in the system.

6.1.1  Impacts of application and service

Among the settings of our MOEA/D based algorithm, the 

service related factors are the average output data size ( ̄O ), 

the service workload ( w̄ ), the average service number (m) 

and the application type number (K). Therefore, in order 

to check the influence of these service related parameters 

on the optimization objective ( T(G) , C(G) ), we set the sys-

tem parameters to the configuration listed in Table 2, and 

adjust the average of the above related parameters respec-

tively to observe their influences. Accordingly, the results 

are shown in Fig. 10a, b, g, i. That is, the Pareto optimal 

curves obtained from the algorithm based on MOEA/D 

shift upward gradually in the direction of performance 

decrease with the increase of Ō , w̄ , K and m. In detail, with 

the increase of Ō , the Pareto optimal curve gradually drifts 

toward the direction of performance degradation. This is 

because when the amount of data increases, it brings more 

pressure on data transmission between servers. And this 

pressure will result in traffic congestion and performance 

deterioration. Secondly, as the average service workload w̄ 

increases, the performance decreases because the increasing 

workload will force the server to allocate more resources. 

Thirdly, with the increase of K, which means the increase 

of applications to be deployed, the Pareto curve moves to 

the upper right. This is because more service requests need 

to be processed when the total resources remain the same 

in this case, and the lack of resources will then reduce the 

processing efficiency. Finally, similar reasons like those of 

K decrease the performance with the increasing of service 

number m for the additional resource requirements.

6.1.2  Impacts of server

Similarly, we keep the system parameters fixed as shown 

in Table 2, and observe their impacts on the optimization 

objectives ( T(G) , C(G) ) by adjusting the server related fac-

tors, which are the average deployment price related to the 

server �̄ , the total number of resources of each server �̄⋆ , 

and the total number of servers n. The results are shown in 

Fig. 10c, d, h. In summary, the Pareto curve of the optimiza-

tion objective ( T(G) , C(G) ) shows a trend to move up and 

right with the increases of �̄ , and it moves in the direction 

Fig. 7  The distribution of hyper-volume
Fig. 8  A directed acyclical graph (DAG) showing the parallelization 

in the Montage design

4 http:// monta ge. ipac. calte ch. edu/ docs/ grid. html
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of enhanced performance as �̄⋆ and n increase. In detail, the 

Pareto curve moves in the direction of performance decline 

with the average deployment price increases because the lin-

ear relationship between the average price increases and the 

total cost. Besides, as the average number of resources of the 

server increases, the performance of the entire system gradu-

ally improves. This is due to the relaxation of resource con-

straints, which can speed up the operation of a single service. 

However, as the cost increases with more used resources, the 

curve’s trend of moving to the lower left is not particularly 

obvious. Finally, with the increase in the number of edge 

servers n, the Pareto curve moves to the lower left. This is 

because after the increase in the number of servers, while the 

total number of tasks remains the same, the optional edge 

servers in the system become diverse, and including some 

cost-effective servers. Deploying services on these servers 

will not only shorten the processing time but also lower the 

cost, so it can improve the overall performance.

6.1.3  Impacts of network

In the same way, we keep the system parameters fixed as 

shown in Table 2 and adjust the network parameters v̄e ( ̄vc ), 

b̄ to detect the impacts of network quality on the system. 

The results are shown in Fig. 10e, f). We can find that the 

better the network condition is, the closer the Pareto curve 

of performance and cost is to the lower left. This is because 

as the network transmission rate increases, the data trans-

mission time cost is reduced with other system parameters 

unchanged, so that each service can respond faster, which 

leads to performance improvements and make the Pareto 

curve move to the lower left.

7  Conclusion and future work

In this paper, we investigate, model and formulate the CA3 D 

problem in resource-constrained MEC environment. A series 

of numeric experiments are conducted based on the Alibaba 

and Montage dataset. Since the CA3 D problem is a mixed 

integer nonlinear programming multi-objective problem, 

which brings enormous challenges to find its optimal solu-

tions. As a compromise scheme, we turn to the heuristic 

method like MOEA/D and try to find some sub-optimal solu-

tions that may satisfy the requirements at a certain degree 

within the mentioned constraints. The comparison results 

show that our algorithm outperforms other representative 

baseline approaches. And the factor exploration shows how 

the system settings will become the bottlenecks.

Obviously, this application modeling and problem solu-

tions for CA3 D can be transformed into any other application 

in which the components have partial order dependence as a 

Fig. 9  Result of test on Mon-

tage workflow

10 20 30 40 50 60 70 80 90

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1040 Peer-to-Peer Networking and Applications (2022) 15:1029–1044



1 3

directed acyclic graph based on the demands of extensions. It 

has a instructive significance on how to optimize the deploy-

ment of components and resource allocation in such applica-

tions so as to achieve the optimal balance between perfor-

mance and cost — in other words, it has a good compatibility.

However, even the proposed solution can be practical 

in placing and allocating, it just aims to provide a good 

start for the system — when the system is established in 

a very unstable environment, the proposed solution may 

not guarantee its efficiency (for example, in a context 

fast-changing environment). Therefore, we are going to 

consider the uncertainty of real-time scheduling tasks and 

try to balance the effectiveness and robustness to make the 

system more self-adaptive in our future work, where the 

deep reinforcement learning (DRL) based methods may 

play an important role.
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