
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12083-021-01273-5

Energy‑effective artificial internet‑of‑things application deployment
in edge‑cloud systems

Zhengzhe Xiang1 · Yuhang Zheng1,3 · Mengzhu He1 · Longxiang Shi1 · Dongjing Wang2 · Shuiguang Deng1,3 ·

Zengwei Zheng1

Received: 30 July 2021 / Accepted: 11 November 2021

© The Author(s) 2021

Abstract

Recently, the Internet-of-Things technique is believed to play an important role as the foundation of the coming Artificial

Intelligence age for its capability to sense and collect real-time context information of the world, and the concept Arti-

ficial Intelligence of Things (AIoT) is developed to summarize this vision. However, in typical centralized architecture,

the increasing of device links and massive data will bring huge congestion to the network, so that the latency brought by

unstable and time-consuming long-distance network transmission limits its development. The multi-access edge computing

(MEC) technique is now regarded as the key tool to solve this problem. By establishing a MEC-based AIoT service system

at the edge of the network, the latency can be reduced with the help of corresponding AIoT services deployed on nearby

edge servers. However, as the edge servers are resource-constrained and energy-intensive, we should be more careful in

deploying the related AIoT services, especially when they can be composed to make complex applications. In this paper, we

modeled complex AIoT applications using directed acyclic graphs (DAGs), and investigated the relationship between the

AIoT application performance and the energy cost in the MEC-based service system by translating it into a multi-objective

optimization problem, namely the CA3 D problem — the optimization problem was efficiently solved with the help of heuristic

algorithm. Besides, with the actual simple or complex workflow data set like the Alibaba Cloud and the Montage project,

we conducted comprehensive experiments to evaluate the results of our approach. The results showed that the proposed

approach can effectively obtain balanced solutions, and the factors that may impact the results were also adequately explored.

Keywords Edge computing · Internet-of-things · Service deployment

1 Introduction

The rapid development and evolution of Artificial Intelli-

gence (AI) theory and technology have brought a revolu-

tion to current information technology architectures. Espe-

cially, Internet-of-things (IoT) is one of them that faces both

This article is part of the Topical Collection: Special Issue on

Green Edge Computing

Guest Editors: Zhiyong Yu, Liming Chen, Sumi Helal, and

Zhiwen Yu

 * Zengwei Zheng

 zhengzw@zucc.edu.cn

 Zhengzhe Xiang

 xiangzz@zucc.edu.cn

 Yuhang Zheng

 zyhxxds_ludwig@zju.edu.cn

 Mengzhu He

 hemz@zucc.edu.cn

 Longxiang Shi

 shilx@zucc.edu.cn

 Dongjing Wang

 Dongjing.Wang@hdu.edu.cn

 Shuiguang Deng

 dengsg@zju.edu.cn

1 Intelligent Plant Factory of Zhejiang Province Engineering

Lab, Zhejiang University City College, Hangzhou, China

2 Computer & Software School, Hangzhou Dianzi University,

Hangzhou, China

3 College of Computer Science and Technology, Zhejiang

University, Hangzhou, China

/ Published online: 1 December 2021

Peer-to-Peer Networking and Applications (2022) 15:1029–1044

http://orcid.org/0000-0003-1133-5722
http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-021-01273-5&domain=pdf

1 3

challenges and opportunities because of its role as the data

source of the real-world. The concept of Artificial Intel-

ligence of Things (AIoT) is the combination of Artificial

intelligence technologies with the Internet of things infra-

structure to achieve more efficient IoT operations, improve

human-machine interactions and enhance data management

and analytic. According to the report of GSMA1, the global

total of cellular IoT connections is forecasted to reach 3.2

billion by 2024. There would be no doubt that the tremen-

dous increasing connections will create a huge AIoT applica-

tion market that draws the attention of the world. Based on

the IoT technology, a reliable publish/subscribe interaction

framework can be established between IoT devices and AIoT

application developers so that high-quality data can be col-

lected systematically. Traditionally, this collecting process

is conducted with the end-cloud mode, the widely distrib-

uted but resource-constrained IoT devices only need to sense

and upload the real world information to the cloud, and the

cloud will handle the data processing. However, the latency

brought by long-distance transmission and traffic congestion

of huge data in the network, as well as the high cost like

energy consumption brought by data pre-processing limits

its wide application in the typical centralized architecture.

Fortunately, Multi-access Edge Computing (MEC) tech-

nique is proposed to solve the aforementioned problems

[1–3]. Specifically, MEC is a novel paradigm that emerges

recently as a reinforcement of mobile cloud computing,

to optimize the mobile resource usage and enable wire-

less network to provide context-aware services [4, 5]. With

the help of MEC, computation and transmission between

mobile devices and the cloud are partly migrated to edge

servers. Therefore, users can easily connect to their nearby

edge servers via wireless network [6] and offload their tasks

to them. The short-distance connection between users and

edge servers can dramatically reduce the latency, and the

computation capability of the edge servers is quite qualified

to finish those conventional tasks. What’s more, with the

help of the container platforms in the limelight like Kuber-

netes, it will be easy to manage services (e.g. the data

pre-processing services) in the MEC environment. However,

these advantages cannot be the excuse of the carelessness

in planning the multi-source AIoT sensing and analysing

tasks — if the related services are not assigned to appro-

priate hosts, it may even obtain lower-quality result with

much higher cost. More critically, as the edge servers are all

resource-constrained [7, 8] and energy-consuming [9–12],

there would be no enough resources for them to run if the

data pre-processing services are not deployed on appropriate

edge servers. Thus, it becomes more and more important to

design a service deployment scheme as well as a resource

allocation scheme to balance the quality and cost. The main

contributions are summarized as follows:

1. We investigated the development of artificial intelligence

of things technology and discussed the feasibility of

adopting the multi-access edge computing architecture

to optimize the performance of the AIoT systems.

2. We modeled the complex AIoT application with a

directed acyclic graph, so that the execution of an AIoT

application could be decomposed to several ordered AI

services.

3. Based on the proposed application model, we con-

structed an appropriate metric to measure the AIoT

application system, and mathematically modeled the

service deployment problems which aimed to optimize

the performance and the cost under the constraints edge

resources as a multi-objective programming problem.

4. We designed and implemented an MOEA/D based algo-

rithm to solve the problem, and conducted a series of

experiments to evaluate the performance of the solu-

tions. The results verified the improvement achieved by

the proposed algorithm compared with other existing

baselines. Besides, different configurations of the system

were also investigated to explore the impacts of related

factors.

The rest of this paper is organized as follows. Section 2

introduces how multi-access edge computing techniques can

be used in optimizing AIoT applications with the example

of a famous AI model. Section 3 shows some representa-

tive research works about service placement and resource

allocation in MEC environment. Section 4 presents defini-

tions, concepts and components of the problem to be solved.

Section 5 describes the approaches we adopted to solve this

problem. Section 6 shows the experimental results including

the factors that affect our algorithms. Finally, Sect. 7 con-

cludes our contribution and outlines future work.

2 Motivation scenario

Recently, AI research has become more and more structural

and systemic with the prosperity of deep learning (DL) the-

ory and tools recently. With the help of mature libraries like

Tensorflow, PyTorch, MindSpore, etc., researchers and devel-

opers can easily build their own models like building blocks.

One main factor that facilitates this popularization lies on

the common structure of these deep learning models – the

directed acyclic graph (DAG) based computation workflow.

There are many existing examples in AI research exhibiting

the DAG structures. For example, Fig. 1 shows the structure2

1 https:// www. gsmai ntell igence. com/ 2 https:// d2l. ai/ chapt er_ recom mender- syste ms/ deepfm. html

1030 Peer-to-Peer Networking and Applications (2022) 15:1029–1044

https://www.gsmaintelligence.com/
https://d2l.ai/chapter_recommender-systems/deepfm.html

1 3

of DeepFM, a famous recommendation model proposed to

predict click-through rate (CTR). Specifically, in this model,

features of different fields are collected and wrapped as input,

transformed to dense vectors with several embedding lay-

ers, and then are separately sent to the factorization machine

(FM) and multi-layer perceptron (MLP) layers to generate the

final output — we can clearly observe the data dependency

and logic dependency in Fig. 1.

Generally, these DL-based AI models can be deployed

on cloud servers with sufficient resources, and the data col-

lected by IoT devices are uploaded to these servers together

for further inference. However, long-distance communica-

tion between IoT devices and cloud servers may cause una-

voidable delays. At the same time, there is no need to upload

the context information collected in different regions to the

cloud instead of processing it on-site. Therefore, if different

components of an AI model are reasonably deployed using

the multi-access edge computing architecture, the data trans-

mission efficiency will be improved and the performance of

AI tasks in the IoT environment will be greatly ameliorated.

3 Related work

3.1 Service placement in MEC

The issue of service placement is not a novel one, since

how the services are placed will dramatically affect the

performance of a parallelism and distributed system, espe-

cially when the definition of performance varies in different

scenarios — the optimal placement strategies are usually

derived according to the objectives that people mainly focus

on. For example, Ouyang et al. addressed the service place-

ment challenge in terms of the performance-cost trade-off

[13]. They applied the Lyapunov optimization technique to

study the edge service performance optimization problem

under long-term cost budget constraint. Similarly, Pasteris

et al. considered the heterogeneity of edge node character-

istics and user locations in optimizing the performance of

MEC by placing multiple services [14]. They partitioned

each edge node into multiple slots, where each slot con-

tains one service, and proposed a deterministic approxima-

tion algorithm to solve it after reducing the problem to a

set cover problem. Roy et al. went further on the similar

topic by introducing the users’ path prediction model in

such a scenario [15]. They formulated the service replica

placement problem as a multi-objective integer linear pro-

gramming problem, and used binary particle swarm optimi-

zation algorithm to achieve near-optimal solutions within

polynomial time. Yuan et al. used a greedy approximation

algorithm to solve the service placement problem under the

constraints of computing and storage resources [16]. They

also adopted a 2-time-scale framework to reduce the higher

operating costs caused by frequent cross cloud service

migration. To achieve dynamic service placement, based

on Lyapunov optimization method, Ning et al. proposed an

approximation-based stochastic algorithm to approximate

the expected future system utility, then a distributed Markov

approximation algorithm is used to determine the service

configuration [17]. Han et al. focused on the online multi-

component service placement in edge cloud networks [18].

Considering the dependency between service components,

they analyzed the delay of tree-like services solved the prob-

lem by an improved ant colony algorithm.

3.2 Resource allocation in MEC

The resource allocation issue follows after deciding the

appropriate edge server to place service instances. The

resource allocation issue is important and it is widely

discussed in the research of communication and distrib-

uted system, especially in the research of computation

offloading, the key problem of the MEC paradigm. For

example, Yu et al. considered a cloudlet that provides ser-

vices for multiple mobile devices [19], and they proposed

a joint scheduling algorithm that guided the sub-carrier

allocation for Orthogonal Frequency-Division Multiplex-

ing Access (OFDMA) system and CPU time allocation

for the cloudlet. Wang et al. also tried to explore the

relationship between cost and resource. They formulated

computation offloading decision, resource allocation

and content caching strategy as an optimization prob-

lem, considering the total revenue of the network [20].

Focusing on saving energy of mobile users, Shuwaili

et al. proposed a resource allocation approach over both

communication and computation resources, while You

et al. [21] also considered the resource of the cloud. Guo

et al. took the average packet delay as the optimization

goal of the edge container resource allocation problem

Fig. 1 The workflow of DeepFM

1031Peer-to-Peer Networking and Applications (2022) 15:1029–1044

1 3

[22], and proposed a delay-sensitive resource alloca-

tion algorithm based on A3C (asynchronous advantage

actor-critic) to solve it. Bahreini et al. expressed the edge

resource allocation problem (ERP) as a mixed integer

linear problem (MILP) [23], proposed an auction-based

mechanism, and proved that the proposed mechanism is

individually rational, resulting in non-jealous allocation.

It solves resource allocation and monetization challenges

in MEC system. Yang et al. studied joint computing par-

tition and resource allocation for delay-sensitive applica-

tions in MEC system [24]. They proposed a new efficient

off-line algorithm, namely multi-dimensional Search

adjustment Algorithm (MDSA), to solve this problem.

In addition, they designed an online method, Coopera-

tive Online Scheduling (COS), which is easy to deploy

in real systems.

In summary, these researches are quite valuable because

they shed light on the fundamental concepts and inspired

the thoughts of related topics in application deployment in

MEC environment. However, the relationship among service

placement, resource allocation, application performance and

the energy consumption is still under the sea. Therefore, we

go further by combining the resource allocation and ser-

vice placement problems together to explore the trade-off

between application performance and the energy consump-

tion based on these works, and apply a simple but effective

heuristic approach that optimizes the system in the end (See

Table 1).

4 System model and problem description

Although the example in Sect. 2 has given a brief illustra-

tion about the scenario, more details like costs, capacities

and the cases of multi-application are ignored for briefness.

Therefore, we will give a complete system model and then

describe the performance-cost optimization problem.

4.1 Server and network

In a typical AIoT system, the remote server or cloud server

is responsible for processing all the IoT context information

sensed by IoT devices distributed in specific areas. However,

it will be much different when introducing the edge-cloud

system. In an edge-cloud system, a set of edge servers H =

{ h
1
 , h

2
 , ..., h

n
 } will be located to collect n different types of

context data in these specific sensing areas, while each of the

edge server is equipped with cloud-like computing and stor-

age capability. The edge servers can easily extract the useful

information from received data and perform analysis with

their resources. In general, it is the mobile base station that

acts the role of edge server [25]. To make full use of the

resources of these edge servers, they further make up an

edge-side ad-hoc computing cluster. For every edge server hj

∈ H , it can receive the information collected by IoT devices

(the set of these devices is denoted with Uj) around, and the

average transmission rate between edge server hj and IoT

devices in Uj is ve
j
 . Meanwhile, if it is necessary, data may be

routed to and processed by any anther reachable edge server

via the connection between edge servers. Formally, we use

bj,k to describe the average transmission rate between the j-th

edge server (source) and the k-th one (target). Since all edge

servers can communicate with the cloud in an edge-cloud

system, we use vc
j
 to denote the average transmission rate

between the cloud server and the j-th edge server. Particu-

larly, we set bj,k = ve
j
 if the source is Uj and set bj,k = vc

j
 if the

target is the cloud for simplification. The computing resource

available on server hj is described as �⋆

j
 , which means the

workloads (e.g., data size in bit) the server can handle on

average within one second (bps). Without loss of generality,

here we just consider the computation resource like CPU

because most data processing tasks are computation-sensitive

and the storage resource is adequate. The researchers can

easily extend it by introducing more kinds of resources and

their corresponding estimation models.

Table 1 Symbol Description

Symbols The physical meaning of the notations

H the set of edge server, |H| = n

hj the j-th server in H

Uj the set of IoT devices in the serving area of hj

ve
j

the average transmission rate between hj and devices

in Uj

vc
j

the average transmission rate between hj and the cloud

bj,k the average transmission rate between hj and h
k

�⋆

j
the available computing resource of hj

S
ℝ the service set of the ECC system, |Sℝ| = m

s
i

the i-th service in S

S
� the virtual services that collect context-aware data

around different edge servers, |S� | = n

S = S
ℝ
∪ S

� the set of real services and virtual services

c
i the i-th service in S�

I
i

the average input data size of s
i

O
i

the average output data size of s
i

w
i

the average workload of s
i

�
k
j,i

the resource that hj allocates to s
i

G the AIoT application set of the system, |G| = K

G
k
= (S

k
, E

k
) the k-th AIoT application in |G|

pk
i

the edge server index where the service s
i
 in AIoT

application G
k
 is placed on

F
k
(s

i
) the precursor set of service s

i
 in AIoT application G

k

�j the energy conversion rate of hj

1032 Peer-to-Peer Networking and Applications (2022) 15:1029–1044

1 3

4.2 DAG‑based AIoT application

Edge servers use program modules with specific functionali-

ties to finish data processing tasks, and these program mod-

ules are usually called services. A service can be launched

as an instance with the help of popular PaaS technology like

Kubernetes. Here we assume Sℝ = { s
1
 , s

2
 , ..., s

m
 } is the set

of services that are involved in the edge-cloud system for

information processing, and assume S� = (c
1
 , c

2
 , ..., c

n
) is the

virtual service set which stands for the collection of context

data on the IoT devices in different regions. Evidently, these

virtual services are closely bounded with the edge servers.

For example, sv

z
 should be deployed on edge server hz . For

every s
i
 ∈ Sℝ

∪ S
� , we use I

i
 to describe the average size of

data received by s
i
 , O

i
 to describe the average size of data

generated by s
i
 , and w

i
 to describe the average workload of

processing the received data. Apparently, I
i
 and w

i
 will be

zero when s
i
∈ S

� because we treat the IoT devices as data

generator here.

However, these atomic services cannot handle the scenar-

ios individually where requirements are complex. Therefore,

people develop service composition technology by putting

them together and invoke them in a certain order. Gener-

ally, we can use G = (S
′

 , E), a directed acyclic graph (DAG)

to describe an AIoT application with its business logic by

revealing the execution order of its related services. Here

S
′

 ⊂ Sℝ
∪ S

� is the related service set, and E = { < s
i
 → sj >

| s
i
,sj ∈ S

′

 } is the set of edges. By using the services in G

according to the vertex topological order, and treating the

output of s
i
 as the input of sj for all s

i
 → sj ∈ E as a relay race,

the AIoT application denoted with G can be executed step

by step. Obviously, for any two individual services s
i
 , sj ∈ S

�

 ,

the output of s
i
 will be the input of sj if si → sj ∈ E , and we

can approximately assume that Ij = O
i
 in this case.

4.3 AIoT application deployment scheme

Obviously, there will be more than one AIoT application in

an edge-cloud system. If we assume there are K AIoT appli-

cations G = (G
1
 , G

2
 , ..., G

K
) in the system, and G

k
 = (S

k
, E

k
)

stands for the k-th AIoT application which uses several ser-

vices in S
k
 = S�

k
∪ S

ℝ

k
 (the involved virtual and real services

of the k-th AIoT application), we should consider how these

applications can be deployed next.

Usually, given an arbitrary AIoT application G
k
=(S

k
, E

k
)

in G , we use a placement vector pk={pk
i
 }
|Sℝ

k
|

i=1
 (it’s not neces-

sary to consider the placement of service in S� because they

are context-aware and bounded with the edge servers), and

a resource allocation matrix �k={�k
j,i

 }
n,|Sℝ

k
|

j=1,i=1
 to describe the

deployment scheme of the k-th AIoT application, where

pi ∈ [1, n] is the index of the selected edge server to deploy

service s
i
 and �j,i is the resource allocated to service s

i
 on

edge server hj . As the selected edge server belongs to H, and

the used resource cannot exceed the maximum capacity, we

will have the following constraints ∀s
i
 ∈ Sℝ

k
:

To demonstrate the concepts above, here use a system with

3 AIoT applications in Fig. 2 to help understanding. In the

(1)

1 ≤ pk
i
≤ n

K
∑

k=1

m
∑

i=1

�
k
j,i
≤ �

⋆

j

Fig. 2 An example of deploying

3 AIoT applications

cloud server

1033Peer-to-Peer Networking and Applications (2022) 15:1029–1044

1 3

example shown in Fig. 2, we can find that there are 4 edge

servers which cooperate with each other and connect to the

cloud making up an edge-cloud system. Particularly, as these

4 edge servers locate in different places and serve different

users, the collected data will have different contexts (shown

in c
1
 , c

2
 , c

3
 , c

4
). To make full use of the collected context-

aware data, there are 3 AIoT applications G
1
 = ({c

1
,s

1
,s

3
 }, { c

1

→ s
1
 , s

1
 → s

3
}), G

2
 = ({c

1
,c

2
,s

1
 , s

2
 , s

3
 , s

5
},{c

1
 → s

2
 , c

2
 → s

1
 , s

1

→ s
3
,s

3
 → s

5
,s

2
 → s

5
 }) and G

3
 = ({c

4
,s

1
,s

3
,s

4
,s

5
},{c

4
 → s

1
,s

1
 →

s
4
,s

1
 → s

3
,s

4
 → s

5
,s

3
 → s

5
 }) listed in the box, which stand for

3 different DL-based AI models in with specific data source

(e.g. the first AIoT G
1
 receives the data c

3
 from h

3
) in DAGs,

to complete the data analysis tasks. Typically, these AIoT

applications are deployed on the cloud, so all the context-

aware data collected by IoT devices will be processed after

being uploaded to the cloud. However, in the MEC paradigm

the services involved in these AIoT applications can be sepa-

rately deployed on the edge servers. Therefore, we can find

that services s
1
-s

5
 (in colored circles) are deployed in edge

server h
1
-h

4
 . In this scenario, the collected context-aware

data c
3
 will firstly processed by s

1
 on h

3
 and then by s

3
 on h

1

(shown with the red curve) to implement the function of G
1
.

4.4 AIoT application performance evaluation

AIoT applications will keep running on the edge servers to

sense the world by collecting the configuration of the physical

world in the service systems. Hence, it is vital for the AIoT

application developers to improve the performance of their

applications, and the average time cost of the applications in

the system will be a representative indicator to measure the

system performance. Taking advantage of the dependency in

DAGs by adding a dummy service s#

k
 to G

k
 so that all the end

services in G
k
 with 0 out-degree are directed to it, the comple-

tion time of s
i
∈ S

ℝ

k
 can be represented as:

and completion time of s
i
 ∈ S�

k
 will be TC(s

i
) = 0, where

F
k
(s

i
) is the precursor set of service s

i
 in AIoT application

G
k
 . For example, given an AIoT application G

1
 which is

composed with three AIoT services in sequential order as { s
1

→ s
2
 → s

3
 }. We assume that service s

1
 is currently deployed

on edge server h
3
 , while s

2
 on h

2
 and s

3
 on h

1
 . In this case,

the used data will be collected by sensor c
2
 in h

2
 ’s serving

area. Therefore, we can have S� = { c
2
 }, Sℝ = { s

1
 , s

2
 , s

3
 }, E

= { c
1
 → s

1
 , s

1
 → s

2
 , s

2
 → s

3
 }, F

1
(s

1
) = { c

2
 }, F

1
(s

2
) = { s

1
 },

F
1
(s

3
) = { s

2
 }. To calculate the total time cost of running G

1
 ,

we need to calculate Tc
(

G1, s1

)

 first:

(2)

TC(Gk, si) =
wi

�
k
pi,i

+ max {TC(Gk, sz) +
Oz

bpz,pi

|
|
sz ∈ F(si)}

As the c
2
 is a sensor to collect data, it is obvious that

T
c
(

c
2

)

= 0 . Meanwhile, the s
1
 is the closest service to input

end, so the input data is I
1
 , which is equal to the output data of

sensor c
2
 , namely O

c
2

 . Next, we start to calculate Tc
(

G1, s2

)

 .

According to recursive expression in Eq. (2), we will have

Because s
2
 only has one precursor s

1
 , only Tc

(

G1, s1

)

+
O1

b3,2

is used in this case. But if there are more precursor nodes,

then we should choose the one takes the most time because

it will be the bottleneck. Similarly,

Finally, the output data obtained by s
3
 is transmitted to

the cloud, so we have

In this way, we can use the value of TC(G
k
, s

#

k
) to evaluate

the time cost of the k-th AIoT application. Based on it, if the

collected IoT context data packages are uploaded and used

by the AIoT application with the frequency fk , the average

time cost of the applications in this edge-cloud system will

be represented as:

4.5 Energy consumption model

It can be found that the driving force of the multi-access edge

computing paradigm lies in its widely distributed, large-scale

available edge resources (in order to complete as many tasks

as possible locally). However, this feature will also result in

the consumption of a large amount of energy when main-

taining these edge servers. For example, in a typical multi-

access edge computing scenario with base stations as edge

servers, the power consumption of a single edge server will

reach 2.2∼3.7×103 W. Considering the about 9.3 million base

stations in China, the total power consumption may be as

high as 2.046∼3.441×1010 W. High energy consumption has

brought great challenges to the promotion and popularization

of the MEC paradigm. Therefore, here we also consider the

energy consumption of running AIoT applications.

(3)T
c
(

G1, s1

)

=
w1

�3,1

+ T
c
(

c2

)

+
I1

v
e

3

(4)T
c
(

G1, s2

)

=
w2

�2,2

+ T
c
(

G1, s1

)

+
O1

b3,2

(5)T
c
(

G1, s3

)

=

w3

�1,3

+ T
c
(

G1, s2

)

+
O2

b2,1

(6)T
c
(

G1, s#

)

= T
c
(

G1, s3

)

+

O3

v
c

1

(7)T(G) =

K
∑

k=1

fk ⋅ TC(Gk, s#

k
).

1034 Peer-to-Peer Networking and Applications (2022) 15:1029–1044

1 3

Generally, the major energy is consumed in the process

of computing. The computation energy is influenced by the

clock frequency of the chip, and some techniques like the

dynamic voltage scaling (DVS) technology [26] can use this

property to adaptively adjust the energy consumption. In

CMOS circuits [27], the energy consumption is proportional

to the supply voltage. Moreover, it has been observed that

the clock frequency of the chip f is approximately linearly

proportional to the voltage. Therefore, the energy consump-

tion can be expressed as E ∝ f 2 [28]. At the same time, as f

is proportional to the allocated resource, we can model the

energy consumption expense C(G) of running applications:

4.6 Problem definition and formulation

Based on the introduction of related concepts, now we can give

the definition of the context-aware AIoT application deploy-

ment (CA3 D) problem clearly. In this CA3 D problem, the

AIoT application developers would like to have an appropriate

deployment scheme so that the average time cost of their appli-

cations can be minimized, as well as the energy consumption

expense in an given MEC-based architecture. Therefore, we

can now formulate the CA3 D problem as follows:

5 Approach

It is not hard to find that the objectives depend on the value

of decision variables p and � , and the bounded integer con-

straint for pk
i
 makes the optimization problem mix-integer and

nonlinear. Meanwhile, the requirement of optimizing both the

application time cost and deployment cost (energy consump-

tion) makes the problem to be a multi-objective optimization

problem (MOOP). These properties challenge the solving of

our CA3 D problem. Therefore, we turn to the heuristic method

like MOEA/D [29] and try to find some sub-optimal solutions.

(8)C(G) =

K
∑

k=1

n
∑

j=1

m
∑

i=1

�jwi(�
k
j,i
)2.

(9)

P ∶ min
x=(p,�)

F(x) =

(

T(G), C(G)

)

s.t. 1 ≤ pk
i
≤ n

K
∑

k=1

m
∑

i=1

�
k
j,i
≤ �

⋆

j

Typically, an MOOP is solved with a decomposition strat-

egy, which decomposes the original problem into several

scalar optimization sub-problems and optimizes them simul-

taneously [30, 31]. For example in the classic MOEA/D

method, the Tchebycheff decomposition is used to measure

the maximum weighted distance between the objectives and

their minimums z∗ = (z∗
T
 , z∗

C
):

, where 0 ≤ �
C

, �
T
 ≤ 1 and �

C
 + �

T
 =1 are the constraints

for weight vector � = (�
T
 , �

C
). Obviously, the shorter the

distance between f (x) and its minimum is, the closer will

the x be with the optimal solution. And with the weight vec-

tor, we can finally search the Pareto optimum in an iterative

way. Algorithm 1 shows the detailed operations in solving

the problem with the MOEA/D. In this process, each sub-

problem will be optimized by using information from its

several neighbors.

It can be found in Algorithm 1 that several evolutionary

operators like crossover and mutate are involved. Actually,

MOEA/D provides the possibility to use traditional evolu-

tionary algorithms like Genetic algorithm (GA) [32] to solve

multi-objective problems. Therefore, we borrow the operators

in GA, a kind of meta-heuristic algorithm inspired by the pro-

cess of natural selection, to solve our target problem. There-

fore, after encoding the decision variable p and � as p = (p1

1
 ,

..., p1

m
 , ..., pK

1
 , ..., pK

m
) and � = (�1

1,1
 , ...,�1

1,m
 , ..., �1

n,1
 , ...,�1

n,m
 , ...,

�
K

1,1
 , ...,�K

1,m
 , ..., �K

n,1
 , ...,�K

n,m
) and combining them to get x , the

genetic algorithm will be embedded to Algorithm 1 with these

operators. Obviously, the crossover operator makes it possible

to obtain better solutions, and the mutation operation gives the

algorithm the ability to avoid premature convergence.

For the sake of simplicity and variable-controlling, we

adopt the same parameter configuration for the following

evolutionary algorithms including MOEA/D, that is, the

initial population is N = 200, the number of iterations is

MAX_ITER = 200, the mutation probability is p
m
 = 0.1 and

the crossover probability is p
c
 = 0.8. Meanwhile, the initial

population is generated randomly. In the pseudo-code of

the algorithm, we can clearly see that the main complexity

of the MOEA/D algorithm comes from the for loop in lines

22-32, that is, to update their neighboring solutions for each

individual where the number of individuals is N, the number

of adjacent solutions is N
A
 . For each objective function,

the same operation needs to be performed. And there are

two objective functions in our algorithm, namely T(⋅) and

C(⋅) . Thus, we can obtain that in an evolutionary iteration,

the time complexity of the algorithm is O(N ∗ N
A
) , and the

overall time complexity is O(MAX_ITER ∗ N ∗ N
A
).

(10)gte(x|�, z
∗) = max{�T |T(x) − z∗

T
|, �C|C(x) − z∗

C
|}

1035Peer-to-Peer Networking and Applications (2022) 15:1029–1044

1 3

6 Experiments and analysis

To fully explore the impacts of the solution derived from the

MOEA/D based algorithm, we partially use the dataset of

Alibaba Cluster data3, which is published by Alibaba Group.

It contains cluster trace of real production, and several con-

tainers are composed in DAG to finish complex tasks. Besides

this, we also generate our experimental synthetic data with

settings shown in Table 2 to perform our evaluations. What’s

more, to make the result convincing, the network and service

parameters in this table are set close to reality. Besides the

comparison with baselines, a series of comprehensive experi-

ments were conducted on the simulation data in this section

to explore the impact of different factors.

Meanwhile, to the best of our knowledge, the CA3 D

problem is the first attempt to consider the deployment of

AIoT services as well as optimizing the resource alloca-

tion strategy in the MEC environment, none of the existing

approaches in former research works can be directly adopted

in our problem. Thus, we select the following intuitive and

representative strategies as baselines:

1. Equality-sensitive Deployment (ESD). In the equality-

sensitive deployment strategy, resources of edge servers

will be allocated in an equal way to the service instance

of all the application G
k
 ∈ G . This strategy is simple but

easy to implement. It is practical in many cases so that

it is used on plenty of real-world distributed systems.

2. Frequency-based Deployment (FBD). In the frequency-

based deployment strategy, service instances of AIoT

applications will be placed on the most frequent edge

servers where the related services are mainly used in

these areas. Meanwhile, the resources of edge servers

will be allocated according to the frequency so that

the most frequently used services will have the most

resource. It is an unbalanced but useful strategy, it

addresses the on-premise property of the MEC paradigm.

3. Workload-aware Deployment (WAD). In the work-

load aware deployment strategy, service instances will

be placed on the busy edge servers, and resources of

edge servers will be allocated according to the work-

load of services, so that the heaviest services will have

the most resource. WAD is a reinforcement of the FBD

strategy because it distinguishes the burden of different

requests.

4. Transmission-aware Deployment (TAD). In the trans-

mission aware strategy, resources of edge servers will be

allocated according to the communication service place-

ment preference because the transmission time cost is

usually the major part that affects the performance.

With these settings in Table 2, we illustrate the average

expense and service response time for these approaches in

Fig. 3, and their running times in Fig. 4.

As we can see in Fig. 3, MOEA/D’s optimization of the

objective function shows its excellent capability to achieve

a good balance between the performance and consumption.

Different from the Pareto curve generated by the proposed

algorithm, the results of baselines are scattered in this fig-

ure: among the baselines, TAD is significantly better than

the other three strategies in terms of performance optimiza-

tion, but the corresponding cost is also much higher. This is

because the communication quality is often the main factor

that affects the time cost. On the other hand, the expense

in TAD will also increase when the resources of the server

with better communication quality are all allocated. ESD is

close to one solution of ours in the optimization of multi-

objectives, but there is still a small gap. This is because

evenly distributed resources among servers can play a pos-

itive role in the control of deployment expense — when

there are not many requests, ESD also brings a splendid

load balancing effect. However, our method can optimize the

Table 2 System Configurations

Param Value Param Value

(m, n) (9, 10) K 8

d
O

i
N (5,12) MB ve

j
N (20,10

2) MB/s

w
i N (20,10

2)×10
4 MI Bj,k N (20,10

2) kMB/s

�j N (10,12) �j N (2,0.2
2)×10

4 MIPS

3 https:// github. com/ aliba ba/ clust erdata/

1036 Peer-to-Peer Networking and Applications (2022) 15:1029–1044

https://github.com/alibaba/clusterdata/

1 3

deployment of services and the resource allocation of each

server in a more fine-grained manner so that it can achieve

better results than ESD. In addition, our method can select

the parameter configuration on the Pareto optimal curve

according to different scenarios, and all the optimal solu-

tions of the curve can achieve the best effect while (T(G) ,

C(G)) is balanced. Contrary to its good performance, the

MOEA/D takes time to calculate the value of the decision

variables. The running time under different problem scales

(namely, the number of services, number of edge servers

and number of IoT applications) are shown in the Fig. 4. As

the problem scale increases, the running time also increases.

But from the convergence of our method illustrated in Fig. 5

(the GEN in Fig. 5 means the evolution generation of the

population.For example, the curve labeled with GEN=115

means this is the curve that shows the result of the algorithm

after the 115-th iteration), we can find that the early-stop

trick will be capable here as the curve after 179-th genera-

tion is almost approximate to that after 195-th, while the

result Pareto curve is gradually moving to the direction of

better performance with increase of generations. The com-

parisons above show the difference between our approach

and other heterogeneous approaches. In these comparisons,

some of the baselines are representative but not designed to

solve this specific problem. Thus, as MOEA/D is one of the

evolutionary algorithms, the other kinds of algorithms are

also applied on this CA3 D problem to check whether it is

appropriate to select the MOEA/D in solving this problem.

The comparisons between these evolutionary algorithms are

shown in Fig. 6. From Fig. 6 we can find that these algo-

rithms approximately show the same capability in balanc-

ing the system performance and cost (except the MOEAD-

DE algorithm) while the MOEA/D algorithm shows small

advantages on the Pareto frontier.

For multi-objective optimization, one of the widely

used indicators to measure the performance of the algo-

rithm is HV (hyper-volume), which represents the hyper-

cube formed by the individual in the solution set and the

reference point in the target space volume. Hyper-volume

can simultaneously evaluate the convergence and distri-

bution of the solution set, which means the larger the

HV value is, the better the overall performance of the

algorithm will be. Based on the same data and hyper-

parameter configuration, we run our algorithm 200 times

Fig. 3 The comparison with

baselines

20 40 60 80 100 120 140 160 180

1

1.5

2

2.5

3

3.5

4

4.5

5

5 6 7 8 9

Problem scale

25

30

35

40

45

R
u

n
n

in
g

 t
im

e
 (

s)

Service number

Edge server number

AIoT application number

Fig. 4 The running times of different problem scales

1037Peer-to-Peer Networking and Applications (2022) 15:1029–1044

1 3

and finally get the histogram of its distribution as shown

in Fig. 7. Besides the histogram, the violin-plot is also

demonstrated on the upper left corner of this figure to

provide a clearer visualization. It can be seen that almost

80% of the HV data are above 0.70, indicating that our

algorithm has good convergence and can get a nice result

at the most of time.

Fig. 5 The convergence with

the increasing of iterations

40 60 80 100 120 140 160

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

O
p

tim
a

l t
o

ta
l c

o
st

 C
(G

)
($

)

Fig. 6 The comparison with

other evolutionary algorithms

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1038 Peer-to-Peer Networking and Applications (2022) 15:1029–1044

1 3

Besides the data set from Alibaba Cluster, here we also

evaluate our approach on some more complex data struc-

tures or workflows like the Montage project4, which is an

astronomical image mosaic engine, to illustrate the good

portability of our method. The modules (in red ellipse) of

Montage work together in the order shown in Fig. 8. Obvi-

ously, it is a more complex service-based application and it

can also be deployed in the MEC system. In Fig. 9, we used

Montage’s DAG data to test our algorithm on the number of

services of different scales. With the increasing of service

number from montage-1 to montage-3, the Pareto frontiers

are shown in Fig. 9. It can be seen from the results that the

approach can also work to generate the optimal frontiers in

the complex situations.

6.1 Impacts of system configurations

The above comparisons show that the MOEA/D based algo-

rithm will be practical in solving such a context-aware AIoT

application deployment problem in MEC-based systems.

Besides the comparison between approaches, we will further

discuss the effects of various factors in the system.

6.1.1 Impacts of application and service

Among the settings of our MOEA/D based algorithm, the

service related factors are the average output data size (̄O),

the service workload (w̄), the average service number (m)

and the application type number (K). Therefore, in order

to check the influence of these service related parameters

on the optimization objective (T(G) , C(G)), we set the sys-

tem parameters to the configuration listed in Table 2, and

adjust the average of the above related parameters respec-

tively to observe their influences. Accordingly, the results

are shown in Fig. 10a, b, g, i. That is, the Pareto optimal

curves obtained from the algorithm based on MOEA/D

shift upward gradually in the direction of performance

decrease with the increase of Ō , w̄ , K and m. In detail, with

the increase of Ō , the Pareto optimal curve gradually drifts

toward the direction of performance degradation. This is

because when the amount of data increases, it brings more

pressure on data transmission between servers. And this

pressure will result in traffic congestion and performance

deterioration. Secondly, as the average service workload w̄

increases, the performance decreases because the increasing

workload will force the server to allocate more resources.

Thirdly, with the increase of K, which means the increase

of applications to be deployed, the Pareto curve moves to

the upper right. This is because more service requests need

to be processed when the total resources remain the same

in this case, and the lack of resources will then reduce the

processing efficiency. Finally, similar reasons like those of

K decrease the performance with the increasing of service

number m for the additional resource requirements.

6.1.2 Impacts of server

Similarly, we keep the system parameters fixed as shown

in Table 2, and observe their impacts on the optimization

objectives (T(G) , C(G)) by adjusting the server related fac-

tors, which are the average deployment price related to the

server �̄ , the total number of resources of each server �̄⋆ ,

and the total number of servers n. The results are shown in

Fig. 10c, d, h. In summary, the Pareto curve of the optimiza-

tion objective (T(G) , C(G)) shows a trend to move up and

right with the increases of �̄ , and it moves in the direction

Fig. 7 The distribution of hyper-volume
Fig. 8 A directed acyclical graph (DAG) showing the parallelization

in the Montage design

4 http:// monta ge. ipac. calte ch. edu/ docs/ grid. html

1039Peer-to-Peer Networking and Applications (2022) 15:1029–1044

http://montage.ipac.caltech.edu/docs/grid.html

1 3

of enhanced performance as �̄⋆ and n increase. In detail, the

Pareto curve moves in the direction of performance decline

with the average deployment price increases because the lin-

ear relationship between the average price increases and the

total cost. Besides, as the average number of resources of the

server increases, the performance of the entire system gradu-

ally improves. This is due to the relaxation of resource con-

straints, which can speed up the operation of a single service.

However, as the cost increases with more used resources, the

curve’s trend of moving to the lower left is not particularly

obvious. Finally, with the increase in the number of edge

servers n, the Pareto curve moves to the lower left. This is

because after the increase in the number of servers, while the

total number of tasks remains the same, the optional edge

servers in the system become diverse, and including some

cost-effective servers. Deploying services on these servers

will not only shorten the processing time but also lower the

cost, so it can improve the overall performance.

6.1.3 Impacts of network

In the same way, we keep the system parameters fixed as

shown in Table 2 and adjust the network parameters v̄e (̄vc),

b̄ to detect the impacts of network quality on the system.

The results are shown in Fig. 10e, f). We can find that the

better the network condition is, the closer the Pareto curve

of performance and cost is to the lower left. This is because

as the network transmission rate increases, the data trans-

mission time cost is reduced with other system parameters

unchanged, so that each service can respond faster, which

leads to performance improvements and make the Pareto

curve move to the lower left.

7 Conclusion and future work

In this paper, we investigate, model and formulate the CA3 D

problem in resource-constrained MEC environment. A series

of numeric experiments are conducted based on the Alibaba

and Montage dataset. Since the CA3 D problem is a mixed

integer nonlinear programming multi-objective problem,

which brings enormous challenges to find its optimal solu-

tions. As a compromise scheme, we turn to the heuristic

method like MOEA/D and try to find some sub-optimal solu-

tions that may satisfy the requirements at a certain degree

within the mentioned constraints. The comparison results

show that our algorithm outperforms other representative

baseline approaches. And the factor exploration shows how

the system settings will become the bottlenecks.

Obviously, this application modeling and problem solu-

tions for CA3 D can be transformed into any other application

in which the components have partial order dependence as a

Fig. 9 Result of test on Mon-

tage workflow

10 20 30 40 50 60 70 80 90

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1040 Peer-to-Peer Networking and Applications (2022) 15:1029–1044

1 3

directed acyclic graph based on the demands of extensions. It

has a instructive significance on how to optimize the deploy-

ment of components and resource allocation in such applica-

tions so as to achieve the optimal balance between perfor-

mance and cost — in other words, it has a good compatibility.

However, even the proposed solution can be practical

in placing and allocating, it just aims to provide a good

start for the system — when the system is established in

a very unstable environment, the proposed solution may

not guarantee its efficiency (for example, in a context

fast-changing environment). Therefore, we are going to

consider the uncertainty of real-time scheduling tasks and

try to balance the effectiveness and robustness to make the

system more self-adaptive in our future work, where the

deep reinforcement learning (DRL) based methods may

play an important role.

Acknowledgements This research was partially supported by the

National Natural Science Foundation of China (No. 62102350, No.

62072402) and the Natural Science Foundation of Zhejiang Province

(No. LQ21F020007, No. LQ20F020015).

20 40 60 80 100

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200 250 300

1

1.5

2

2.5

3

3.5

4

40 60 80 100

1

2

3

4

40 60 80 100 120 140

0.6

0.8

1

1.2

1.4

1.6

20 40 60 80 100

1.1

1.2

1.3

1.4

1.5

1.6

1.7

20 40 60 80 100

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100

1

1.2

1.4

1.6

1.8

2

20 40 60 80 100

1

2

3

4

5

0 50 100 150 200

1

1.2

1.4

1.6

1.8

2

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10 The impacts of service and edge server settings

1041Peer-to-Peer Networking and Applications (2022) 15:1029–1044

1 3

Declarations

Conflict of interest The authors declare that they do not have any com-

mercial or associative interest that represents a conflict of interest in

connection with the work submitted.

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article's Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in

the article's Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Deng S, Zhao H, Fang W, Yin J, Dustdar S, Zomaya AY (2020)

Edge intelligence: The confluence of edge computing and artificial

intelligence. IEEE Internet Things J 7(8):7457–7469

 2. Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing:

Vision and challenges. IEEE Internet Things J 3(5):637–646

 3. Xiang Z, Deng S, Jiang F, Gao H, Tehari J, Yin J (2020) Comput-

ing power allocation and traffic scheduling for edge service provi-

sioning. In 2020 IEEE International Conference on Web Services

(ICWS), IEEE, pp. 394–403

 4. Filippini I, Sciancalepore V, Devoti F, Capone A (2017) Fast cell

discovery in mm-wave 5g networks with context information.

IEEE Trans Mob Comput 17(7):1538–1552

 5. Wang D, Xu D, Yu D, Xu G (2021) Time-aware sequence model

for next-item recommendation. Appl Intell 51(2):906–920

 6. Fan Q, Ansari N (2018) Application aware workload allocation for

edge computing-based iot. IEEE Internet Things J 5(3):2146–2153

 7. Chen Y, Deng S, Ma H, Yin J (2020) Deploying data-intensive

applications with multiple services components on edge. Mob

Netw Appl 25(2):426–441

 8. Zhao H, Deng S, Zhang C, Du W, He Q, Yin J (2019) A mobility-

aware cross-edge computation offloading framework for partition-

able applications. In 2019 IEEE International Conference on Web

Services, ICWS, IEEE, pp. 193–200

 9. Bozorgchenani A, Mashhadi F, Tarchi D, Monroy SS (2020)

Multi-objective computation sharing in energy and delay con-

strained mobile edge computing environments. IEEE Trans Mob

Comput 20(10):2992–3005

 10. Chen Y, Zhang Y, Wu Y, Qi L, Chen X, Shen X (2020) Joint task

scheduling and energy management for heterogeneous mobile

edge computing with hybrid energy supply. IEEE Internet Things

J 7(9):8419–8429

 11. Jiang C, Fan T, Gao H, Shi W, Liu L, Cerin C, Wan J (2020) Energy

aware edge computing: A survey. Comput Commun 151:556–580

 12. Mashhadi F, Monroy SAS, Bozorgchenani A, Tarchi D (2020)

Optimal auction for delay and energy constrained task offloading

in mobile edge computing. Comput Netw 183:107527

 13. Ouyang T, Zhou Z, Chen X (2018) Follow me at the edge: Mobility-

aware dynamic service placement for mobile edge computing. IEEE

J Sel Areas Commun 36(10):2333–2345

 14. Pasteris S, Wang S, Herbster M, He T (2019) Service place-

ment with provable guarantees in heterogeneous edge computing

systems. In IEEE INFOCOM 2019-IEEE Conference on Com-

puter Communications, IEEE, pp. 514–522

 15. Roy P, Sarker S, Razzaque MA, Hassan MM, AlQahtani SA,

Aloi G, Fortino G (2020) Ai-enabled mobile multimedia service

instance placement scheme in mobile edge computing. Comput

Netw 182:107573

 16. Yuan B, Guo S, Wang Q (2021) Joint service placement and request

routing in mobile edge computing. Ad Hoc Netw 120:102543

 17. Ning Z, Dong P, Wang X, Wang S, Hu X, Guo S, Qiu T, Hu B,

Kwok RY (2020) Distributed and dynamic service placement in

pervasive edge computing networks. IEEE Trans Parallel Distrib

Syst 32(6):1277–1292

 18. Han P, Liu Y, Guo L (2021) Interference-aware online multi-

component service placement in edge cloud networks and its ai

application. IEEE Internet Things J

 19. Yu Y, Zhang J, Letaief KB (2016) Joint subcarrier and cpu time

allocation for mobile edge computing. In 2016 IEEE Global Com-

munications Conference (GLOBECOM), IEEE, pp. 1–6

 20. Wang C, Liang C, Yu FR, Chen Q, Tang L (2017) Computation

offloading and resource allocation in wireless cellular networks

with mobile edge computing. IEEE Trans Wireless Commun

16(8):4924–4938

 21. You C, Huang K, Chae H, Kim B-H (2016) Energy-efficient

resource allocation for mobile-edge computation offloading.

IEEE Trans Wireless Commun 16(3):1397–1411

 22. Guo S, Zhang K, Gong B, He W, Qiu X (2021) A delay-sensitive

resource allocation algorithm for container cluster in edge com-

puting environment. Comput Commun 170:144–150

 23. Bahreini T, Badri H, Grosu D (2021) Mechanisms for resource

allocation and pricing in mobile edge computing systems. IEEE

Trans Parallel Distrib Syst 33(3):667–682

 24. Yang L, Liu B, Cao J, Sahni Y, Wang Z (2019) Joint computation

partitioning and resource allocation for latency sensitive applications

in mobile edge clouds. IEEE Trans Serv Comput 14(5):1439–1452

 25. Mao Y, Zhang J, Letaief KB (2016) Dynamic computation

offloading for mobile-edge computing with energy harvesting

devices. IEEE J Sel Areas Commun 34(12):3590–3605

 26. Rabaey JM, Chandrakasan AP, Nikolić B (2003) Digital inte-

grated circuits: a design perspective, vol 7. Pearson education

Upper Saddle River, NJ

 27. Burd TD, Brodersen RW (1996) Processor design for portable

systems. J VLSI Signal Process Syst Signal Image Video Technol

13(2):203–221

 28. Rizvandi NB, Taheri J, Zomaya AY (2011) Some observations

on optimal frequency selection in dvfs-based energy consump-

tion minimization. J Parallel Distrib Comput 71(8):1154–1164

 29. Zhang Q, Li H (2007) Moea/d: A multiobjective evolutionary

algorithm based on decomposition. IEEE Trans Evol Comput

11(6):712–731

 30. Ma X, Yu Y, Li X, Qi Y, Zhu Z (2020) A survey of weight vector

adjustment methods for decomposition-based multiobjective evo-

lutionary algorithms. IEEE Trans Evol Comput 24(4):634–649

 31. Santiago A, Huacuja HJF, Dorronsoro B, Pecero JE, Santillan

CG, Barbosa JJG, Monterrubio JCS (2014) A survey of decom-

position methods for multi-objective optimization. In Recent

Advances on Hybrid Approaches for Designing Intelligent Sys-

tems. Springer, pp. 453–465

 32. Katoch S, Chauhan SS, Kumar V (2021) A review on genetic

algorithm: past, present, and future. Multimed Tools Appl

80(5):8091–8126

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

1042 Peer-to-Peer Networking and Applications (2022) 15:1029–1044

http://creativecommons.org/licenses/by/4.0/

1 3

Zhengzhe Xiang received the B.S.

and Ph.D. degrees of Computer Sci-

ence and Technology in Zhejiang

University, Hangzhou, China. He

was previously a visiting student

worked at the Karlstad University,

Sweden in 2018. He is currently a

lecturer with Zhejiang University

City College, Hangzhou, China. His

research interests lie in the fields of

Service Computing, Cloud Comput-

ing, and Edge Computing. He serves

as a reviewer for a series of interna-

tional journals like IEEE Transac-

tions on Services Computing, IEEE

Transactions on Mobile Computing,

Mobile Networks & Applications, IEEE Intelligent Transportation

Systems Transactions, Wireless Networks, IET Communications .etc

and he also works as PC members of several international

conferences.

Yuhang Zheng is now working

toward the M.S. degree in the

College of Computer Science

and Technology, Zhejiang Uni-

versity, Hangzhou, China. His

research interests include Inter-

net of Things technology, Edge

Computing, Service Computing,

and Reinforcement Learning.

Mengzhu He received her M.S.

degree of Plant Protection in Zheji-

ang University, Hangzhou, China.

She is now a scientific assistant in

the Intelligent Plant Factory of Zhe-

jiang Province Engineering Lab in

Zhejiang University City College

and servers as the lab supervisor in

the Hangzhou Industry Brain Labo-

ratory. Her research interests

include Plant Virology, Internet of

Things technology and Intelligent

Agriculture.

Longxiang Shi received his B.Sc in

software engineering from North-

western Polytechnical University,

Xi’an, China in 2012. He got his

Ph.D. degree in College of Com-

puter Science and Technology, Zhe-

jiang University, Hangzhou, China

in 2020. In 2018, he was a Joint

Ph.D student with the Advanced

Analytics Institute, University of

Technology Sydney, Sydney, Aus-

tralia under the supervision of Pro-

fessor Longbing Cao. He is cur-

rently a lecturer in Zhejiang

University City College. His

research interests include reinforce-

ment learning, data mining and machine learning.

Dongjing Wang received the B.S.

and Ph.D. degrees in computer

science from Zhejiang Univer-

sity, Hangzhou, China, in 2012

and 2018, respectively. He was

co-trained at the University of

Technology Sydney, Ultimo,

NSW, Australia, for one year. He

is currently a Lecturer with

Hangzhou Dianzi University,

Hangzhou. His current research

interests include recommender

systems, machine learning, data

mining, and business process

management.

Shuiguang Deng is currently a full

professor at the College of Com-

puter Science and Technology in

Zhejiang University, China, where

he received a BS and PhD degree

both in Computer Science in 2002

and 2007, respectively. He previ-

ously worked at the Massachusetts

Institute of Technology in 2014 and

Stanford University in 2015 as a

visiting scholar. His research inter-

ests include Edge Computing, Ser-

vice Computing, Cloud Computing,

and Business Process Management.

He serves for the journal IEEE

Trans. on Services Computing,

Knowledge and Information Systems, Computing, and IET Cyber-

Physical Systems: Theory & Applications as an Associate Editor. Up

to now, he has published more than 100 papers in journals and refereed

conferences. In 2018, he was granted the Rising Star Award by IEEE

TCSVC. He is a fellow of IET and a senior member of IEEE.

1043Peer-to-Peer Networking and Applications (2022) 15:1029–1044

1 3

Zengwei Zheng received the B.S.

and Master degrees in computer

science and western economics

from Hangzhou University,

China, in 1991 and 1998, respec-

tively, and the Ph.D. degree in

computer science and technol-

ogy from Zhejiang University,

China, in 2005. He is currently a

Professor with the School of

Computer and Computing Sci-

ence, the Director of Intelligent

Plant Factory of Zhejiang Prov-

ince Engineering Laboratory, the

Director of the Hangzhou Key

Laboratory for IoT Technology

and Application, Zhejiang University City College. His research inter-

ests include wireless sensor networks, location-based service, Internet

of Things, digital agriculture, and pervasive computing. He is a senior

member of CCF.

1044 Peer-to-Peer Networking and Applications (2022) 15:1029–1044

	Energy-effective artificial internet-of-things application deployment in edge-cloud systems
	Abstract
	1 Introduction
	2 Motivation scenario
	3 Related work
	3.1 Service placement in MEC
	3.2 Resource allocation in MEC

	4 System model and problem description
	4.1 Server and network
	4.2 DAG-based AIoT application
	4.3 AIoT application deployment scheme
	4.4 AIoT application performance evaluation
	4.5 Energy consumption model
	4.6 Problem definition and formulation

	5 Approach
	6 Experiments and analysis
	6.1 Impacts of system configurations
	6.1.1 Impacts of application and service
	6.1.2 Impacts of server
	6.1.3 Impacts of network

	7 Conclusion and future work
	Acknowledgements
	References

