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Energy Efficiency Analysis of the Very Fast

Decision Tree Algorithm

Eva Garcia-Martin, Niklas Lavesson, and Håkan Grahn

Abstract Data mining algorithms are usually designed to optimize a trade-off be-

tween predictive accuracy and computational efficiency. This paper introduces en-

ergy consumption and energy efficiency as important factors to consider during data

mining algorithm analysis and evaluation. We conducted an experiment to illustrate

how energy consumption and accuracy are affected when varying the parameters of

the Very Fast Decision Tree (VFDT) algorithm. These results are compared with a

theoretical analysis on the algorithm, indicating that energy consumption is affected

by the parameters design and that it can be reduced significantly while maintaining

accuracy.

Key words: Energy efficiency, Green computing, Very Fast Decision Tree, Big

Data

1 Introduction

Data stream mining is gaining importance with the evolution of hardware, sensor

systems and technology. The rate at which data is generated is increasing day by day,

challenging storage and computational efficiency [30]. Digital Universe Study [2]

has predicted that by 2020, 40,000 exabytes of data will be processed, most of them
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originating from devices that automatically generate data. Many algorithms in data

stream mining are designed to process fast and potentially infinite streams [25, 38].

Traditionally, the machine learning community has considered accuracy as the

main factor when building algorithms. With the appearance of big data analytics

and data stream mining, scalability has also been a key factor to consider. In this

context, scalability stands for how fast an algorithm can process the incoming data.

The problem that we address in this study is the fact that few researchers in the data

mining community consider energy consumption as an important measure.

It has been shown that energy consumption can be reduced in every layer of

the Open Systems Interconnection (OSI) model [51, 56]. Hardware solutions to re-

duce energy consumption have been focused on, e.g. using the Dynamic Voltage

Frequency Scaling (DVFS) technique and on parallel computing [48, 44]. During

recent years, the interest in developing energy efficient software solutions has in-

creased significantly, leading to a creation of applications to measure energy con-

sumption in software [47].

This paper introduces energy consumption and energy efficiency as important

factors to consider during data mining algorithm analysis and evaluation, and to

demonstrate the use of these factors in a data stream mining context. The consider-

ation of energy efficiency can help companies and researchers move towards green

computing [37] while improving the business profits.

Social networks is a very good example of a domain in need of efficient data

processing and analysis of algorithms. Companies such as Facebook, Twitter, and

Instagram, rely on large data clusters consuming vast amounts of energy. Facebook,

for example, generates 4 million posts every minute [9], which creates interesting

challenges for algorithms that are running continuously in their network. One of

these challenges is to optimize such algorithms in terms of energy consumption.

Even a small improvement will reduce energy on a large scale, due to the nature of

the network.

We conducted an experiment to illustrate a possible scenario where energy con-

sumption is relevant to study. More specifically, we studied how energy and accu-

racy are affected by changing the parameters of the VFDT (Very Fast Decision Tree)

algorithm [25]. We make a comparison between the theoretical analysis on the algo-

rithm and the experimental results, which indicate that it is possible to significantly

reduce the energy consumption of the VFDT algorithm while maintaining similar

levels of accuracy. The main contribution of this paper is the introduction of energy

consumption as a key factor to consider in data mining algorithms. This is supported

by a theoretical and empirical analysis that illustrate an example on how to build

sustainable and efficient algorithms and the reasons behind energy consumption.

This paper is an extension of the paper titled: Energy Efficiency in Data Stream

Mining [45]. While such publication centers on observing the energy consumption

only from an empirical perspective, this study motivates the experimental setup and

results by analyzing the behavior of the VFDT from a theoretical and empirical

perspective. Therefore, we can compare how the algorithm behaves in reality from

what we predicted theoretically. On top of that, more relevant parameters have been

chosen and two real world datasets have been added to the experiment.
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2 Background

In this section we first explain the importance of energy consumption in data mining.

Then, we briefly explain data stream mining and why it is different from standard

data mining, and finally we introduce some terminology related to power, energy,

energy efficiency and computational efficiency.

2.1 Energy-awareness

The demand for energy is increasing day by day [51]. World leaders and scientists

focus on finding a solution towards this problem, centering on two key factors: de-

veloping new sources of clean energy and decreasing energy usage [22] [13], which

would lead to a reduction in CO2 emissions. The main reason why researchers and

every citizen should be aware of energy consumption is because energy pollutes.

Every device that we use in a daily bases that consumes energy produces CO2.

Nowadays, based on a study conducted by the World Health Organization, air pol-

lution kills more people than malaria and aids combined [46]. This argument is

based on what is known as ecological or environmental footprint [3], that measures

how much impact a certain person or action has in relation to the environment. For

instance, carbon footprint measures how many greenhouse gases are produced by an

individual or event, expressed as CO2 [1]. Therefore, if companies and individuals

are aware of the footprint of their computations, their impact could be reduced by

making them energy efficient.

There have been studies that measure the environmental impact of queries in

search engines [11]. Considering that there are approximately 66k Google queries

per second [7], reducing the CO2 emissions of search queries will significantly im-

pact the environment. If we translate this example to data stream mining, we can

picture the execution of data stream mining algorithms in servers running during 24

hours a day, for a complete year. In this case, building energy-aware algorithms has

the following consequences:

• Reduction of CO2 emissions to the atmosphere.

• Reduction of air pollution, therefore reducing the number of deaths per year due

to this matter.

• Reduction of the money spent on energy.

• Increase of the battery life of mobile devices and sensor networks, if the algo-

rithm is implemented in such contexts.
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2.2 Data Stream Mining

Data stream mining is the process of building models by exploring and extracting

patterns from a stream of data.

The core assumption of data stream mining, in comparison to data mining, is

that the examples are inspected only once, so we have to assume that if they are

not processed immediately they are lost forever [50, 20]. Moreover, it is considered

that the data arrives online, with no predefined order, at a high-speed and with time-

changing characteristics. Data stream mining algorithms should be able to process

potentially infinite streams while updating the model incrementally [31, 38].

2.3 Terminology

In this section we clarify several concepts related to energy, power, and efficiency.

Energy is a measurement of the amount of fuel used for a specific application. It is

measured in Joules (J) or kWh. Power is a measurement of the rate at which energy

is consumed. It is measured in Joules/second, which is equal to Watts (W). The

following is an example that illustrates the relationship between power and energy:

A process is running for 3.94 seconds consuming an estimate power of 1.81 W. The

total energy consumed is: 3.94×1.8 = 7.092J =Ws = 1.99×10−3 Wh.

Energy efficiency has a specific definition at Green500 [8], being, The amount of

operations per watt a computer can perform. This definition is related to hardware.

In this study, whenever we mention energy efficiency we refer to reducing the energy

consumption of some process or algorithm.

In theoretical machine learning, researchers introduced the computational learn-

ing theory [40], where they analyze the computational complexity of algorithms.

They approach computational efficiency as a way of designing less computationally

complex algorithms that can run in polynomial time.

3 Related Work

In this section we first review literature related to energy awareness in software and

hardware. Then, we examine relevant work in the data stream mining field, focusing

on the VFDT algorithm. Finally, we review papers that are related to both energy

consumption and data stream mining.

Research in energy awareness at the software level started many years ago, when

researchers began to realize the importance of the energy consumed by a software

application. In 1994, the first systematic attempt to model the power consumption of

the software components of a system was presented [53]. After that, in 1999, Pow-

erScope was presented [27], a software tool for profiling the energy usage of ap-

plications. The novelty of this approach is that energy consumption can be mapped
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to program structure to analyze which procedures consume more energy. Compa-

nies such as Microsoft [5] and Intel [6] have invested in developing software tools

to help developers reduce the energy consumption of their applications. During the

past years, the Spiral research group [12] has gained interest in building energy ef-

ficient software. They show that energy consumption depends not only on the time

and number of computations, but also on the stress of the processor, the I/O op-

erations and many other factors. They have developed a software tool, PowerAPI,

where they show that they can get high accurate modeling of the power consumption

of software applications. They have evaluated their model by comparing their results

and method with hardware power meters obtaining promising results [21, 47].

In relation to energy efficiency at the hardware level, one of the most impor-

tant techniques, implemented in most contemporary processors, is Dynamic Voltage

Frequency Scaling (DVFS). DVFS is a power saving technique used and improved

by many researchers. One improvement is Real Time DVFS, an implementation of

DVFS for real time systems [48]. Another area that is gaining importance nowadays

is parallel computing, where there are relevant energy savings by employing more

cores on a processor [44]. Several energy-saving approaches, such as Cost optimiza-

tion for power-aware computing have been developed in the past years [51].

In relation to data stream mining, researchers have developed efficient ap-

proaches to mine data streams, as outlined below. There have been several reviews

conducted in data stream mining since 2005. Two general reviews [30, 15], portray

techniques and concepts such as data-based techniques, task-based techniques, data

stream classification and frequent pattern mining. More specific reviews center on

topics such as sensor networks [28] and knowledge discovery [31].

From the reviews explained above, we have extracted six main techniques and ap-

proaches in data stream mining: Data stream clustering [35], Data stream classifica-

tion [25], Frequent Pattern Mining [17], Change Detection in data streams [14, 41],

Sliding window techniques [23] and Stream mining in sensor networks [34, 28]. We

have decided to focus in Data Stream classification and change detection in data

streams.

Concept drift refers to a change between the input data and the target variable

on an online supervised learning scenario. The first framework that dealt with con-

cept drift was proposed to also address efficiency and robustness [55]. Nowadays,

researchers consider concept-drift as an important aspect when building algorithms

for other specific purposes. A survey on different methods that address concept drift

has been conducted in 2014 [33].

Classification is considered a challenging problem in a data stream mining sce-

nario [15]. The main reason is that many of the traditional classification techniques

and algorithms were designed to build models from static data.

One of the key breakthroughs in supervised online learning was made with the

development of the Hoeffding Tree algorithm and the Very Fast Decision Tree

(VDFT) learner [25]. In contrast to previous algorithms, such as as SPRINT [52]

and ID5R [54], this new approach was able to deal with potential infinite streams,

arriving at a fast pace and with low computational cost. The VFDT learner is able

to process examples at a high rate in constant time. One year later, the same authors
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created a new version of the VDFT algorithm, CVFDT, that was able to adapt to

concept-drift [38]. Another extension on the VFDT algorithm appeared two years

later, with a new decision tree learner that could efficiently process numerical at-

tributes [39]. In the same line, a decision tree algorithm was created for spatial data

streams [24]. We would like to mention relevant methods that address different clas-

sification problems, namely: On-Demand classification [16, 14], Online Information

Network (OLIN) [42], LWClass [29], ANNCAD [43] and SCALLOP [26].

In relation to energy awareness in data stream mining, several researchers have

conducted studies where they emphasize the importance of energy consumption [32,

30, 18]. While the first two are concerned on energy savings for sensor networks,

the second one centers on examine the energy consumption of different data analysis

techniques. To the best of our knowledge, the last work is the one most related to

ours.

We can observe that there is no specific research on making energy consumption

a key factor on data stream mining, since the research has been centered towards spe-

cific applications or hardware modifications. We would like to change this approach

by proposing energy consumption as the new factor to consider when building, op-

timizing or creating new algorithms in data stream mining. We believe that this is

the next natural step to take, since other researchers in similar fields, hardware and

software, have already taken that step.

4 Theoretical analysis

This section aims to theoretically analyze the behavior of the Very Fast Decision

Tree (VFDT) algorithm [25]. VFDT is an online decision tree algorithm able to

build a decision tree from a stream of data by analyzing the data sequentially and

only once.

The decision tree is built sequentially, where the tree waits until it gathers enough

examples or instances from the stream. After those n instances arrive, the algorithm

analyzes them and obtains the best attribute to split the tree on. The key feature is

to obtain the optimal value of n that will split in the same attribute as if we had all

examples available to analyze. To obtain the first best value of n, the authors make

use of the Hoeffding Bound [36], represented by ε in Equation 1.

ε =

√

R2 ln(1/δ )
2n

(1)

This bound states that with probability 1-δ , the chosen attribute at a specific node

after seeing n number of examples, will be the same attribute as if the algorithm had

seen infinite number of examples. Therefore, δ represents one minus the probability

of choosing the correct attribute to split on. The reason is that there will be no split

on a certain attribute unless ∆G > ε . ∆G stands for the difference in information

gain between the best two attributes. Thus, if the number of examples n is small,
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ε will be high, making it harder to split on an attribute unless ∆G is big enough,

meaning that there is a clear attribute that is the winner. Based on the equation,

whenever we see more examples, n increases, making ε smaller and then making

it easier to split on the top attribute. The reasoning behind this is that whenever

we see more examples we are more confident on the split. In order to speed up the

computations, some parameters are introduced, that will make the algorithm behave

in a slightly different way that the one currently explained.

The next paragraphs theoretically analyze how accuracy and energy would differ

when varying the different parameters of the VFDT algorithm. The chosen parame-

ters to be varied are: nmin, τ , δ , memory limits, memory management, split criterion

and poor attributes removal. As a general observation, the theoretical analysis made

about the parameters can not be generalized to all cases, since it would vary depend-

ing on the input data. For that reason, the assumptions that are made in the following

paragraphs, are based on the reasoning and experiments from the original paper by

the authors.

nmin parameter is the minimum number of examples that the algorithm must

see before calculating ε to check if there are sufficient statistics for a good split.

The authors introduce this parameter to reduce execution time and computational

effort when building the tree, since it is very unlikely that after just one instance the

algorithm has a more convincing split. The default value of nmin is 200. If the value

of nmin increases, then accuracy will be slightly reduced, since the tree will have a

lower number of nodes. From the original paper, the difference in accuracy was of a

merely 1.1%, but the execution time was 3.8 times faster when using and increasing

nmin. Therefore, we predict that the energy would decrease when increasing nmin,

since we would be decreasing the computational effort and time to analyze each

instance.

τ parameter represents the tie breaking parameter. Whenever the difference be-

tween both attributes is small enough, that means both attributes are equally good,

making no sense to wait a longer time for more examples to make a split. The ab-

sence of this parameter has been shown to decrease accuracy, since the decision tree

contains fewer nodes in it. However, being able to make more splits on the data

allows to obtain a finer grained decision tree. In an extreme situation where both

attributes are exactly the same, the tree would stall, failing to grow. So increasing

τ could, in an ideal scenario with an infinite stream of data, increase accuracy and

decrease energy, since the tree is built before, reducing the time and the number of

computations [20]. But if we analyze the same amount of examples, then increasing

τ could increase the energy, due to the fact that with lower τ we make less number

of computations.

δ parameter represents one minus the probability of choosing the correct attribute

to split on. If δ increases then the desired probability is smaller. Hence, the tree will

grow faster, having more nodes. Since the difference on nodes between a higher

and a lower δ will not be as high as when removing τ , and the probability of a

correct split is lower, our assumption is that the accuracy will be lower when δ

increases. At the same time, if δ decreases, then the probability of making a correct

split increases, increasing accuracy. In terms of energy, we believe that the power
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and time consumed to build the tree will vary depending on the incoming data.

We hypothesize that with a lower δ there will be more power spent on computing

information gain rather than in building nodes. However we currently do not have

the knowledge of which consumes more power. At the same time, the tree could be

built faster since we are spending less time on building the tree nodes.

In terms of memory limits and memory management, we predict that with a lower

memory limit, the tree will induce fewer nodes, having less energy consumption

and less accuracy. At the same time, the tree uses pruning techniques to reduce the

memory spent on building the tree, removing less promising leaves, which in some

cases could improve accuracy. It will depend on how different is the memory limit

and how many nodes differ from each setting to correctly predict if the accuracy

will be lower or higher. In a realistic case we assume that limiting the memory

consumption and the tree growth will decrease accuracy and energy.

The default split criterion used by the authors in this algorithm is informa-

tion gain. We have tested also Gini index. From a theoretical aspect, it has been

shown [49] that it is not conclusive which of the two criterion will perform a better

job in general, since they both have shown similar results, differing only by 2%.

The last parameter that is going to be modified is removing poor attributes.

This parameter aims to analyze attribute performance to find attributes that perform

poorly and which are very unlikely to be chosen for a further split. The process

that the authors follow is by analyzing the information gain of all attributes in every

split, and when this value, for a specific attribute, is less than the information gain

of the best attribute by more than a difference of ε , then the attribute is ignored for

that leaf. In theory, this method should increase accuracy and decrease the amount

of computations.

Table 1 represents a summary of all the predictions of the parameters variations

explained above. It shows how energy, accuracy and tree size will vary when in-

creasing or decreasing the mentioned parameters.

5 Experimental Design

5.1 Problem Definition

In order to empirically study the different parameters of the VFDT algorithm we

have created an experiment where we vary the parameters theoretically analyzed in

Section 4. This experiment aims to evaluate the performance of the algorithm under

different setups in terms of accuracy, energy, execution time and size of the tree. An

implicit goal is understanding why varying the parameters in a certain way increases

or decreases accuracy and energy, and if it matches with the theoretical reasoning.

The experiment has three phases. First, we obtain the datasets, then we input them

into the algorithm under different setups, and we finally evaluate the performance
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Table 1 Summary of the theoretical behavior of the parameters

PARAMETER MODIFICATION ACC ENERGY NODES

nmin
Increase Lower Lower Fewer

Decrease Higher Higher More

τ
Increase Higher Higher More

Decrease Lower Lower Fewer

δ
Increase Lower † More

Decrease Higher † Fewer

MEM1
100KB Lower Lower Fewer

2GB Higher Higher More

MEM2 ON Lower Lower Fewer

SPLT CRIT S2 † † †

RPA ON Higher Lower Fewer

†=The variation depends on the input data.

of each model in terms of accuracy and energy consumption. The way to measure

energy is explained in Section 5.3.

5.2 Data Gathering

We have gathered four different datasets to perform this experiment. Two datasets

are synthetically generated and the other two are real world datasets. The main dif-

ference between synthetic and real world datasets, is that the first ones are randomly

generated based on a specific function and distribution, and the second ones are

representations of some measure that exists in reality. The idea is to show that the

solution proposed in this paper of analyzing energy consumption of algorithm, ap-

plies to both real world and controlled environment. It improves the generalizability

of the results.

The synthetic datasets have been generated with MOA (Massive Online Analy-

sis) [19], and the functions: Random Tree Generator, Hyper Plane generator. The

random tree function generates a tree as explained by the authors of the VFDT algo-

rithm [25]. We have chosen this dataset because is the same dataset that the authors

of the VFDT use in their experiments, so we consider it as a baseline of a standard

behavior of the algorithm. Then we chose a more challenging synthetic dataset,

since the hyperplane generator is often used to test algorithms that can handle con-

cept drift, such as CVFDT. Even though this algorithm is not developed to handle

concept drift, we wanted to test the different setups in a completely different dataset

than the random tree. The Hyper plane generator uses a function to generate data
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in the form of a plane in d dimensions [38]. The orientation of the hyperplane can

easily be varied by adjusting its weights, creating different concepts. Depending on

the coordinates of the plane, the examples are labeled as negative or positive. All

synthetic generators have generated a total of 1 million instances, and we have cho-

sen the number of numerical and nominal attributes based on the default settings

in MOA. The tree-generated dataset is a binary classification dataset with 5 nom-

inal and 5 numerical attributes. The hyperplane-generated dataset is also a binary

classification dataset with 10 different attributes and 2 concept drift attributes.

Since usually synthetic datasets do not have the same properties as real world

datasets, we have decided to add two real world datasets to the experiment. The

first one represents instances that try to predict good poker hands based on a given

hand [10]. There are a total of 1,025,010 instances and 11 attributes and has been

normalized by the MOA researchers. The second real world dataset is the normal-

ized airline dataset, created by Elena Ikonomovska [4]. This classification dataset

classifies flights into delayed or not depending on the route of the flight, based on

the departure and arrival airports. It contains a total of 8 attributes, being: Airline,

flight number, origin, destination, day of the week, elapsed time, duration of the

flight, and if there was a delay or not. The motivation behind these datasets is the

amount of instances available, making them perfect candidates to test data stream

mining algorithms. Table 2 summarizes the information from the different datasets,

regarding the number of instances, attributes and type of the dataset.

Table 2 Datasets summary

Dataset Name Type Instances Nominal attributes Numeric attributes

1 Random tree Synthetic 1,000,000 5 5

2 Hyperplane Synthetic 1,000,000 1 9

3 Poker Real world 1,025,010 6 5

4 Airlines Real world 539,383 5 3

5.3 Methodology

This section aims to explain the settings of the experiment, the parameters varied

and the tools used to perform it.

5.3.1 Parameter choice

We have chosen to vary the parameters explained in Section 4, namely: nmin, τ , δ ,

memory limits, memory management, split criterion, and removing poor attributes.

nmin was varied from the default value, 200, to a maximum value of 1,700 with
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steps of 500. τ was varied from the default value, 0.05, to a maximum value of 0.13,

a minimum value of 0.01 and with steps of 0.04. δ was varied from the default

value, 10−7, to a maximum and minimum values of 10−1 and 10−10, respectively.

The step is of 10−3. Memory limit varied from 100KB, to 30MB (default value)

until 2GB, that was the maximum allowed by MOA (Massive Online Analysis),

the tool that will be furthered explained. The memory management and removing

poor attributes were tested by activating and deactivating them. Finally, Gini index

was tested against Information Gain. Every parameter was varied while maintaining

the other parameters constant, in their default value. The aim is to understand the

behavior of each parameter on its own, without having external interference with

the rest of the parameters. A summary of the parameters setup is shown in Table 3.

Table 3 Parameter Configuration Index. Different configurations of the VFDT algorithm.

IDX nmin τ δ MEM1 MEM2 S.CRT RPA

A 200 0.05 10−7 30MB No S1 No

B 700 0.05 10−7 30MB No S1 No

C 1,200 0.05 10−7 30MB No S1 No

D 1,700 0.05 10−7 30MB No S1 No

E 200 0.01 10−7 30MB No S1 No

F 200 0.09 10−7 30MB No S1 No

G 200 0.13 10−7 30MB No S1 No

H 200 0.05 10
−1 30MB No S1 No

I 200 0.05 10
−4 30MB No S1 No

J 200 0.05 10
−10 30MB No S1 No

K 200 0.05 10−7 100KB No S1 No

L 200 0.05 10−7 2GB No S1 No

M 200 0.05 10−7 30MB Yes S1 No

N 200 0.05 10−7 30MB No S2 No

O 200 0.05 10−7 30MB No S1 Yes

MEM1=Memory limits. MEM2=Memory management. S.CRT=Split

criterion. S2=Gini index. RPA=Removing poor attributes.

5.3.2 Procedure

There will be a total of 15 parameter combinations for every dataset, indexed from

A-O. Since there are a total of 4 datasets, the number of executions will be 60. Every

execution represents the choice of applying one algorithm, with a specific parameter

tunning, on one of the datasets. In parallel, we will be measuring how much energy

is the execution consuming. Each combination of dataset and parameter tunning has
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been computed a total of ten times, to then obtain the average and standard deviation

of all of them. The average of such computations are the results portrayed in the next

section. A summary of these configurations is shown in Table 4. The experiment was

carried out in a Linux machine with a 2.70 GHz Intel i7 processor (four cores), and

with 8 GB of RAM. The models built from analyzing the synthetic generated data

where trained and tested on 1 million instances. For the testing phase, new randomly

generated data was used. On the other hand, for the real world datasets, the testing

was performed on the same data as the training phase

Table 4 Design summary

Quantity Type

Datasets 4 Random Tree generator, Hyperplane generator, Poker, Airlines

Measures 6 Time, Power, Energy, Accuracy, Number of nodes, Tree depth

Parameter

configuration

15 Represented in Table 3, as: A, B, C, D, E, F, G, H, I, J, K, L,

M, N, O

Executions 10 10 executions for every parameter configuration on each dataset

5.3.3 Tools

We need to differentiate between two tools. The first tool, MOA (Massive Online

Analysis), is used to execute the VFDT with the different parameter settings. Run-

ning in parallel to MOA is PowerAPI [21], a tool developed by the Spirals Research

team [12], which is able to measure how much power different processes are con-

suming. PowerAPI [21] has been successfully tested by the authors [47] to compute

the differences in terms of energy between some software process in different lap-

tops. The energy is calculated by integrating the power consumed from the process

during the execution time.

5.4 Evaluation

The last step of the experiment is the evaluation process. In order to evaluate the

different settings on the different datasets, we have chosen four measures. The first

two are accuracy and energy. We want to discover if there is a trade-off between en-

ergy and accuracy, i.e. we will only obtain a lower energy consumption by reducing

the accuracy. Or, on the other hand, if there are specific setups were we can reduce

energy consumption without loosing accuracy, i.e. smart setups. From the theoret-

ical analysis on the algorithm we have observed that a possible relationship with
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accuracy is with the number of nodes of the tree. Therefore, the last two evaluation

measures considered are the number of nodes (size) and the depth of the tree.

6 Results and Analysis

6.1 General analyses

Table 5 shows the results obtained from the experiment, for each dataset and mea-

suring energy, time, power, number of nodes, depth of the tree and accuracy. First,

we compare energy and accuracy, to understand if there is a visible trade-off be-

tween the increase of energy and the increase of accuracy. We can observe from

Figure 1 how there seems to be a linear relationship between the increase of energy

and the decrease of accuracy. Apparently, based on datasets 1, 3, and 4, whenever

the energy increases the accuracy decreases. This result is promising in terms of our

ultimate goal, trying to make energy efficient algorithms. Since there is no trade-

off between energy and accuracy, a sacrifice of accuracy is not needed to develop

energy efficient algorithms. In all datasets there is one outlier, that presents a lower

accuracy than the rest, this is the parameter split criterion set to Gini index. This con-

figuration presents a significantly lower levels of accuracy without reducing energy

consumption in comparison with the other parameters.

Figure 2 shows how energy and accuracy vary for the different parameter con-

figurations. Although this energy variation between parameters is analyzed in depth

in the next subsection, we believe it is relevant to mention that energy differs sig-

nificantly between specific configurations. For instance, for the third dataset, energy

and accuracy vary for every single parameter, suggesting the relevancy of measuring

energy consumption and not leaving the development choices to pure chance.

In this paragraph we analyze the relationship between the number of nodes and

accuracy, portrayed in Figure 3. As has been explained in the theoretical analysis

section, some parameter configuration can increase accuracy although intuitively

it should be decreased. This is the case of the parameter τ . When τ is increased,

intuitively the accuracy should decrease, since you are allowing splits on not so

good attributes. However, although at first we predicted a decrease in accuracy,

since there are significantly more nodes in the tree, the accuracy increases. This

can be observed from Tables 5 and 6. The main reason is that with a significant

increase of nodes, the tree is able to represent the data in a more fine-grained way,

thus increasing accuracy. If we zoom in the highest values for each dataset, we can

observe that for datasets 1, 3, and 4, there seems to be a higher accuracy whenever

the number of nodes is higher.

A final analysis is related to the number of nodes and the energy consumed.

When we look at the data from Table 5, whenever energy increases, time or power

increases (since it is the product of both). The interesting measure is to see whether

is the power or the time the one causing this energy increase. We have observed from
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Table 5 Experimental results. The best accuracy and energy results for each dataset are high-

lighted.

1 2

S T P E A N D T P E A N D

A 4.44 8.59 38.10 96.91 1,134 8 5.85 7.39 43.19 90.93 655 12

B 3.90 7.32 28.57 96.31 661 8 5.65 7.12 40.22 90.99 607 11

C 3.90 7.10 27.71 96.24 570 7 5.66 7.75 43.90 91.22 575 10

D 3.82 6.99 26.67 95.91 495 7 5.57 7.77 43.31 90.98 515 11

E 4.46 8.44 37.63 95.57 699 8 5.36 9.15 49.08 90.57 57 7

F 4.74 7.35 34.84 97.93 1,541 9 7.42 6.89 51.10 90.38 2,071 19

G 5.09 7.30 37.11 97.94 2,074 11 9.25 6.87 63.55 89.87 3,863 18

H 5.20 7.55 39.21 98.27 2,181 12 9.51 6.78 64.45 89.75 3,971 19

I 4.58 7.90 36.22 97.54 1,403 9 6.32 7.01 44.32 90.82 1,129 12

J 4.29 8.18 35.10 96.35 888 8 5.73 7.58 43.48 91.24 471 11

K 3.98 7.37 29.31 95.43 1,134 8 5.03 7.60 38.20 84.89 655 12

L 4.40 8.32 36.60 96.91 1,134 8 5.92 7.17 42.48 90.93 655 12

M 4.39 7.95 34.91 96.91 1,134 8 5.91 7.12 42.11 90.93 655 12

N 6.12 6.67 40.79 83.11 1,735 117 5.77 7.60 43.90 90.72 619 11

O 4.34 7.85 34.08 96.91 1,134 8 5.83 7.24 42.23 90.93 655 12

3 4

S T P E A N D T P E A N D

A 7.29 7.33 53.48 76.63 297 16 6.54 9.17 59.96 67.31 8,582 4

B 7.03 8.29 58.27 70.67 181 11 6.09 8.41 51.20 67.01 7,984 3

C 7.25 8.57 62.16 79.44 195 16 6.06 8.40 50.91 67.01 8,228 4

D 7.70 8.76 67.45 73.66 149 16 5.99 8.19 49.01 66.65 7,895 3

E 8.36 7.49 62.60 73.74 149 13 6.19 8.81 54.50 67.09 5,127 3

F 7.14 7.46 53.26 82.56 791 17 6.94 8.46 58.74 67.77 12,307 3

G 7.46 7.53 56.25 84.88 1,285 22 7.32 8.41 61.56 67.92 14,137 3

H 6.87 7.06 48.49 93.06 1,991 20 7.29 8.43 61.46 67.90 14,001 4

I 7.32 7.36 53.88 78.93 575 18 6.75 8.61 58.14 67.70 10,871 3

J 7.89 8.98 70.89 68.71 119 13 6.41 9.14 58.58 66.97 6,618 3

K 7.26 7.43 53.92 76.63 297 16 6.56 8.96 58.74 67.31 8,582 4

L 7.19 7.57 54.41 76.63 297 16 6.51 8.88 57.82 67.31 8,582 4

M 7.34 7.61 55.85 76.63 297 16 6.60 9.47 62.48 67.31 8,582 4

N 8.99 7.25 65.17 37.83 1,380 102 7.62 9.24 70.37 58.77 1,490 53

O 7.18 7.37 52.95 76.63 297 16 6.52 9.06 59.07 67.31 8,582 4

T(s)=Time in seconds. P(W)=Power in Watts. E(J)=Energy in Joules. A(%)=Percentage of cor-

rectly classified instances. N=Nodes. D=Depth.

Figure 4 that whenever the number of nodes of a tree increase, so does the execution

time. This phenomenon occurs more clearly for datasets 1, 2, and 4, suggesting

that there is a relationship between time and nodes. Therefore, a conclusion is the

increase of energy is related to an increase on time, probably due to an increase in

the number of nodes.
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Fig. 1 Scatter plot with a linear relationship between accuracy (ACC) and energy (Joules) for every

dataset.

A second measurement is power. We have observed that the power is not linearly

correlated with the number of nodes. Figure 5 suggests that whenever the number

of nodes is higher, the power is lower, higher or the same. We have not encountered

a variable that is directly correlated with the increase of power, so we will analyze

its behavior for each parameter in the next subsection.

6.2 Parameter analysis

This section aims to compare the parameters’ behavior from the theoretical predic-

tions with the empirical results. For that, we have created Table 6, that shows the

summary of the real behavior of the parameters obtained in the experiment.
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Fig. 2 Barplot showing the energy and accuracy variations for every parameter configuration on

each dataset. Accuracy (ACC) is measured in percentage of correctly classified instances and en-

ergy is measured in Joules.

6.2.1 Parameter nmin

Observing the behavior of the nmin parameter across all datasets, we see that the

accuracy is not significantly affected by this parameter, there is some decrease in

dataset 1, but only of a 1%. In terms of power, however, we can see an important

variation of Watts in datasets 1, 3, and 4. Both datasets 1 and 4 have an increase of

power when nmin is increased. We checked what both datasets have in common to

see the reasons behind this increase. The only characteristic that we find in common

is that when power decreases, the depth of the tree is lower and also small in com-

parison to the other datasets. Another reason for this decrease in power when nmin

increases is because we are computing less times the value of ∆G, therefore sav-

ing power. In terms of energy, when nmin increases, energy decreases and increases

depending on the dataset. For datasets 1 and 4 it decreases, as was predicted in the

theoretical section, for dataset 2 is stable and for dataset 3 it increases. In terms of

nodes, we predicted that with higher nmin the number of nodes will decrease, and it
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Fig. 3 Scatter plot with a linear relationship between accuracy and nodes for every dataset.

is exactly what happened in all datasets. Finally, looking at time, in general for all

datasets except for the third one, time decreases when nmin increases, which is rea-

sonable since we are looking into less batches of data, therefore the tree is computed

faster.

6.2.2 Parameter τ

When the value of τ increases, so does the accuracy for datasets 1, 3, and 4. Dataset

2 experiences a non-stable accuracy value when increasing τ . Dataset 3 has an in-

crease in accuracy of 11%, mainly due to the increase in the number of nodes, in-

creasing around 2,000 nodes. That is also the case for all datasets, they significantly

increase their number of nodes when τ increases, making this the main reason, from

our understanding, for the accuracy increase. It matches with what we theoretically

predicted, and with the results shown in the original paper of the authors [25]. In

terms of energy, it varies depending on the parameter value. For datasets 2 and 4,

there is a significant increase in energy. Dataset 3 experiences an important decrease
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Fig. 4 Scatter plot with a linear relationship between time (seconds) and nodes for every dataset.

in energy and dataset 1 does not vary energy significantly. Datasets’ 2 and 4 increase

of energy is due to a significant increase in time, and a slight reduction in power.

Maybe this increase in time is due to the time that it takes to build more nodes.

Dataset 3 decreases energy because it decreases time, while power varies between

the setups. We predicted that energy would increase, matching with the behavior of

datasets 2 and 4.

6.2.3 Parameter δ

When δ decreases, the probability of making a correct split increases. In this case,

datasets 1 and 3 experience a significant decrease in accuracy. Especially dataset 3,

that varies its accuracy a 25% (from δ = 10−1 to δ = 10−10). Comparing δ from

the default value to the highest value (δ = 10−1) , accuracy increases from 76.6% to

93%. Intuitively, it should be the opposite, that increasing δ would decrease accu-

racy, since there would be less confidence of making a correct split. However, since

the number of nodes increases significantly, being almost 7 times more nodes for
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Fig. 5 Scatter plot with a linear relationship between power (W) and nodes for every dataset.

the value δ = 10−1, then accuracy increases by that much. In all datasets, when δ

decreases, the number of nodes decreases also, as we predicted, since there are less

splits. Taking a look into the energy aspect, when δ increases energy significantly

decreases for datasets 1 and 2. Dataset 4 does not vary energy significantly and

dataset 3 increases energy when δ decreases. We discovered that when δ = 10−1

for dataset 3, not only do we get a 25% increase in accuracy, as shown before, but

we also get a decrease in energy of 22J.

6.2.4 Parameter MEM1

When the memory for the tree is restricted to 100KB, accuracy decreases by 1%

for the first dataset and by 6% for the second dataset. For the other two datasets the

accuracy stays the same, suggesting that the tree did not need more memory than

100KB. The number of nodes does not vary either in this case. The same happens

when the memory is set to 2GB, the accuracy is the same across all datasets and the

number of nodes does not vary at all. The reason the number of nodes is the same
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Table 6 Summary of the real behavior of the parameters in the experiment. This table portrays

how energy, accuracy and the number of nodes vary when increasing, decreasing or modifying

certain parameters of the VFDT algorithm.

nmin τ δ MEM1 MEM2 S2 RPA

↑ ↑ ↓ 2GB 100KB

D1

ACC Dec Inc Dec ‡ Dec ‡ Dec ‡

ENG Dec ‡ Dec Dec Dec Dec Inc Dec

NDS Few More Few ‡ ‡ ‡ More ‡

D2

ACC ‡ Dec† Inc ‡ Dec ‡ ‡ ‡

ENG ‡ Inc Dec Dec Dec Dec Inc Dec

NDS Few More Few ‡ ‡ ‡ Few ‡

D3

ACC † Inc Dec ‡ ‡ ‡ Dec ‡

ENG Inc Dec† Inc Inc ‡ Inc Inc Dec

NDS Few More Few ‡ ‡ ‡ More ‡

D4

ACC ‡ Inc Dec ‡ ‡ ‡ Dec ‡

ENG Dec Inc Dec Dec ‡ Inc Inc Dec

NDS Few† More Few ‡ ‡ ‡ Fewer ‡

†=It is not a constant decrease or increase throughout the configura-

tions. Inc=Increase. Dec=Decrease. Few=Fewer nodes. More=More nodes.

ACC=Accuracy. ENG=Energy. NDS=Nodes. ‡=There is no variation.

is because the implementation deactivates nodes when the memory is limited, but it

does not remove them. In terms of power, time and energy, for the first two datasets

there is a significant decrease of energy when the memory limit is set to 100KB.

In the first dataset, the decrease is due to both a decrease in time and a decrease

in power, which makes sense since the algorithm needs to analyze less number of

nodes, consuming less power and taking less time. This is not the case for the two

last datasets, since we already mentioned that probably the tree is not making use of

such parameter, keeping energy at similar levels. When this parameter is set to the

value of 2GB, the energy decreases slightly across all datasets except for the third

one.

6.2.5 Parameter MEM2

When the parameter memory management (MEM2) is active, the tree stops growing

when the memory limit is hit. The achieved accuracy and the number of nodes are

exactly the same across all datasets. Energy does vary across all datasets, although

it is not a big difference. Datasets 1 and 2 have a decrease in energy, while datasets

3 and 4 have an increase in energy. These variations are both due to the change of

power and time, except for the second dataset, where there is a decrease on power

but an increase on time.
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6.2.6 Parameter S2

When the split criterion is set to Gini index, there is a significant decrease of accu-

racy across all datasets except for the second one. It is interesting to notice that even

though it creates higher number of nodes for the first and third datasets, the accuracy

is still significantly lower. In the second dataset the accuracy is maintained and the

number of nodes decreased. In terms of energy, there is an increase of energy across

all datasets, although power and time vary in a different way in all of them, in most

of them when this parameter is chosen the time to build the tree increases. Based on

these results, we would not recommend to choose this splitting criterion. However,

we have not investigated the reasons behind these results, therefore we suggest to

do that in future work studies.

6.2.7 Parameter RPA

When the parameter removing poor attributes is chosen, we expect to have a higher

accuracy and a decrease in energy. From the experiment we can observe that ac-

curacy is maintained across all datasets, and energy is decreased across also all

datasets, although the decrease is not significant in all of them. This increase is

mostly due to a slightly decrease in time and a decrease in power. The nodes are

maintained for all datasets, which is not what we predicted. The reason could be

that even though the tree is using less attributes, the amount of instances to analyze

is the same.

6.2.8 Summary of the parameter analysis

In general, we can observe that tunning the parameters in a different way outputs

different values of energy consumption and accuracy. At the same time, it depends

on the type of dataset which parameters will give better results in terms of energy

consumption. For instance, while for the first dataset, the set of nmin to 1,700 will

give the best results, for the third dataset it gives very poor results in terms of en-

ergy consumption. The reason behind this is that the VFDT algorithm will create

different models, different decision trees, depending on the input data. A general

observation is that the third dataset, the poker dataset, behaves in a different way in

comparison to the other three datasets. On the same line, setting nmin to 700 seems

to give good results across all datasets except the third one, what suggests that is

a good option for future researchers. From looking at Table 1, we conclude that,

in general, removing poor attributes has a positive impact on energy consumption

without affecting accuracy. Also, decreasing the value of δ , decreases the energy

consumption and accuracy, but the accuracy decrease is not significant.
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7 Conclusions and Future Work

The aim in this paper is to introduce energy consumption as an important factor

during data mining algorithm evaluation and analysis. While performance and com-

putational effort are factors usually considered in data mining, energy consumption

is seldom evaluated. Energy awareness leads to reducing CO2 emissions, increasing

battery life of mobile devices and reducing air pollution.

In order to understand the impact of taking energy consumption into considera-

tion, we have analyzed the behavior in terms of energy and accuracy of the VFDT

(Very Fast Decision Tree) algorithm when modifying certain parameters. First, we

theoretically analyzed how increasing or decreasing certain parameters of such algo-

rithm would affect the tree structure, the accuracy and the energy consumed. Then,

we created an experiment where we empirically vary the same parameters of the

VFDT algorithm under four different datasets. We have compared the empirical

with the theoretical results, and found that there is indeed a significant variation

in terms of energy consumption that depends on how the algorithmic setup is de-

signed. The results also indicate that it is possible to significantly reduce the energy

consumption of an algorithm without reducing accuracy by varying correctly the

parameters of the algorithm.

Future work is to investigate why certain parameter choices consume more en-

ergy than others. For this purpose, we aim to break down data stream mining al-

gorithms into generic sub tasks to allow a more fine-grained comparison of energy

consumption across various algorithms and algorithm configurations. Finally, we

plan to obtain more challenging real world datasets to test how energy can vary on

these type of datasets.
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