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Energy Efficiency-Delay Tradeoff for a Cooperative

NOMA System
Bing Ning, Wanming Hao, Aihua Zhang, Jiankang Zhang, Guan Gui

Abstract—The tradeoff between the energy efficiency (EE)
and delay problem in cooperative relaying system is studied by
using Non-orthogonal multiple access (NOMA) in this paper. To
obtain an efficiency tradeoff between EE and delay, a stochastic-
based EE optimization problem is formulated by considering
the system queue stability. Then, the fractional programming
and control parameter-based Lyapunov optimization method is
proposed to solve the formulated problem. Furthermore, we
derive the analytical bounds of EE and delay based on the control
parameter. Finally, simulation results verify that the proposed
cooperative NOMA system performs better than the traditional
orthogonal multiple access (OMA) cooperative system.

Index Terms—NOMA, cooperative relaying system, EE, delay

I. Introduction

NOMA technique has recently been included into the 3GPP

long term evolution advanced (LTE-A) standard, owing to its

enormous potential in improving system spectrum efficien-

cy [1]. Different from the traditional OMA, the users are

allowed to share the same time/frequency resource in NOMA.

Meanwhile, the success interference cancellation (SIC) is

applied at the receivers to reduce the co-channel interference

and extract desired components from the received signals.

Recently, cooperative NOMA is further proposed to improve

the transmission reliability of the system, by exploiting the

spatial diversity gain [2]-[6]. The power allocation strategy is

optimized based on the closed form expressions for the base

station’s outage probability and sum rate in [2]. [3] derives

the sum rate region in the cooperative NOMA system with

compress-and-forward relaying by using the noisy network

coding. In [4], the achievable rate is calculated approxima-

tively through the Gauss-Chebyshev Integration method in a

Rician fading channel. [5] proposes a two-stage selection s-

trategy under different quality of services (QoSs) for the users,

and then the closed-form expression of the outage probability

is obtained. However, recent studies mainly focus on the rate

and outage probability for the cooperative NOMA system.

The work was supported by the National Natural Science Foundation of
China under Grant 61501530 and 61571401, Henan Educational Committee
under Grant 16A510012,Henan science and technology planning project under
Grant 182102210522 and Innovative Talent of Colleges and University of
Henan Province under Grant 18HASTIT021(Corresponding author: W. Hao).

B. Ning and A. Zhang are with Zhongyuan University of Technology,
School of electronic information, Zhengzhou, CN 450007.

W. Hao is with the School of Information Engineering, Zhengzhou Univer-
sity, Zhengzhou, Henan, 450001, China.

J. Zhang is with University of Southampton Faculty of Physical Sciences
and Engineering, Southampton, UK SO17 1B.

G. Gui is with Nanjing University of Posts and Telecommunications
Nanjing, CN 450001.

Fig. 1. The NOMA cooperative system model.

In fact, there lacks studies on delay, an important indicator

for stabilization and reliability in cooperative systems. In

addition, energy efficiency (EE), as a crucial criteria in the

next generation wireless communication systems [7] [8], has

not been investigated.

Towards filling the research gap, the EE-delay tradeoff prob-

lem for a cooperative NOMA system is studied, where a user

with good channel condition acts as a relay to assist another

user with bad channel condition. Specifically, we formulate

a stochastic-based EE optimization problem by considering

the system queue stability. Next, we transform the original

formulated problem into two independent subproblems by

using fractional programming and control parameter-based

Lyapunove method, namely users (relay) and base satation

transmission power optimization problem. The former belongs

to a convex optimization problem, while the latter can also

be transformed into a convex optimization problem by our

proposed scheme. Next, we derive the analytical bounds of

EE and delay, and then analyze the relation between them.

II. SystemModel and Problem formulation

A downlink cooperative NOMA system that consists of a

base station (BS) and two pre-paired users, i.e., User a and

User b is shown in Fig. 1. It is assumed that any direct

link between the BS and User b doesn’t exist due to the

heavy shadowing or physical obstacles. As a result, User a

has to act as relay for User b. To improve the transmission

efficiency, User a operates on the full-duplex model, and the

perfect self-interference cancellation is assumed to be available

for User a. However, the focus of this letter is to investigate

the fundamental tradeoff between EE and delay in a NOMA

cooperative system. The developed analytical results in this

letter not only provide insight for the case of perfect self-

interference, but also can be used as a baseline for future

research under imperfect self-interference. The slotted time

mode is employed for the NOMA cooperative system with

slots normalized to integral units, where slot τ refers to the

time interval [τ, τ + 1), τ ∈ {0, 1, · · · }. The data of User a or

b randomly arrives at the BS in each slot, which are queued

separately. As depicted in Fig. 2, A(τ) = {Aa(τ), Ab(τ)} denotes
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Fig. 2. The actual queuing process at BS and User a .

the process of random data arrivals of Users a and b, where

Ai(τ) (i ∈ {a, b}) is independent and identically distributed

(i.i.d.) over time with arrival rate λi, i.e., E{Ai(τ)} = λi.

Q(τ) = {Qa(τ),Qb(τ)} denotes the number of data stored for

Users a and b at BS at slot τ, whereas Z(τ) represents the

number of data stored for User b at User a at slot τ.

The message of User a and b, xa(τ) and xb(τ), is superim-

posed at BS, as a downlink NOMA signal x(τ)=
√

Pa(τ)xa(τ)+√
Pb(τ)xb(τ), where Pa(τ) and Pb(τ) denote the transmit power

for xa(τ) and xb(τ), respectively. Then, the received signal of

User a at slot τ can be formulated as

ya(τ) = ga(τ)x(τ) + na(τ), (1)

where ga(τ) represents the channel gain from the BS to User

a, na(τ) follows na(τ) ∼ CN(0, δ2). After receiving ya(τ), User

a first decodes xb(τ) and then decodes its own signal xa(τ)

after removing xb(τ). As a result, the SINR of xa(τ) and

xb(τ) at User a are γa,a(τ) =
Pa(τ)|ga(τ)|2

δ2
, γa,b(τ) =

Pb(τ)|ga(τ)|2
Pa(τ)|ga(τ)|2+δ2 .

Meanwhile, User a will transmit encoded xb(τ) to User b, and

the received signal at User b can be written as follows

yb(τ) =
√

Pr(τ)gb(τ)xb(τ) + nb(τ), (2)

where Pr(τ) denotes the transmit power of User a, gb(τ) is

the coefficient of channel fading from User a to User b, and

nb(τ) follows nb(τ) ∼ CN(0, δ2). The SINR of xb(τ) at User b

can be written as γb(τ) = Pr(τ)|gb(τ)|2/δ2. Next, as depicted

in Fig. 2, the queuing process at BS can be modeled as

Qm(τ + 1) = max
[

Qm(τ) − Ra,m(τ), 0
]

+ Am(τ),m ∈ {a, b}, (3)

where Ra,m(τ) = log2(1+γa,m(τ)), Ra,a(τ) and Ra,b(τ) denote the

data rates of Users a and b at User a, respectively. Similarly,

at User a, we have

Z(τ + 1) = max [Z(τ) − Rb(τ), 0] + Ra,b(τ), (4)

where Rb(τ) = log2(1+γ2(τ)) denotes the data rates of User b.

Then, we model the total power consumption at BS and User a

as Ptotal(τ) = ξ (Pa(τ) + Pb(τ) + Pr(τ)) + PC , where ξ and PC

are the constants accounting for the inefficiency of the power

amplify and the circuit power consumption at BS and User a,

respectively. Accordingly, the sum rate can be represented as

Rsum(τ) = Ra,a(τ) + Rb(τ). Next, we define the long-term EE

[9] as

ηEE =
R̄sum(P)

P̄total(P)
=

limT→∞
1
T

∑T−1
τ=0 E[Rsum(τ)]

limT→∞
1
T

∑T−1
τ=0 E[Ptotal(τ)]

, (5)

where P = {Pa(τ), Pb(τ), Pr(τ)}τ ∈ {1, 2, · · · }, and E[·] de-

notes the expectation.

Here, we focus on the EE problem in a steady-state network.

The system queue stability means that all data can be trans-

mitted to the users within the limited time. We define a single

discrete-time queue Q(τ) = lim sup
T→∞

1
T

∑T−1
τ=0 E[Q(τ)] < ∞.

Then, the system queue is strongly stable if all discrete-time

queues are strongly stable. Since the average queue length

is proportional to average delay, we can evaluate the system

average delay by queue length, and then investigate the EE-

delay tradeoff problem. Motivated by this, we formulate the

following optimization problem

max
{P}

ηEE (6a)

s.t. Ra,m(τ) ≥ Rmin
m ,Rb(τ) ≥ Rmin

b ,∀m, (6b)

P̄a + P̄b ≤ Pav
BS, P̄r ≤ Pav

r , (6c)

Pa(τ) + Pb(τ) ≤ Pav
BS, Pr(τ) ≤ Pav

r , (6d)

Queue Qm(τ) and Z(τ) are mean rate stable,∀m, (6e)

where P̄m = limτ→∞
1
τ

∑τ−1
t=0 E[Pm(t)] (m ∈ {a, b}) and P̄r =

limτ→∞
1
τ

∑τ−1
t=0 E[Pr(t)]. (6b) denotes the minimal rate require-

ments for Users a and b, and (6c) and (6d), respectively, denote

the average and instantaneous power constraints for the BS and

User a, whereas (6e) guarantees the stability of queues.

III. Problem Solution and Analysis

A. Problem Solution

It is obvious that the objective function is nonlinear fraction,

thus (6) could not employ convex optimization to slove. Ac-

cording to fractional programming theory [10], the fractional

objective function can be transformed into the subtract form,

the optimal η
opt

EE
can be obtained if and only if

max
{P∈Φ}
{R̄sum(P)−ηopt

EE
P̄total(P)}= R̄sum(Popt)−ηopt

EE
P̄total(P

opt)=0, (7)

where Φ is the set of all feasible solutions. The detailed proof

can be found in [10]. Therefore, the original problem (6) can

be equivalently transformed into the following problem

max
{P}

R̄sum(P) − ηopt

EE
P̄total(P), s.t. (6b) − (6e). (8)

It is still difficult to solve the above problem for these two

reasons: 1) the time average expectations for the objective

function, and 2) η
opt

EE
cannot be obtained in advance. Based

on this, we define ηEE(τ) as

ηEE(τ) =

∑τ−1
t=0 Rsum(t)
∑τ−1

t=0 Ptotal(t)
, τ ∈ {1, 2, · · · }, (9)

where ηEE(0) = 0. Then, (6) can be transformed into the

following by replacing η
opt

EE
with ηEE(t) in (8) at each slot t

max
{P}

R̄sum(P) − ηEE(t)P̄total(P), s.t. (6b) − (6e). (10)

Due to the stochastic optimization problem in (10), we

will propose an iterative method to solve it. According to

the Lyapunov method [11], the average power constraints (6c)

can be transformed into queue stability problems by defining

virtual power queues as

Oa(τ + 1) = max
[

Oa(τ)+Pa(τ)+Pb(τ)−Pav
BS, 0
]

, (11a)

Ob(τ + 1) = max
[

Ob(τ) + Pr(τ) − Pav
r , 0
]

. (11b)

where Oa(τ) and Ob(τ), respectively, denote the virtu-

al power queues at BS and User a. Next, let Ω(τ) =
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[Qa(τ),Qb(τ),Z(τ),Oa(τ),Ob(τ)] denote the combined matrix

of the traffic queues and virtual power queues. Accordingly,

the Lyapunov function can be defined as

L(Ω(τ)) =
∑

m∈{a,b}
(Q2

m(τ) + O2
m(τ))/2 + Z2(τ)/2. (12)

Then, the upper bound of the Lyapunov drift-plus-penalty

at slot τ can be writen as:

E {∆L(Ω(τ))|Ω(τ)} + VE {ηEE(τ)Ptotal(τ) − Rsum(τ)|Ω(τ)}
≤B + E{U(Pa(τ), Pb(τ), Pr(τ))} + Qa(τ)Aa(τ)

+Qb(τ)Ab(τ) − Oa(τ)Pav
BS − Ob(τ)Pav

r ,

(13)

where U(Pa(τ), Pb(τ), Pr(τ)) = VηEE(τ)(Pa(τ)+Pb(τ)+Pr(τ))−
V(Ra,a(τ)+Rb(τ))−Qa(τ)Ra,a(τ)−Qb(τ)Ra,b(τ)+Z(τ)(Ra,b(τ)−
Rb(τ))+Oa(τ)(Pa(τ)+Pb(τ))+Ob(τ)Pr(τ), ∆L(Ω(τ)) = L(Ω(τ+

1))−L(Ω(τ)). V ≥ 0 is a correlation coefficient for controlling

the tradeoff between the EE and delay, while B is a positive

constant satisfying the following condition

B ≥ E{A2
a(τ) + A2

b(τ) + Z2(τ) + T 2
a (τ) + T 2

b (τ)|Ω(τ)}/2, (14)

where Ta(τ) = Pa(τ) + Pb(τ) − Pav
BS

and Tb(τ) = Pr(τ) − Pav
r .

Therefore, we can obtain the optimal power allocation in slot τ

by minimizing the right-hand-side of (13) as follows

min
{Pa(τ),Pb(τ),Pr(τ)}

U(Pa(τ), Pb(τ), Pr(τ)) s.t. (6b), (6d). (15)

(15) can be divided into two independent problems, i.e.,

the BS power optimization problem and User a power opti-

mization problem. The BS power optimization problem can

be formulated as

min
{Pa(τ),Pb(τ)}

(VηEE(τ) + Oa(τ))(Pa(τ)+Pb(τ))

−(V + Qa(τ))Ra,a(τ) − (Qb(τ) − Z(τ))Ra,b(τ) (16a)

s.t. Ra,m(τ) ≥ Rmin
m , Pa(τ) + Pb(τ) ≤ Pmax

BS ,∀m. (16b)

Next, we propose a scheme to equivalently transform (16)

in a convex optimization problem. According to the rate

expression of Ra,a(τ) and Ra,b(τ), we have

Pa(τ) = (2Ra,a(τ) − 1)δ2/|ga(τ)|2, (17a)

Pb(τ) = (2Ra,b(τ) − 1)(Pa(τ)|ga(τ)|2 + δ2)/|ga(τ)|2. (17b)

In the expression of Pb(τ), we substitute Pa(τ) with

(2Ra,a (τ) − 1)δ2/|ga(τ)|2 and obtain Pb(τ) = 2Ra,a(τ)(2Ra,b(τ) −
1)δ2/|ga(τ)|2.

Finally, we transform (16) into the following problem

min
{Ra,a(τ),Ra,b(τ)}

(VηEE(τ) + Oa(τ)) f (Ra,a(τ),Ra,b(τ))

−(V + Qa(τ))Ra,a(τ) − (Qb(τ) − Z(τ))Ra,b(τ) (18a)

s.t. Ra,m(τ) ≥ Rmin
m ,∀m, f (Ra,a(τ),Ra,b(τ)) ≤ Pmax

BS ,

(18b)

where f (Ra,a(τ),Ra,b(τ)) = Pa(τ) + Pb(τ) = (2(Ra,a(τ)+Ra,b(τ)) −
1)δ2/|ga(τ)|2. Since (18a) is convex w.r.t. {Ra,a(τ),Ra,b(τ)}, (18)

is a convex optimization problem, which can be solved by

standard convex technique (e.g., inter-point method). User a

power optimization problem can be formulated as

min
{Pr(τ)}

VηEE(τ)Pr(τ) − (V + Z(τ))Rb(τ) + Ob(τ)Pr(τ) (19a)

s.t. Rb(τ) ≥ Rmin
b , Pr(τ) ≤ Pmax

r . (19b)

Algorithm 1: Dynamic power allocation algorithm

1 Initialize Qm(0)← 0, Om(0)← 0, Z(0)← 0, m = {a, b}
ηEE(0)← 0, τ← 0.

2 repeat

3 Obtain the power P1(τ) and P2(τ) by solving (18).

4 Obtain the power Pr(τ) by solving (19).

5 Update τ← τ + 1.

6 Update queue length Qm(τ) with (3).

7 Update queue length Z(τ) with (4).

8 Update virtual power queue length Om(τ) with (11).

9 Update ηEE(τ) according to (9)

10 until t = T, where T is the total number of time slots;

It is obvious that (19) is a convex optimization problem,

which can be solved by standard water-filling algorithm.

Finally, we summarize the overall algorithm as Algorithm 1.

B. The Analysis of The EE and Delay

In the following, we analyze the relation between EE and

delay. We assume that η∗
EE

is the obtained optimal EE, and we

have the following conditions

E{Rφsum(τ)} ≥ E{Pφ
total

(τ)(η∗EE − ω)},
E{Pφa(τ)+P

φ

b
(τ)−Pav

BS|Ω(τ)}=E{Pφa(τ)+P
φ

b
(τ)−Pav

BS}≤ω,
E{Pφr (τ) − Pav

r |Ω(τ)}=E{Pφr (τ) − Pav
r }≤ω,

E{Rφa,m(τ)−Am(τ)|Ω(τ)}=E{Rφa,m(τ)−Am(τ)} ≥ π,
E{Rφ

b
(τ)−Ra,b(τ)|Ω(τ)}=E{Rφ

b
(τ)−Ra,b(τ)} ≥ π,

(20)

where ω and π are positive constants, and φ denotes any

feasible power allocation strategy. The detailed proof can be

found in [11]. Then, we have

E{∆L(Ω(τ))|Ω(τ)} + VE{ηEE(τ)Ptotal(τ) − Rsum(τ)|Ω(τ)} (21)

≤B+Qa(τ)E{Aa(τ)−R
φ
a,a(τ)|Ω(τ)}+Qb(τ)E{Ab(τ)−R

φ

a,b
(τ)|Ω(τ)}

+Z(τ)E{Rφ
a,b

(τ)−R
φ

b
(τ)|Ω(τ)}+Oa(τ)E{Pφa(τ)+P

φ

b
(τ)−Pav

BS|Ω(τ)}
+Ob(τ)E{Pφr (τ)−Pav

r |Ω(τ)}+VE{ηEE(τ)P
φ

total
(τ)−R

φ
sum(τ)|Ω(τ)}

Plugging (20) into (21), taking ω → 0 and summing (21)

with τ ∈ {0, 1, · · · ,T − 1}, we can obtain

E{L(Ω(T ))}−E{L(Ω(0))}+V
∑T−1

τ=0
(E{ηEE(τ)Ptotal(τ)}−E{Rsum(τ)})

≤T B+VE{Pφ
total

(τ)}
∑T−1

τ=0
E{ηEE(τ)} − VTη∗EEE{Pφ

total
(τ)}

−π
∑T−1

τ=0
(Qa(τ)+Qb(τ)+Z(τ)). (22)

Dividing (22) by Tπ and taking a limit as T → ∞,

rearranging terms with the fact that E{L(Ω(T ))} < ∞ yields

lim
T→∞

1

T

∑T−1

τ=0
(Qa(τ)+Qb(τ)+Z(τ))

≤B

π
+

V

π
E{Pφ

total
(τ)} lim

T→∞

1

T

T−1
∑

τ=0

E{ηEE(τ)}+V

π
lim

T→∞

1

T

T−1
∑

τ=0

E{Rsum(τ)}

≤
B + VPmax

total
ηmax

EE
+ VRmax

sum

π
, (23)
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Fig. 3. (a) EE versus V . (b) Average delay versus V . (c) EE versus Delay.

where lim
T→∞

1
T

∑T−1
τ=0 (Qa(τ)+Qb(τ)+Z(τ)) denotes the average

queue length, while the last step follows E{Pφ
total

(τ)} ≤ Pmax
total

,

E{Rsum(τ)} ≤ Rmax
sum , and E{ηEE(τ)} ≤ ηmax

EE
with Pmax

total
, Rmax

sum and

ηmax
EE

being some finite constants.
Since the last term of (22) is positive, dividing (22) by VT

and taking a limit as T → ∞, we can obtain

B

V
+E{Pφ

total
(τ)} lim

T→∞

1

T

∑T−1

τ=0
E{ηEE(τ)}−η∗EEE{Pφ

total
(τ)}≥0, (24)

where the zero at the right-hand side is due to
lim

T→∞
1
T

∑T=1
τ=0(E{ηEE(τ)Ptotal(τ)}−E{Rsum(τ)}) = 0. We have

ηEE= lim
T→∞

1

T

∑T−1

τ=0
E{ηEE(τ)}≥η∗EE−

B

VE{Pφ
total

(τ)}
≥η∗EE−

B

VPmin
total

(25)

We can observe that EE increases with V . Since the average

queue length also grows with V (as shown in (23)), increase

in V also brings larger delay. Therefore, there is a tradeoff

between EE and delay, and it is important to choose a proper

V to obtain the required performance in realistic systems.

IV. Simulation Results

Simulation results are provided to show the EE and delay

of the proposed algorithm. For comparison, we also provide

the results for an OMA system, where the time division mul-

tiple access (TDMA) is adopted. For the TDMA cooperative

system, two time slots are needed. In the first time slot, the

BS only serves User a while in the second time slot, User a

acts as a full-duplex relay for the transmission from the BS

to User b. Then, we formulate the same optimization problem

and apply the same algorithm as in NOMA system to obtain

the EE and delay of the TDMA cooperative system. The

path-loss model between two nodes is given by d−α, where d

denotes the distance between the transmitter and the receiver

and α is the path-loss exponent. The fast-fading coefficients

are all generated as i.i.d. Rayleigh random variables with unit

variances. We assume that the distance between BS and User a

is 100 m, whereas that between User a and User b is 20 m. We

set the minimal rate requirement of Users a and b to 2 bit/Hz.

The noise power is -100 dBm, and the pass loss exponent is

3.8. PC = 6 W, Pav
BS
= Pmax

BS
= 46 dBm, Pav

r = Pmax
r = 20 dBm,

and ξ = 0.38. The arrival rate for Users a and b in each time

slot t is assumed to be uniformly distributed in [0, 2λ], i.e.,

λa = λb = λ. 10,000 slots is used to approximate t → ∞.

Fig. 3(a) shows the EE versus V under different arrival rates.

It is clear that the EE first increases with V and then tends

to become stable. In addition, the EE is higher under lower

arrival rates. This is because that the BS and User a need to

consume more power to compensate for the delay under higher

arrival rates. Moreover, we can see that NOMA outperforms

OMA in term of the EE. Fig. 3(b) shows the average delay

versus V under different arrival rates. It can be observed that

the average delay increases with V . Meanwhile, we find that

the average delay increases with the arrival rates which is due

to that a higher arrival rate contributes to a larger delay for a

given transmit power. Also, the average delay is lower under

NOMA than that under OMA. Fig. 3(c) shows the relation

between EE and delay under NOMA scheme. It is clear that

the EE increases with delay, which indicates that a high EE

can only be achieved at the cost of large delay, and vice verse.

V. Conclusions

In this letter, we investigated the EE and delay tradeoff

in a NOMA cooperative system. We formed a long-term EE

maximization problem under guaranteeing the stability of the

system. The formulated problem was solved by the Lyapunov

optimization approach. On this basis, we analyzed the EE-

delay tradeoff. The results demonstrated that the performance

of the NOMA cooperative system is better than OMA one.
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