
Energy Efficiency for Large-Scale MapReduce

Workloads with Significant Interactive Analysis

Yanpei Chen, Sara Alspaugh, Dhruba Borthakur∗, Randy Katz

University of California, Berkeley, ∗Facebook

(ychen2, alspaugh, randy)@eecs.berkeley.edu, dhruba@fb.com

Abstract

MapReduce workloads have evolved to include increasing

amounts of time-sensitive, interactive data analysis; we re-

fer to such workloads as MapReduce with Interactive Anal-

ysis (MIA). Such workloads run on large clusters, whose

size and cost make energy efficiency a critical concern. Prior

works on MapReduce energy efficiency have not yet con-

sidered this workload class. Increasing hardware utilization

helps improve efficiency, but is challenging to achieve for

MIA workloads. These concerns lead us to develop BEEMR

(Berkeley Energy Efficient MapReduce), an energy efficient

MapReduce workload manager motivated by empirical anal-

ysis of real-life MIA traces at Facebook. The key insight is

that although MIA clusters host huge data volumes, the in-

teractive jobs operate on a small fraction of the data, and

thus can be served by a small pool of dedicated machines;

the less time-sensitive jobs can run on the rest of the cluster

in a batch fashion. BEEMR achieves 40-50% energy savings

under tight design constraints, and represents a first step to-

wards improving energy efficiency for an increasingly im-

portant class of datacenter workloads.

Categories and Subject Descriptors D.4.7 [Organization

and Design]: Distributed systems; D.4.8 [Performance]:

Operational analysis

Keywords MapReduce, energy efficiency.

1. Introduction

Massive computing clusters are increasingly being used for

data analysis. The sheer scale and cost of these clusters make

it critical to improve their operating efficiency, including en-

ergy. Energy costs are a large fraction of the total cost of

ownership of datacenters [6, 24]. Consequently, there is a

concerted effort to improve energy efficiency for Internet

datacenters, encompassing government reports [52], stan-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’12, April 10–13, 2012, Bern, Switzerland.
Copyright c© 2012 ACM 978-1-4503-1223-3/12/04. . . $10.00

dardization efforts [50], and research projects in both indus-

try and academia [7, 16, 19, 27–29, 32, 33, 43, 48].

Approaches to increasing datacenter energy efficiency

depend on the workload in question. One option is to in-

crease machine utilization, i.e., increase the amount of work

done per unit energy. This approach is favored by large web

search companies such as Google, whose machines have per-

sistently low utilization and waste considerable energy [5].

Clusters implementing this approach would service a mix of

interactive and batch workloads [14, 35, 40], with the inter-

active services handling the external customer queries [32],

and batch processing building the data structures that sup-

port the interactive services [15]. This strategy relies on

predictable diurnal patterns in web query workloads, using

latency-insensitive batch processing drawn from an “infinite

queue of low-priority work” to smooth out diurnal varia-

tions, to keep machines at high utilization [5, 14, 40].

This paper focuses on an alternate use case—what we

call MapReduce with Interactive Analysis (MIA) work-

loads. MIA workloads contain interactive services, tradi-

tional batch processing, and large-scale, latency-sensitive

processing. The last component arises from human data

analysts interactively exploring large data sets via ad-hoc

queries, and subsequently issuing large-scale processing re-

quests once they find a good way to extract value from the

data [9, 26, 34, 54]. Such human-initiated requests have flex-

ible but not indefinite execution deadlines.

MIA workloads require a very different approach to

energy-efficiency, one that focuses on decreasing the amount

of energy used to service the workload. As we will show by

analyzing traces of a front-line MIA cluster at Facebook,

such workloads have arrival patterns beyond the system’s

control. This makes MIA workloads unpredictable: new data

sets, new types of processing, and new hardware are added

rapidly over time, as analysts collect new data and discover

new ways to analyze existing data [9, 26, 34, 54]. Thus,

increasing utilization is insufficient: First, the workload

is dominated by human-initiated jobs. Hence, the cluster

must be provisioned for peak load to maintain good SLOs,

and low-priority batch jobs only partially smooth out the

workload variation. Second, the workload has unpredictable

high spikes compared with regular diurnal patterns for web

queries, resulting in wasted work from batch jobs being pre-

empted upon sudden spikes in the workload.

MIA-style workloads have already appeared in several

organizations, including both web search and other busi-

nesses [9, 26, 34]. Several technology trends help increase

the popularity and generality of MIA workloads:

• Industries ranging from e-commerce, finance, and manu-

facturing are increasingly adopting MapReduce as a data

processing and archival system [23].

• It is increasingly easy to collect and store large amounts

of data about both virtual and physical systems [9, 17, 27].

• Data analysts are gaining expertise using MapReduce to

process big data sets interactively for real-time analytics,

event monitoring, and stream processing [9, 26, 34].

In short, MapReduce has evolved far beyond its original

use case of high-throughput batch processing in support of

web search-centric services, and it is critical that we develop

energy efficiency mechanisms for MIA workloads.

This paper presents BEEMR (Berkeley Energy Efficient

MapReduce), an energy efficient MapReduce system moti-

vated by an empirical analysis of a real-life MIA workload

at Facebook. This workload requires BEEMR to meet strin-

gent design requirements, including minimal impact on in-

teractive job latency, write bandwidth, write capacity, mem-

ory set size, and data locality, as well as compatibility with

distributed file system fault tolerance using error correction

codes rather than replication. BEEMR represents a new de-

sign point that combines batching [28], zoning [29], and

data placement [27] with new analysis-driven insights to cre-

ate an efficient MapReduce system that saves energy while

meeting these design requirements. The key insight is that

although MIA clusters host huge volumes of data, the inter-

active jobs operate on just a small fraction of the data, and

thus can be served by a small pool of dedicated machines;

whereas the less time-sensitive jobs can run in a batch fash-

ion on the rest of the cluster. These defining characteristics

of MIA workloads both motivate and enable the BEEMR de-

sign. BEEMR increases cluster utilization while batches are

actively run, and decreases energy waste between batches

because only the dedicated interactive machines need to be

kept at full power. The contributions of this paper are:

• An analysis of a Facebook cluster trace to quantify the

empirical behavior of a MIA workload.

• The BEEMR framework which combines novel ideas with

existing MapReduce energy efficiency mechanisms.

• An improved evaluation methodology to quantify energy

savings and account the complexity of MIA workloads.

• An identification of a set of general MapReduce design

issues that warrant more study.

We show energy savings of 40-50%. BEEMR highlights the

need to design for an important class of data center work-

loads, and represents an advance over existing MapReduce

energy efficiency proposals [27–29]. Systems like BEEMR

become more important as the need for energy efficiency

continues to increase, and more use cases approach the scale

and complexity of the Facebook MIA workload.

0

0.2

0.4

0.6

0.8

1

1E+01E+31E+61E+91E+121E+15

CDF

Data size for all jobs

input

shuffle

output

0

0.2

0.4

0.6

0.8

1

1E-8 1E-4 1E+0 1E+4 1E+8

CDF

Data ratio for all jobs

output/input

shuffle/input

output/shuffle

 0 KB MB GB TB PB 10-8 10-4 1 104 108

Figure 1. CDFs of input/shuffle/output sizes and ratios for the en-

tire 45-day Facebook trace. Both span several orders of magnitudes.

Energy efficiency mechanisms must accommodate this range.

2. Motivation

Facebook is a social network company that allows users to

create profiles and connect with each other. The Facebook

workload provides a detailed case study of the growing class

of MIA workloads. This analysis motivates the BEEMR

design and highlights where previous solutions fall short.

2.1 The Facebook Workload

We analyze traces from the primary Facebook production

Hadoop cluster. The cluster has 3000 machines. Each ma-

chine has 12+ TB, 8-16 cores, 32 GB of RAM, and roughly

15 concurrent map/reduce tasks [8]. The traces cover 45 days

from Oct. 1 to Nov. 15, 2010, and contain over 1 million jobs

touching tens of PB of data. The traces record each job’s job

ID, input/shuffle/output sizes, arrival time, duration, map/re-

duce task durations (in task-seconds), number of map/reduce

tasks, and input file path.

Figure 1 shows the distribution of per-job data sizes and

data ratios for the entire workload. The data sizes span sev-

eral orders of magnitude, and most jobs have data sizes in

the KB to GB range. The data ratios also span several orders

of magnitude. 30% of the jobs are map-only, and thus have

0 shuffle data. Any effort to improve energy efficiency must

account for this range of data sizes and data ratios.

Figure 2 shows the workload variation over two weeks.

The number of jobs is diurnal, with peaks around midday

and troughs around midnight. All three time series have a

high peak-to-average ratio, especially map and reduce task

times. Since most hardware is not power proportional [5], a

cluster provisioned for peak load would see many periods of

below peak activity running at near-peak power.

To distinguish among different types of jobs in the work-

load, we can perform statistical data clustering analysis. This

analysis treats each job as a multi-dimensional vector, and

finds clusters of similar numerical vectors, i.e., similar jobs.

Our traces give us six numerical dimensions per job — input

size, shuffle size, output size, job duration, map time, and

reduce time. Table 1 shows the results using the k-means

algorithm, in which we labeled each cluster based on the nu-

merical value of the cluster center.

Most of the jobs are small and interactive. These jobs

arise out of ad-hoc queries initiated by internal human an-

alysts at Facebook [9, 51]. There are also jobs with long du-

Jobs Input Shuffle Output Duration Map time Reduce time Label

1145663 6.9 MB 600 B 60 KB 1 min 48 34 Small jobs

7911 50 GB 0 61 GB 8 hrs 60,664 0 Map only transform, 8 hrs

779 3.6 TB 0 4.4 TB 45 min 3,081,710 0 Map only transform, 45 min

670 2.1 TB 0 2.7 GB 1 hr 20 min 9,457,592 0 Map only aggregate

104 35 GB 0 3.5 GB 3 days 198,436 0 Map only transform, 3 days

11491 1.5 TB 30 GB 2.2 GB 30 min 1,112,765 387,191 Aggregate

1876 711 GB 2.6 TB 860 GB 2 hrs 1,618,792 2,056,439 Transform, 2 hrs

454 9.0 TB 1.5 TB 1.2 TB 1 hr 1,795,682 818,344 Aggregate and transform

169 2.7 TB 12 TB 260 GB 2 hrs 7 min 2,862,726 3,091,678 Expand and aggregate

67 630 GB 1.2 TB 140 GB 18 hrs 1,545,220 18,144,174 Transform, 18 hrs

Table 1. Job types in the workload as identified by k-means clustering, with cluster sizes, medians, and labels. Map and reduce time are in

task-seconds, i.e., a job with 2 map tasks of 10 seconds each has map time of 20 task-seconds. Notable job types include small, interactive

jobs (top row) and jobs with inherently low levels of parallelism that take a long time to complete (fifth row). We ran k-means with 100

random instantiations of cluster centers, which averages to over 1 bit of randomness in each of the 6 data dimensions. We determine k, the

number of clusters by incrementing k from 1 and stopping upon diminishing decreases in the intra-cluster “residual” variance.

0

1000

2000

3000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Submission
rate (jobs/hr)

0

250

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

I/O (TB/hr)

0

50000

100000

150000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Compute
(task-hrs/hr)

 Su M Tu W Th F Sa Su M Tu W Th F Sa

 Su M Tu W Th F Sa Su M Tu W Th F Sa

 Su M Tu W Th F Sa Su M Tu W Th F Sa

Figure 2. Hourly workload variation over two weeks. The work-

load has high peak-to-average ratios. A cluster provisioned for the

peak would be often underutilized and waste a great deal of energy.

rations but small task times (map only, GB-scale, many-day

jobs). These jobs have inherently low levels of parallelism,

and take a long time to complete, even if they have the entire

cluster at their disposal. Any energy efficient MapReduce

system must accommodate many job types, each with their

own unique characteristics.

Figures 3 and 4 show the data access patterns as indicated

by the per-job input paths. Unfortunately our traces do not

contain comparable information for output paths. Figure 3

shows that the input path accesses follow a Zipf distribution,

i.e., a few input paths account for a large fraction of all

accesses. Figure 4 shows that small data sets are accessed

frequently; input paths of less than 10s of GBs account for

over 80% of jobs, but only a tiny fraction of the total size of

all input paths. Prior work has also observed this behavior in

other contexts, such as web caches [10] and databases [21].

The implication is that a small fraction of the cluster is

sufficient to store the input data sets of most jobs.

1

100

10,000

1 100 10,000 1,000,000

A
c
c
e

s
s

fr
e

q
u

e
n

c
y

Input path ranked by descending access frequency

Figure 3. Log-log plot of workload input file path access fre-

quency. This displays a Zipf distribution, meaning that a few input

paths account for a large fraction of all job inputs.

0
0.2
0.4
0.6
0.8

1

1.E+00 1.E+03 1.E+06 1.E+09 1.E+12 1.E+15

CDF

Input path size

all jobs

all input

 0 KB MB GB TB PB

Figure 4. CDF of both (1) the input size per job and (2) the

size per input path. This graph indicates that small input paths are

accessed frequently, i.e., data sets of less than 10s of GBs account

for over 80% of jobs, and such data sets are a tiny fraction of the

total data stored on the cluster.

Other relevant design considerations are not evident

from the traces. First, some applications require high write

throughput and considerable application-level cache, such

as Memcached. This fact was reported by Facebook in [9]

and [51]. Second, the cluster is storage capacity constrained,

so Facebook’s HDFS achieves fault tolerance through er-

ror correcting codes instead of replication, which brings

the physical replication factor down from three to less than

two [45]. Further, any data hot spots or decreased data local-

ity would increase MapReduce job completion times [2].

Table 2 summarizes the design constraints. They repre-

sent a superset of the requirements considered by existing

energy efficient MapReduce proposals.

2.2 Prior Work

Prior work includes both energy-efficient MapReduce schemes

as well as strategies that apply to other workloads.

2.2.1 Energy Efficient MapReduce

Existing energy efficient MapReduce systems fail to meet all

the requirements in Table 2. We review them here.

The covering subset scheme [29] keeps one replica of ev-

ery block within a small subset of machines called the cov-

ering subset. This subset remains fully powered to preserve

data availability while the rest is powered down. Operat-

ing only a fraction of the cluster decreases write bandwidth,

write capacity, and the size of available memory. More crit-

ically, this scheme becomes unusable when error correction

codes are used instead of replication, since the covering sub-

set becomes the whole cluster.

The all-in strategy [28] powers down the entire cluster

during periods of inactivity, and runs at full capacity oth-

erwise. Figure 2 shows that the cluster is never completely

inactive. Thus, to power down at any point, the all-in strat-

egy must run incoming jobs in regular batches, an approach

we investigated in [13]. All jobs would experience some de-

lay, an inappropriate behavior for the small, interactive jobs

in the MIA workload (Table 1).

Green HDFS [27] partitions HDFS into disjoint hot and

cold zones. The frequently accessed data is placed in the

hot zone, which is always powered. To preserve write ca-

pacity, Green HDFS fills the cold zone using one powered-

on machine at a time. This scheme is problematic because

the output of every job would be located on a small number

of machines, creating a severe data hotspot for future ac-

cesses. Furthermore, running the cluster at partial capacity

decreases the available write bandwidth and memory.

The prior studies in Table 2 also suffer from several

methodological weaknesses. Some studies quantified energy

efficiency improvements by running stand-alone jobs, sim-

ilar to [43]. This is the correct initial approach, but it is

not clear that improvements from stand-alone jobs translate

to workloads with complex interference between concur-

rent jobs. More critically, for workloads with high peak-to-

average load (Figure 2), per-job improvements fail to elimi-

nate energy waste during low activity periods.

Other studies quantified energy improvements using

trace-driven simulations. Such simulations are essential for

evaluating energy efficient MapReduce at large scale. How-

ever, the simulators used there were not empirically veri-

fied, i.e., there were no experiments comparing simulated

versus real behavior, nor simulated versus real energy sav-

ings. Section 5.8 demonstrates that an empirical validation

reveals many subtle assumptions about simulators, and put

into doubt the results derived from unverified simulators.

These shortcomings necessitate a new approach in de-

signing and evaluating energy efficient MapReduce systems.

2.2.2 Energy Efficient Web Search-Centric Workloads

MIA workloads require a different approach to energy effi-

ciency than previously considered workloads.

In web search-centric workloads, the interactive services

achieves low latency by using data structures in-memory, re-

quiring the entire memory set to be always available [32].

Given hardware limits in power proportionality, it becomes

a priority to increase utilization of machines during diurnal

troughs [5]. One way to do this is to admit batch process-

ing to consume any available resource. This policy makes

the combined workload closed-loop, i.e., the system con-

trols the amount of admitted work. Further, the combined

workload becomes more predictable, since the interactive

services display regular diurnal patterns, and with batch pro-

cessing smoothing out most diurnal variations [5, 19, 32].

These characteristics enable energy efficiency improve-

ments to focus on maximizing the amount of work done sub-

ject to the given power budget, i.e., maximizing the amount

of batch processing done by the system. Idleness is viewed

as waste. Opportunities to save energy occur at short time

scales, and requires advances in hardware energy efficiency

and power proportionality [5, 7, 16, 19, 32, 33, 48].

These techniques remain helpful for MIA workloads.

However, the open-loop and unpredictable nature of MIA

workloads necessitates additional approaches. Human ini-

tiated jobs have both throughput and latency constraints.

Thus, the cluster needs to be provisioned for peak, and idle-

ness is inherent to the workload. Machine-initiated batch

jobs can only partially smooth out transient activity peaks.

Improving hardware power proportionality helps, but re-

mains a partial solution since state-of-the-art hardware is

still far from perfectly power proportional. Thus, absent poli-

cies to constrain the human analysts, improving energy ef-

ficiency for MIA workloads requires minimizing the energy

needed to service the given amount of work.

More generally, energy concerns complicate capacity

provisioning, a challenging topic with investigations dat-

ing back to the time-sharing era [3, 4, 46]. This paper offers

a new perspective informed by MIA workloads.

3. BEEMR Architecture

BEEMR is an energy efficient MapReduce workload man-

ager. The key insight is that the interactive jobs can be served

by a small pool of dedicated machines with their associ-

ated storage, while the less time-sensitive jobs can run in a

batch fashion on the rest of the cluster using full computation

bandwidth and storage capacity. This setup leads to energy

savings and meet all the requirements listed in Table 2.

3.1 Design

The BEEMR cluster architecture is shown in Figure 5. It is

similar to a typical Hadoop MapReduce cluster, with impor-

tant differences in how resources are allocated to jobs.

The cluster is split into disjoint interactive and batch

zones. The interactive zone makes up a small, fixed percent-

age of cluster resources — task slots, memory, disk capacity,

network bandwidth, similar to the design in [4]. The interac-

Desirable Property Covering subset [29] All-In [28] Hot & Cold Zones [27] BEEMR

Does not delay interactive jobs ✔ ✔ ✔

No impact on write bandwidth ✔ ✔

No impact on write capacity ✔ ✔ ✔

No impact on available memory ✔ ✔

Does not introduce data hot spots nor impact data locality ✔ ✔ ✔

Improvement preserved when using ECC instead of replication ✔ ✔ ✔

Addresses long running jobs with low parallelism Partially

Energy savings 9-50%1 0-50%2 24%3 40-50%

Table 2. Required properties for energy-saving techniques for Facebook’s MIA workload. Prior proposals are insufficient. Notes: 1 The

reported energy savings used an energy model based on linearly extrapolating CPU utilization while running the GridMix throughput bench-

mark [22] on a 36-node cluster. 2 Reported only relative energy savings compared with the covering subset technique, and for only two

artificial jobs (Terasort and Grep) on a 24-node experimental cluster. We recomputed absolute energy savings using the graphs in the paper.
3 Reported simulation based energy cost savings, assumed an electricity cost of $0.063/KWh and 80% capacity utilization.

completed

jobs

job queue

parameters

classify

interactive zone

(always on)

interrupted

jobs

monitor

workload manager

slaves

batch

zone

task

queue

Figure 5. The BEEMR workload manager (i.e., job tracker) clas-

sifies each job into one of three classes which determines which

cluster zone will service the job. Interactive jobs are serviced in the

interactive zone, while batchable and interruptible jobs are serviced

in the batch zone. Energy savings come from aggregating jobs in

the batch zone to achieve high utilization, executing them in regu-

lar batches, and then transitioning machines in the batch zone to a

low-power state when the batch completes.

tive zone is always fully powered. The batch zone makes up

the rest of the cluster, and is put into a very low power state

between batches [25].

As jobs arrive, BEEMR classifies them as one of three

job types. Classification is based on empirical parameters

derived from the analysis in Section 2. If the job input data

size is less than some threshold interactive, it is classified

as an interactive job. BEEMR seeks to service these jobs

with low latency. If a job has tasks with task duration longer

than some threshold interruptible, it is classified as an

interruptible job. Latency is not a concern for these jobs,

because their long-running tasks can be check-pointed and

resumed over multiple batches. All other jobs are classified

as batch jobs. Latency is also not a concern for these jobs, but

BEEMR makes best effort to run them by regular deadlines.

Such a setup is equivalent to deadline-based policies where

the deadlines are the same length as the batch intervals.

The interactive zone is always in a full-power ready state.

It runs all of the interactive jobs and holds all of their asso-

ciated input, shuffle, and output data (both local and HDFS

storage). Figures 3 and 4 indicate that choosing an appropri-

ate value for interactive can allow most jobs to be classi-

fied as interactive and executed without any delay introduced

by BEEMR. This interactive threshold should be period-

ically adjusted as workloads evolve.

The interactive zone acts like a data cache. When an in-

teractive job accesses data that is not in the interactive zone

(i.e., a cache miss), BEEMR migrates the relevant data from

the batch zone to the interactive zone, either immediately or

upon the next batch. Since most jobs use small data sets that

are reaccessed frequently, cache misses occur infrequently.

Also, BEEMR requires storing the ECC parity or replicated

blocks within the respective zones, e.g., for data in the inter-

active zone, their parity or replication blocks would be stored

in the interactive zone also.

Upon submission of batched and interruptible jobs, all

tasks associated with the job are put in a wait queue. At regu-

lar intervals, the workload manager initiates a batch, powers

on all machines in the batch zone, and run all tasks on the

wait queue using the whole cluster. The machines in the in-

teractive zone are also available for batch and interruptible

jobs, but interactive jobs retain priority there. After a batch

begins, any batch and interruptible jobs that arrive would

wait for the next batch. Once all batch jobs complete, the job

tracker assigns no further tasks. Active tasks from interrupt-

ible jobs are suspended, and enqueued to be resumed in the

next batch. Machines in the batch zone return to a low-power

state. If a batch does not complete by start of the next batch

interval, the cluster would remain fully powered for consec-

utive batch periods. The high peak-to-average load in Fig-

ure 2 indicates that on average, the batch zone would spend

considerable periods in a low-power state.

BEEMR improves over prior batching and zoning schemes

by combining both, and uses empirical observations to set

the values of policy parameters, which we describe next.

3.1.1 Parameter Space

BEEMR involves several design parameters whose values

need to be optimized. These parameters are:

Parameter Units or Type Values

totalsize thousand slots 32, 48, 60, 72

mapreduceratio map:reduce slots 1 : 1,

27 : 14, (≈ 2.0),

13 : 5 (≈ 2.6)

izonesize % total slots 10

interactive GB 10

interruptible hours 6, 12, 24

batchlen hours 1, 2, 6, 12, 24

taskcalc algorithm default, actual,

latency-bound

Table 3. Design space explored. The values for izonesize and

interactive are derived from the analysis in Section 2.1. We scan

at least three values for each of the other parameters.

• totalsize: the size of the cluster in total (map and re-

duce) task slots.

• mapreduceratio: the ratio of map slots to reduce slots

in the cluster.

• izonesize: the percentage of the cluster assigned to the

interactive zone.

• interactive: the input size threshold for classifying

jobs as interactive.

• interruptible: task duration threshold for classifying

jobs as interruptible.

• batchlen: the batch interval length.

• taskcalc: the algorithm for determining the number of

map and reduce tasks to assign to a job.

Table 3 shows the parameter values we will optimize for

the Facebook workload. For other workloads, the same tun-

ing process can extract a different set of values. Note that

totalsize indicates the size of the cluster in units of task

slots, which differs from the number machines. One machine

can run many task slots, and the appropriate assignment of

task slots per machine depends on hardware capabilities.

Another parameter worth further explanation is taskcalc,

the algorithm for determining the number of map and reduce

tasks to assign to a job. An algorithm that provides appropri-

ate task granularity ensures that completion of a given batch

is not held up by long-running tasks from some jobs.

BEEMR considers three algorithms: Default assigns 1

map per 128 MB of input and 1 reduce per 1 GB of input;

this is the default setting in Hadoop. Actual assigns the same

number of map and reduce tasks as given in the trace and

corresponds to settings at Facebook. Latency-bound assigns

a number of tasks such that no task will run for more than

1 hour. This policy is possible provided that task execution

times can be predicted with high accuracy [20, 36].

3.1.2 Requirements Check

We verify that BEEMR meets the requirements in Table 2.

1. Write bandwidth is not diminished because the entire

cluster is fully powered when batches execute. Table 1

indicates that only batch and interruptible jobs require

large write bandwidth. When these jobs are running, they

have access to all of the disks in the cluster.

2. Similarly, write capacity is not diminished because the

entire cluster is fully powered on during batches. Be-

tween batches, the small output size of interactive jobs

(Table 1) means that an appropriate value of izonesize

allows those job outputs to fit in the interactive zone.

3. The size of available memory also remains intact. The

memory of the entire cluster is accessible to batch and

interruptible jobs, which potentially have large working

sets. For interactive jobs, the default or actual (Facebook)

taskcalc algorithms will assign few tasks per job, re-

sulting in small in-memory working sets.

4. Interactive jobs are not delayed. The interactive zone

is always fully powered, and designated specifically to

service interactive jobs without delay.

5. BEEMR spreads data evenly within both zones, and

makes no changes that impact data locality. Nonetheless,

Figure 3 suggests that there will be some hotspots inher-

ent to the Facebook workload, independent of BEEMR.

6. BEEMR improves energy efficiency via batching. There

is no dependence on ECC or replication, thus preserving

energy savings regardless of fault tolerance mechanism.

7. Long jobs with low levels of parallelism remain a chal-

lenge, even under BEEMR. These jobs are classified as

interruptible jobs if their task durations are large, and

batch jobs otherwise. If such jobs are classified as batch

jobs, they could potentially prevent batches from com-

pleting. Their inherent low levels of parallelism cause the

batch zone to be poorly utilized when running only these

long jobs, resulting in wasted energy. One solution is for

experts to label such jobs a priori so that BEEMR can

ensure that these jobs are classified as interruptible.

3.2 Implementation

BEEMR involves several extensions to Apache Hadoop.

The job tracker is extended with a wait queue manage-

ment module. This module holds all incoming batch jobs,

moves jobs from the wait queue to the standard scheduler

upon each batch start, and places any remaining tasks of in-

terruptible jobs back on the wait queue when batches end.

Also, the scheduler’s task placement mechanism is modified

such that interactive jobs are placed in the interactive zone,

and always have first priority to any available slots.

The namenode is modified such that the output of inter-

active jobs is assigned to the interactive zone, and the output

of batch and interruptible jobs is assigned to the batch zone.

If either zone approaches storage capacity, it must adjust the

fraction of machines in each zone, or expand the cluster.

The Hadoop master is augmented with a mechanism to

transfer all slaves in the batch zone in and out of a low-

power state, e.g., sending a “hibernate” command via ssh

and using Wake-on-LAN or related technologies [30]. If

batch intervals are on the order of hours, it is acceptable for

this transition to complete over seconds or even minutes.

Accommodating interruptible jobs requires a mecha-

nism that can suspend and resume active tasks. The current

Hadoop architecture makes it difficult to implement such a

mechanism. However, suspend and resume is a key compo-

nent of fault recovery under Next Generation Hadoop [38].

We can re-purpose for BEEMR those mechanisms.

These extensions will create additional computation and

IO at the Hadoop master node. The current Hadoop master

has been identified as a scalability bottleneck [47]. Thus, it

is important to monitor BEEMR overhead at the Hadoop

master to ensure that we do not affect cluster scalability.

This overhead would become more acceptable under Next

Generation Hadoop, where the Hadoop master functionality

would be spread across several machines [38].

4. Evaluation Methodology

The evaluation of our proposed algorithm involves running

the Facebook MIA workload both in simulation and on clus-

ters of hundreds of machines on Amazon EC2 [1].

The Facebook workload provides a level of validation not

obtainable through stand-alone programs or artificial bench-

marks. It is logistically impossible to replay this workload

on large clusters at full duration and scale. The high peak to

average nature of the workload means that at time scales of

less than weeks, there is no way to know whether the results

capture transient or average behavior. Enumerating a multi-

dimensional design space would also take prohibitively long.

Any gradient ascent algorithms are not possible, simply be-

cause there is no guarantee that the performance behavior is

convex. Combined, these concerns compel us to use experi-

mentally validated simulations.

The simulator is optimized for simulation scale and speed

by omitting certain details: job startup and completion over-

head, overlapping map and reduce phases, speculative ex-

ecution and stragglers, data locality, and interference be-

tween jobs. This differs from existing MapReduce simula-

tors [37, 53], whose focus on details make it logistically

infeasible to simulate large scale, long duration workloads.

The simulator assumes a simple, fluid-flow model of job ex-

ecution, first developed for network simulations as an alter-

native to packet-level models [31, 42]. There, the motiva-

tion was also to gain simulation scale and speed. Section 5.8

demonstrates that the impact on accuracy is acceptable.

Simulated job execution is a function of job submit time

(given in the trace), task assignment time (depends on a com-

bination of parameters, including batch length, and number

of map and reduce slots), map and reduce execution times

(given in the trace), and the number of mappers and reduc-

ers chosen by BEEMR (a parameter). Figure 6 shows how

the simulator works at a high level.

We empirically validate the simulator by replaying sev-

eral day-long workloads on a real-life cluster (Section 5.8).

This builds confidence that simulation results translate to

real clusters. The validation employs previously developed

running tasks

completed

jobs

job queue

free slot pool

parameters

1 2 3 4

Figure 6. A high-level view of the simulation algorithm. For

each simulated second, the following executes: 1. The simulator

dequeues newly arrived jobs (arrival pattern given in the trace),

classifies the job as interactive, batch, or interruptible, and applies

the task granularity policy. 2. The simulator checks for available

map or reduce slots, checks the batch policy to see which jobs can

be run at the present time, and assigns slots to jobs in round robin,

fair scheduler fashion. 3. The simulator removes completed tasks

and returns the corresponding slot back to the free slot pool. For

each active job, it checks to see if the job has more tasks to run (go

back to step 2) or is complete (go to step 4). 4. The job is marked

complete and the job duration recorded.

methods to “replay” MapReduce workloads independent of

hardware [12]. The techniques there replays the workload

using synthetic data sets, and reproduces job submission se-

quences and intensities, as well as the data ratios between

each job’s input, shuffle, and output stages.

We model the machines as having “full” power when ac-

tive, and negligible power when in a low power state. Despite

recent advances in power proportionality [5], such models

remain valid for Hadoop. In [11], we used wall plug power

meters to show that machines with power ranges of 150W-

250W draw 205W-225W when running Hadoop. The chat-

tiness of the Hadoop/HDFS stack means that machines are

active at the hardware level even when they are idle at the

Hadoop workload level. The simple power model allow us

to scale the experiments in size and in time.

Several performance metrics are relevant to energy ef-

ficient MapReduce: (1) Energy savings: Under our power

model, this would be the duration for which the cluster is

fully idle; (2) Job latency (analogous to “turn around time” in

multiprogramming literature [18]): We measure separately

the job latency for each job class, and quantify any trade-

off against energy savings; (3) System throughput: Under

the MIA open-loop workload model, the historical system

throughput would be the smaller of totalsize and the his-

torical workload arrival rate. We examine several values of

totalsize and quantify the interplay between latency, en-

ergy savings, and other policy parameters.

Table 3 shows the parameter values used to explore the

BEEMR design space.

5. Results

The evaluation spans the multi-dimensional design space

in Table 3. Each dimension illustrates subtle interactions

between BEEMR and the Facebook workload.

5.1 Cluster Size

Cluster size is controlled by totalsize. Underprovision-

ing a cluster results in long queues and high latency during

workload peaks; overprovisioning leads to arbitrarily high

baseline energy consumption and waste. Over the 45-days

trace, the Facebook workload has an average load of 21029

map tasks and 7745 reduce tasks. Since the workload has a

high peak-to-average ratio, we must provision significantly

above the average. Figure 7 shows the detailed cluster behav-

ior for several cluster sizes without any of the BEEMR im-

provements. We pick a one-to-one map-to-reduce-slot ratio

because that is the default in Apache Hadoop, and thus forms

a good baseline. A cluster with only 32000 total slots cannot

service the historical rate, being pegged at maximum slot

occupancy; larger sizes still see transient periods of maxi-

mum slot occupancy. A cluster with at least 36000 map slots

(72000 total slots) is needed to avoid persistent long queues,

so we use this as a baseline.

5.2 Batch Interval Length

Energy savings are enabled by batching jobs and transition-

ing the batch zone to a low-power state between batches.

The ability to batch depends on the predominance of inter-

active analysis in MIA workloads (Section 2.1). We consider

here several static batch interval lengths. A natural extension

would be to have dynamically adjusted batch intervals to en-

able various deadline driven policies.

We vary batchlen, the batching interval, while hold-

ing the other parameters fixed. Figure 8 shows that energy

savings, expressed as a fraction of the baseline energy con-

sumption, become non-negligible only for batch lengths of

12 hours or more. Figure 9 shows that map tasks execute in

near-ideal batch fashion, with maximum task slot occupancy

for a fraction of the batch interval and no further tasks in the

remainder of the interval. However, reduce slot occupancy

rarely reaches full capacity, while “dangling” reduce tasks

often run for a long time at very low cluster utilization. There

are more reduce tasks slots available, but the algorithm for

choosing the number of task slots limits the amount of par-

allelism. During the fifth and sixth days, such dangling tasks

cause the batch zone to remain at full power for the entire

batch interval. Fixing this requires improving both the algo-

rithm for calculating the number of tasks for each job and

the ratio of map-to-reduce slots.

5.3 Task Slots Per Job

The evaluation thus far considered only the default algorithm

for computing the number of tasks per job, as specified by

taskcalc. Recall that we consider two other algorithms:

Actual assigns the same number of map and reduce tasks as

given in the trace and corresponds to settings at Facebook.

Latency-bound assigns a number of tasks such that no task

will run for more than 1 hour. Figure 10 compares the de-

fault versus actual and latency-bound algorithms. The actual

0

12000

24000

36000

48 54 60 66 72a
c
ti
v
e
 m

a
p
 s

lo
ts

simulation time (hrs)

36000 map 36000 red 30000 map 30000 red

24000 map 24000 red 18000 map 18000 red

0

12000

24000

36000

48 54 60 66 72

a
c
ti
v
e
 r

e
d
u
c
e
 s

lo
ts

simulation time (hrs)

 2 2.5 3

 2 2.5 3

Figure 7. The number of concurrently active tasks for clusters of

different sizes (in terms of total task slots, totalsize).

0

0.2

0.4

0.6

1hr 2hrs 6hrs 12hrs 1day

E
n

e
rg

y
 s

a
v
in

g
s

Batch interval length

Figure 8. Energy savings for different batch interval lengths

as given by batchlen. Energy savings are non-negligible for

large batch intervals only. Note that taskcalc is set to default,

mapreduceratio is set to 1:1, totalsize is set to 72000 slots,

and interruptible is set to 24 hours.

0

1000

2000

3000

O
c
c
u
p

ie
d

ta

s
k
 s

lo
ts

Time (days)

interactive map

interactive red

0

10000

20000

30000

O
c
c
u
p

ie
d

ta

s
k
 s

lo
ts

Time (days)

 10 11 12 13 14 15 16 17

 10 11 12 13 14 15 16 17

Figure 9. Active slots for a batchlen of 24 hours. Showing

slot occupancy in the interactive zone (top) and in the batch zone

(bottom). Showing one week’s behavior. Note that taskcalc is

set to default, mapreduceratio is set to 1:1, totalsize is set to

72000 slots, and interruptible is set to 24 hours.

policy does the worst, unsurprising because the task assign-

ment algorithm at Facebook is not yet optimized for energy

efficiency. The latency-bound policy does the best; this indi-

cates that good task execution time prediction can improve

task assignment and achieve greater energy savings.

Observing task slot occupancy over time provides in-

sight into the effects of taskcalc. Using the actual algo-

rithm (Figure 11(a)), slots in the interactive zone reach ca-

pacity more frequently, suggesting that the Facebook algo-

rithm seeks to increase parallelism to decrease the amount

of computation per task and lower the completion latency

of interactive jobs. In contrast, tasks in the batch zone be-

have similarly under the default and Facebook algorithm for

0

0.2

0.4

0.6

1hr 2hrs 6hrs 12hrs 1day

E
n
e
rg

y
 s

a
v
in

g
s

Batch interval length

default

actual

latency-bound

Figure 10. Energy savings for different taskcalc algorithms.

Note that mapreduceratio is set to 1:1, and interruptible is

set to 24 hours. The actual (Facebook) algorithm does worst and

the latency-bound algorithm does best.

0

0.2

0.4

0.6

default actual latency-bound

E
n

e
rg

y
 s

a
v
in

g
s

Task granularity policy

36k map 36k red

44k map 28k red

52k map 20k red

Figure 12. Energy savings for different values of

mapreduceratio. Increasing the number of map slots in-

creases energy savings for all taskcalc algorithms, with the

improvement for latency-bound being the greatest. Note that

totalsize is set to 72000 slots, batchlen is set to 24 hours, and

interruptible is set to 24 hours.

the week shown in Figure 11(a). Aggregated over the entire

trace, the actual policy turns out to have more dangling tasks

overall, diminishing energy savings.

In contrast, task slot occupancy over time for the latency-

bound policy eliminates all dangling tasks of long durations

(Figure 11(b)). This results in high cluster utilization during

batches, as well as clean batch completion, allowing the

cluster to be transitioned into a low-power state at the end of

a batch. There is still room for improvement in Figure 11(b):

the active reduce slots are still far from reaching maximum

task slot capacity. This suggests that even if we keep the total

number of task slots constant, we can harness more energy

savings by changing some reduce slots to map slots.

5.4 Map to Reduce Slot Ratio

The evaluation thus far illustrates that reduce slots are uti-

lized less than map slots. Changing mapreduceratio (i.e.,

increasing the number of map slots and decreasing the num-

ber of reduce slots while keeping cluster size constant)

should allow map tasks in each batch to complete faster

without affecting reduce tasks completion rates. Figure 12

shows that doing so leads to energy efficiency improve-

ments, especially for the latency-bound algorithm.

Viewing the task slot occupancy over time reveals that

this intuition about the map-to-reduce-slot ratio is correct.

Figure 13(a) compares batch zone slot occupancy for two

different ratios using the default algorithm. With a larger

number of map slots, the periods of maximum map slot

occupancy are shorter, but there are still dangling reduce

tasks. The same ratio using the latency-bound algorithm

0

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16

Energy
savings

Time (days)

36k map 36k red

52k map 20k red

Figure 14. Energy savings per day for the latency-bound policy

comparison in Figure 13(b). Daily energy savings range from 0 to

80%. Neither static policy achieves best energy savings for all days.

0

0.2

0.4

0.6

24 hrs threshold 12 hrs threshold 6 hrs threshold

E
n

e
rg

y
 s

a
v
in

g
s

Interruptible job classification threshold

default

actual

latency-bound

Figure 15. Energy savings for different values of

interruptible. Lowering the threshold leads to increased

energy savings for actual and default algorithms. Note that

mapreduceratio is set to 13:5 and batchlen is set to 24

hours. Note that for actual and default algorithms, having a low

interruptible causes the queue for waiting interrupted jobs to

grow without limit; the latency-bound policy is preferred despite

seemingly lower energy savings (Section 5.5).

avoids these dangling reduce tasks, as shown in Figure 13(b),

achieving higher energy savings.

Nevertheless, the latency-bound algorithm still has room

for improvement. During the fifth and sixth days in Fig-

ure 13(b), the batches are in fact limited by available reduce

slots. Figure 14 shows that neither static policy for map ver-

sus task ratios achieve the best savings for all days. A dy-

namically adjustable ratio of map and reduce slots is best. A

dynamic ratio can ensure that every batch is optimally exe-

cuted, bottlenecked on neither map slots nor reduce slots.

5.5 Interruptible Threshold

The last dimension to evaluate is interruptible, the task

duration threshold that determines when a job is classified as

interruptible. In the evaluation so far, interruptible has

been set to 24 hours. Decreasing this threshold should cause

more jobs to be classified as interruptible, and fewer jobs

as batch. A lower interruptible threshold allows faster batch

completions and potentially more capacity for the interactive

zone, at the cost of higher average job latency, as more jobs

are spread over multiple batches.

Figure 15 shows the energy saving improvements from

lowering interruptible. (The latency-bound algorithm,

by design, does not result in any interruptible jobs, unless

the interruptible is set to less than an hour, so the energy

savings for the latency-bound algorithm are unaffected.) Ac-

tual and default algorithms show considerable energy sav-

ings improvements, at the cost of longer latency for some

jobs. It would be interesting to see how many cluster users

and administrators are willing to make such trades.

0

10000

20000

30000

O
c
c
u

p
ie

d

ta
s
k
 s

lo
ts

Time (days)

0

1000

2000

3000

O
c
c
u

p
ie

d

ta
s
k
 s

lo
ts

Time (days)

map red

 10 11 12 13 14 15 16 17

 10 11 12 13 14 15 16 17

(a) Actual (Facebook)

0

10000

20000

30000

O
c
c
u

p
ie

d

ta
s
k
 s

lo
ts

Time (days)

0

1000

2000

3000

O
c
c
u

p
ie

d

ta
s
k
 s

lo
ts

Time (days)

map red

 10 11 12 13 14 15 16 17

 10 11 12 13 14 15 16 17

(b) Latency-bound

Figure 11. Slot occupancy over time in the interactive zone (top graph) and batch zone (bottom graph). Showing one week’s behavior.

Note that batchlen is set to 24 hours, mapreduceratio is set to 1:1, and interruptible is set to 24 hours.

0
10000
20000
30000
40000
50000

O
c
c
u

p
ie

d

ta
s
k
 s

lo
ts

Time (days)

0

10000

20000

30000

O
c
c
u

p
ie

d

ta
s
k
 s

lo
ts

Time (days)

batched map batched red

 10 11 12 13 14 15 16 17

 10 11 12 13 14 15 16 17

(a) Default

0
10000
20000
30000
40000
50000

O
c
c
u

p
ie

d

ta
s
k
 s

lo
ts

Time (days)

0

10000

20000

30000

O
c
c
u

p
ie

d

ta
s
k
 s

lo
ts

Time (days)

batched map batched red

 10 11 12 13 14 15 16 17

 10 11 12 13 14 15 16 17

(b) Latency-bound

Figure 13. Batch zone slot occupancy over time using a mapreduceratio of 1:1 for the top graph, and a mapreduceratio of 13:5 for

the bottom graph. Showing one week’s behavior. Note that batchlen is set to 24 hours and interruptible is set to 24 hours.

Lowering interruptible too much would cause the

queue of waiting interruptible jobs to build without bound.

Consider the ideal-case upper bound on possible energy

savings. The Facebook workload has a historical average

of 21029 active map tasks and 7745 active reduce tasks.

A cluster of 72000 task slots can service 72000 concur-

rent tasks at maximum. Thus, the best case energy sav-

ings is 1 − (21029 + 7745)/72000 = 0.60. As we lower

interruptible, any energy “savings” above this ideal ac-

tually represents the wait queue building up.

The best policy combination we examined achieves en-

ergy savings of 0.55 fraction of the baseline, as shown Fig-

ure 15, with taskcalc set to default and interruptible

set to 6 hours. This corresponds to 92% of this ideal case.

5.6 Overhead

The energy savings come at the cost of increased job la-

tency. Figure 16 quantifies the latency increase by look-

ing at normalized job durations for each job type. BEEMR

achieves minimal latency overhead for interactive jobs, and

some overhead for other job types. This delayed execution

overhead buys us energy savings for non-interactive jobs.

For interactive jobs, more than 60% of jobs have ratio of

1.0, approximately 40% of jobs have ratio less than 1.0, and a

few outliers have ratio slightly above 1.0. This indicates that

a dedicated interactive zone can lead to either unaffected job

latency, or even improved job latency from having dedicated

resources. The small number of jobs with ratio above 1.0

is caused by peaks in interactive job arrivals. This suggests

that it would be desirable to increase the capacity of the

interactive zone during workload peaks.

For batched jobs, the overhead spans a large range. This

is caused by the long batch interval, and is acceptable as a

matter of policy. A job that arrives just after the beginning

of one batch would have delay of at least one batch interval,

leading to large latency. Conversely, a job that arrives just

before a batch starts will have almost no delay. This is the

same delayed execution behavior as policies in which users

specify, say, a daily deadline.

For interruptible jobs, the overhead is also small for most

jobs. This is surprising because interruptible jobs can po-

tentially execute over multiple batches. The result indicates

that interruptible jobs are truly long running jobs. Executing

them over multiple batches imposes a modest overhead.

5.7 Sensitivity

The evaluation thus far has set a totalsize of 72000 task

slots and discovered the best parameter values based on this

setting. A cluster size of 72000 forms a conservative baseline

for energy consumption. Using BEEMR on larger clusters

yields more energy savings, as shown in Figure 17.

BEEMR extracts most, but not all, of the ideal energy

savings. The discrepancy arises from long tasks that hold up

batch completion (Section 5.2) and transient imbalance be-

0.00

0.25

0.50

0.75

1.00

0.5 0.75 1 1.25 1.5

CDF

Job duration batch / no batch

(a) Interactive jobs

0.00

0.25

0.50

0.75

1.00

1 100 10000 1000000

CDF

Job duration batch / no batch

(b) Batch jobs

0.00

0.25

0.50

0.75

1.00

0.1 1 10 100 1000

CDF

Job duration batch / no batch

1 day interruptible, 36k
maps, 36k reduces
6 hrs interruptible, 52k
maps, 20k reduces

(c) Interruptible jobs

Figure 16. Latency ratio by job type between BEEMR with totalsize set to 72000, taskcalc set to default, and (1) batchlen set to

24 hours, mapreduceratio set to 1:1, or (2) batchlen set to 6 hours, mapreduceratio set to 13:5; versus the baseline with no batching.

A ratio of 1.0 indicates no overhead. Some interactive jobs see improved performance (ratio < 1) due to dedicated resources. Some batch

jobs have very long delays, the same behavior as delayed execution under deadline-based policies. Interruptible jobs have less overhead than

batch jobs, indicating that those are truly long running jobs. The delayed execution in non-interactive jobs buys us energy savings.

0

0.2

0.4

0.6

60000 slots 72000 slots 84000 slots 96000 slots

E
n

e
rg

y
 s

a
v
in

g
s

Cluster size

ideal

beemr

Figure 17. Ideal and observed energy savings for different cluster

sizes. Both increase as cluster size increases. Note that batchlen

is set to 24 hours, taskcalc is set to default, mapreduceratio is

set to 13:5, and interruptible is set to 6 hours.

tween map and reduce slots (Section 5.4). If the fraction of

time that each batch runs at maximum slot occupancy is al-

ready small, then the effects of long tasks and map/reduce

slot imbalance are amplified. Thus, as cluster size increases,

the gap between BEEMR energy savings and the ideal also

increases. One way to narrow the gap would be to extend the

batch interval length, thus amortizing the overhead of long

tasks holding up batch completion and transient map/reduce

slot imbalance. In the extreme case, BEEMR can achieve

arbitrarily close to ideal energy savings by running the his-

torical workload in one single batch.

5.8 Validation

Empirical validation of the simulator provides guidance

on how simulation results translate to real clusters. The

BEEMR simulator explicitly trades simulation scale and

speed for accuracy, making it even more important to quan-

tify the simulation error.

We validate the BEEMR simulator using an Amazon EC2

cluster of 200 “m1.large” instances [1]. We ran three exper-

iments: (1) a series of stand-alone sort jobs, (2) replay sev-

eral day-long Facebook workloads using the methodology

in [12], which reproduces arrival patterns and data sizes us-

ing synthetic MapReduce jobs running on synthetic data, (3)

replay the same workloads in day-long batches. For Experi-

ments 1 and 2, we compare the job durations from these ex-

periments to those obtained by a simulator configured with

the same number of task slots and the same policies regard-

ing task granularity. For Experiment 3, we compare the en-

0.51 0.51 0.63

0.83

0.82

1.13

1.39
1.38

0.00

1.00

2.00

1 1000 1000000 1E+09 1E+12 1E+15

s
im

u
la

te
d

 d
u

ra
ti
o

n
 /

re
a

l
d

u
ra

ti
o

n

Sort size

 B KB MB GB TB PB

Figure 18. Simulator validation for stand-alone jobs. Showing

the ratio between simulated job duration and average job duration

from 20 repeated measurements on a real cluster. The ratio is

bounded for both large and small jobs and is very close to 1.0 for

sort jobs of size 100s of MB to 10s of GB.

ergy savings predicted by the simulator to that from the EC2

cluster. These experiments represent an essential validation

step before deployment on the actual front-line Facebook

cluster running live data and production code.

Figure 18 shows the results from stand-alone sort jobs.

This ratio is bounded on both ends and is very close to

1.0 for sort jobs of size 100s of MB to 10s of GB. The

simulator underestimates the run time (the ratio is less than

1.0) for small sort sizes. There, the overhead of starting and

terminating a job dominates; this overhead is ignored by

the simulator. The simulator overestimates the run time (the

ratio is greater than 1.0) for large sort sizes. For those jobs,

there is non-negligible overlap between map and reduce

tasks; this overlap is not simulated. The simulation error is

bounded for both very large and very small jobs.

Also, there is low variance between different runs of

the same job, with 95% confidence intervals from 20 re-

peated measurements being barely visible in Figure 18.

Thus, pathologically long caused by task failures or spec-

ulative/abandoned executions are infrequent; not simulating

these events causes little error.

Figure 19 shows the results of replaying one day’s worth

of jobs, using three different day-long workloads. The ratio

is again bounded, and close to 0.75 for the majority of jobs.

This is because most jobs in the workload have data sizes

in the MB to GB range (Figure 1). As explained previously,

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

CDF of all
jobs

Job duration, simulated / real

day1

day2

day3

Figure 19. Simulator validation for three day-long workloads,

without batching. Showing the ratio between simulated and real

job duration. This ratio is bounded on both ends and is very close

to 0.75 for the vast majority of jobs.

0

0.2

0.4

0.6

0.8

1

day1 day2 day3

E
n

e
rg

y
 s

a
v
in

g
s

predicted

actual

0

0.2

0.4

0.6

0.8

1

day1 day2 day3

A
d

ju
s
te

d
 e

n
e

rg
y

s
a
v
in

g
s

predicted

actual

Figure 20. Simulator validation for three different day-long

workloads, with batchlen set to 24 hours. Showing the predicted

versus actual energy savings (top graph, average 22% simulation

error), and the predicted versus actual energy savings after adjust-

ing for the slot occupancy capacity on the real-life cluster (bottom

graph, average 13% simulation error).

job startup and termination overhead lead to the simulator to

underestimate the duration of these jobs.

Figure 20 shows the validation results from batching

the three day-long workloads. The simulation error varies

greatly between three different days. The average error is

22% of the simulated energy savings (top graph in Fig-

ure 20). We identify two additional sources of simulator

error: (1) The BEEMR simulator assumes that all avail-

able task slots are occupied during the batches. However,

on the EC2 cluster, the task slot occupancy averages from

50% to 75% of capacity, a discrepancy again due to task

start and termination overhead — the scheduler simply can-

not keep all task slots occupied. Adjusting the simulator by

using a lower cluster size than the real cluster yields the

bottom graph in Figure 20, with the error decreased to 13%

of the simulated energy savings. (2) The BEEMR simula-

tor assumes that task times remain the same regardless of

whether the workload is executed as jobs arrive, or executed

in batch. Observations from the EC2 cluster reveals that

during batches, the higher real-life cluster utilization leads

to complex interference between jobs, with contention for

disk, network, and other resources. This leads to longer task

times when a workload executes in batch, and forms another

kind of simulation error that is very hard to model.

Overall, these validation results mean that the simulated

energy savings of 50-60% (Section 5.5) would likely trans-

late to 40-50% on a real cluster.

6. Discussion

The results in Section 5 raise many interesting questions.

Some additional issues await further discussion below.

6.1 Power Cycles versus Reliability

Transitioning machines to low-power states is one way to

achieve power proportionality for MIA workloads while

more power proportional hardware is being developed.

Large scale adoption of this technique has been limited by

worries that power cycling increases failure rates.

There have been few published, large-scale studies that

attribute increased failure rates to power cycling. The au-

thors in [41] observed a correlation between the two, but

point out that correlation could come simply from failed sys-

tems needing more reboots to restore. To identify a causal re-

lationship would require a more rigorous methodology, com-

paring mirror systems servicing the same workload, with the

only difference being the frequency of power cycles.

One such comparison experiment ran for 18 months on

100s of machines, and found that power cycling has no effect

on failure rates [39]. Larger scale comparisons have been

stymied by the small amount of predicted energy savings,

and uncertainty about how those energy savings translate

to real systems. BEEMR gives empirically validated energy

savings of 40-50%. This represents more rigorous data to

justify further exploring the thus far unverified relationship

between power cycles and failure rates.

6.2 MIA Generality Beyond Facebook

MIA workloads beyond Facebook lend themselves to a

BEEMR-like approach. We analyzed four additional Hadoop

workloads from e-commerce, telecommunications, media,

and retail companies. These traces come from production

clusters of up to 700 machines, and cover 4 cluster-months

of behavior. The following gives a glimpse of the data. We

are seeking approval to release these additional workloads.

One observation that motivated BEEMR is that most jobs

access small files that make up a small fraction of stored

bytes (Figure 4). This access pattern allows a small interac-

tive zone to service its many jobs. Figure 21shows that such

access patterns exist for all workloads. For FB-2010, input

paths of < 10GB account for 88% of jobs and 1% of stored

bytes. For workloads A and D, the same threshold respec-

tively accounts for 87% and 87% of jobs, and 4% and 2% of

stored bytes. For workloads B and C, input paths of < 1TB

accounts for 86% and 91% of jobs, as well as 12% and 17%

of stored bytes.

Another source of energy savings comes from the high

peak-to-average ratio in workload arrival patterns (Figure 2).

The cluster has to be provisioned for the peak, which makes

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
b

yt
e

s

s
to

re
d

Input path size

CC-b
CC-c
CC-d
CC-e
FB-2010

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
jo

b
s

Input path size

A

B

C

D

FB-2010

1 KB MB GB TB

1 KB MB GB TB

Figure 21. Access patterns vs. input path size. Showing cum-

mulative fraction of jobs with input paths of a certain size (top)

and cummulative fraction of all stored bytes from input paths of

a certain size (bottom). Contains data from Figure 4 for the FB-

2010 workload, and four additional workloads from e-commerce,

telecommunications, media, and retail companies.

it important to achieve energy proportionality either in hard-

ware or by workload managers such as BEEMR. For the

five workloads (Facebook and workloads A through D), the

peak-to-average ratios are: 8.9, 30.5, 23.9, 14.5, and 5.9.

BEEMR potentially extracts higher energy savings from

workloads with higher peak-to-average arrival ratios, though

the exact energy savings and the tradeoff between policy pa-

rameters is workload specific. These additional workloads

give us confidence that the BEEMR architecture can gener-

alize beyond the Facebook workload.

6.3 Methodology Reflections

Evaluating the energy efficiency of large scale distributed

systems presents significant methodological challenges.

This paper strikes a balance between scale and accuracy.

Future work could improve on our techniques.

Simulation vs. replay. The inherent difference between MIA

and other workloads suggest that the best energy efficiency

mechanisms would be highly workload dependent. Even for

MIA workloads, the behavior varies between use cases and

over time (Figures 14 and 21). Thus, only evaluation over

long durations can reveal the true historical savings (Fig-

ure 14). Days or even weeks-long experiments are unreal-

istic, especially to explore multiple design options at large

scale. Hence, we are compelled to use simulations.

Choice of simulator. We considered using Mumak [37] and

MRPerf [53]. Mumak requires logs generated by the Ru-

men tracing tool [44], which is not yet in universal use and

not used at Facebook. MRPerf generates a simulation event

per control message and per packet, which limits simulation

scale and speed. Neither simulator has been verified at the

multi-job workload level. Thus, we developed the BEEMR

simulator, which intentionally trades simulation detail and

accuracy to gain scale and speed. We also verify the simula-

tor at the workload level (Section 5.8).

Choice of power model. One accurate way to measure sys-

tem power is by a power meter attached at the machine wall

socket [11]. This method does not scale to clusters of 1000s

of machines. The alternative is to use empirically verified

power models, which are yet to be satisfactorily developed

for MapReduce. The translation between SPECpower [49]

measurements and MapReduce remains unknown, as it is

between MapReduce workload semantics and detailed CPU,

memory, disk, and network activity. We chose an on-off

power model, i.e., machines have “max” power when on

and “zero” power when off. This simple model allow us to

scale the experiments in size and in time.

Towards improved methodology. The deliberate tradeoffs we

had to make reflect the nascent performance understanding

and modeling of large scale systems such as MapReduce.

We encourage the research community to seek to overcome

the methodology limitations of this study.

6.4 Future Work for MapReduce in General

Designing and evaluating BEEMR has revealed several op-

portunities for future improvements to MapReduce.

1. The BEEMR policy space is large. It would be desirable

to automatically detect good values for the policy param-

eters in Table 3.

2. The ability to interrupt and resume jobs is desirable. This

feature is proposed under Next Generation Hadoop for

fast resume from failures [38]. Energy efficiency would

be another motivation for this feature.

3. A well-tuned taskcalc algorithm can significantly af-

fect various performance metrics (Section 5.3). However,

choosing the correct number of tasks to assign to a job re-

mains an unexplored area. Given recent advances in pre-

dicting MapReduce execution time [20, 36], we expect a

dedicated effort would discover many improvements.

4. The chatty HDFS/Hadoop messaging protocols limits the

dynamic power of machines to a narrow range. There is

an opportunity to re-think such protocols for distributed

systems to improve power proportionality.

5. The disjoint interactive and batch zones can be further

segregated into disjoint interactive and batch clusters.

Segregated versus combined cluster operations need to

balance a variety of policy, logistical, economic, and en-

gineering concerns. More systematic understanding of

energy costs helps inform the discussion.

6. The gap between ideal and BEEMR energy savings in-

creases with cluster size (Section 5.7). It is worth ex-

ploring whether more fine-grained power management

schemes would close the gap and allow operators to pro-

vision for peak while conserving energy costs.

7. Closing Thoughts

BEEMR is able to cut the energy consumption of a clus-

ter almost in half (after adjusting for empirically quanti-

fied simulation error) without harming the response time

of latency-sensitive jobs or relying on storage replication,

while allowing jobs to retain the full storage capacity and

compute bandwidth of the cluster. BEEMR achieves such

results because its design was guided by a thorough analysis

of a real-world, large-scale instance of the targeted work-

load. We dubbed this widespread yet under-studied work-

load MIA. The key insight from our analysis of MIA work-

loads is that although MIA clusters host huge volumes of

data, the interactive jobs operate on just a small fraction of

the data, and thus can be served by a small pool of ded-

icated machines; the less time-sensitive jobs can run in a

batch fashion on the rest of the cluster. We are making avail-

able the sanitized Facebook MIA workload traces (https:

//github.com/SWIMProjectUCB/SWIM/wiki) to ensure

that ongoing efforts to design large scale MapReduce sys-

tems can build on the insights derived in this paper.

References
[1] Amazon Web Services. Amazon Elastic Computing Cloud.

http://aws.amazon.com/ec2/.

[2] G. Ananthanarayanan et al. Scarlett: coping with skewed content

popularity in mapreduce clusters. In Eurosys 2011.

[3] R. H. Arpaci et al. The interaction of parallel and sequential workloads

on a network of workstations. In SIGMETRICS 1995.

[4] I. Ashok and J. Zahorjan. Scheduling a mixed interactive and batch

workload on a parallel, shared memory supercomputer. In Supercom-

puting 1992.

[5] L. A. Barroso. Warehouse-scale computing: Entering the teenage

decade. In ISCA 2011.

[6] C. Belady. In the data center, power and cooling costs more than the

IT equipment it supports. Electronics Cooling Magazine, Feb. 2007.

[7] R. Bianchini and R. Rajamony. Power and energy management for

server systems. Computer, Nov. 2004.

[8] D. Borthakur. Facebook has the world’s largest Hadoop

cluster! http://hadoopblog.blogspot.com/2010/05/

facebook-has-worlds-largest-hadoop.html.

[9] D. Borthakur et al. Apache Hadoop goes realtime at Facebook. In

SIGMOD 2011.

[10] L. Breslau et al. Web Caching and Zipf-like Distributions: Evidence

and Implications. In INFOCOM 1999.

[11] Y. Chen, L. Keys, and R. H. Katz. Towards Energy Efficient MapRe-

duce. Technical Report UCB/EECS-2009-109, EECS Department,

University of California, Berkeley, Aug 2009.

[12] Y. Chen et al. The Case for Evaluating MapReduce Performance Using

Workload Suites. In MASCOTS 2011.

[13] Y. Chen et al. Statistical Workloads for Energy Efficient MapReduce.

Technical Report UCB/EECS-2010-6, EECS Department, University

of California, Berkeley, Jan 2010.

[14] J. Corbet. LWN.net 2009 Kernel Summit coverage: How Google uses

Linux. 2009.

[15] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing

on Large Clusters. Comm. of the ACM, 51(1):107–113, January 2008.

[16] Q. Deng et al. Memscale: active low-power modes for main memory.

In ASPLOS 2011.

[17] EMC and IDC iView. Digital Universe. http://www.emc.com/

leadership/programs/digital-universe.htm.

[18] S. Eyerman and L. Eeckhout. System-level performance metrics for

multiprogram workloads. Micro, IEEE, 28(3):42 –53, May-June 2008.

[19] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a

warehouse-sized computer. In ISCA 2007.

[20] A. Ganapathi et al. Statistics-driven workload modeling for the cloud.

In ICDEW 2010.

[21] J. Gray et al. Quickly generating billion-record synthetic databases.

In SIGMOD 1994.

[22] Gridmix. HADOOP-HOME/mapred/src/benchmarks/gridmix2 in

Hadoop 0.20.2 onwards.

[23] Hadoop World 2011. Hadoop World 2011 Speakers. http://www.

hadoopworld.com/speakers/.

[24] J. Hamilton. Overall Data Center Costs. http://perspectives.

mvdirona.com/2010/09/18/OverallDataCenterCosts.aspx,

2010.

[25] Hewlett-Packard Corp., Intel Corp., Microsoft Corp., Phoenix Tech-

nologies Ltd., Toshiba Corp. Advanced Configuration and Power In-

terface 5.0. http://www.acpi.info/.

[26] M. Isard et al. Quincy: fair scheduling for distributed computing

clusters. In SOSP 2009.

[27] R. T. Kaushik et al. Evaluation and Analysis of GreenHDFS: A Self-

Adaptive, Energy-Conserving Variant of the Hadoop Distributed File

System. In IEEE CloudCom 2010.

[28] W. Lang and J. Patel. Energy management for mapreduce clusters. In

VLDB 2010.

[29] J. Leverich and C. Kozyrakis. On the Energy (In)efficiency of Hadoop

Clusters. In HotPower 2009.

[30] P. Lieberman. White paper: Wake on lan technology, June 2006.

[31] B. Liu et al. A study of networks simulation efficiency: Fluid simula-

tion vs. packet-level simulation. In Infocom 2001.

[32] D. Meisner et al. Power management of online data-intensive services.

In ISCA 2011.

[33] D. Meisner et al. Powernap: eliminating server idle power. In ASPLOS

2009.

[34] S. Melnik et al. Dremel: interactive analysis of web-scale datasets. In

VLDB 2010.

[35] A. K. Mishra et al. Towards characterizing cloud backend workloads:

insights from Google compute clusters. SIGMETRICS Perform. Eval.

Rev., 37:34–41, March 2010.

[36] K. Morton et al. ParaTimer: a progress indicator for MapReduce

DAGs. In SIGMOD 2010.

[37] Mumak. Mumak: Map-Reduce Simulator. https://issues.

apache.org/jira/browse/MAPREDUCE-728.

[38] A. Murthy. Next Generation Hadoop Map-Reduce. Apache Hadoop

Summit 2011.

[39] D. Patterson. Energy-Efficient Computing: the State of the Art. Mi-

crosoft Research Faculty Summit 2009.

[40] Personal email. Communication regarding release of Google produc-

tion cluster data.

[41] E. Pinheiro et al. Failure trends in a large disk drive population. In

FAST 2007.

[42] G. F. Riley, T. M. Jaafar, and R. M. Fujimoto. Integrated fluid and

packet network simulations. In MASCOTS 2002.

[43] S. Rivoire et al. Joulesort: a balanced energy-efficiency benchmark.

In SIGMOD 2007.

[44] Rumen: a tool to extract job characterization data from job

tracker logs. https://issues.apache.org/jira/browse/

MAPREDUCE-751.

[45] A. Ryan. Next-Generation Hadoop Operations. Bay Area Hadoop

User Group, February 2010.

[46] J. H. Saltzer. A simple linear model of demand paging performance.

Commun. ACM, 17:181–186, April 1974.

[47] K. Shvachko. HDFS Scalability: the limits to growth. Login, 35(2):6–

16, April 2010.

[48] D. C. Snowdon et al. Accurate on-line prediction of processor and

memory energy usage under voltage scaling. In EMSOFT 2007.

[49] SPEC. SPECpower 2008. http://www.spec.org/power_

ssj2008/.

[50] The Green Grid. The Green Grid Data Center Power Efficiency

Metrics: PUE and DCiE, 2007.

[51] A. Thusoo et al. Data warehousing and analytics infrastructure at

Facebook. In SIGMOD 2010.

[52] U.S. Environmental Protection Agency. Report to Congress on Server

and Data Center Energy Efficiency, Public Law 109-431, 2007.

[53] G. Wang et al. A simulation approach to evaluating design decisions

in MapReduce setups. In MASCOTS 2009.

[54] M. Zaharia et al. Delay scheduling: a simple technique for achieving

locality and fairness in cluster scheduling. In EuroSys 2010.

