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Abstract

This monograph presents a unified framework for energy efficiency max-

imization in wireless networks via fractional programming theory.

The definition of energy efficiency is introduced, with reference to

single-user and multi-user wireless networks, and it is observed how

the problem of resource allocation for energy efficiency optimization

is naturally cast as a fractional program. An extensive review of the

state-of-the-art in energy efficiency optimization by fractional program-

ming is provided, with reference to centralized and distributed resource

allocation schemes.

A solid background on fractional programming theory is provided.

The key-notion of generalized concavity is presented and its strong con-

nection with fractional functions described. A taxonomy of fractional

problems is introduced, and for each class of fractional problem, gen-

eral solution algorithms are described, discussing their complexity and

convergence properties.

The described theoretical and algorithmic framework is applied to

solve energy efficiency maximization problems in practical wireless net-

works. A general system and signal model is developed which encom-

passes many relevant special cases, such as one-hop and two-hop het-

erogeneous networks, multi-cell networks, small-cell networks, device-

to-device systems, cognitive radio systems, and hardware-impaired net-

works, wherein multiple-antennas and multiple subcarriers are (possi-

bly) employed. Energy-efficient resource allocation algorithms are de-

veloped, considering both centralized, cooperative schemes, as well as

distributed approaches for self-organizing networks.

Finally, some remarks on future lines of research are given, stating

some open problems that remain to be studied. It is shown how the

described framework is general enough to be extended in these direc-

tions, proving useful in tackling future challenges that may arise in the

design of energy-efficient future wireless networks.

A. Zappone and E. A. Jorswieck . Energy Efficiency in Wireless Networks via

Fractional Programming Theory. Foundations and Trends R© in Communications
and Information Theory, vol. 11, no. 3-4, pp. 185–396, 2014.
DOI: 10.1561/0100000088.
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Notation

Boldface upper-case and lower-case letters denote matrices and vectors,

respectively.

‖x‖, xT , xH denote Euclidean norm, transpose, and conjugate

transpose of the n-dimensional column vector x = {xi}
n
i=1. 0n and

1n denote an all zero and an all one n-dimensional vector, respectively.

Component-wise vector ordering is used, i.e. x � y means xi ≥ yi, for

all i = 1, . . . , N .

tr(X), XT , XH , |X|, X−1, X+, ‖X‖ denote trace, transpose, con-

jugate transpose, determinant, inverse, pseudo-inverse, and Frobenius

norm of the matrix X. In, Om,n, and diag(x) denote the identity ma-

trix of order n, an all zero m × n matrix, and a diagonal matrix with x

on the diagonal, respectively. Löwner matrix order is used, i.e. X � Y

means X − Y is positive semidefinite. ⊗ denotes the Kronecker matrix

product.

When applied to a set S, the symbol |S| denotes the cardinality of

S.

E, R, and C denote statistical expectation, the field of real numbers,

and the field of complex numbers. R+ and R++ denote the set of non-

negative real numbers and the set of positive real numbers, respectively.

We say that a function f(p) is o(p) if lim
p→+∞

f(p)

p
= 0.

5
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1

Introduction

Over the last years, energy-aware optimization of wireless communica-

tion networks has become a very popular research topic [194, 74, 104],

due to at least three main reasons:

• The exponential increase of connected devices that wireless com-

munications have been experiencing, poses serious sustainable

growth concerns. The number of devices connected to the inter-

net is larger than the size of the world population. By 2020, there

might be more than 50 Billion devices or more than 6 devices per

person connected to the internet. The IP traffic forecast for 2014

is more than 60 Exabytes (10006 Bytes) per month. Most connec-

tions will be wireless because most devices are small and mobile.

In 5G networks, the goal is set to 1000 times higher data rates

compared to present systems, but it is clear that trying to achieve

this goal by a proportional increase of the transmit power would

soon lead to an unmanageable energy demand. The 1000x data-

rate increase should be achieved at a similar energy consumption

as today’s networks, which calls for a 1000x increase of the energy

efficiency.

6
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7

• The rapid expansion of wireless networks causes also environ-

mental concerns. Even nowadays, information and communica-

tion technology (ICT) infrastructures consume more than 3% of

the world-wide energy, out of which about 60% is consumed by

base stations, which causes about 2% of the world-wide CO2 emis-

sions. Given the rate at which wireless connected devices are in-

creasing, the situation will eventually escalate, if no countermea-

sure is taken. This is acknowledged as key-issue by GSMA (green

manifesto), which demands a reduction of CO2 emissions per con-

nection by 40% until 2020, and by NGMN, which also declares

energy saving as a top priority. In addition to CO2 emissions, elec-

tromagnetic pollution is also another concern to be dealt with.

• Besides sustainable growth and ecological concerns, economical

reasons drive the development of novel energy-efficient ICT, too.

Reducing energy consumptions allows network operators to save

on electricity bills and maintenance costs, which makes energy ef-

ficiency a very popular topic not only in the academic world but

also among industries. As an example, many leading telecom-

munication companies have formed the GreenTouch consortium

(http://www.greentouch.org), whose goal is an increase of energy

efficiency by a factor 1000 compared to 2010.

The numbers for the breakdown of the conventional cellular system

base station power consumption differ between vendors, base station

types, and location. More than 50% are consumed by the power am-

plifier including feeder, about 10% by the digital and analog signal

processing, and about 20% by the cooling system. In general, energy

efficiency can be improved on all technology layers including the net-

work deployment strategies: hardware components and RF front-ends,

physical layer with link adaptation, adaptive multiple access and re-

source allocation, and adaptive network management.

This monograph focuses on energy-efficient wireless network design

including resource allocation, scheduling, precoding, relaying, and de-

coding. Starting from simple point-to-point (P2P) systems and then

gradually moving towards more complex interference networks, the en-

ergy efficiency is defined and its properties characterized. It is shown

Full text available at: http://dx.doi.org/10.1561/0100000088



8 Introduction

how the energy efficiency is naturally defined by fractional functions,

thus establishing that a key-role in the modeling, analysis, and opti-

mization of energy efficiency is played by fractional programming, a

branch of optimization theory specifically concerned with the proper-

ties and optimization of fractional functions. The monograph intro-

duces fractional programming theory, illustrating how it can be used

to formulate and handle energy efficiency optimization problems. More

in detail, the monograph is divided into three main parts.

The first part provides a solid description of fractional program-

ming theory and generalized concavity. The classes of quasi-concave

and pseudo-concave functions are characterized, detailing their proper-

ties and highlighting the key role they play in fractional programming

theory. The connection between fractional programming and gener-

alized concavity is described in detail, and a taxonomy of fractional

problems is introduced. We consider the classes of fractional problems

that have proved most useful in the energy-efficient design of wireless

networks: linear fractional problem (LFP), concave-convex fractional

problem (CCFP), max-min fractional problem (MMFP), sum-of-ratios

problem (SoRP), and product-of-ratios problem (PoRP).

After illustrating the theoretical aspects of fractional programming,

the second part of the monograph focuses on the algorithmic side of

fractional programming. For each class of introduced fractional prob-

lems, general solution algorithms are presented, which are able to solve

any generic instance of the corresponding problem class. The analysis

provides both intuitive insights into the algorithms and a mathemati-

cally rigorous treatment, including complexity/performance trade offs

and sub-optimal algorithm development.

Finally, the third part of the monograph deals with practical ap-

plications, in which we show how the developed framework is used to

optimize the energy efficiency of practical wireless networks. In partic-

ular, we show how fractional programming is extremely useful for the

optimization of the energy efficiency of multiuser, multi-hop, multiple

antenna, multi-carrier (MC), and multi-cell networks, which will all be

key technologies in future wireless networks such as 5G. Both coopera-

tive schemes to be centrally implemented and decentralized algorithms

Full text available at: http://dx.doi.org/10.1561/0100000088



1.1. Energy efficiency of a point-to-point system 9

which allow for self-organizing networks are discussed, clearly point-

ing out advantages and disadvantages of the two approaches. In the

decentralized setting, it is shown how fractional programming is used

together with game theory to analyze the existence and uniqueness

of stable equilibria of the resource allocation problem, and to devise

distributed resource allocation algorithms.

We should mention that as far as applications to wireless systems

are concerned, the focus will be on networks with deterministic topol-

ogy, which are more well-established at this point in time, as opposed

to stochastic topologies which have started to emerge recently and in

which the position of the nodes and the interference levels are treated

as random processes. However, we stress that fractional programming

is not restricted only to deterministic topologies, but can be applied to

stochastic networks, too. However, in this case, additional mathemat-

ical tools like random matrix theory (RMT) [165, 47] and stochastic

geometry (SG) [11, 175] are required to statistically characterize the

network interference levels. More details on this issue will be reported

in Chapter 6.

1.1 Energy efficiency of a point-to-point system

A general definition of the efficiency with which a system uses a given

resource, is the benefit-cost ratio. The ratio between the goods pro-

duced by using a given resource and the corresponding incurred cost

naturally measures the income per unit cost. This general definition of

efficiency applies to all fields of science, from physics to economics, and

wireless communication is no exception.

As far as wireless communications are concerned, the cost is repre-

sented by the amount of energy consumed to operate the system. To

elaborate, let us consider a P2P link, and as a first introductory ex-

ample assume a single-input single-output (SISO), single-carrier (SC)

system. The transmit power is p and the signal-to-noise ratio (SNR) at

the receiver is γ. If the transmission takes T seconds to complete, the

consumed energy will be

E(p) = T (µp + Pc) [Joule] , (1.1)

Full text available at: http://dx.doi.org/10.1561/0100000088



10 Introduction

wherein µ = 1/η, with η the efficiency of the transmit power amplifier,

while Pc includes the power dissipated in all other circuit blocks of the

transmitter and receiver to operate the terminals. We should remark

that the two underlying assumptions in (1.1) are that the transmit

amplifier operates in its linear region, and that the circuit power Pc

is a fixed power cost which depends neither on the transmit power p,

nor on the communication rate R. Both assumptions are typically met

in wireless communication systems, which are operated so as to ensure

the amplifiers operate in the linear region of their transfer function,

and in which the hardware-dissipated power is a constant power offset

[8]. Indeed, the energy model in (1.1) has become a canonical choice

in wireless network design [105, 84, 60] and for this reason in this

monograph we will focus on the model in (1.1). Nevertheless a more

general energy consumption model can be written as

E(p, R) = T

(

µp +
N
∑

n=2

cnpn + Pc(p, R)

)

[Joule] , (1.2)

wherein µp +
∑N

n=2 cnpn is the transfer function of the amplifier, also

including non-linear terms, whereas Pc(p, R) models the functional re-

lationship between the hardware-dissipated power and the transmit

power and communication rate. We remark that here R is the fixed

rate at which communication is taking place, and is not a function of

the transmit power. This more general model can be useful in specific

scenarios. Some examples are:

• Very high peak-to-average power ratio of the transmit signals, or

very narrow linear region of the transmit amplifier, which make

it difficult to guarantee the absence of higher-order distortions.

• Resource allocation schemes in which the modulation order is

one optimization variable, which would make Pc dependent on R

through the allocation of the modulation scheme. Some examples

in this sense can be found in [119, 46].

• In multiple-antenna systems, if the transmit radio-frequency

chains can be adaptively switched-off and on, it would be pos-

sible to reduce the power consumption by switching off the in-

Full text available at: http://dx.doi.org/10.1561/0100000088



1.1. Energy efficiency of a point-to-point system 11

active transmit chains. This would cause the circuit power Pc to

depend on the rank of the transmit covariance matrix, and so on

the transmit power. However, this not a typical operation con-

dition in communication networks, in which instead the inactive

transmit chains are usually left in idle mode, thereby leaving the

per-chain hardware power consumption unaltered.

As a final remark on the choice of the energy consumption model, we

stress that the theory of fractional optimization to be described in the

sequel, applies to the more general model in (1.2), too. However, when

(1.2) is used, we might have to deal with computational complexity

issues. As it will become clear after Chapter 3, energy efficiency op-

timization problems can be globally solved with limited complexity,

only if the function E(p, R) is convex. If this requirement does not

hold, then the complexity required for resource allocation is in general

exponential.

As for the income resulting from the use of a given amount of energy,

it can be measured by many different metrics, and the choice depends

on the particular system to design, but also on subjective considerations

regarding the particular physical quantity which needs to be optimized

[181, 78]. For example, if the goal is to have a system with a large cover-

age, then the income is well-represented by the system coverage radius.

Instead, if the goal is to serve as many users as possible, than the num-

ber of serviced users should be taken as system benefit. Many similar

examples can be made, and in all cases we would be left with a ratio to

optimize, which can be managed by fractional programming. However,

in this monograph we will focus our attention on the communication

aspect of a wireless network, measuring the income of the system as

the amount of data that can be reliably transmitted to the receiver in

the time interval T . Even restricting our focus to this scenario, more

than one performance function can be used to measure the system in-

come, each one with advantages and disadvantages. A first approach

is to use the system capacity, defining the income in the interval T as

TW log2(1 + γ), with W the communication bandwidth. However, this

metric does not account for the actual communication bit error rate

(BER). For this reason, another proposed function is TR(1 − e−γ),

Full text available at: http://dx.doi.org/10.1561/0100000088



12 Introduction

with R the communication rate and (1 − e−γ) an approximation of the

BER. If the channel h is rapidly varying, these two functions can be re-

placed by their ergodic counterpart, obtained by averaging with respect

to the channel. Instead, in scenarios with a slowly-varying channel h,

a meaningful performance function is TR(1 − pout(γ)), with pout the

communication outage probability. A common feature of all presented

metrics, is that they depend on the SNR γ. Then, we can include all of

these special cases by considering a generic function Tf(γ), with f the

so-called efficiency function, to be specified according to the particular

considered system.

Finally, we can give the following definition.

Definition 1.1. SISO SC Energy Efficiency

The energy efficiency of a P2P SISO SC system is

EE =
Tf(γ)

T (µp + Pc)
=

f(γ)

µp + Pc
[bit/Joule] . (1.3)

The energy efficiency (1.3) is measured in bit/Joule, thereby mea-

suring the amount of data that can be reliably transmitted per Joule of

consumed energy. Fig. 1.1 shows the shape of (1.3) when the efficiency

function is chosen as the achievable rate.

It is seen that the energy efficiency is not monotone in p, but in-

stead is a unimodal function that increases up to a point, and then

decreases to zero. This is the key feature which allows us to save en-

ergy by energy-efficient resource allocation. Indeed, unlike traditional

performance measures such as achievable rate, BER, mean square er-

ror, which are typically optimized by using all of the available power,

the transmit power level that maximizes the energy efficiency is in gen-

eral lower than the maximum feasible power. For example, in Fig. 1.1

the energy efficiency is maximized for p = 0.48 W and the transmitter

will use exactly this power level even if it is lower than the maximum

feasible power. This optimum power level represents the best trade-off

between achieving fast and reliable communication and saving energy.

These consideration also hold for the other mentioned efficiency func-

tions, which result in similar shapes of the energy efficiency.

However, it is clear that not all functions f(γ) yield a similar energy

efficiency as in Fig.1.1. More in general, what are the properties that

Full text available at: http://dx.doi.org/10.1561/0100000088



1.1. Energy efficiency of a point-to-point system 13
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Figure 1.1: Energy efficiency with f(γ(p)) = log
2
(1 + p) [bit/s], µ = 1, Pc = 0.1

[W]. The optimum power level is p = 0.48 [W].

f(γ) should enjoy to obtain a physically meaningful energy efficiency?

We have already implicitly introduced the first property, when we ex-

pressed the energy efficiency in bit/Joule. Indeed, for this to be true,

we should require the following.

Property 1. The efficiency function f(γ) is measured in [bit/s].

We have also intuitively already introduced the second property. For

energy efficiency optimization to result in energy savings, we require

that the energy efficiency must decrease for growing p, approaching 0

as p → ∞. Moreover, clearly the efficiency should be zero if we do not

transmit at all. This translates into the following requirements for f .

Property 2. f(γ) must be such that f(0) = 0 and f(γ(p)) = o(p).

The third and final property derives by the consideration that a

meaningful f must reflect the fact that the benefit obtained from the

system increases with the SNR γ.

Property 3. f(γ) must be increasing with γ.
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Equipped with this framework, we can move on and extend our

definition to slightly more complex scenarios. We always consider a

P2P system, but now we assume the optimization variable is not a

scalar power but rather an N -dimensional matrix P . For example, this

could be the case of a multiple-input multiple-output (MIMO) system

with P being the transmit covariance matrix. Considering the capacity

as efficiency function, denoting by σ2 the noise power at the receiver,

and by H the MIMO channel matrix, the following definition should

be clear.

Definition 1.2. MIMO Energy Efficiency

The energy efficiency of a MIMO P2P system is

EE =
W log2

∣

∣

∣

∣

IN +
1

σ2
HP HH

∣

∣

∣

∣

µtr(P ) + Pc
[bit/Joule] . (1.4)

If instead, we have a MC P2P system with N orthogonal subcar-

riers, the matrix P reduces to its diagonal vector p = {pn}N
n=1. Then,

denoting by γn the SNR on subcarrier n, Definition 1.2 simplifies as

follows

Definition 1.3. MC Energy Efficiency

The energy efficiency of a MC P2P system is

EE =
W
∑N

n=1 log2(1 + γn)

µ
∑N

n=1 pn + Pc

[bit/Joule] . (1.5)

Typically, an energy efficiency optimization problem is formulated

as the maximization of the energy efficiency with respect to P ∈ S

where the set S of feasible power allocations models all constraints

including power constraints tr(P ) ≤ Pmax, quality of service (QoS)

constraints log2

∣

∣

∣IN + 1/σ2HP HH
∣

∣

∣ ≥ Rmin, or other constraints.

Before closing this section, we should mention that another popular

approach to energy efficiency does not consider the fractional approach,

but rather takes a difference-based approach. More specifically, denot-

ing by R(p) the system achievable data-rate, another possible definition

of energy efficiency is the function [143]

u(p) = R(p) − µ(p + Pc) [bits/s] , (1.6)
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1.1. Energy efficiency of a point-to-point system 15

with µ a constant term with dimensions bit/s/W. This approach is

typically used in conjunction with pricing techniques and is not directly

related to ratios. However, in the following we will not consider the

difference-based approach, focusing instead on the fractional definition

of energy efficiency. The motivation for this choice is based on both

physical and mathematical arguments:

• As already mentioned, an efficiency is intrinsically a ratio, and

in particular the ratio between the output of the system over the

consumed goods by the system. This definition is well-established

in communication theory, too. For example, the spectral efficiency

of a communication system is defined as the number of transmit-

ted bits per unit of bandwidth. Replacing spectrum with energy

yields the definition of energy efficiency as the number of trans-

mitted bits per unit of energy.

• In the difference-based approach, the energy efficiency is defined

as R(p) − µp. This quantity is measured in bit/s and represents

the difference between the rate minus a term which measures

the cost in bit/s associated to the use of the transmit power.

Thus, this definition of energy efficiency lacks the strong physical

interpretation of output of the system over consumed goods by

the system, being instead more related to the net gain in bit/s

resulting from the use of the system, rather than to the efficiency

with which the available Joules of energy are used to transmit

information bits.

• Finally, from a mathematical point of view, the difference-

based approach is closely connected to the fractional-based ap-

proach. More in detail, the maximization of the ratio f(p)/g(p) is

mathematically equivalent to the maximization of the difference

f(p) − µg(p) for a specific choice of the parameter µ. In order

to elaborate further on this point, we need to introduce a sec-

ond, more mathematical, approach to energy efficiency, based on

multi-objective optimization. This is done in the coming section.
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1.1.1 Bi-objective energy-efficient optimization

Leveraging the theory of multi-objective optimization, we can math-

ematically capture the trade-off between achieving a reliable commu-

nication and saving power, by formulating a bi-objective optimization

problem in which the objectives to maximize are the benefit of the

system f(γ(p)), and the negative of the power consumption, namely,

max
p∈P

{f(γ(p)); −(p + Pc)} , (1.7)

with P the set of admissible transmit powers, which can account for

constraints such as a maximum feasible power constraint as well as QoS

constraints. Employing the scalarization technique [20, 28], (1.7) can

be converted into the scalar problem

max
p∈P

w1f(γ(p)) − w2(p + Pc) , (1.8)

wherein the scalar objective is given by the linear combination of the

two objectives in (1.7) and the non-negative weights w1 and w2 weigh

the priority given to the two contrasting objectives. For any choice of

the weights, the solution of (1.8) is on the Pareto-boundary of (1.7),

and we see that the two extreme points of the boundary are obtained

when either w2 = 0, and (1.8) reduces to the maximization of f(γ(p))

(e.g. rate maximization), or when w1 = 0, and (1.8) reduces to power

minimization.

Using this approach, the critical question is how to choose the

weights in order to obtain a meaningful point on the Pareto-boundary.

The answer is obtained by considering the maximization of the ratio

f(γ(p))/(p + Pc). Indeed, in Chapter 3 we will show that maximizing

the ratio f(γ(p))/(p+Pc) also yields a point on the Pareto-boundary of

(1.7), which corresponds to a specific choice of the weights w1 and w2.

Such a Pareto-optimal point corresponds to the maximum benefit-cost

ratio of the system, which, in light of the physical consideration de-

scribed in the previous section, is the most meaningful operating point

as far as energy efficiency maximization is concerned.
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1.1.2 Energy-spectral efficiency trade-off

Some more insight on the operational meaning of the energy efficiency

in (1.3) can be gained considering an additive white Gaussian noise

(AWGN) channel with band B, noise spectral density N0, and channel

power gain h2. In this context, taking the channel capacity as the mea-

sure of the system benefit, the spectral efficiency and energy efficiency

can be written as

EE =
B log2

(

1 + ph2

N0B

)

µp + Pc
=

BηB

µp + Pc
(1.9)

ηB = log2

(

1 +
ph2

N0B

)

. (1.10)

The energy efficiency in (1.9) can be expressed as a function of the

energy per bit Eb, by observing that p = ηBEb, which yields

EE =
B log2

(

1 + h2ηB
Eb

N0

)

µEbηB + Pc

B

, (1.11)

which shows the connection between the energy efficiency and the en-

ergy contrast Eb/N0. We see that in AWGN channels, the energy con-

trast plays a similar role as the SNR γ in (1.3). Indeed, in AWGN

channels, the energy contrast is proportional to the SNR h2p
N0B

through

the spectral efficiency ηB [173].

Elaborating again on equations (1.9) and (1.10) we can gain more

insight on the fundamental trade-off between energy efficiency and

spectral efficiency. From (1.10) we obtain the transmit power as

p = (2ηB − 1)
N0B

h2
, (1.12)

which plugged into (1.9) yields the energy efficiency as a function of

the spectral efficeincy

EE =
ηB

µ(2ηB − 1)N0

h2 + Pc

B

. (1.13)

The functional relation in (1.13) is reported in Fig. 1.2, showing that

the energy efficiency is unimodal with respect to ηB.
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Figure 1.2: EE vs. ηB , for µ = 1,N0/h2 = Pc/B = 1 [W/Hz].
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Figure 1.3: EE vs. ηB , for µ = 1, N0/h2 = 1, Pc/B = 0 [W/Hz].

Instead, if Pc = 0, the energy efficiency becomes strictly decreasing

in ηB, as shown in Fig. 1.3. It is interesting to observe that a simi-

lar behavior is observed for the energy efficiency versus the transmit
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power, which is unimodal if Pc > 0, as shown in Fig. 1.1, but which

becomes strictly decreasing if Pc = 0. Before closing this section, we

remark that by similar elaborations on (1.9) and (1.10), it is possible

to analyze other energy-related trade-offs, such as the energy-delay and

bandwidth-power trade-offs [42, 78].

1.2 Energy efficiency of a communication network

After learning how to define the energy efficiency of a P2P system, a

natural question is how to extend such definition to a network com-

posed of multiple nodes. It is intuitively clear that we should somehow

combine the energy efficiencies of the single links, but what is the best

way to do so? As we will see, there is no objective answer. Several

different choices are possible, each with advantages and disadvantages,

and the best choice depends on our subjective goals or on the particular

constraints of the network to optimize.

In this section we introduce the most common performance met-

rics that have been proposed, describing merits and drawbacks of each

approach. To elaborate, let us denote by L the number of links in

the networks, and by γℓ and Pℓ the signal to interference plus noise

ratio (SINR) and power consumption experienced by the ℓ-th link.

Accordingly, we can define the energy efficiency of the ℓ-th link as

EEℓ = f(γℓ)/Pℓ, with f(·) any meaningful efficiency function.

1.2.1 Global energy efficiency

A first approach is to stick to the physical meaning of energy efficiency

as benefit-cost ratio, where now the benefit and cost should be related

to the whole network, rather than to a single link. Following this ap-

proach leads to the following definition.

Definition 1.4. GEE

The global energy efficiency (GEE) of a network is defined as

GEE =

∑L
ℓ=1 f(γℓ)

∑L
ℓ=1 µℓpℓ + Pc,ℓ

. (1.14)
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The GEE is the ratio between the total amount of data that can

be reliably transmitted per unit of time and the total amount of con-

sumed power, thus representing the efficiency with which the network

resources are being used to produce the necessary goods. Otherwise

stated, the GEE is exactly the total benefit produced by the network,

divided by the total incurred cost.

However, while having a clear and strong physical interpretation,

the GEE does not allow to tune the individual energy efficiencies of

the different links. This is a drawback in heterogeneous networks where

terminals with different features and specifications coexist and possi-

bly have different energy-efficient requirements. As an example, con-

sider a multi-cell system in which regular base stations are deployed

together with small access points operated by renewable sources of

energy. Clearly, the energy-harvesting nodes require a higher energy

efficiency than regular terminals which are plugged to the electrical

network.

A second observation regarding GEE concerns fairness issues, in

terms of an unbalanced distribution of the energy efficiency among

the different communication links. More formally, we define fairness

according to the Max-Min fairness concept1 [123], considering unfair

those resource allocations which result in some links experiencing very

low energy efficiency with respect to some other links. This might be

the case when maximizing the GEE, which is a sum-based performance

metric and therefore tends to favor the links with better propagation

channels. Moreover, the GEE does not explicitly depend on the en-

ergy efficiencies of the different links. Therefore, maximizing the GEE

makes it difficult to adjust the individual energy efficiencies according

to specific needs.

For these reasons, we also describe a second approach to network

energy efficiency, based on multi-objective optimization, which allows

more flexibility in the choice of the network operating point.

1A resource allocation is said to be max-min fair if it is not possible to increase
the energy efficiency EEi of link i, without decreasing the energy efficiency EEj of
link j which is smaller than or equal to EEi.
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1.2.2 Multi-objective network energy efficiency

An alternative approach to defining the network energy efficiency is

based on a multi-objective formulation, in which the objectives to opti-

mize are the L energy efficiencies of the network {EEℓ}
L
ℓ=1

. This leads

to considering the network energy-efficient region as the set of all feasi-

ble vectors {EEℓ}
L
ℓ=1

, and to defining the network energy efficiency as a

performance measure whose maximization yields a point on the Pareto

boundary of the energy-efficient region. This can be accomplished by

defining the network energy efficiency as

φ(EE1, . . . , EEL) , (1.15)

wherein φ : RL → R is an increasing function of each argument. The

choice of the particular function φ to employ depends on the partic-

ular point on the Pareto boundary that needs to be achieved. In the

following we list the most widely used choices, describing advantages

and disadvantages of each approach.

Weighted sum of the energy efficiencies

If the function φ is set to the weighted sum of the energy efficiencies,

(1.15) becomes the weighted arithmetic mean of the energy efficiencies.

Definition 1.5. WSEE

The weighted sum energy efficiency (WSEE) of a network is defined as

WSEE =
L
∑

ℓ=1

wℓ

f(γℓ)

µℓpℓ + Pc,ℓ

. (1.16)

This choice results in the point where the hyperplane y =
∑L

ℓ=1 wℓEEℓ is tangent to the Pareto boundary. In the multi-objective

jargon such a point is called utilitarian point. Similarly to the GEE,

the WSEE is a sum-based metric and therefore still tends to favor links

with better propagation channels. However, unlike the GEE, the WSEE

allows one to counteract this effect because it explicitly depend on the

individual energy efficiencies, which can be assigned different priorities

through the choice of the weights.
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Weighted product of the energy efficiencies

If the function φ is set to the exponentially weighted product of the

energy efficiencies, (1.15) becomes the weighted geometric mean of the

energy efficiencies.

Definition 1.6. WPEE

The weighted product energy efficiency (WPEE) of a network is defined

as

WPEE =
L
∏

ℓ=1

(

f(γℓ)

µℓpℓ + Pc,ℓ

)wℓ

. (1.17)

This choice yields the point where the hyperbola y =
∏L

ℓ=1 EEwℓ

ℓ

is tangent to the Pareto boundary. Unlike previous performance mea-

sures, WPEE allows a more balanced resource allocation, thanks to its

product-based definition. In particular, it is known that maximizing

the product of given utility functions yields the point on the Pareto-

boundary corresponding to the Nash Bargaining solution [138]. More-

over, just as WSEE, also WPEE enables the possibility to assign pri-

orities to the individual energy efficiencies through the choice of the

weights. However, even though WPEE maximization ensures that no

link will experience a near-zero energy efficiency, it can not guarantee

to achieve the max-min fair allocation.

Weighted minimum of the energy efficiencies

In order to obtain the max-min fair resource allocation, we set the

function φ in (1.15) to the weighted minimum of the energy efficiencies.

This leads to the following definition.

Definition 1.7. WMEE

The weighted minimum energy efficiency (WMEE) of a network is de-

fined as

WMEE = min
ℓ∈{1,...,L}

(

wℓ

f(γℓ)

µℓpℓ + Pc,ℓ

)

. (1.18)

This choice results in the point where the hyperplane through the

origin and in the direction [w1, . . . , wL] intersects the Pareto boundary.
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In the multi-objective jargon such a point is called egalitarian point,

and it has the property to make wℓEEℓ the same for all ℓ = 1, . . . , L.

Hence, if the weights are all equal, maximizing the WMEE results in

all of the energy efficiencies to be equal.

Fig. 1.4 summarizes the global-performance/fairness trade-off for

the mentioned metrics and shows an example of energy-efficient Pareto

region with the points on the boundary achieved by the different met-

rics. It should be remarked that by varying the weights, it is possible

to describe the whole Pareto region by considering the maximization

of any metric among WSEE, WPEE, and WMEE.
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Figure 1.4: Different operating point for multi-objective network energy efficiency
optimization. In all performance measures, weights are assumed all equal.

However, none of the functions that fall within the described multi-

objective framework can be interpreted as the network benefit-cost ra-

tio, as the GEE. Indeed, although the GEE will be in general inside

the Pareto region, not depending directly on the links’ energy efficien-

cies, it still retains the strongest physical meaning among the discussed

performance functions.
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1.3 Fractional programming for energy efficiency

Fractional programming theory is the branch of optimization theory

that is concerned with the properties and optimization of fractional

functions [153]. From previous sections it should appear clear the strong

link between fractional programming and energy efficiency optimiza-

tion. Be it a single link or a network, and regardless of the particular

performance measure that is adopted, the energy efficiency of a com-

munication system is always expressed through fractional functions and

the energy-efficient resource allocation problem is naturally cast as a

fractional program. Thus, fractional programming represents a fun-

damental tool in the energy-efficient modeling and design of wireless

networks, and of communication systems in general.

Fractional programming studies problems of the form

max
x

f(x)

g(x)
(1.19a)

s.t. x ∈ X (1.19b)

with f : C ⊆ R
n → R, g : C ⊆ R

n → R+ and X ⊆ C ⊆ R
n. The

challenge in tackling Problem (1.19) is that the objective is generally

not concave, even making very restrictive assumptions on f and g. For

example, even assuming f and g are both affine functions, in general

(1.19a) is not concave. An immediate consequence of this fact is that the

strong results of convex optimization theory in general do not apply

for fractional problems, and Karush Kuhn Tucker (KKT) optimality

conditions are only necessary for a generic fractional problem. However,

under specific assumptions on f and g, the objective (1.19a), although

not concave, falls into the class of generalized concave functions. In this

case, it is possible to develop computationally-efficient methods and

algorithms to find the global solution of (1.19). This will be described

in detail in Chapters 2 and 3.

In the field of resource allocation for energy efficiency, while (1.19a)

represents the energy-efficient metric to optimize, the set X models the

constraints typically enforced in wireless communication systems. The

most common constraint is the maximum feasible power constraint,

related to the fact that the power which can be used for transmission is
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upper bounded by the power amplifier characteristics. Other common

constraints are QoS constraints, which ensure that the result of the

energy-efficient resource allocation fulfills specific service requirements

to the network subscribers. Many different kinds of QoS constraints can

be formulated in connection to energy-efficient problems, with two of

the most common being minimum rate constraints [12] and maximum

delay constraints [119, 51].

In the former case, the resource vector x must be such that each

subscriber of the network enjoys at least a minimum achievable rate,

or such that the global sum-rate is above a given threshold. Enforcing

minimum rate constraints might degrade the resulting energy efficiency,

if the target rates are large, because in this case it is necessary to

increase the transmit power beyond the unconstrained maximizer of

the energy efficiency, in order to ensure that each subscriber achieves

his target achievable rate.

In the latter case, the resource vector x must be such that each

subscriber experiences a transmission and/or queuing delay below a

threshold. Employing a lower transmit power might result in decoding

errors at the receiver, and hence in retransmission requests. Therefore,

a maximum delay constraint requires each user’s SINR to be above

a certain threshold and this may again require the use of a transmit

power beyond the unconstrained maximizer of the energy efficiency.

In both cases, and in general regardless of the particular constraints

which define the set X , the fractional programming framework to be

described can always be applied and is always guaranteed to yield the

global solution. The critical issue is about the required complexity. As it

will be formally shown in Chapters 2 and 3, in order to solve (1.19) with

polynomial complexity, X needs to be convex, while f and g need to be

concave and convex, respectively. However, in Chapter 4 a technique

will be introduced, to obtain a point fulfilling the KKT conditions of

(1.19) with polynomial complexity, also when one of these assumptions

is not met.
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1.4 State of the art and future directions

Over the last years, fractional programming has become a well-

established mathematical tool to solve energy-efficient resource allo-

cation problems in wireless networks.

Paper [141] represents, to the best of authors’ knowledge, the first

application of fractional programming theory to the optimization of

wireless networks. In particular, a set of parallel non-interfering chan-

nels is considered, and, using Dinkelbach’s algorithm, the power allo-

cation profile for energy efficiency maximization is derived. Since then,

fractional programming has been largely used in the field of energy-

efficient optimization of wireless systems, and some fractional program-

ming methods and applications are outlined in [84].

Papers [137, 174, 112, 193, 142, 109] employ fractional program-

ming to optimize the energy efficiency of cognitive radio systems. [137]

considers a sensing scenario in which secondary (unlicensed) users are

allowed to use licensed frequency bands that are temporarily not used

by the primary (licensed) users. In [174] an underlay approach is used

in which secondary users are allowed to use licensed subcarriers pro-

vided this does not cause too much interference to the primary users.

Underlay approaches are also used in [112], where a MIMO broadcast

channel is considered, in [193], which includes QoS requirements in the

optimization process, in [142] which provides energy-efficient resource

allocation algorithms for ad-hoc cognitive networks, and in [109], where

fractional programming together with the rate-splitting technique is

employed in cognitive MIMO systems.

In [45, 41, 29, 52, 72, 131, 169, 177] fractional programming is used

for energy-efficient resource allocation in wireless MIMO systems. In

[45] a single-user system with time-varying channel is considered. In

[41] fractional programming is used to minimize the energy consump-

tion per transmitted bit, while in [29] energy and outage probability

optimization are considered. The energy-spectral efficiency trade-off is

analyzed via fractional programming in [131]. In [169] optimal, energy-

efficient precoding design in a single-user MIMO system is performed.

In [177] a full-duplex multi-user system is considered in which uplink

and downlink communications take place on the same frequency band.
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Instead [178, 72] focus on MIMO broadcast channels. Also, applications

of fractional programming in systems with a large number of antennas

are considered in [128, 80, 40, 25], thus showing that fractional opti-

mization proves useful in massive and large MIMO systems, too.

Fractional programming in MC and orthogonal frequency division

multiple access (OFDMA) systems is employed in [176, 73, 97, 68,

179, 107]. In [176, 107, 179] energy-efficient resource allocation is per-

formed subject to QoS constraints. In [97] energy per bit minimiza-

tion is performed by fractional programming, while in [68] fractional

programming is applied for energy efficiency optimization subject to

proportional fairness constraints.

Fractional programming has been applied to relay-assisted systems,

too, in [43, 160, 98, 185, 186, 71, 184]. In [43] an OFMDA network with

multiple relays is considered, while in [160] the energy efficiency of a

two-way relay system is discussed. In [98] the trade-off between spectral

and energy efficiency is analyzed for relay-systems, while in [185, 186]

a relay-assisted multi-stream MIMO system is considered, for different

channel state information (CSI) assumptions. A MIMO system is also

considered in [71], where low-complexity algorithms are provided for

energy efficiency optimization with perfect CSI. In [184], a multi-user

relay-assisted MIMO system is considered and fractional programming

is employed to perform joint transceiver and relay allocation.

The papers [127, 69, 171, 55, 70] consider the issue of energy-efficient

resource allocation in a coordinated multi-point (CoMP) system in

which a cluster of base stations coordinate their resource allocations via

backhaul connection. Fractional programming is employed to optimize

different energy-efficient performance metrics, including the global en-

ergy efficiency of the cluster [127, 171], the sum of the individual energy

efficiencies [69, 171], the product of the individual energy efficiencies

[171], and the minimum of the energy efficiencies [55]. In [70], frac-

tional programming is used to come up with beamforming allocation

in single-stream MIMO systems.

Fractional programming has also been used to optimize the energy

efficiency of systems with secure communications. In [39, 126] secure

OFDMA networks are considered, while in [191] secure communication
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in multiple-antenna systems is studied.

The above works mainly consider centralized resource allocation

approaches. However, a key-feature of future cellular systems is an-

ticipated to be self-organization, given the sheer amount of nodes to

manage. In particular, the study of energy-efficient resource allocation

problems in wireless networks has started considering power control

algorithms for competitive scenarios in single-cell and multi-cell net-

works [63, 148], where a game-theoretic approach is taken. The results

in [63, 148] paved the way to many following contributions, which also

employed game theory to devise competitive resource allocation al-

gorithms. In [120, 121, 32], the algorithms provided in [63, 148] are

extended considering also transceiver design, whereas [118] and [119]

consider competitive power control in MC systems and in presence

of maximum communication delay constraints. In [101] a hierarchical

power control algorithm is proposed, using a Stackelberg game formu-

lation. The results indicate that the equilibrium point is more efficient

that in [148]. A further improvement can be obtained using a repeated-

game formulation, as done in [162]. In [16], energy-efficient precoding

matrix allocation in single-user MIMO systems is studied. In [13] and

[31] competitive power control algorithms have been proposed for ultra-

wide-band systems and for networks subject to frequency-selective fad-

ing, respectively. In [33] competitive resource allocation for multi-user

wireless systems is performed, while [35] considers competitive resource

allocation in cognitive systems. In [34] the impact of widely linear sig-

naling on competitive, energy-efficient resource allocation algorithms is

analyzed for multi-user wireless networks, while [30, 182] consider com-

petitive power and subcarrier allocation in MC and multiple-antenna

wireless networks. Fractional programming in competitive resource al-

location problems has been used also in [122] for OFDMA networks,

in [183, 187, 12, 190] for relay-assisted systems, and in [89, 189] for

multiple-antenna systems.

The common denominator to all the mentioned contributions in the

area of competitive resource allocation, is that they use game theory

to analyze the competition among the network nodes. As it will be

explained in more detail in Chapter 5, fractional programming proves
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very useful in this context, too, because it allows one to analyze the gen-

eralized concavity properties of the individual utility functions, thereby

leading to the optimal resource allocation for each node and to deter-

mining the existence of equilibria points.

It is thus seen that fractional programming is a general theory that

has been widely applied in recent years to the design of resource al-

location protocols for wireless networks. It is clearly anticipated that

fractional programming will continue to be a valuable tool also for the

design and optimization of future wireless networks such as 5G cellular

networks. In particular, the following technologies appear among the

most promising candidates to meet the requirements of future cellular

networks [3, 27, 83].

• Densely deployed small cells [79, 4, 82], which try to cope with the

sheer number of connected nodes by an extensive use of small-cells

and relay stations to be placed in critical areas that would be oth-

erwise difficult to serve. From an energy-efficient point-of-view,

network densification is particularly attractive because it reduces

the distances between nodes, thus leading to higher data-rates at

lower transmit powers. However, deploying more infrastructure

nodes results in increased inter-cell interference and leads to an

heterogeneous network where nodes with different features and

specifications should co-exist.

• Device-to-device communications [197], which aim at increasing a

cellular system resource reuse factor and reducing the infrastruc-

ture load by allowing neighboring mobiles wishing to communi-

cate with each other, to establish a direct communication link, by-

passing the network infrastructure. device-to-device (D2D) com-

munications in cellular networks can be either operator-controlled

[103], or opportunistically activated by the devices, thus under-

laying the regular cellular system [139]. In the former case, the

system resources are centrally optimized by the network operator,

which dictates what resource blocks can be used for D2D com-

munications. In the latter, neighboring devices can autonomously

decide to directly communicate, reusing the same resource blocks
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used by the cellular system, provided the interference caused to

the cellular users remains under a predetermined threshold.

• Massive MIMO systems [147, 99], which deal with the large num-

ber of connected nodes by drastically increasing the amount of

deployed antennas. Owing to the law of large numbers, using

many antennas has the potential to average out multi-user in-

terference, provided the so-called favorable propagation condition

holds [116]. However, deploying a number of antennas much larger

than the mobiles to serve, has some drawbacks, too, among which

we mention pilot contamination effects that complicate channel

estimation, and more significant hardware impairments due to the

fact that low-cost hardware must be used in practical systems,

given the large amount of circuitry required to feed hundreds of

antennas.

The debate as to what candidate technology is the most suited to the

implementation of 5G networks is still ongoing in the wireless com-

munity, and it is common opinion that the final selected technology

will not be based on a single approach, but rather on a combination of

different approaches. However, even if it is not clear yet, what 5G net-

works will look like, it is clear that they will have to be energy-efficient

in order to meet the exponentially increasing rate demands, while at

the same time guaranteeing a sustainable growth and affordable costs.

This makes energy efficiency one enabler of 5G networks, and fractional

programming an invaluable mathematical tool for the energy-efficient

analysis and optimization of future wireless networks.
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