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Abstract

Violence detection represents an important issue to take into account in the design of intelligent algorithms for smart

environments. This paper proposes an energy-efficient system capable of acoustically detecting violence. In our

solution, genetic algorithms are used to select the best subset of features with a constrained computational cost.

Results demonstrate the viability of the system, thanks to the low cost that some violence features require, making

feasible the implementation of the proposed method in a nowadays low power microprocessor.
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1. Introduction

Violence continues being a latent conflict in actual soci-

ety. Recent researches show that 35% of women around

the world have suffered physical or sexual violence dur-

ing their lives1 and 43% of women from the European

Union declared suffering psychological violence at least

once.2 This fact makes violence detection and prevention

to represent an important issue to take into account in the

design of intelligent algorithms for smart environments.

In this sense, violence can be detected through audio and

video surveillance. Some works in the literature treat this

problem using both audio and video processing,3,4,5 and

the results obtained with the combination of those sources

seems to be efficient.

Main disadvantages of video can be found in terms

of computational cost, intrusiveness and poor coverages.

Some authors have evaluated computational cost using

core hours as metric.6 Furthermore, audio and video have

been tested both in separate and together ways in the

literature.7 Their conclusions show that the system works

properly using just audio source. When video informa-

tion is added the performance improves slightly, but com-

putational cost increases in a big way. Besides, an audio-

based system is economic in terms of e/m2.

In the literature we can find other proposals where

audio is used to detect violence by itself,8 since violent

situations are commonly accompanied by signs like ar-

guments, shouts or an increase in the volume of the con-

versation. However, most of the studies up to now have

been done with pretended violence from films or games,

which are not applicable to real violence situations.9

In order to implement real-time audio surveillance

systems in wide areas, the need of energy-efficient pro-

cessing nodes arises. An energy-efficient real-time sys-

tem has the restriction of consumption when it is im-

plemented in some place where it is working in an au-

tonomous way. In this scenario, the computational cost,

related to the clock frequency of the processing units, is

an important factor to take into account, and the control

of the computational cost of the violence detection sys-

tem is mandatory.

Bearing this in mind, this paper proposes a real-time

implementation of an energy-efficient system capable of

detecting a violent situation in smart environments. Since

the system has to work in an autonomous way, compu-

tational cost is strictly constrained, and there is a need
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to find a reduced set of features. In this sense, genetic

algorithms are proposed to solve the constrained feature

selection process, allowing a good tradeoff between per-

formance and computational cost.

This paper is structured as follows. First, Section

2 introduces the implemented classification system, de-

scribing the feature extraction (Subsection 2.1), the com-

putational cost evaluation (Subsection 2.2) and the fea-

ture selection process using genetic algorithms (Subsec-

tion 2.3). Then, Section 3 describes the results, includ-

ing the description of the database, the validation method

employed and the discussion of the results. To sum up,

Section 4 presents the conclusions.

2. The Acoustic Surveillance System

The proposed system has the objective of studying so-

lutions for audio-based violence detection in real envi-

ronments and in real time, where the system has to take

a decision every T seconds. The steps of the proposed

acoustic surveillance system, shown in Figure 1, are be-

ing explained in detail in the following sections.

FEATURE 
EXTRACTION

VIOLENCE 
DETECTION

Fig. 1. Proposed system.

2.1. Feature extraction

There are several audio features that could exhibit a good

discrimination capability for the problem at hand.8,10

This section includes a brief description of the most in-

teresting features for violence detection.

Most of the features tend to analyze some time statis-

tics over the evaluation of a measurement along the time

to get useful information from the audio. So, in order

to evaluate/extract the features, the audio segments of T
seconds are divided into M frames of L samples with an

overlap of S%. By default, the statistics applied to these

measurements are typically the mean and the Standard

Deviation (SD), although for some particular measure-

ments more specific statistics are used.

All measurements can either be taken in the time do-

main or in the frequency domain. For notation purposes,

let us assume xim is the i-th audio sample of the m-th time

frame (i = 1, . . . ,L and m = 1, . . . ,M), and Xkm is the k-

th frequency component for the m-th time frame of the

Short-Time Fourier Transform (STFT), evaluated apply-

ing a windowed Discrete Fourier Transform (DFT) to the

m-th time frame.

The features considered in this paper are:

• The Mel-Frecuency Cepstral Coefficients (MFCCs),
which are a set of perceptual parameters commonly

used in speech recognition,10 calculated from the spec-

trum. They provide a compact representation of the

spectral envelope. Perceptual analysis emulates human

ear non-linear frequency response by creating a set of

filters on non-linearly spaced frequency bands.11

In the case of violence detection and considering a

sampling frequency of 22,050 Hz, N = 25 cepstral

coefficients are calculated,12 so that there will be 25

different MFCCs per frame, denoted MFCCnm, n =

1, . . . ,25.

• The Delta Mel-Frequency Cepstral Coefficients
(ΔMFCCs), calculated as the time difference of stan-

dard MFCCs in two different time frames,10 so that

ΔMFCCnm = MFCC(n+1)m −MFCC(n−1)m.

• The Pitch, related to the fundamental frequency, de-

termines the tone of the speech. It can be used to dis-

tinguish a person from another.11 In this paper we es-

timate the pitch for every frame, evaluating the main

peaks of the autocorrelation of the error of a linear pre-

dictor with P = 10 coefficients.10

• The Harmonic Noise Rate (HNR) quantifies the pu-

rity of the speech in every frame. It measures the rela-

tionship between the harmonic energy produced by the

vocal cords versus non-harmonic energy present in the

signal.10

• The Ratio of Unvoiced time Frames (RUF), is related

to the presence or absence of clear or strong speech in

the analyzed audio. It is obtained dividing the number

of time frames with detected pitch by the total number

of frames.12

• The Short Time Energy (STE) is the energy of the

short speech segment, ST Em = ∑L
i=1 x2

im. It is a simple

and effective classifying parameter for both voiced and

unvoiced frames.13

• The Energy Entropy (EE) expresses abrupt changes

in the energy level of the audio signal. It is useful
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for detecting violence due to rapid changes occurring

in the tone of voice.8 To evaluate this measurement,

each time frame of L samples is divided into B blocks,

and the energy of each block is then measured. So,

EE for the m-th time frame can be evaluated using

EEm = −∑B
b=1 σ2

bmlog2σ2
bm, where σ2

bm is the normal-

ized energy calculated for the b-th block of the m-th

frame, b = 1, . . . ,B. Apart from the mean and the SD,

statistics applied to the energy entropy are the ratios of

maximum to mean and maximum to median values.

• The Zero Crossing Rate (ZCR) is one of the most

widely used time-domain audio features.8 It is deter-

mined by dividing the number of sign changes by the

total length of the frame, so that Zm = ∑L
i=1 |sgn(xim)−

sgn(x(i−1)m)|. Apart from the mean and the SD, the

ratio of the maximum to mean is calculated.

• The Spectral Rolloff (SR) is calculated in the fre-

quency domain and is defined as the frequency kc(m)

below which c% of the magnitude distribution of STFT

coefficients are concentrated for the m-th frame, so

that ∑kc(m)
k=0 |Xkm| = c/100∑L/2

k=0 |Xkm|. It represents the

skewness of the spectral shape.8 The median value is

computed apart from the mean and the SD.

• The Spectral Centroid (SC) is defined as the center

of gravity of the magnitude spectrum of the STFT,14

so that SCm = ∑L/2
k=0 k · |Xkm|/∑L/2

k=0 ·|Xkm|.
• The Spectral Flux (SF) represents the spectral change

between successive frames,8 and is determined using

SFm = ∑L/2
k=0(|Xkm|− |Xk(m−1)|)2.

2.2. Computational Cost Evaluation

A energy-efficient real time system has the restriction of

consumption when it is implemented in some place where

it is working in an autonomous way, for instance working

with a solar powered source. In this scenario, computa-

tional cost is an important aspect to consider if we want

to control the consumption the node has.

In order to calculate the computational cost of our

system, the number of flops that each feature requires

has been calculated determining the number of Floating

Point Operations Per Second (FLOPS).15 The number of

flops is related to the power consumption. To put this in

perspective, if the system has to work autonomously and

is powered by a small solar cell of 1 dm2 which spends

1 W/dm2, and having a minimum average of 2.5 hours

of sun per day (a typical value in several winter in re-

gions such as Spain), the average total power will be 100

mW. Low power processors, such as the ARM-Cortex-

M4, typically consumes around 0.2 mW/MHz which, as-

suming a relationship of 1 FLOP per Hertz, gives us an

idea of the amount of FLOPS that are going to be avail-

able for this kind of devices.16

The number of FLOPS of our system depends on the

set of selected features, so it must take into account which

ones are used for a specific design. To evaluate the impact

of each feature in the selection process, we have carried

out a detailed analysis of the computational cost in terms

of FLOPS required to implement an energy-efficient vio-

lence detection system.

Thus, the cost of each feature has been evaluated and

we propose the above equations with the objective of

generalize the cost in function of some parameters ex-

plained below. As was stated above, the feature extrac-

tion process splits the audio frame of Nsamples (so that

T = Nsamples/ fs, being fs the sampling frequency) into

M frames of L samples, with an overlap between them of

S%, so that:

M =

⌊
Nsamples

S ·L
⌋

(1)

Some features such as pitch-based or MFCCs have

more impact in cost than others due to the amount of flops

needed. Furthermore, some features share some process-

ing blocks that do not need to be replicated for differ-

ent features. Considering the measurements described in

the last section, we have identified four processing blocks

that are shared along more than one measurement:

• The evaluation of the STFT is shared by the MFCCs,

ΔMFCCs, the SR, the SC and the SF. Equation (2) rep-

resents the cost of the STFT matrix CS, in terms of op-

erations per decision, in function of the main design

parameters.

CS = L(M−1)(5log2 L+2)+4L+15 (2)

• The evaluation of the MFCCs is shared by both the

MFCCs and the ΔMFCCs. Apart from the evaluation

of the STFT, these features require some shared op-

erations. The cost CM associated to these operations

is expressed using equation (3) in function of N, the

number of MFCCs computed.
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CM = (L ·S+1)(M(2N +5)+10N +23)

+N(3N +11)+N ·M(2N +7)+29, (3)

• The evaluation of the pitch is also shared by the HNR

and the RUF. Its cost CP can be determined using the

next equation:

CP = 2L ·M(5log2 L+P+3)+

M
(
P(2P2 +P+2L+1)−L

)
+1, (4)

where P is the number of Levinson Coefficients.

• At last, the evaluation of the energy is shared by the

STE and the EE (which requires it to normalize the en-

ergy of each block), and its cost CE can be determined

using equation (5)

CE = M(2L+3)−4 (5)

We will use four binary variables bS, bM , bP and bE

related to CS, CM , CP and CE (the number of operations

associated to the described shared processing blocks) to

determine whether the selected set of features does re-

quire the evaluation of one of the aforementioned blocks,

respectively. The total number of operations can be ex-

pressed using equation (6):

CT = bS ·CS +bM ·CM +bP ·CP +bE ·CE +
11

∑
f=1

s f ·Cf ,

(6)

where Cf is the specific additional cost of each measure-

ment, and s f is a binary vector which indicates the se-

lected measurements. The FLOPS can be easily evalu-

ated simply taking into account that the proposed system

requires a decision every T seconds.

To sum up, there are some features which are linked

and depend on others, so that the computation of one al-

lows to compute the others with practically the same cost.

Because of that, we have been grouped measurements

into 8 groups. These groups are: G1 (including MFCCs

and ΔMFCCs), G2 (including Pitch, HNR, and RUF), G3

(STE), G4 (EE), G5 (ZCR), G6 (SR), G7 (SC) and G8

(SF). STE and EE have been evaluated separately because

the cost of the EE is not insignificant respect to the one

of the STE. Table 1 describes the groups, the number of

features of each measurement, the values bS, bM , bP and

bE and the additional cost Cf associated to each measure-

ment, in function of the main design parameters of each

feature.

2.3. Constrained selection of features

As was stated above, to control the computational cost of

the violence detection system, there is a need to find a re-

duced set of patterns that allows a good performance with

an energy-efficient implementation. For this purpose, ge-

netic algorithms have been used in the paper.

Genetic algorithms are based on the principles of ge-

netic and natural selection, allowing to obtain the best

results for solving a problem.17 This method consists of

exchanging randomly the features of the individuals of a

population that constitute the possible solutions for the

problem. In this way, the algorithm is able to resolve

optimization problems.18 Specifically, our problem is to

determinate which features are the best to be applied to

violence detection without resulting in a high cost. For

that reason, a cost constraint is applied when the features

are selected. There are 121 features in total, but each in-

dividual only selects a subset of them in a way that total

cost is below the fixed threshold. The adaptive function

has the aim of maximize the probability of detection as-

sociated to a probability of false alarm for a given detec-

tion system. In this point, two different classifiers will

be applied: The Least Squares Linear Detector and the

simplified version of Least Squares Quadratic Detector.

They are explained in detail in the literature.12

According to the previous parameter, the individuals

will be ranked and only the best individuals survive and

reproduce. The population is composed of 100 individu-

als, 10 of them will be chosen as parents, and they will

generate the remaining 90 sons by crossover. After this,

mutation changes a 4 percent of the genes. This process

is repeated along 30 generations and the whole process is

repeated 10 times to avoid local minima.

3. Results

In order to validate the proposed system, a set of experi-

ments has been carried out using a database of audio files.

These audio files have been divided in segments of T = 5

seconds length with a sampling frequency of fs = 22,050

Hz. Each frame is divided in windows of L = 512 length

and S = 50% overlap between windows, resulting in a to-
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Table 1. Dependence between grouped features.

Group Caract No. feats bS bM bP bE Additional cost (No. operations)

G1
MFCCs 50 1 1 0 0 C1 = 0

ΔMFCCs 50 1 1 0 0 C2 = N(M−2)+1

G2

Pitch 2 0 0 1 0 C3 = 0

HNR 2 0 0 1 0 C4 = 9M

RUF 1 0 0 1 0 C5 = M

G3 STE 2 0 0 0 1 C6 = 0

G4 EE 4 0 0 0 1 C7 = M (�2L/B�+3B−5)+6B+3

G5 ZCR 3 0 0 0 0 C8 = (6M+1)(L−1)

G6 SR 3 1 0 0 0 C9 = M(5N +8)+2�M(L ·S−1)/3�
G7 SC 2 1 0 0 0 C10 = M (8N +L ·S+6)+L ·S+4

G8 SF 2 1 0 0 0 C11 = M (9N +5)−3N +1

tal of M = 430 frames per segment. Then feature extrac-

tion has been applied to obtain useful information from

data. With the aim of selecting a reduced set of features,

a genetic algorithm is used.

CROSS-VALIDATION

AUDIO FILES
DATABASE

EXTRACTING 
THE AUDIO 

FRAMES

FEATURE 
EXTRACTION

TRAINING 
SET

CLASSIFYING

TEST SET

SELECTING 
BEST 

FEATURES

FINAL 
DECISION

COST 
RESTRICTION

Fig. 2. Block diagram of the experiments.

This algorithm has been applied using a constraint re-

lated to the cost available in the system. Specifically, dif-

ferent cost thresholds measured in “Maximum number of

Mega Floating Operations Per Second” (MaxMFLOPS)

have been applied (1, 3, 5, 10 and 15 MaxMFLOPS).

This means that the sum of costs of the selected features

has to be below this values. Once the best features have

been selected, a specifically trained classifier aims at giv-

ing the final decision. Figure 2 shows a block diagram

describing the process carried out in the experiments.

In general, the databases used in the state-of-the-art

were not suitable for our problem, so we have used a

novel database developed in a previous work.12 The main

characteristics of the used database are shown in Table 2.

Table 2. Summary of the database.

Parameters Value

Total duration 27,802 s

Violent duration 3,051 s

Percentage of violence 10.97%

Number of audios 109

Minimum audio length 15 s

Maximum audio length 4,966 s

Related to the implemented validation, a tailored ver-

sion of k-fold cross-validation has been used in the exper-

iments to avoid loss of generalization of the results. The

data is divided in k subsets, so that each subset is used

for testing and the remaining k− 1 are used for training.

In our case, 109 folds with different size have been used,

each fold containing data from a different audio file. In

that way, we ensure that data from the same acoustic en-

vironment is not used both for training and testing at the

same time, guaranteeing the generalization of the results.

As it was stated above, two genetic algorithms based

feature selection strategies have been considered: the

case of maximizing the probability of detection with a

linear and with a quadratic detector. In each case, the

same detector has been applied to classify. The probabil-

ity of false alarm considered in the optimization process

has been 10%. Figure 3 shows a comparative between the
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costs (measured in Mega-FLOPS) required by the eight

groups of features. The cost necessary to calculate the

Short Time Fourier Transform (STFT) is depicted in solid

colour, while the additional cost of each feature group is

painted with striped bars. For instance, if the STFT has

been calculated because of the group G1 (MFCCs and

ΔMFCCs), this cost can be saved in groups G6, G7 and

G8 (spectral features). In the same way, in group G4 (EE)

energy does not have to be calculated if group G3 (STE)

is computed.

0

1

2

3

4

5

6

7

MFCCs 
ΔMFCCs

Pitch 
HNR  
RUF

ZCR STE EE SR SC SF

M
F

LO
P

S

STFT Cost of the features

Fig. 3. Cost of the different feature groups.

In view of the results, we can appreciate that group G2

(pitch, HNR and RUF) is the most computationally ex-

pensive group, overcoming 6 millions of FLOPS. Group

G1 is also too expensive, but it will provide 100 fea-

tures to the experiments, aside from the calculation of the

STFT, used by other groups.

Now we will evaluate the effect of the limits in the

computational cost available. Figure 4 shows the proba-

bility of detection obtained for low probabilities of false

alarm (under 10%) and using the linear detector, evalu-

ated for the different cost thresholds. The same is shown

in Figure 5 using the quadratic detector.

0 1 2 3 4 5 6 7 8 9 10
Probability of False Alarm (%)

0

10

20

30

40

50

60

70

80

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n 

(%
)

MaxMFLOPS = 1
MaxMFLOPS = 3
MaxMFLOPS = 5
MaxMFLOPS = 10
MaxMFLOPS = 15

Fig. 4. Probability of Detection for Linear Detector.

The behavior is similar in both cases. With low

thresholds (1 MaxMFLOPS) the probabilities of detec-

tion obtained are poor (around 50-55% for 10% of false

alarm). As we increase this threshold the results are con-

siderably improved, reaching around 75-80% of detec-

tion with 5 MaxMFLOPS cost. However, this improve-

ment does not continue for higher costs, so it makes no

sense to spend more resources in this problem.
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Fig. 5. Probability of Detection for Quadratic Detector.

In order to demonstrate the high accuracy of the pro-

posed system in terms of probability of detection, we are

going to make a comparison between our method and the

one proposed by J. Salamon.19. Applying that algorithm
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Table 3. Cost, probability of detection and probability of appearance of the features groups.

MaxMFLOPS 1 MFLOPS 3 MFLOPS 5 MFLOPS 10 MFLOPS 15 MFLOPS

Classifier Lin. Qua. Lin. Qua. Lin. Qua. Lin. Qua. Lin. Qua.

Average Cost (MFLOPS) 0.4 0.4 2.6 2.6 3.9 3.7 9.8 8.3 10.0 8.8

Pd (Pfa = 10%) (%) 50% 54% 64% 67% 74% 76% 69% 78% 70% 74%

G1 (MFCC+ΔMFCC) 0% 0% 0% 0% 100% 100% 100% 100% 100% 100%

G2 (Pitch+HNR+RUF) 0% 0% 0% 0% 0% 0% 99% 76% 100% 82%

G3 (STE) 93% 0% 19% 0% 63% 0% 80% 0% 63% 0%

Selection G4 (EE) 100% 100% 100% 100% 97% 92% 73% 89% 95% 96%

rate (%) G5 (ZCR) 100% 100% 100% 100% 80% 31% 25% 12% 80% 35%

G6 (SR) 0% 0% 100% 100% 98% 98% 93% 98% 97% 99%

G7 (SC) 0% 0% 100% 9% 82% 77% 99% 78% 97% 86%

G8 (SF) 0% 0% 6% 98% 49% 57% 41% 63% 41% 70%

the results are around 65% of probability of detection for

a probability of false alarm of 10%, which does not im-

prove the ones obtained with the algorithm proposed in

this experiment.

Now we will study which groups of features are more

selected and useful. Table 3 displays the average cost

employed, the probability of detection for a probability

of false alarm of 10% and the percentages of appearance

(selection rates) of the groups. It has been considered as

appearance the selection of one or more features from the

group.

At the beginning, the algorithm selects groups G3,

G4 and G5 in practically 100% of the cases because of

the low threshold imposed (1 MaxMFLOPS). When we

increase this value to 3 MaxMFLOPS the spectral fea-

tures appear. Furthermore, the MFCCs are selected with

5 or more MaxMFLOPS, and the pitch with 10 MaxM-

FLOPS. The case of 15 MaxMFLOPS allows the algo-

rithm to select whatever it needs, because the sum of the

total cost is lower than this value.

As it can be seen, there are some features that work

better in the quadratic detector than in the linear one.

Such is the case of group G8 (SF), where the difference

between the appearance in both classifiers is always con-

siderable. The opposite happens in groups G3 and G5. In

fact, the appearance of group G3 in quadratic detector is

always 0%.

Additionally, the importance of some features is re-

flected in the table. For instance, when group G1 -MFCCs

and ΔMFCCs- appears (from 5 MaxMFLOPS onwards)

its appearance is 100% in linear and quadratic detectors,

while the appearance of the features that were selected

previously is significantly reduced, like in groups G4 and

G5. Because of that, MFCCs is an excellent group. The

same does not happens to other expensive groups, such

as group G2, which does not improve the results when it

is selected (10-15 MaxMFLOPS).

4. Conclusion

The objective of this work is to develop a system capable

of detect violent scenes in real time and in real situations.

With this purpose, we have carried out different exper-

iments related to audio analysis. The algorithms have

been developed in order to maximize the probability of

detection for low probabilities of false alarm, but subject

to computational cost constraints.

The results derived from the experiments show that

MFCCs are the best features for violence detection, both

for linear and quadratic classifiers. Other features such as

energy only show a good performance in linear classifiers

and their cost is quite low compared to the rest.

Regarding to the classifiers, the results obtained are

better in quadratic case (3-9% of difference respect to the

linear one) for all cases with different cost thresholds.

Higher cost implies better results, but a compromise of

5 MaxMFLOPS could be reached, since the results does

not seem to be improved much from this value.

The cost (e/m2) of this audio-based system is rela-

tively low. For instance, if we consider a typical range

of 20 m2 per node and each node (e.g., Raspberry Pi)
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has a price around 100 e, the deployment costs would be

around 5 e/m2.

To sum up, the experimental results show that it is

viable to implement a real time system capable of de-

tecting violence in an autonomous way. That is possible

thanks to the low cost that some violence features need to

be computed, which can be supported by nowadays low

power microprocessors.
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12. J. Garcı́a-Gómez, M. Bautista-Durán, R. Gil-Pita, I.

Mohino-Herranz and M. Rosa-Zurera, Violence Detection
in Real Environments for Smart Cities, in Ubiquitous Com-
puting and Ambient Intelligence: 10th International Con-
ference, UCAmI, (Springer International Publishing, Spain,

2016), Part II 10, pp. 482–494.

13. M. Jalil, F. A. Butt, and A. Malik, Short-time energy, mag-
nitude, zero crossing rate and autocorrelation measurement
for discriminating voiced and unvoiced segments of speech
signals, in Technological Advances in Electrical, Electron-
ics and Computer Engineering (TAEECE), (2013), pp. 208–

212.

14. G. Tzanetakis, and P. Cook, Musical genre classification of
audio signals, in IEEE Transactions on speech and audio
processing, 10(5), (2002), pp. 293–302.

15. H. Qian, Counting the Floating Point Operations (FLOPS),
MATLAB Central File Exchange, No. 50608, Ver. 1.0,

(2015).

16. ARM, ARM Cortex-M4 Processor: Technical Ref-
erence Manual. Revision: r0p1. Available at:
https://developer.arm.com/docs/100166 0001/00.

17. R. L. Haupt and S. E. Haupt, Practical genetic algorithms.
John Wiley & Sons, (2004).

18. D. E. Goldberg and J. H. Holland, Genetic algorithms and
machine learning. Machine learning, 3(2), (1988), pp. 95–

99.

19. Salamon, J., Jacoby, C., and Bello, J. P, A dataset and taxon-

omy for urban sound research. In Proceedings of the 22nd
ACM international conference on Multimedia (2014), pp.

1041–1044.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1298–1305
___________________________________________________________________________________________________________

1305


