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49:2 S. ALBERS AND H. FUJIWARA

1. Introduction

Embedded systems and portable devices play an ever-increasing role in everyday
life. Prominent examples are mobile phones, palmtops, and laptop computers that
are used by a significant fraction of the population today. Many of these devices
are battery-operated so that effective power management strategies are essential to
guarantee good performance and availability of the systems. The microprocessors
built into these devices can typically perform tasks at different speeds; the higher
the speed, the higher the energy consumption. As a result, there has recently been
considerable research interest in dynamic speed scaling strategies. We refer the
reader to Augustine et al. [2004], Bansal et al. [2004], Bansal and Pruhs [2005],
Bunde [2006], Irani et al. [2003], Pruhs et al. [2004], and Yao et al. [1995] for a
selection of papers that have been published in algorithm conferences and to Irani
and Pruhs [2005] for a survey article.

Most of the previous work considers a scenario where a sequence of jobs, each
specified by a release time, a deadline, and an amount of work that must be per-
formed to complete the task, has to be scheduled on a single processor. The processor
may run at variable speed. At speed s, the power (energy) consumption is P(s) = sα

per time unit, where α > 1 is a constant. The goal is to find a feasible schedule such
that the total energy consumption over the entire time horizon is as small as pos-
sible. While this basic framework gives insight into effective energy conservation,
it ignores the important aspect that users typically expect good response times for
their jobs. Furthermore, in many computational systems, jobs are not labeled with
deadlines. For example, operating systems such as Windows and Unix installed on
laptops do not employ deadline-based scheduling.

Therefore, in this article, we study algorithms that minimize energy usage and at
the same time guarantee good response times. In the scientific literature, response
time is modeled as flow time. The flow time of a job is the length of the time
interval between the release time and completion time of the job. Unfortunately,
energy minimization and flow time minimization are orthogonal objectives. To save
energy, the processor should run at low speed, which yields high flow times. On
the other hand, to ensure small flow times, the processor should run at high speed,
which results in a high energy consumption. In order to overcome this conflict, Pruhs
et al. [2004] recently studied the problem of minimizing the average flow time of
a sequence of jobs when a fixed amount of energy is available. They presented a
polynomial-time offline algorithm for unit-size jobs. However, it is not clear how
to handle the online scenario where jobs arrival times are unknown.

Instead, in this article, we propose a different approach to integrate energy and
flow time minimization: We seek schedules that minimize the total cost consist-
ing of the energy consumption and the flow times of jobs. More specifically, a
sequence of jobs, each specified by an amount of work, arrives over time and must
be scheduled on one processor. Preemption of jobs is not allowed. The goal is to
dynamically set the speed of the processor so as to minimize the sum of: (a) total
energy consumption; and (b) the total flow times of all jobs. Such combined objec-
tive functions have been studied for many other bicriteria optimization problems
with orthogonal objectives. For instance, the papers Dooly et al. [2001] and Karlin
et al. [2003] consider a TCP acknowledgement problem, minimizing the sum of
acknowledgement costs and acknowledgement delays incurred for data packets.
In Fabrikant et al. [2003] the authors study network design and minimize the total
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hardware and QoS costs. More generally, in the classical facility location problem,
one minimizes the sum of the facility installation and total client service costs;
see Cornuéjols et al. [1990] and Mirchandani and Francis [1990] for surveys.

For our energy/flow-time minimization problem, we are interested in both online
and offline algorithms. Following Sleator and Tarjan [1985], an online algorithm A
is said to be c-competitive if there exists a constant a such that for all job sequences
σ , the total cost A(σ ) satisfies A(σ ) ≤ c · OPT(σ ) + a, where OPT(σ ) is the cost
of an optimal offline algorithm.

Previous Work. In their seminal paper, Yao et al. [1995] introduced the basic
problem of scheduling a sequence of jobs, each having a release time, a deadline
and a certain workload, so as to minimize the energy usage. Here, preemption of
jobs is allowed. Yao et al. showed that the offline problem can be solved optimally
in polynomial time and presented two online Algorithms Called Average Rate and
Optimal Available. They analyzed Average Rate for the algorithm for α ≥ 2, and
proved an upper bound of 2ααα and a lower bound of αα on the competitive-
ness. Bansal et al. [2004] studied Optimal Available algorithm and showed that its
competitive ratio is exactly αα. Furthermore, they developed a new algorithm that
achieves a competitiveness of 2(α/(α − 1))αeα and proved that any randomized
online algorithm has a performance ratio of at least �((4/3)α).

Irani et al. [2003] investigated an extended scenario where the processor can be
put into a low-power sleep state when idle. They gave an offline algorithm that
achieves a 3-approximation and developed a general strategy that transforms an
online algorithm for the setting without sleep state into one for the setting with
sleep state. They obtain constant competitive online algorithms, but the constants
are large. For the famous cube root rule P(s) = s3, the competitive ratio is 540.
The factor can be reduced to 84 using the online algorithm by Bansal et al. [2004].
Settings with several sleep states have been considered by Augustine et al. [2004].
Speed scaling to minimize the maximum temperature of a processor has been
addressed in Bansal et al. [2004] and Bansal and Pruhs [2005].

As mentioned earlier, Pruhs et al. [2004] study the problem of minimizing the
average flow time of jobs, given a fixed amount of energy. For unit-size jobs,
they devise a polynomial-time algorithm that simultaneously computes, for each
possible energy level, the schedule with smallest average flow time. Bunde [2006]
extended the results to multiple processors.

Our Contribution. We investigate the problem of scheduling a sequence of n
jobs on a variable-speed processor so as to minimize the total cost consisting of the
energy consumption and flow times of jobs. We first show that when the amount
of work, for any job, may take an arbitrary value, then any deterministic online
algorithm has a competitive ratio of at least �(n1−1/α). This result implies that
speed scaling does not help to overcome bad scheduling decisions: It is well known
that in standard scheduling, no online algorithm for flow time minimization can be
better than �(n)-competitive. Our lower bound, allowing speed scaling, is almost
as high.

Because of the �(n1−1/α) lower bound, most of our article is concerned with unit-
size jobs. We develop a deterministic phase-based online algorithm that achieves a
constant competitive ratio. The algorithm is simple and requires scheduling deci-
sions to be made only every once in a while, which is advantageous in low-power
devices. Initially, the algorithm computes a schedule for the first batch of jobs re-
leased at time 0. While these jobs are being processed, the algorithm collects the
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new jobs that arrive in the meantime. Once the first batch of jobs is finished, the
algorithm computes a schedule for the second batch. This process repeats until no
more jobs arrive. Within each batch the processing speeds are easy to determine.
When there are i unfinished jobs in the batch, the speed is set to α

√
i/c, where c is a

constant that depends on the value of α. We prove that the competitive ratio of our

algorithm is upper bounded by 8.3e(1 + �)α, where � = (1 + √
5)/2 ≈ 1.618 is

the golden ratio. We remark here that a phase-based scheduling algorithm has been
used also in makespan minimization on parallel machines [Shmoys et al. 1995].
However, for our problem, the scheduling strategy within the phases and analysis
techniques employed are completely different.

Furthermore, in this work we develop a polynomial-time algorithm for computing
an optimal offline schedule. We would like to point out that we could use the
algorithm by Pruhs et al. [2004], but this would yield a rather complicated algorithm
for our problem. Instead, we design a simple, direct algorithm based on dynamic
programming. Our approach can also be used to address the problem of Pruhs et al.,
that is, we are able to determine a schedule with minimum flow time, given a fixed
amount of enery. This can be seen as an additional advantage of our new objective
function.

2. Preliminaries

Consider a sequence of jobs σ = σ1, . . . , σn which are to be scheduled on one
processor. Job σi is released at time ri and requires pi CPU cycles. We assume
r1 = 0 and ri ≤ ri+1, for i = 1, . . . , n − 1. A schedule S specifies, for each job σi ,
a time interval Ii and a speed si such that σi is processed at speed si continuously,
without interruption, throughout Ii . Let P(s) = sα be the energy consumption per
time unit of the CPU depending on s. The constant α > 1 is a real number. As P(s)
is convex, we may assume without loss of generality that each σi is processed at a
constant speed si . A schedule S is feasible if, for any i , interval Ii starts no earlier
than ri , and the processing requirements are met, namely pi = si |Ii |. Here |Ii |
denotes the length of Ii . Furthermore, in a feasible schedule S the intervals Ii must
be nonoverlapping. The energy consumption of S is E(S) = ∑n

i=1 P(si )|Ii |. For
any i , let ci be the completion time of job i , that is, ci is equal to the end of Ii . The
flow time of job i is fi = ci −ri and the flow time of S is given by F(S) = ∑n

i=1 fi .
We seek schedules S that minimize the sum g(S) = E(S) + F(S).

3. Arbitrary-Size Jobs

We show that if the jobs’ processing requirements may take arbitrary values, then
no online algorithm can achieve a bounded competitive ratio. Note again that we
consider a scenario where preemption of jobs is not allowed.

THEOREM 3.1. The competitive ratio of any deterministic online algorithm
is �(n1−1/α) if the job processing requirements p1, . . . , pn may take arbitrary
values.

PROOF. The basic idea of our proof is similar to that showing that in standard
nonpreemptive scheduling (without speed scaling) any online algorithm for flow
time minimization of arbitrary-size jobs has a competitive ratio of �(n). However,
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in our proof we have to take care of the fact that speed scaling is allowed and that
we consider an objective function consisting of the energy consumption and total
flow time of jobs.

In our construction, at time t = 0 an adversary releases a job σ1 with p1 = 1. The
adversary then observes the given online algorithm A. Let t ′ be the time such that
A starts processing σ1. Then at time t ′ + δ the adversary presents n − 1 jobs with
pi = ε. We choose δ such that δ ≤ 1/(2n1/α) and ε such that ε < 1/(n − 1)2.
If A’s average speed during the time [t ′, t ′ + δ) is at least 1/(2δ), then the energy
consumption during this time interval is at least 1

2
( 1

2δ
)α−1 ≥ 1

2
n1−1/α. If A’s average

speed is smaller than 1/(2δ), then at time t ′ + δ at least 1/2 time units of σ1 are
still to be processed. Suppose that A processes the remainder of σ1 with an average
speed of s. If s ≥ α

√
n, then the energy consumption is at least sα−1/2 ≥ n1−1/α/2.

If s < α
√

n then the flow time of the jobs is at least n/(2s) ≥ n1−1/α/2. We conclude
that in any case A’s cost is at least n1−1/α/2.

If t ′ < 1, then the adversary first processes the n − 1 small jobs of size ε and
then the first job σ1. Otherwise the adversary first handles σ1 and then takes care
of the small jobs. The processor speed is always set to 1. In the first case the cost
of the adversary is at most (n − 1)2ε + 5 ≤ 6, as processing the small jobs takes at
most (n − 1)ε < 1 time units and the first job can be started no later than time 2.
In the second case the cost is bounded by 3 + (n − 1)2ε ≤ 4. This establishes the
desired competitive ratio.

4. An Online Algorithm for Unit-Size Jobs

In this section we study the case that the processing requirements of all jobs are the
same, namely pi = 1, for all jobs. We develop a deterministic online algorithm that
achieves a constant competitive ratio, for all α. The algorithm is called Phasebal
and aims at balancing the incurred energy consumption with the generated flow
time. If α is small, then the ratio is roughly 1 : α − 1. If α is large, then the
ratio is 1 : 1. As the name suggests, the algorithm operates in phases. Let n1

be the number of jobs that are released initially at time t = 0. In the first phase
Phasebal processes these jobs in an optimal or nearly optimal way, ignoring jobs
that may arrive in the meantime. More precisely, the speed sequence for the n1 jobs
is α

√
n1/c, α

√
(n1 − 1)/c, . . . , α

√
1/c, that is, the j th of these n1 jobs is executed at

speed α
√

(n1 − j + 1)/c for j = 1, . . . , n1. Here c is a constant that depends on
α. Note that the speed at which a job is executed depends on the number of jobs
still to be finished within the phase. Let n2 be the number of jobs that arrive in
phase 1. Phasebal processes these jobs in a second phase. In general, in phase i
Phasebal schedules the ni jobs that arrived in phase i − 1 using the speed sequence
α
√

(ni − j + 1)/c, for j = 1, . . . , ni . Again, jobs that arrive during the phase are
ignored until the end of the phase. A formal description of the algorithm is as
follows.

Algorithm. Phasebal

If α < (19 + √
161)/10, then set c := α − 1; otherwise set c := 1. Let n1 be the number of

jobs arriving at time t = 0 and set i = 1. While ni > 0, execute the following two steps: (1) For

j = 1, . . . , ni , process the j-th job using a speed of α
√

(ni − j + 1)/c. We refer to this entire time

interval as phase i . (2) Let ni+1 be the number of jobs that arrive in phase i and set i := i + 1.
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THEOREM 4.1. Phasebal achieves a competitive ratio of at most (1 + �)(1 +
�

α
(2α−1) )(α−1) αα

(α−1)α−1 min{ 5α−2
2α−1

, 4
2α−1

+ 4
α−1

}, where � = (1+√
5)/2 ≈ 1.618 is the

golden ratio.

Before proving Theorem 4.1, we briefly discuss the competitiveness. We first

observe that αα

(α−1)α−1 ≤ eα. Moreover, α(5α−2)
2α−1

is increasing in α, while 4α
2α−1

+
4α

α−1
is decreasing in α. Standard algebraic manipulations show that the latter two

expressions are equal for α0 = (19 + √
161)/10. Thus, the competitive ratio is

upper bounded by (1 + �)αe α0(5α0−2)
2α0−1

< (1 + �)αe · 8.22.

In the remainder of this section we will analyze Phasebal. The global analysis
consists of two cases. We will first address c = 1 and then c = α − 1. In each case
we first upper bound the total cost incurred by Phasebal and then lower bound the
cost of an optimal schedule. In the case c = 1 we will consider a pseudooptimal
algorithm that operates with similar speeds as Phasebal. We will prove that the
cost of such a pseudooptimal algorithm is at most a factor of 2 away from the true
optimum. In any case we will show that an optimal or pseudooptimal algorithm
finishes jobs no later than Phasebal. This property will be crucial to determine
the time intervals in which optimal schedules process jobs and to lower bound
the corresponding speeds. These speed bounds will then allow us to estimate the
optimal cost and to finally compare it to the online cost.

Let t0 = 0 and ti be the time when phase i ends, that is, the ni jobs released
during phase i − 1 (released initially, if i = 1) are processed in the time interval
[ti−1, ti ), which constitutes phase i . Given a job sequence σ , let SPB be the schedule
of Phasebal and let SOPT be an optimal schedule.

Case 1: c = 1 We start by analyzing the cost and time horizon ofSPB. Suppose that
there are k phases, namely, no new jobs arrive in phase k. In each phase we analyze
the energy consumption, phase length, and flow time of the jobs. The respective
exact sums are approximated using integral bounds. Consider an arbitrary phase i .
In the phase the algorithm needs 1/ α

√
ni − j + 1 time units to complete the j th job.

Thus the energy consumption in the phase is
ni∑

j=1

(
α
√

ni − j + 1
)α

/ α
√

ni − j + 1 =
ni∑

j=1

(ni − j + 1)1−1/α

≤ α
2α−1

(
n2−1/α

i − 1
) + n1−1/α

i .

The length of phase i is T (ni ) = ∑ni
j=1 1/ α

√
ni − j + 1 and hence

α
α−1

(
(ni + 1)1−1/α − 1

) ≤ T (ni ) ≤ α
α−1

n1−1/α

i . (1)

As for the flow time, the ni jobs scheduled in the phase incur a flow time of

ni∑
j=1

(ni − j + 1)/ α
√

ni − j + 1 ≤ α
2α−1

(
n2−1/α

i − 1
) + n1−1/α

i ,

while the ni+1 jobs released during the phase incur a flow time of at most ni+1 times
the length of the phase. We obtain

g(SPB) ≤
k∑

i=1

(
2α

2α−1

(
n2−1/α

i − 1
) + 2n1−1/α

i

) +
k−1∑
i=1

ni+1
α

α−1
n1−1/α

i .
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The second sum is bounded by
∑k−1

i=1
α

α−1
max{ni , ni+1}2−1/α ≤ ∑k

i=1
2α

α−1
n2−1/α

i
and we conclude that

g(SPB) ≤ 2
k∑

i=1

(
α

2α−1

(
n2−1/α

i − 1
) + n1−1/α

i + α
α−1

n2−1/α

i

)
. (2)

We next lower bound the cost of an optimal schedule. As mentioned before, it
will be convenient to consider a pseudooptimal schedule SPOPT. This is the best
schedule that satisfies the constraint that at any time, if there are � active jobs, then

the processor speed is at least
α
√

�. We call a job active if it has arrived but is not
yet finished. In the next lemma we show that the objective function value g(SPOPT)
is not far from the true optimum g(SOPT).

LEMMA 4.2. For any job sequence, g(SPOPT) ≤ 2g(SOPT).

PROOF. Consider the optimal schedule g(SOPT). We may assume without loss
of generally that in this schedule, the speed only changes when a jobs gets fin-
ished or new jobs arrive. For, if there were an interval I with varying speed but
no jobs arriving or being completed, we could replace the speed assignment by
the average speed in this interval. By the convexity of the power function P(s),
this cannot increase the objective function value. Based on this observation, we
partition the time horizon of SOPT into a sequence of intervals I1, . . . , Im such
that for any such interval, the number of active jobs does not change. Let E(Ii )
and F(Ii ) be the energy consumption and flow time, respectively, generated in Ii ,
i = 1, . . . , m. We have E(Ii ) = sα

i δi and F(Ii ) = �iδi , where si is the speed,
�i is the number of active jobs in Ii , and δi is the length of Ii . Clearly g(SOPT) =∑m

i=1(E(Ii ) + F(Ii )).

Now we change SOPT as follows. In any interval Ii with si < α
√

�i we increase the
speed to α

√
�i , incurring an energy consumption of �iδi , which is equal to F(Ii ) in

the original schedule SOPT. In this modification step, the flow time of jobs can only
decrease. Because of the increased speed, the processor may run out of jobs in some
intervals. Then the processor is simply idle. We obtain a schedule whose cost is
bounded by

∑m
i=1(E(Ii ) + 2F(Ii )) ≤ 2g(SOPT) and that satisfies the constraint that

the processor speed is at least
α
√

� in intervals with � active jobs. Hence g(SPOPT) ≤
2g(SOPT).

The next lemma shows that, roughly speaking, in SPOPT jobs finish no later than
in SP B .

LEMMA 4.3. For c = 1, in SPOPT the n1 jobs released at time t0 are finished
by time t1 and the ni jobs released during phase i − 1 are finished by time ti , for
i = 2, . . . , k.

PROOF. We show the lemma inductively. As for the n1 jobs released at time t0,
the scheduleSPOPT processes the j th of these jobs at a speed of at least α

√
n1 − j + 1

because there are at least n1 − j + 1 active jobs. Thus the n1 jobs are completed
no later than

∑n1

j=1 1/ α
√

n1 − j + 1, which is equal to the length of the first phase;
see Eq. (1).

Now suppose that the jobs released by time ti−1 are finished by time ti and
consider the ni+1 jobs released in phase i . At time ti there are at most these ni+1

jobs unfinished. Let ni+1 be the actual number of active jobs at that time. Again,
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the j th of these jobs is processed at a speed of at least (ni+1 − j + 1)1/α, so that the

execution of these ni+1 jobs ends no later than
∑ni+1

j=1(ni+1 − j + 1)−1/α and this
sum is not larger than the length of phase i + 1; see Eq. (1).

LEMMA 4.4. If a schedule has to process � jobs during a time period of length
T ≤ � α

√
α − 1, then its total cost is at least (�/T )αT + T .

PROOF. Suppose that the schedule processes jobs during a total time period of
T ′ ≤ T time units. By the convexity of the power function P(s) = sα, the energy
consumption is smallest if the T ′ units are split evenly among the � jobs. Clearly,
the flow time is at least T ′ time units. Thus the total cost is at least (�/T ′)αT ′ + T ′.
The function (�/x)αx +x is decreasing, for x ≤ � α

√
α − 1, so that (�/T ′)αT ′+T ′ ≥

(�/T )αT + T .

LEMMA 4.5. For any α ≥ 2, the inequality g(SPOPT) ≥ C1−α(1 + �)−1(1 +
�α/(2α−1))1−α

∑k
i=1 n2−1/α

i + ∑k
i=1 T (ni ) holds, where C = α/(α − 1) and

� = (1 + √
5)/2.

PROOF. By Lemma 4.3, for i ≥ 2, the ni jobs arriving in phase i − 1 are
finished by time ti in SPOPT. Thus, SPOPT processes these jobs in a window of length
at most T (ni−1)+T (ni ). Let T ′(ni ) = min{T (ni−1)+T (ni ), ni

α
√

α − 1}. Applying
Lemma 4.4 with T = T ′(ni ), we obtain that the ni jobs incur a cost of at least
nα

i /(T ′(ni ))
α−1 + T ′(ni ). Hence these jobs incur a cost of at least

nα
i

(T ′(ni ))α−1
+ T ′(ni ) ≥ nα

i

(T (ni−1) + T (ni ))α−1
+ T ′(ni )

≥ nα
i

(T (ni−1) + T (ni ))α−1
+ T (ni ).

The last inequality holds because T (ni ) ≤ ni ≤ ni
α
√

α − 1, for α ≥ 2 and hence
T ′(ni ) ≥ T (ni ). Similarly, for the n1 jobs released at time t = 0, the cost it at least

nα
1

(T (n1))α−1
+ T (n1).

Summing up, the total cost of SPOPT is at least

nα
1

(T (n1))α−1
+

k∑
i=2

nα
i

(T (ni−1) + T (ni ))α−1
+

k∑
i=1

T (ni ).

In the following we show that the first two terms in the previous expression are at

least C1−α(1 + �)−1(1 + �α/(2α−1))1−α
∑k

i=1 n2−1/α, which establishes the lemma

to be proven. Since using Eq. (1), T (ni ) ≤ Cn1−1/α

i , it suffices to show that

(1 + �)(1 + �α/(2α−1))α−1

(
nα

1(
n1−1/α

1

)α−1
+

k∑
i=2

nα
i(

n1−1/α

i−1 + n1−1/α

i

)α−1

)

≥
k∑

i=1

n2−1/α

i . (3)
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To this end, we partition the sequence of job numbers n1, . . . , nk into subsequences
such that within each subsequence, ni ≥ �α/(2α−1)ni+1. More formally, the first
subsequence starts with index b1 = 1 and ends with the smallest index e1 satisfying
ne1

< �α/(2α−1)ne1+1. Suppose that l − 1 subsequences have been constructed.
Then the lth sequence starts at index bl = el−1 +1 and ends with the smallest index
el ≥ bl such that nel < �α/(2α−1)nel+1. The last subsequence ends with index k.

We will prove Eq. (3) by considering the individual subsequences. Since within

a subsequence ni+1 ≤ ni�
−α/(2α−1), we have n2−1/α

i+1 ≤ n2−1/α

i /�. Therefore, for
any subsequence l, using the limit of the geometric series

el∑
i=bl

n2−1/α

i ≤ n2−1/α

bl
/(1 − 1/�) = (1 + �)n2−1/α

bl
, (4)

upper bounds terms on the righthand side of (3). As for the lefthand side of (3), we
have for the first subsequence

(1 + �)(1 + �α/(2α−1))α−1

(
nα

1(
n1−1/α

1

)α−1
+

e1∑
i=2

nα
i(

n1−1/α

i−1 + n1−1/α

i

)α−1

)

≥ (1 + �)n2−1/α

1 .

For any other subsequence l, we have

(1 + �)(1 + �α/(2α−1))α−1
el∑

i=bl

nα
i(

n1−1/α

i−1 + n1−1/α

i

)α−1

≥ (1 + �)(1 + �α/(2α−1))α−1
nα

bl(
n1−1/α

bl−1 + n1−1/α

bl

)α−1

≥ (1 + �)(1 + �α/(2α−1))α−1
nα

bl(
(�(α−1)/(2α−1) + 1)n1−1/α

bl

)α−1

≥ (1 + �)n2−1/α

bl
.

The second to last inequality holds because nbl−1 and nbl belong to different subse-
quences and hence nbl−1 < �α/(2α−1)nbl . The aforesaid inequalities, together with
(4), imply (3).

With the preceding lemma we able to derive our first intermediate result.

LEMMA 4.6. For α ≥ 2 and c = 1, the competitive ratio of Phasebal is at most
(1 + �)(1 + �α/(2α−1))(α−1) αα

(α−1)α−1 ( 4
2α−1

+ 4
α−1

).

PROOF. Using (2) as well as Lemmas 4.2 and 4.5 we obtain that the competitive
ratio of Phasebal is bounded by

(1 + �)(1 + �α/(2α−1))(α−1)
4

∑k
i=1

((
α

2α−1
+ α

α−1

)
n2−1/α

i + n1−1/α
)

∑k
i=1

((
α

α−1

)1−αn2−1/α

i + T (ni )
) .

Considering the terms of order n2−1/α, we obtain the performance ratio we are

aiming at. It remains to show that n1−1/α

i /T (ni ) does not violate this ratio. Note
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49:10 S. ALBERS AND H. FUJIWARA

that T (ni ) ≥ 1. Thus if n1−1/α

i ≤ 2, we have

n1−1/α

i /T (ni ) ≤ 2 ≤ 4

(
α

α − 1

)α−1(
α

2α − 1
+ α

α − 1

)
. (5)

If n1−1/α

i > 2, then we use the fact that by (1)

T (ni ) ≥ α

α − 1

(
(ni + 1)1−1/α − 1

) ≥ 1

2

α

α − 1
n1−1/α

i

and we can argue as in (5), since (α − 1)/α < 1.

Case 2: c = α − 1. The global structure of the analysis is the same as in the
case c = 1, but some of the calculations become more involved. With respect
to the optimum cost, we will consider the true optimum rather than the cost of a
pseudooptimal algorithm.

We start again by analyzing the cost and time of Phasebal. As before, we assume
that there are k phases. In phase i , Phasebal uses 1/ α

√
(ni − j + 1)/(α − 1) time

units to process the j th job. This yields an energy consumption of

ni∑
j=1

(
ni − j + 1

α − 1

)1−1/α

≤ CE
(
n2−1/α

i − 1
) + (α − 1)1/α−1n1−1/α

i

with

CE = (α − 1)
1
α
−1 α

2α − 1
.

The length of the phase is given by

T (ni ) =
ni∑

j=1

1

/ (
ni − j + 1

α − 1

)1/α

.

Here we have

CT ((ni + 1)1−1/α − 1) < T (ni ) < CT
(
n1−1/α

i − 1/α
)

(6)

with

CT = α(α − 1)
1
α
−1.

In phase i the ni jobs processed during the phase incur a flow time of

ni∑
j=1

(ni − j + 1)

/ (
ni − j + 1

α − 1

)1/α

= (α − 1)1/α
ni∑

j=1

(ni − j + 1)1−1/α

≤ CF
(
n2−1/α

i − 1
) + (α − 1)1/αn1−1/α

i

with

CF = (α − 1)
1
α

α

2α − 1
,
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while the ni+1 jobs arriving in the phase incur a cost of at most ni+1T (ni ). We
obtain

g(SPB) ≤ (CE + CF )
k∑

i=1

(
n2−1/α

i − 1
) + 2CT

k∑
i=1

n2−1/α

i

+ α(α − 1)1/α−1
k∑

i=1

n1−1/α

i . (7)

We next lower bound the cost of an optimal schedule. Again we call a job active if
it has arrived but is still unfinished.

LEMMA 4.7. There exists an optimal schedule SOPT having the property that at
any time, if there are � active jobs, then the processor speed is at least α

√
�/(α − 1).

PROOF. By convexity of the power function P(s) we may assume without
loss of generality that the processor speed only changes in SOPT when a job gets
finished or new jobs arrive. Now suppose that there is an interval I of length δ
with � unfinished jobs but a speed s of less than α

√
�/(α − 1). We show that we can

improve the schedule. In I we increase the speed to α
√

�/(α − 1). We can reduce the
length of I to δs/ α

√
�/(α − 1) because the original workload of δs can be completed

in that amount of time. Simultaneously, we shift the remaining intervals in which
the � unfinished jobs are processed by δ − δs/ α

√
�/(α − 1) time units to the left.

The cost saving caused by this modification is

δsα − δs(�/(α − 1))1−1/α + �(δ − δs/ α
√

�/(α − 1)).

We show that this expression is strictly positive, for s < α
√

�/(α − 1). This is
equivalent to showing that

f (s) = sα − s(�/(α − 1))1−1/α + �(1 − s/ α
√

�/(α − 1))

is strictly positive for the considered range of s. Computing f ′(s) we find that
f (s) is decreasing, for s < α

√
�/(α − 1). Since f ( α

√
�/(α − 1)) = 0, the lemma

follows.

LEMMA 4.8. For c = α − 1, in SOPT the n1 jobs released at time t0 are finished
by time t1 and the ni jobs released during phase i − 1 are finished by time ti , for
i = 2, . . . , k.

PROOF. This can be proven inductively in the same way as Lemma 4.3 using
the fact that, as shown in Lemma 4.7, SOPT uses a speed of at least α

√
�/(α − 1)

when there are � jobs waiting.

LEMMA 4.9. The inequality g(SOPT) ≥ C1−α
T (1 + �)−1(1 + �α/(2α−1))(1−α)∑k

i=1 n2−1/α

i + ∑k
i=1 T (ni ) holds.

PROOF. Can be shown in the same way as Lemma 4.5.

LEMMA 4.10. For c = α − 1, the competitive ratio of Phasebal is at most
(1 + �)(1 + �α/(2α−1))(α−1) αα

(α−1)α−1
5α−2
2α−1

.
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PROOF. Using (6), (7), and Lemma 4.9 we obtain that the competitive ratio is
bounded by

(1 + �)(1 + �α/(2α−1))(α−1)

×
∑k

i=1

(
(CE + CF )

(
n2−1/α

i − 1
) + 2CT n2−1/α

i + α(α − 1)1/α−1n1−1/α

i

)
∑k

i=1

(
C1−α

T n2−1/α

i + CT ((ni + 1)1−1/α − 1)
) .

Let g1(ni ) = (CE +CF )(n2−1/α

i −1)+2CT n2−1/α

i +α(α−1)1/α−1n1−1/α

i be the term

in the numerator and g2(ni ) = C1−α
T n2−1/α

i + CT ((ni + 1)1−1/α − 1) be the term in
the denominator of the preceding expression. To establish the desired competitive
ratio, it suffices to show that

g1(ni )

g2(ni )
≤ CE + CF + 2CT

C1−α
T

because the last fraction is exactly equal to αα

(α−1)α−1
5α−2
2α−1

. To prove the latter inequal-

ity we show that f (x) = C1−α
T g1(x) − (CE + CF + 2CT )g2(x) is smaller than 0,

for all x ≥ 1. Differentiating f (x), we obtain

f ′(x) = α(α − 1)
2
α
−2(x + 1)−

1
α

((
1 − 1

α

)α( x
1 + x

)− 1
α

− 5α − 2

2α − 1
(α − 1)

)

< α(α − 1)
2
α
−2(x + 1)−

1
α

(
2(α − 1) − 5α − 2

2α − 1
(α − 1)

)
< 0.

The first inequality holds because
( x

1+x

)− 1
α ≤ 2

1
α < 2 and

(
1 − 1

α

)α
< α − 1 are

satisfied for α > 1 and x ≥ 1. Hence f ′(x) is negative, for all x ≥ 1. Furthermore,

f (1) = 2− 1
α α2(α − 1)

2
α
−2

2α − 1

(
2

1
α

(
1 − 1

α

)α

−
(

2 − 2
1
α

)
(5α − 2)

)

<
2− 1

α α2(α − 1)
2
α
−2

2α − 1

(
2

1
α (α − 1) −

(
2 − 2

1
α

)
(5α − 2)

)

= 2− 1
α α2(α − 1)

2
α
−2

2α − 1

(
3 · 2

1
α (2α − 1) − 10α + 4

)
.

Let
h(α) = 3 · 2

1
α (2α − 1) − 10α + 4.

Note that 2
1
α ≤ max{2 − 2(2 − 2

2
3 )(α − 1), 2

2
3 }. Thus if 1 < α ≤ 3/2,

h(α) < 2(α − 1)(−6
(
2 − 2

2
3

)
(α − 1) − 5 + 3 · 2

2
3 ) < 0.

If 3/2 < α, then h(α) < −(10 − 6 · 2
2
3 )(α − 1) − 6 + 3 · 2

2
3 < 0. We conclude

f (x) < 0, for all x ≥ 1.

The analysis of the cases c = 1 and c = α − 1 is complete. Theorem 4.1 now

follows from Lemmas 4.6 and 4.10, observing that α0 = (19 + √
161)/10 ≥ 2 and

that for α > α0, we have 4
2α−1

+ 4
α−1

< 5α−2
2α−1

.
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5. An Optimal Offline Algorithm for Unit-Size Jobs

We present a polynomial-time algorithm for computing an optimal schedule, given a
sequence of unit-size jobs that is known offline. Pruhs et al. [2004] gave an algorithm
that computes schedules with minimum average flow time for all possible energy
levels. We could use their algorithm, summing up energy consumption and flow
time for all possible energy levels and taking the minimum. However, the resulting
algorithm would be rather complicated. Instead, we devise here a simple, direct
algorithm based on dynamic programming.

Our dynamic programming algorithm constructs an optimal schedule for a given
job sequence σ by computing optimal schedules for subsequences of σ . A schedule
for σ can be viewed as a sequence of subschedules S1, S2, . . . , Sm , where any Sj
processes a subsequence of jobs j1, . . . , jk starting at time r j1 such that ci > ri+1

for i = j1, . . . , jk − 1 and c jk ≤ r jk+1. In words, jobs j1 to jk are scheduled
continuously without interruption such that the completion time of any job i is after
the release time of job i + 1 and the last job jk is finished no later than the release
time of job jk + 1. As we will prove in the next two lemmas, the optimal speeds in
such subschedules Sj can be determined easily. As in the online scenario, the speed
at which a job is executed depends on the number of jobs still to be finished within
the subschedule. For convenience, the lemmas are stated for a general number n of
jobs that have to be scheduled in an interval [t, t ′).

LEMMA 5.1. Consider n jobs that have to be scheduled in time interval [t, t ′)
such that r1 = t and rn < t ′. Suppose that in an optimal schedule ci > ri+1, for
i = 1, . . . , n − 1. If t ′ − t ≥ ∑n

i=1
α
√

(α − 1)/(n − i + 1), then the i th job in the
sequence is executed at speed si = α

√
(n − i + 1)/(α − 1).

PROOF. We first assume that t ′ = ∞, namely, there is no time constraint with
respect to the end of the schedule. Using a speed of si for the i th job, the job is
processed in an interval of length 1/si . Since the optimal schedule satisfies ci > ri+1,

for i = 1, . . . , n−1, the flow time of the i th job is t +∑i
j=1 1/s j −ri . To determine

the optimal speeds we have to minimize the value of the total cost

f (s1, . . . , sn) =
n∑

i=1

sα−1
i +

n∑
i=1

(n − i + 1)/si + nt −
n∑

i=1

ri .

Computing the partial derivatives

∂ f
∂si

= (α − 1)sα−2
i − (n − i + 1)/s2

i ,

for i = 1, . . . , n, we find that si = α
√

(n − i + 1)/(α − 1), for i = 1, . . . , n,
represent the only local extremum. This extremum is indeed a minimum, since
f (s1, . . . , sn) is a convex function.

The speeds si = α
√

(n − i + 1)/(α − 1) are optimal if there is no restriction on
t ′. Job i is executed in an interval of length ti = α

√
(α − 1)/(n − i + 1). Thus if∑n

i=1 ti = ∑n
i=1

α
√

(α − 1)/(n − i + 1) ≤ t ′ − t , then the settings of si are still
optimal and we obtain the lemma.

LEMMA 5.2. Consider n jobs that have to be scheduled in time interval [t, t ′)
such that r1 = t and rn < t ′. Suppose that in an optimal schedule ci > ri+1,
for i = 1, . . . , n − 1. If t ′ − t <

∑n
i=1

α
√

(α − 1)/(n − i + 1), then the i th job in
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the sequence is executed at speed si = α
√

(n − i + 1 + c)/(α − 1), where c is the
unique value such that

∑n
i=1

α
√

(α − 1)/(n − i + 1 + c) = t ′ − t .

PROOF. We will use Lagrangian multipliers to determine the optimum speeds.
Let ti be the length of the time interval allotted to job i in an optimal schedule.
We first prove that

∑n
i=1 ti = t ′ − t . If

∑n
i=1 ti < t ′ − t , then there must exist

an i with ti < α
√

(α − 1)/(n − i + 1) and hence si > α
√

(n − i + 1)/(α − 1). We
show that the schedule cannot be optimal. Suppose that si = sopt

i + ε, with sopt
i =

α
√

(n − i + 1)/(α − 1) and some ε > 0. In the original schedule we reduce the

speed of job i to sopt
i + ε − ε′, for some 0 < ε′ < ε. This results in a power

saving of (sopt
i + ε)α−1 − (sopt

i + ε − ε′)α−1 while the flow time increases by

(n − i + 1)(1/(sopt
i + ε − ε′) − 1/(sopt

i + ε)). The net cost saving is

f (ε′) = (
sopt

i +ε
)α−1−(

sopt
i +ε−ε′)α−1−(n−i+1)

(
1
/(

sopt
i +ε−ε′)−1

/(
sopt

i +ε
))

.

The derivative f ′(ε′) = (α − 1)(sopt
i + ε − ε′)α−2 − (n − i + 1)/(sopt

i + ε − ε′)2 is
positive, for ε′ < ε. Hence f (ε′) is increasing. Since f (0) = 0, we obtain that f (ε′)
is positive and the original schedule is not optimal. We conclude

∑n
i=1 ti = t ′ − t .

We next determine the optimal time allotments ti . The energy consumption of

the i th job is (1/ti )α−1 while the flow time of the i th job is t + ∑i
j=1 t j − ri , using

the fact that ci > ri+1, for i = 1, . . . , n − 1. Thus we have to minimize

f (t1, . . . , tn) =
n∑

i=1

(1/ti )α−1 +
n∑

i=1

(n − i + 1)ti + nt −
n∑

i=1

ri

subject to the constraint
∑n

i=1 ti = T with T = t ′ − t . Thus we have to minimize

g(t1, . . . , tn, λ) =
n∑

i=1

(1/ti )α−1 +
n∑

i=1

(n − i + 1)ti + nt −
n∑

i=1

ri + λ

(
T −

n∑
i=1

ti

)

with Langrangian multiplier λ. Computing the partial derivatives

∂g
∂ti

= −(α − 1)(1/ti )α + (n − i + 1) − λ

∂g
∂λ

= T − ∑n
i=1 ti

we obtain that ti = α
√

(α − 1)/(n − i + 1 − λ), 1 ≤ i ≤ n, represent the
only local extremum, where λ < 0 is the unique value with∑n

i=1
α
√

(α − 1)/(n − i + 1 − λ) = T . Since f (t1, . . . , tn) is convex and
the function T − ∑n

i=1 ti is convex, the Kuhn-Tucker conditions imply that the
local extremum is a minimum. The lemma follows by replacing −λ by c.

Of course, an optimal schedule for a given σ need not satisfy the condition that
ci > ri+1, for i = 1, . . . , n − 1. In fact, this is the case if the speeds specified in
Lemmas 5.1 and 5.2 do not give a feasible schedule, namely, if there exists an i
such that ci = ∑i

j=1 t j ≤ ri+1, with ti = 1/si and si as specified in the lemmas.
Obviously, this infeasibility is easy to check in linear time.

We are now ready to describe our optimal offline algorithm, a pseudocode of
which is presented in Figure 1. Given a job sequence consisting of n jobs, the
algorithm constructs optimal schedules for subproblems of increasing size. Let
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FIG. 1. The dynamic programming algorithm.

P[i, i+l] be the subproblem consisting of jobs i to i+l, assuming that the processing
may start at time ri and must be finished by time ri+l+1, where 1 ≤ i ≤ n and
0 ≤ l ≤ n−i . We define rn+1 = ∞. Let C[i, i+l] be the cost of an optimal schedule
for P[i, i + l]. We are eventually interested in C[1, n]. In an initialization phase,
the algorithm starts by computing optimal schedules for P[i, i] of length l = 0; see
lines 1 to 3 of the pseudocode. If ri+1 − ri ≥ α

√
α − 1, then Lemma 5.1 implies that

the optimal speed for job i is equal to α
√

1/(α − 1). If ri+1 − ri < α
√

α − 1, then
by Lemma 5.2 the optimal speed is 1/(ri+1 − ri ). Note that this value can also be
infinity if ri+1 = ri . The calculation of C[i, i] in line 3 will later on ensure that in
this case an optimal schedule will not complete job i by ri+1.

After the initialization phase the algorithm considers subproblems P[i, i + l]
for increasing l. An optimal solution to P[i, i + l] has the property that either:
(a) There exists an index j with j < i + l such that c j ≤ r j+1; or (b) c j > r j+1 for
j = i, . . . , i + l − 1. In case (a) an optimal schedule for P[i, i + l] is composed of
optimal schedules for P[i, j] and P[ j + 1, i + l], which is reflected in line 6 of the
pseudocode. In case (b) we can compute optimal processing speeds according to
Lemmas 5.1 and 5.2, checking whether the speeds give indeed a feasible schedule.
This is done in lines 7 and 8 of the algorithm. In a final step, the algorithm checks
whether case (a) or (b) holds. The algorithm has a running time of O(n3 log ρ),
where ρ is the inverse of the desired precision. Note that in Lemma 5.2, c can be
computed only approximately using binary search.

Interestingly, we can use our dynamic programming approach to compute a
schedule that minimizes the total flow time of jobs, given a fixed amount A of
energy. Here we simply consider the minimization of a weighted objective function
gβ(S) = βE(S) + (1 − β)F(S), where 0 < β < 1. For this function, Lemmas 5.1
and 5.2 can be generalized in a straightforward way, see the two lemmas to follow.
Since the processor speed is unbounded, any schedule that may use an energy
volume of at most A uses, in fact, a volume of exactly A. Using binary search, we can
find a β such that an optimal schedule SOPT minimizing gβ satisfies E(SOPT) = A.
This schedule minimizes the total flow time of the jobs.

LEMMA 5.3. Given gβ , consider n jobs that have to be scheduled in time interval
[t, t ′) such that r1 = t and rn < t ′. Suppose that in an optimal schedule ci > ri+1,
for i = 1, . . . , n − 1. If t ′ − t ≥ ∑n

i=1
α
√

β(α − 1)/((1 − β)(n − i + 1)), then the
i th job in the sequence is executed at speed si = α

√
(1 − β)(n − i + 1)/(β(α − 1)).
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LEMMA 5.4. Given gβ , consider n jobs that have to be scheduled in time interval
[t, t ′) such that r1 = t and rn < t ′. Suppose that in an optimal schedule ci > ri+1, for
i = 1, . . . , n−1. If t ′−t <

∑n
i=1

α
√

β(α − 1)/((1 − β)(n − i + 1)), then the i th job
in the sequence is executed at speed si = α

√
((1 − β)(n − i + 1) + c)/(β(α − 1)),

where c is the unique value such that
∑n

i=1
α
√

β(α − 1)/((1 − β)(n − i + 1) + c) =
t ′ − t .

6. Conclusions and Open Problems

In this article we have investigated online and offline algorithms for computing
schedules that minimize energy consumption and job flow times. An obvious open
problem is to improve the competitive ratio in the online setting. We believe that
the following algorithm has an improved performance: Whenever there are � active

jobs, set the processor speed to
α
√

�. Although the algorithm is computationally
more expensive in that the processor speed must be adjusted whenever new jobs
arrive, we conjecture that it achieves a constant competitive ratio that is independent
of α. Another interesting direction is to study the case that the jobs’ processing
requirements may take arbitrary values, but that preemption of jobs is allowed. We
just learned that improved results have been achieved in an upcoming paper [Bansal
et al. 2007].
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