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ABSTRACT Edge computing has recently emerged as an extension to cloud computing for quality of

service (QoS) provisioning particularly delay guarantee for delay-sensitive applications. By offloading the

computationally intensive workloads to edge servers, the quality of computation experience, e.g., network

transmission delay and transmission energy consumption, could be improved greatly. However, the compu-

tation resource of an edge server is so scarce that it cannot respond quickly to the bursting computation

requirements. Accordingly, queuing delay is un-negligible in a computationally intensive environment,

e.g., a computing environment consists of the Internet of Things (IoT) applications. In addition, the compu-

tation energy consumption in edge servers may be higher than that in clouds when the workload is heavy.

To provide QoS for end users while achieving green computing for computing systems, the cooperation

between edge servers and the cloud is significantly important. In this paper, the energy-efficient and

delay-guaranteed workload allocation problem in an IoT-edge-cloud computing system are investigated.

We formulate a delay-based workload allocation problem which suggests the optimal workload allocations

among local edge server, neighbor edge servers, and cloud toward the minimal energy consumption as

well as the delay guarantee. The problem is then tackled using a delay-base workload allocation (DBWA)

algorithm based on Lyapunov drift-plus-penalty theory. The theoretical analysis and simulation results have

been conducted to demonstrate the efficiency of the proposal for energy efficiency and delay guarantee in

an IoT-edge-cloud system.

INDEX TERMS Edge computing, cloud computing, workload allocation, energy efficiency, delay guarantee.

I. INTRODUCTION

With the surging applications of Internet of Things (IoT),

a tremendous amount of data is generated from massively

distributed end users, e.g., IoT devices, requiring timely pro-

cessing to extract its maximum value. Many IoT applica-

tions, such as augmented reality and self-driving, are delay

sensitive and computation intensive [1]–[3]. Although the

success of cloud computing for supporting high performance

computing has been witnessed in recent years, its inefficiency

in quality of service (QoS) provisioning for delay sensitive

applications as well as high energy consumption has been

the bottleneck for the development of delay-sensitive IoT

applications [4], [5]. First, the cloud computing resource is
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often physically located in remote data centers, which often

leads to a large network delay for transmitting distributed

data to the remote cloud. Particularly, the ever-increasing

network load leads to intolerable network delay with the ever-

increasingmobile applications. Second, the behavior of trans-

mitting enormous volumes of data from end users to remote

clouds also consumes extremely high network bandwidth

resource and transmission energy.

Edge computing has recently emerged as an extension

to cloud computing for QoS provisioning particularly delay

guarantee for delay-sensitive applications [1]. In edge com-

puting, network edge devices, such as base stations, access

points and edge routers, are endowed with cloud-like com-

puting and storage capabilities [6]–[8]. Thus, the computa-

tion requests can be offloaded to a nearby edge server for

processing, such that both network transmission delay and
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transmission energy consumption can be reduced. However,

comparing to the cloud, the computation resource of an edge

server is far scarce. It cannot response quickly to all bursty

computation requirements. Accordingly, some requests may

experience long queuing delays in edge computing, violating

their delay requirements. In addition, the computation energy

consumption in an edge server may exceed that in a cloud

in a heavily loaded environment. Therefore, to provide QoS

for end users as well as achieving green computing for the

computing system, the cooperation between edge servers and

the cloud is significantly important [5], [9].

Workload allocation among edge servers and the remote

cloud is a key edge-cloud cooperation technique that affects

the QoS provisioning particularly delay-guarantee for delay

sensitive applications as well as the energy consumption

of the edge-cloud systems [1], [10]. However, the dynamic

traffic characteristics as well as heterogeneous computing

capabilities of edge and cloud servers challenge the work-

load allocation. First, the computation requests are generated

stochastically and the computation amount is also varying

over request and over time. Offline algorithms are unsuitable

for solving such kind of workload allocation problem in an

edge-cloud system. Second, the computation resource in an

edge server is often far less than that in a cloud. Queuing delay

in an edge server may dominate the transmission delay from

an edge to a remote cloud. Therefore, the tradeoff between

queuing delay and transmission delay due to the resource het-

erogeneous of edge servers and clouds complex the workload

allocation scheme.

This paper investigates the energy-efficient and delay-

guaranteed workload allocation problem in an IoT-edge-

cloud system. In such a system, there are a number of IoT

regions, which generate computation requests stochastically.

Each of IoT region endowed with a local edge server and

several neighbor servers. The goal of the paper is to find

out optimal policies to allocate workloads among local edge

server, neighbor servers and the remote cloud, aiming at

minimize the energy consumption of the system and provide

per-job granular delay guarantee for the requests. To this

end, we formulate a delay-based workload allocation prob-

lem with the goal of minimizing energy consumption. Then,

we tackle the problem by proposing a delay-based workload

allocation (DBWA) algorithm based on Lyapunov drift-plus-

penalty theory. The efficiency of the proposal in energy effi-

ciency and delay guarantee has been demonstrated through

theoretical analysis and simulation results. The main contri-

butions of this paper are summarized as follows.

• A delay-based workload allocation problem is formu-

lated, which suggests the optimal workload allocations

among local edge server, neighbor edge servers and the

remote cloud toward the minimal energy consumption

of the IoT-edge-cloud system as well as delay guarantee

for arrival jobs.

• The DBWA algorithm is developed to find out opti-

mal solutions. Specifically, the drift-plus-penalty prop-

erties of energy consumption minimization constrained

to system stable are analyzed. Then, DBWA is proposed

to achieve the goal of minimizing energy consumption

of the system as well as delay guarantee for arrival jobs.

The theoretical analysis shown that, the energy con-

sumption is within O(1/V ) of optimality under DBWA.

• The simulations have been conducted to illustrate that,

DBWA can significantly improve the performance of

edge computing and cloud computing in terms of reduc-

ing both of energy consumption and end-to-end (e2e)

delay. DBWA can also bound the e2e delays of arrival

jobs to their requirements.

The remainder of this paper is organized as follows.

Section II introduces the related work. Section III describes

the system, traffic, delay and energy consumption models

and then formulates the problem. Section IV describes the

details of the proposal. Simulation studies are conducted

to demonstrate the efficiency of the proposal in Section V.

Section VI concludes this paper.

II. RELATED WORK

Edge computing has attracted significant attentions in

recent years [11]–[13]. It supports cloud-like computing

in the network edge by deploying computing and net-

work resources along the path between data source and

cloud datacenters [1]. Fog computing [7], [14] and mobile

edge computing [15], [16] are two typical edge computing

paradigms. Fog computing focuses more on the infrastruc-

ture side and is generally deployed at the edge of core net-

work, while mobile edge computing focuses more toward

the mobile users’ side and is generally deployed within the

wireless access network. In this paper, edge computing is

interchangeable with fog computing and mobile edge com-

puting, but focuses more on the things’ side.

In recent years, a number of offloading algorithms for edge

computing have been proposed. Different task offloading

criteria categorize into different offloading algorithms.

Chen et al. focused on the performance in terms of average

number of beneficial cloud computing users and the average

system-wide computation overhead [17]. They designed a

distributed computation offloading algorithm to improve the

wireless access efficiency for computation offloading in a

mobile-edge cloud computing environment.

A number of computation offloading algorithms for reduc-

ing the service delay, including network delay and compu-

tation delay, have been proposed in recent years. Liu et al.

formulated a power-constrained delay minimization problem

for mobile-edge computing systems with Markov decision

process and proposed an efficient one-dimensional search

algorithm to solved it [18]. Yang et al. proposed a Multi-

Dimensional Search and Adjust (MDSA) method to join

computation partitioning and resource allocation to reduce

the average delay for latency sensitive applications in mobile

edge clouds [19]. Youselfpour et al. proposed a delay-

minimizing policy for fog-capable devices to reduce the ser-

vice delay for IoT applications [20]. Liu et al. studied the

tradeoff between latency and reliability in task offloading to
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mobile edge computing [21]. Zhang et al. studied the com-

putation resource allocation problem in a three-tier IoT fog

network [22], focusing on the performance in terms of utility,

which is the revenue received from the workload data minus

both the cost of service delay and payment to the data service

operator. Li et al. studied the resource allocation and task

offloading problem for heterogeneous real-time tasks in a fog

queuing system [23], aiming to yield a tradeoff between high

throughput and high task completion ratio. Different from the

above proposals that concerned on average delay, our studies

focus on satisfying individuals’ delay requirements.

In addition to the aforementioned studies, which focus

on the delay performance, a number of energy efficient

algorithms have also been explored for edge computing.

Wang et al. has proposed a resource allocation scheme to

minimize the multi-antenna access point (AP)’s total energy

consumption subject to the users’ individual computation

latency constraints [24]. Deng et al. investigated the opti-

mal workload allocation problem in a fog-cloud computing

system toward the minimal power consumption with the

constrained service delay [25]. Zhang et al. has proposed an

energy-efficient computation offloading scheme to minimize

the energy consumption under the latency constraints for

mobile edge computing in 5G heterogeneous networks [26].

A deep reinforcement learning based offloading scheme is

proposed for maximizing the user’s utility obtained by task

execution while minimizing the energy consumption, task

processing delay, task loss probability and required payment

in adhoc mobile clouds [27]. Lyu et al. designed a selective

offloading scheme to minimize the energy consumption of

IoT devices, where the signaling overhead can be further

reduced by enabling the devices to be self-nominated or self-

denied for offloading [28].

This paper differs from the existing works in two aspects.

First, the energy-efficient and delay-guaranteed workload

allocation is studied in an IoT-edge-cloud system with

dynamic workloads, where both computation and transmis-

sion energy consumptions are considered. Thus, we need to

find out a sequence of workload allocation solutions among

local edge server, neighbor edge servers and the cloud to

minimize the energy consumption of the system. Second,

we consider the users’ individual e2e delays. Thus, a fine

granular with low complexity workload allocation scheme is

designed to provide per-job granular delay guarantee. To the

best of our knowledge, this is the first work that tackles

the optimal workload allocation for the minimal energy con-

sumption as well as per-job granular delay guarantee in such

an IoT-edge-cloud system.

III. MODEL DESCRIPTION

This section briefly introduces the system, traffic, delay and

energy consumption models as well as problem formulation.

A. SYSTEM MODEL

As illustrated in Fig. 1, this paper considers an IoT-edge-

cloud computing system with IoT regions, edge nodes and

FIGURE 1. Overall architecture of an IoT-edge-cloud system.

a cloud. Each of IoT regions endows with an edge node and

a limited number of IoT devices. The edge node is the inte-

gration of an edge server and edge communication infrastruc-

tures. The edge server and the cloud have distinct computing

capabilities. The IoT devices from IoT regions generate com-

putation jobs stochastically. All the computation jobs from

an IoT region are delivered to the edge node deployed in this

region. The edge node makes workload allocation decisions

for arrival jobs on computing locally, offloading to a neighbor

edge or offloading to the cloud for computing. Notice that,

to avoid ping-pong effect, we assume that when a job offloads

from an edge node to a neighbor edge, it cannot be offloaded

again.

We consider that there are M number of IoT regions and

M number of edge nodes, each of which configures with an

independent computing capability PFi
1 for i ∈ M, where

M = {0, 1, · · · ,M − 1} is the IoT region space as well as

edge node space.We assume that the computation resource of

the cloud is unlimited (in comparison with the edge node), but

the computation resource allocated to a job is limited (e.g., the

job is computed in a virtual machine (VM) running in the

cloud, where the VM is usually configured with a limited

computation resource). For simplification, we assume that

the computation resource allocated to a VM for a job is PC .

We assume that PFi < PC , ∀i ∈ M.

B. TRAFFIC MODEL

A dynamic workload model is considered: (1) the computa-

tion jobs are generated from each of IoT regions stochasti-

cally and independently; (2) in each region, the number of

computation jobs per time slot follows an independent and

identical distribution (i.i.d), and the sizes of jobs belonging

to the same type also follow an i.i.d. Notice that, the size of

a job is measured in bits in this paper. Then, according to

references [29], [30], the CPU cycles required to execute a

job with size S can be derived by

Cw = χS, (1)

1The term computing capability refers to the maximum rate at which the

server can process a computation task, e.g., PFi ∼ f Fi , where f Fi is the

CPU-cycle frequency. We assume that f Fi ≤ f maxi .
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where χ is the number of CPU cycles required to process one

bit of a job.

As shown in Fig. 1, let Xi(t) be the number of compu-

tation jobs generated from the ith IoT region that arrive at

edge node i in slot t2 and Xwi(t) =
∑Xi(t)−1

k=0 Ski (t) be the

corresponding workload, where Ski (t) is the size of the k
th job.

Let λi = E[Xi(t)] be the long term job generation rate and

Si = E[Xwi(t)/Xi(t)] be the expected size of jobs generated

in the ith region.

Let Y(i,i)(t), Y(i,n)(t) and Y(i,C)(t) be the number of jobs

belonging to the job set of {0, 1, · · · ,Xi(t) − 1} that are

determined to compute in the local edge node i, neigh-

bor edge node n ∈ M and the cloud, respectively. Let

Yw(i,i)(t) =
∑Y(i,i)(t)−1

k=0 Ski (t), Yw(i,n)(t) =
∑Y(i,n)(t)−1

k=0 Ski (t)

and Yw(i,C)(t) =
∑Y(i,C)(t)−1

k=0 Ski (t) be the corresponding

workload.

Then, for i ∈ M, we have
{

Xi(t) = Y(i,i)(t) + Y(i,n)(t) + Y(i,C)(t),

Xwi(t) = Yw(i,i)(t) + Yw(i,n)(t) + Yw(i,C)(t).
(2)

C. DELAY MODEL

A job may experience two types of delays, including trans-

mission delay and computation delay.

1) TRANSMISSION DELAY

We consider two types of network transmission paths, includ-

ing the path from an edge node to its neighbor edge node

and the path from an edge node to the cloud. Let bw(i,j)

denote the bandwidth of the transmission path from the node i

(e.g., an edge node) to the node j (e.g., a neighbor edge

node, or, the cloud ). Let Sk be the size of the job k that

transmits over the path. Then, the transmission delay of the

job in the path is derived by

Dkcomm(i,j) = α(i,j) +
Sk

bw(i,j)
, (3)

where α(i,j) is the factor of communication delay, e.g., the net-

work delay introduced by network congestion.

2) COMPUTATION DELAY

Due to computation resource constraints in edge nodes,

we assume a queuing subsystem for each of the edge servers.

Let Qi(t) be the number of jobs queuing in the subsystem i

at the beginning of slot t . Then, the evolution of the queue

length Qi follows

Qi(t + 1) = max[Qi(t) + Yi(t) − ri(t), 0], (4)

where Yi(t) and ri(t) are the number of jobs arrive and service

respectively at the subsystem i during slot t . Yi(t) is derived by

Yi(t) =
∑

j∈M

Y(j,i)(t). (5)

Let Qwi(t) be the corresponding workload considering the

number of jobs as well as job sizes queuing in the subsystem

2In this paper, the slot t refers to the time interval [t, t + 1).

i at the beginning of slot t . Then, we have

Qwi(t + 1) = max[Qwi(t) + Ywi(t) −
PFi
χ

, 0], (6)

where
PFi
χ

is the bits that the server can process in a slot;

Ywi(t) is the aggregated workload arrives in slot t , which is

derived by

Ywi(t) =

Yi(t)−1
∑

k=0

Ski , (7)

where Ski is the size of the k th job that arrives in slot t .

Let K be the job space that consists of Yi(t) number of

jobs that arrive in slot t for t = 0, 1, · · · , ∞ in subsystem i

(e.g., an edge node, or, the cloud). Then, the computation

delay of the k th(k ∈ K) job with size Ski that arrives at the

queuing subsystem i ∈ M in slot t could be derived by

D(i,k)
comp(t) = D(i,k)

que (t) +
χSki

PFi
, (8)

where D
(i,k)
que is the queuing delay, which could be approxi-

mated by

D(i,k)
que (t) =

χ (Qwi(t) +
∑k−1

j=0 S
j
i )

PFi
, (9)

where
∑k−1

j=0 S
j
i is the workload that arrives in slot t and ahead

of the k th job.

As for a job offloading to the cloud, we assume that the

job can be computed immediately after its arrival at the cloud.

Thus, the computation delay of the k th job with size Sk that

arrives at the cloud in slot t is derived by

D(C,k)
comp (t) =

χSk

PC
. (10)

3) END-TO-END DELAY

Accordingly, for the k th job with size Ski that arrives at the

computing node i (e.g., the local edge node, the neighbor edge

node, or, the cloud) in slot t and determines to compute at

this node, assuming the job was generated from IoT region j,

the e2e delay of the job cloud be derived by

D(i,k)(t) = I kF (t)D
(i,k)
comp(t) + I kNF (t)[D

k
comm(j,i) + D(i,k)

comp(t)]

+ I kC (t)[D
k
comm(j,C) + D(C,k)

comp (t)], (11)

where D
(i,k)
comp(t) and D

(C,k)
comp (t) are the computation delays in

the edge node i and the cloud C , respectively; Dkcomm(j,i) and

Dkcomm(j,C) are the transmission delays in paths of local edge

node-neighbor edge node and local edge node-the cloud that

the job may experience, respectively; I kF (t), I
k
NF (t) and I

k
C (t)

are mutually exclusive binary computation decision indica-

tors for the k th job in slot t . When the job is determined to

compute in the local edge node, I kF (t) = 1; when it is deter-

mined to compute in the neighbor edge node, I kNF (t) = 1;
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when it is determined to compute in the cloud, I kC (t) = 1; oth-

erwise, the indicators are set to zeros. Thus, the computation

decision indicators should satisfy the following constraint:

I kF (t) + I kNF (t) + I kC (t) = 1, ∀k ∈ K, t = 0, · · · , ∞.

(12)

D. ENERGY CONSUMPTION MODEL

Similar to reference [25], we consider that the edge node

and the cloud have different models of computation energy

consumption.

1) COMPUTATION ENERGY CONSUMPTION

IN AN EDGE NODE

As to an edge node, we model the computation energy con-

sumption as a function of the workload, which is a monotonic

increasing and strictly convex function.

Let PwFi (t) be the computation energy consumption in

edge node i ∈ M in slot t , which is derived by

PwFi (t) = af (Ywi(t))
2 + bf (Ywi(t)) + cf , (13)

where af > 0 and bf , cf ≥ 0 are factor parameters; Ywi(t) is

the aggregated workload in slot t .

2) COMPUTATION ENERGY CONSUMPTION IN CLOUD

Since every job that arrives at the cloud could be han-

dled immediately by allocating a VM with computation

resource PC , the computation energy consumption PwC(i,k)(t)

for the k th job with size Ski generated from IoT region i that

arrives to the cloud in slot t can be derived by

PwC(i,k)(t) =
χSki
PC

(Acf
θ
C (t) + Bc), (14)

where
χSki
PC

is the job execution time; Ac > 0, θ varies from

2.5 to 3 [25], [29] and Bc ≥ 0 are factor parameters; fC (t) is

the CPU-cycle frequency allocated to the job in the cloud,

which is constrained by f maxC .

Accordingly, the aggregated computation energy con-

sumption in the cloud for the jobs arrival in slot t is derived by

PwC (t) =
∑

i∈M

Y(i,C)(t)−1
∑

k=0

PwC(i,k)(t). (15)

3) TRANSMISSION ENERGY CONSUMPTION

We use the following model to represent the transmission

energy consumption in the path from i to j in slot t .

Pwcomm(i,j) (t) = a(i,j)λw(i,j)(t), (16)

where a(i,j) > 0 is the transmission power in this path;

λw(i,j)(t) is the transmission workload during slot t .

Therefore, the aggregated energy consumption in terms of

power consumption Pw of the IoT-edge-cloud system is the

sum of per-slot energy consumptions in all computing nodes

and in all communication paths in the long term, which is

derived by

Pw = E[Pw(t)]

= E[
∑

i∈M

PwFi (t) + PwC (t) +
∑

i∈M

∑

j∈M∪C,
j 6=i

Pwcomm(i,j) (t)]

= lim
t→∞

1

t

t−1
∑

τ=0

[
∑

i∈M

PwFi (τ ) + PwC (τ )

+
∑

i∈M

∑

j∈M∪C,
j 6=i

Pwcomm(i,j) (τ )], (17)

where C is the cloud space that includes one cloud.

E. PROBLEM FORMULATION

Let KX
i = {0, 1, · · · ,Xi(t) − 1} be the job space of IoT

region i in slot t; let γ ki (t) = (I
(i,k)
F (t), I

(i,k)
NF (t), I

(i,k)
C (t)) be

the decision vector for the k th (k ∈ KX
i ) job that generated

from IoT region i in slot t , where I
(i,k)
F (t), I

(i,k)
NF (t), I

(i,k)
C (t) are

binary computation decision indicators that are constrained

by Eq. (12). Specifically, I
(i,k)
F (t) = 1 if the job is determined

to process in the local edge node; I
(i,k)
NF (t) = 1 if it is offloaded

to the neighbor edge node for processing; I
(i,k)
C (t) = 1 if it is

determined to process in the cloud; otherwise, the indicators

are set to zeros.

Let γi(t) = (γ 0
i (t), · · · , γ ki (t), · · · , γ

Xi(t)−1
i (t)) be the

decision vector for all jobs generated from IoT region i in

slot t . Then, the decision vector for all jobs generated from

all IoT regions in slot t can be represented by γ (t) =

(γ0(t), · · · , γi(t), · · · , γM−1(t)).

Accordingly, for jobs that are generated from IoT region i,

we have






































Y(i,i)(t) =
∑

k∈KX
i

I
(i,k)
F (t),

Y(i,n)(t) =
∑

k∈KX
i

I
(i,k)
NF (t),

Y(i,C)(t) =
∑

k∈KX
i

I
(i,k)
C (t),

(18)

and






































Yw(i,i)(t) =
∑

k∈KX
i

I
(i,k)
F (t)Ski ,

Yw(i,n)(t) =
∑

k∈KX
i

I
(i,k)
NF (t)Ski ,

Yw(i,C)(t) =
∑

k∈KX
i

I
(i,k)
C (t)Ski ,

(19)

where Ski is the size of the k th job for k ∈ KX
i .

Therefore, the workload allocation problem in an

IoT-edge-cloud computing environment for minimizing the

energy consumption of the IoT-edge-cloud system while

provisioning delay guarantee for end users (e.g., IoT devices)
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is formulated as

Minimize: Pw = E[Pw(γ (t))] (20)

Subject to : (2),

(18),

(19),

D(i,k)(t) ≤ d (i,k), k ∈ K
X
i , i ∈ M (21)

Qi < ∞, i ∈ M (22)

Qwi < ∞, i ∈ M (23)

where Eq. (20) follows Eq.(17); Eq. (2) is the traffic

constraint; Eqs. (18)-(19) follow the definition of γ (t);

D(i,k)(t) follows Eq. (11); d (i,k) is the maximum e2e delay

that the k th job can tolerate; Eqs. (22)-(23) are the stability

constraint of the ith (i ∈ M) edge server, where Qi and Qwi
are defined, respectively, as

Qi = E[Qi(t)] = lim
t→∞

1

t

t−1
∑

τ=0

Qi(t), (24)

and

Qwi = E[Qwi(t)] = lim
t→∞

1

t

t−1
∑

τ=0

Qwi(t). (25)

The decision variables are γ (t). According to

Eqs. (18)-(19), if γ (t) is determined, then Y(i,i)(t), Y(i,n)(t),

Y(i,C)(t) as well as Yw(i,i)(t), Yw(i,n)(t) and Yw(i,C)(t) are

determined and Pw is also yielded. Therefore, the above

problem is equivalent to determining a sequential optimal

γ ∗(t) for t = 0, · · · , ∞ to achieve the objective.

IV. DELAY-BASED WORKLOAD ALLOCATION

Although the behavior of computation offloading to edge

nodes can reduce network transmission delay, it has the

potential for extremely long queuing delay for jobs that

offload to a heavily loaded edge node. Generally, a long

queuing delay is introduced by the instantaneous workload

requirements exceed the system capability, reflecting in a

massive amount of queuing workload and a long queue

length. In order to avoid extremely long queuing delay for

jobs offloading to edge nodes, we first analyze the Lyapunov

drift-plus-penalty [31], [32] of the queuing workloads of the

IoT-edge-cloud system under any scheduling policy. Then,

we propose a delay-based optimal workload allocation policy

to solve the problems described in Eqs. (20)-(23) based on the

analytical results.

A. LYAPUNOV DRIFT-PLUS-PENALTY

Let Qw(t) = (Qw0(t), · · · ,Qwi(t), · · · ,QwM−1(t)) be the

vector of the queuing workload of M edge nodes in slot t ,

where Qwi(t) for i ∈ M is derived by Eq. (6). Let L(t) be

the Lyapunov function of the queuing workload, which is

defined as

L(t) =
1

2

∑

i∈M

Qwi(t)
2. (26)

Then, the one-step Lyapunov drift of Qw is defined as

1L(t) = E[L(t + 1) − L(t)|Qw(t)]. (27)

We have the following lemma.

Lemma 1: Every slot t, for any value of Qw(t), and under

any workload allocation policy, the Lyapunov drift satisfies

1L(t) ≤ B−
∑

i∈M

Qwi(t)
PFi
χ

+
∑

i∈M

Qwi(t)E[Ywi(t)|Qw(t)],

(28)

where B is a finite constant.

Proof: According to Eq. (6), we have

Qwi(t + 1)2

≤

(

Qwi(t) + Ywi(t) −
PFi
χ

)2

= Qwi(t)
2+

(

Ywi(t)−
PFi
χ

)2

+2Qwi(t)

(

Ywi(t)−
PFi
χ

)

.

(29)

Substituting Eqs. (29) and (26) into Eq. (27), we have

1L(t) ≤
1

2

∑

i∈M

E





(

Ywi(t) −
PFi
χ

)2

|Qw(t)





+
∑

i∈M

Qwi(t)E

[

Ywi(t) −
PFi
χ

|Qw(t)

]

(30)

Since 0 ≤ Ywi(t) ≤
∑

i∈M Xwi(t), andE[
∑

i∈M Xwi(t)]=
∑

i∈M λiSi = λS according to Section III-B, where λ and S

are the expectation of job generation rate and job size of the

IoT-edge-cloud system, respectively. We have

(

Ywi(t) −
PFi
χ

)2

≤ max

[

(
PFi
χ

)2, (λS −
PFi
χ

)2

]

. (31)

Let B =
∑

i∈Mmax

[

1
2
(
PFi
χ
)2, 1

2
(λS −

PFi
χ
)2
]

and substi-

tuting into Eq. (30), we have

1L(t) ≤ B+
∑

i∈M

Qwi(t)E

[

Ywi(t) −
PFi
χ

|Qw(t)

]

.

Note that
PFi
χ

is independent of Qw(t). Therefore,

E[
PFi
χ

|Qw(t)] =
PFi
χ
. Accordingly,

1L(t) ≤ B−
∑

i∈M

Qwi(t)
PFi
χ

+
∑

i∈M

Qwi(t)E[Ywi(t)|Qw(t)]. (32)

Then the statement follows. �

Since our goal is to find out a sequential optimal workload

allocation decisions γ ∗(t) for t = 0, · · · , ∞ to minimize
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the energy consumption Pw of the IoT-edge-cloud system

constrained to service delay for end users, we add Pw(γ (t))

as a penalty to the Lyapunov drift of the queuing work-

load. Specifically, we define the drift-plus-penalty of Qw

as 1L(t) + VE[Pw(γ (t))|Qw(t)]. According to Lemma 1,

we have the following lemma.

Lemma 2: Every slot t, for any value of Qw(t), and under

any workload allocation policy, we have

1L(t) + VE[Pw(γ (t))|Qw(t)]

≤ B+ VE[Pw(γ (t))|Qw(t)] −
∑

i∈M

Qwi(t)
PFi
χ

+
∑

i∈M

Qwi(t)E[Ywi(t)|Qw(t)], (33)

where B is the same constant from Lemma 1 that does not

depend on V ; V is a nonnegative control parameter that is

chosen as desired and will affect the energy consumption-

delay tradeoff.

Lemma 2 follows by substractingVE[Pw(γ (t))|Qw(t)] into

Lemma 1 from both sides.

B. DBWA

According to the Lyapunov drift theory, if an algorithm

can be designed to control the Lyaponov drift-plus-penalty

1L(t)+ VE[Pw(γ (t))|Qw(t)] as described in inequality (33)

towards negative, then the queue Qw(t) would be stable

while the optimal E[Pw] would be approximated. Therefore,

based on the results of Lemmas 1-2, we propose a delay-

based workload allocation (DBWA) algorithm to find out a

sequential optimal workload allocation decisions γ ∗(t) for

t = 0, · · · , ∞ to minimize a bound on the right-hand side

of inequality. (33) every slot, such that minimize a bound on

1L(t)+VE[Pw(γ (t))|Qw(t)]. The detail of DBWA is shown

in Algorithm 1.

In DBWA, since for the jobs generated from IoT region i,

the offloading decisions are local edge i, neighbor edge n,

or the cloud, we have Yw(i,j′)(t) = 0 for j′ ∈ M − {i, n}.

Accordingly, we use
∑

j∈{i,n} Qwj(t)Ywj(t) in Eq. (34) instead

of
∑

j∈M Qwj(t)Ywj(t), as shown in Algorithm 1. This paper

assumes that the edge nodes can obtain the workload states

(e.g., Q and Qw) of other nodes at most once in a slot. Thus,

an edge node cannot obtain the updated job arrival events of

other nodes within a slot, e.g., the edge node i cannot obtain

Yw(j,n)(t) for j ∈ M − {i} in slot t . Accordingly, we use

Eq. (36) in Algorithm 1 to approximate the workload of the

neighbor node.

Generally, a job in an IoT-edge-cloud system experiences

two processes, including workload allocation and scheduling.

Workload allocation process determines where to computa-

tion offload the job, while scheduling services the job based

on the computation offloading decision. The detail of our pro-

posal for handling jobs in the IoT-edge-cloud system based on

DBWA is described in Algorithm 2.

Algorithm 1 Delay-Based Workload Allocation Algorithm

(DBWA)

Input: Xi(t), Qw(t).

1) Initialization: Yw(i,i)(t) = 0, Yw(i,n)(t) = 0 for n ∈

{i’s neighbor list}.

2) Decision process: Choose γ ∗
i (t) as the solution to the

following:

Minimize:

VPw(γi(t)) +
∑

j={i,n}

Qwj(t)Ywj(γi(t)) (34)

Subject to:

(2),

(18),

(19),

Ywi(t) =
∑

j∈M,
j 6=i

Yw(j,i)(t) + Yw(i,i)(t), (35)

Ywn(t) = Yw(i,n)(t), (36)

D(i,k)(t) ≤ d (i,k). (37)

where Eq. (2) is the traffic constraint; Eqs. (18)-(19),

(35)-(36) follow the definition of γ (t).

Default: if no solution satisfies Eq. (37), set I
(i,k)
F (t) =

I
(i,k)
NF (t) = 0 and I

(i,k)
C = 1.

3) Processing the decision: observe γ ∗
i (t), for k ∈ KX

i ,do

a) If I
(i,k)
F (t) = 1: buffer the job into the local

queuing system;

b) Else if I
(i,k)
NF (t) = 1: transmit the job to the

neighbor edge node n;

c) Else: transmit the job to the cloud.

Output: γ ∗
i (t).

C. PERFORMANCE ANALYSIS

This subsection investigates the efficiency of the proposed

DBWA scheme by analyzing the stability of the queuing sys-

tem of the edge nodes and energy consumption performance

of the IoT-edge-cloud system under DBWA.

Theorem 1: For dmaxi < ∞ and 0 < Si < ∞, where

dmaxi = max{d (i,k) : k ∈ KX
i } for i ∈ M over all slots,

and Si is the expected size of jobs computed in edge server i,

the edge computing subsystems of the IoT-edge-cloud system

are stable under the DBWA scheme.

Proof: Let Dmaxi be the maximum e2e delay given by

edge server i for i ∈ M under DBWA. Let di be the delay

requirement of the corresponding job. Then, according to

Algorithm 1, we have

Dmaxi ≤ di.

Since the job was computed in an edge node, according to

Eq.(11), IF = 1, or, INF = 1 for the job.
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Algorithm 2 DBWA-Based Workload Allocation and

Scheduling Processes

Initialization: Q(0) = 0, Qw(0) = 0.

Every slot t ≥ 0, do

1) Workload allocation process:

a) The edge node i (i ∈ M) receives Xi(t) number

of jobs that were generated from IoT region i, do

i) Observe Qw(t), and initiate Algorithm 1 for

edge node i;

ii) Calculate Y(i,i)(t) and Yw(i,i)(t) with

Eqs. (18)-(19), and update Qi(t) and Qwi(t)

with Eq. (38).
{

Qi(t + 1) = Qi(t) + Y(i,i)(t),

Qwi(t + 1) = Qwi(t) + Yw(i,i)(t).
(38)

b) The edge node i (i ∈ M) receives Y(j,i)(t) (j ∈ M

and j 6= i) number of jobs with workload Yw(j,i)(t)

that were offloaded from edge node j, do

i) Buffer the jobs into the local queuing system;

ii) Update Qi(t) and Qwi(t) with Eq. (39).
{

Qi(t + 1) = Qi(t) + Y(j,i)(t),

Qwi(t + 1) = Qwi(t) + Yw(j,i)(t).
(39)

2) Scheduling process:

a) Scheduling in edge node i(i ∈ M):

i) Process the waiting jobs with service rate PFi
in first-in-first-out (FIFO) discipline;

ii) Update Qi(t) and Qwi(t) with Eq. (40).










Qi(t + 1) = max[Qi(t) − ri(t), 0]

Qwi(t + 1) = max[Qwi(t) −
PFi
χ

, 0].
(40)

where ri(t) represents the number of jobs that

are processed in edge node i in slot t .

b) Scheduling in the cloud:

i) The cloud receives
∑

i∈M

∑Y(i,C)(t)−1

k=0 num-

ber of jobs at the beginning of slot t;

ii) Initiate
∑

i∈M

∑Y(i,C)(t)−1

k=0 number of VMs

to process these jobs with service rate PC ,

respectively.

Case 1: When the job was computed in local edge node,

IF = 1. Then, substituting Dmaxi with Eqs. (8)-(9), we have

(

(Qwi(t) + Ywi(t))
χ

PFi

)max

≤ di,

Since Ywi(t) ≥ 0 and
χ

PFi
> 0,

Qwmaxi (t) ≤ di
PFi
χ

.

Accordingly,

Qwi ≤ E[Qwmaxi (t)] ≤ E[di
PFi
χ

] ≤ dmaxi

PFi
χ

.

Since dmaxi < ∞, we have Qwi < ∞.

Therefore, it is easy to obtain that

Qi =
Qwi

Si
≤
dmaxi PFi

χSi
< ∞, (41)

where Qi follows Eq. (24).

Case 2: When the job was computed in a neighbor edge

node, INF = 1. Then, we have

(Dcomm(j,i) + Dicomp(t))
max ≤ di,

Since Dcomm(j,i) > 0, we have

(Dicomp(t))
max < di.

Substituting (Dicomp(t))
max with Eqs. (8)-(9), we have

(

(Qwi(t) + Ywi(t))
χ

PFi

)max

< di.

Therefore, similar to the results in Case 1, Qwi < ∞ and

Qi < ∞ hold.

According to the definition of the stability of an edge

server in Eqs. (22)-(25), the edge computing subsystems of

the IoT-edge-cloud system are stable. Thus, the statement

follows. �

Lemma 3: Under a stable edge computing subsystem i for

i ∈ M, E[Ywi(t)] ≤
PFi
χ
holds.

Proof: According to Eq. (6), we have

Qwi(t + 1) ≥ Qwi(t) + Ywi(t) −
PFi
χ

.

Therefore,

Ywi(t) ≤ Qwi(t + 1) − Qwi(t) +
PFi
χ

.

Summing the above over the first t slots and using the fact

that Qwi(0) = 0, we have

t−1
∑

τ=0

Ywi(τ ) ≤ Qwi(t) + t
PFi
χ

.

Dividing by t and taking expectations, then

1

t

t−1
∑

τ=0

Ywi(τ ) ≤
E[Qwi(t)]

t
+
PFi
χ

.

Since Qwi = limt→∞ E[Qwi(t)] < ∞ according to

the definition of the stability of an edge server in Eq. (25),

limt→∞
E[Qwi(t)]

t
= 0 holds.

Accordingly,

E[Ywi(t)] = lim
t→∞

1

t

t−1
∑

τ=0

Ywi(τ ) ≤
PFi
χ

.

The statement then follows. �
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Theorem 2: Suppose all queues are initially empty. Then,

under DBWA, the achieved energy consumption Pw∗ of the

IoT-edge-cloud system satisfies

Pw∗ ≤ Pw∗∗ +
B

V
, (42)

where Pw∗ follows Eq. (20), B is the constant from Lemma 1,

V is a nonnegative control parameter from Lemma 2, and

Pw∗∗ is the optimal energy consumption, defined as the

infimum energy consumption for the problem described in

Eqs. (20)-(23).

Proof: Let γ ∗(t) = (γ ∗
0 (t), · · · , γ ∗

i (t), · · · , γ ∗
M−1(t)) be

the optimal decisions given by the DBWA scheme described

in Algorithm 2. Let γ ∗∗(t) = (γ ∗∗
0 (t), · · · , γ ∗∗

i (t), · · · ,

γ ∗∗
M−1(t)) represent the optimal decisions that achieve Pw∗∗.

Since γ ∗
i (t) satisfies Eq. (34) for every slot t , according to

Lemma 2, we have

1L(t) + VPw(γ ∗
i (t))

≤ B+ VPw(γ ∗
i (t)) +

∑

i∈M

Qwi(t)

(

Ywi(γ
∗
i (t)) −

PFi
χ

)

≤ B+ VPw(γ ∗∗
i (t)) +

∑

i∈M

Qwi(t)

(

Ywi(γ
∗∗
i (t)) −

PFi
χ

)

(43)

where the last inequality follows because γ ∗
i (t) under the

DBWA algorithm minimizes the preceding expression over

all other feasible policies, including γ ∗∗
i (t).

Taking expectations of the above inequality, we have

E[1L(t) + VPw(γ ∗
i (t))]

≤ B+ VE[Pw(γ ∗∗
i (t))]

+
∑

i∈M

E[Qwi(t)]E

[

Ywi(γ
∗∗
i (t)) −

PFi
χ

]

(44)

Since γ ∗∗
i (t) is the optimal decision under a stable edge

computing subsystem, according to Lemma 3, we have

E

[

Ywi(γ
∗∗
i (t)) −

PFi
χ

]

≤ 0.

Accordingly, Eq. (44) becomes

E[1L(t) + VPw(γ ∗
i (t))] ≤ B+ VE[Pw(γ ∗∗

i (t))]

= B+ VPw∗∗,

where Pw∗∗ = E[Pw(γ ∗∗
i (t))].

Summing the above over the first t slots and using the fact

that L(0) = 0, we have
t−1
∑

τ=0

VE[Pw(γ ∗
i (τ ))] ≤ (B+ VPw∗∗)t + E[L(t)].

Since E[L(t)] ≥ 0, the right-hand side of the above

inequality becomes (B+ VPw∗∗)t .

Dividing by Vt yields the following result, which holds for

all t > 0.

Pw∗ =
1

t

t−1
∑

τ=0

E[Pw(γ ∗
i (τ ))] ≤ Pw∗∗ +

B

V
,

which ends the proof. �

The results in Theorem 1 indicate that, the DBWA scheme

can avoid the potential of extremely long queuing delay for

jobs offloading to edge servers by controlling the queue

lengths as well as queuing workloads of edge servers. The

results in Theorem 2 illustrate that, the time average expected

per-slot energy consumption can be made arbitrarily close

to the optimal value Pw∗∗ by choosing V suitably large.

Equivalently, the energy consumption under DBWA is within

O(1/V ) of optimality.

V. PERFORMANCE EVALUATION

This section investigates the energy consumption as well as

delay performance of the proposed DBWA algorithm. For

simplicity but without loss of generality, we consider the

scenario with three IoT regions, three edge nodes and a cloud

in an IoT-edge-cloud system. It can be extended to more IoT

regions and more edge nodes, with the similar results.

TABLE 1. The basic parameter settings.

Some basic parameters used in the simulation are listed

in Table 1. As shown Table 1, we use the poisson distribution

with rate vector λ = (10, 15, 10) jobs/ms to model the job

generation rates of the simulated IoT regions 1-3, respec-

tively. The corresponding job sizes follow the exponential

distribution with an expected size vector S = (0.6, 1.2, 0.6)

Mbits/job. We set the computing capability of each of the

edge nodes to 2.0 GHz CPU frequency, and the computing

capability of the cloud is set to 3.2 GHz CPU frequency

per-VM. Besides, the mean factors of communication delay

in the paths of edge node-neighbor edge node and edge node-

the cloud are set to 1.5 ms and 15 ms, respectively. The band-

width of the local edge-neighbor edge link is set to 54Mbps,

while the bandwidth of the local edge-core network and

the core-core paths are both set to 1 Gbps. The following

results are obtained with a discrete event-based simulator that

combines Matlab and C++.

A. ENERGY CONSUMPTION-DELAY TRADEOFF VS. V

We first evaluate the energy consumption-delay tradeoff of

the proposed DBWA algorithm with control parameter V

(defined in Lemma 2)by investigating the enery consumption

of the IoT-edge-cloud system and the average e2e delay of all

jobs over all time under various V values.

The value of V is varied from 0 to 3000. As shown in

Fig. 2, when V = 0, the algorithm degenerates into a
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FIGURE 2. Energy consumption-delay tradeoff vs. V.

workload-based Lyapunov workload allocation approach.

Therefore, it is unsurprising that both energy consumption

and average e2e delay under V = 0 are the highest in

comparison with those under V > 0. When V > 0, the aver-

age e2e delay first decreases with the increasing value of V

when V is small (e.g, V < 100), and then increases when

V is in some range (e.g., 100 < V < 1800). Different

from the results of the average e2e delay under various V ,

the energy consumption always decreases but slowly with the

increasing value of V . However, when V is large enough,

the energy consumption-delay tradeoff can reach a balance,

e.g., V ≥ 1800 as shown in Fig. 2.

B. VARIOUS JOB GENERATION RATES

To evaluate the efficiency of the proposed DBWA algorithm

for energy efficiency and delay guarantee, we compare the

performance of DBWA with the pure edge computing and

the pure cloud computing algorithms under various job gen-

eration rates. In the pure edge computing algorithm, all jobs

are computing in the local edge nodes. In the pure cloud

computing algorithm, all jobs are offloaded to the cloud for

computing.

We set λ1 = λ3 = 0.5λ2, that is, the job generation

rates in IoT regions 1 and 3 are half of that in IoT region 2,

respectively. Then, we vary the job generation rate of IoT

region 2 from 4 jobs/ms to 18 jobs/ms, to evaluate how they

affect the energy consumption and delay performance of the

investigated algorithms. We also set the maximum tolerable

e2e delays for the jobs in the simulated regions 1-3 to d =

(20, 20, 20) ms, respectively.

As shown in Fig. 3, the energy consumption given by the

pure cloud computing algorithm is the highest under various

job generation rates. This is because, although the computa-

tion energy consumption in the cloud may be less than that in

the edge for the same computation amount, the transmission

energy consumption in the paths from edge nodes to the

cloud cannot be ignored. The DBWA algorithm can make

optimal offloading decisions among the local edge node,

neighbor edge nodes and the cloud based on Lyapunov drift-

plus-penalty for minimizing the total energy consumption.

FIGURE 3. Energy consumption vs. job generation rate (λ1 = λ3 = 0.5λ2).

FIGURE 4. Average e2e delay vs. job generation rate (λ1 = λ3 = 0.5λ2).

Therefore, it is unsurprising to see that the energy consump-

tion given by the proposed DBWA algorithm is always the

lowest under various job generation rates in comparison with

the pure edge computing and cloud computing algorithms.

Due to the computation resource constraint, the queuing

delay under edge computing increases exponentially with

the increasing job generation rate. Thus, it is unsurprising

to see that the average e2e delay given by edge computing

increases exponentially with the increasing job generation

rate, as shown in Fig. 4. Since the cloud resource is unlimited

in comparison with edge nodes, every arrival computation job

can be served immediately in the cloud. The e2e delay for

cloud computing is mainly affected by the transmission delay.

Therefore, the average e2e delay given by the cloud com-

puting algorithm approximates a stable value (e.g., 20 ms)

when the job transmission rate does not exceed the bandwidth

(e.g., λ < bw(edgenode,cloud)), as shown in Fig. 4.

Since the DBWA algorithm can adaptively switch among

local edge node, neighbor edge nodes and the cloud for work-

load allocation, it provides the lowest average e2e delay under

various job generation rates in comparison with the edge and

cloud computing algorithms. When the job generation rate

is low, e.g., λ2 ≤ 8 jobs/ms, edge computing dominates

cloud computing for average e2e delay provisioning, thus
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FIGURE 5. Energy consumption vs. job size (S1 = S3 = 0.5S2).

most workload are allocated to edge nodes under the DBWA

algorithm. Accordingly, it provides the average e2e delay

similar to that provided by the edge computing algorithm,

as shown in Fig. 4. When the job generation rate becomes

large, e.g., λ2 > 10 jobs/ms, the queuing delay under edge

computing increases exponentially, such that cloud comput-

ing dominates edge computing. Therefore, under the DBWA

algorithm, theworkload allocated to the cloud increases adap-

tively to the job generation rate. Thus, the average e2e delay

under DBWA can always be lower than that under the cloud

computing algorithm, as shown in Fig. 4.

C. VARIOUS JOB SIZES

We further evaluate the efficiency of the proposal for energy

efficiency and delay guarantee by investigating the perfor-

mance in terms of energy consumption and average e2e delay

in comparison with the pure edge computing and cloud com-

puting algorithms under various job sizes.

We adopt the same traffic parameter settings as listed

in Table 1. We set S1 = S3 = 0.5S2, that is, the expected

job sizes in IoT regions 1 and 3 are half of that in IoT

region 2, respectively. Then we vary the expected job size of

IoT region 2 from 0.2Mb/job to 1.6Mb/job, to evaluate how

they affect the energy consumption and delay performance of

the investigated algorithms.

As shown in Fig. 5, the energy consumption given by all the

investigated algorithms increase with the increasing job sizes.

The energy consumption given by edge computing increases

the fastest in comparison with the other two algorithms.

Particularly, when S2 ≥ 1.4 Mb/job, the energy consump-

tion given by edge computing exceeds that given by cloud

computing. This is because, the energy consumption model

of an edge node is a convex function of the job size, while the

energy consumption model of the cloud is a linear function of

the job size, as discussed in Section III-D. Accordingly, when

the job size is large enough, e.g., S2 ≥ 1.4Mb/job, the energy

consumption given by edge computing would exceed that

given by cloud computing.

Since the DBWA algorithm can dynamically switch

among local edge node, neighbor edge nodes and the cloud

adaptive to job sizes for minimizing the energy consumption,

it consumes the lowest energy under various job sizes in

comparison with the edge and cloud computing algorithms.

The queuing delay under edge computing increases explic-

itly with the increasing job sizes, thus the average e2e delay

given by the edge computing algorithm increases the fastest

in comparison with the other two schemes. Therefore, it is

unsurprising to see that, the average e2e delay under edge

computing exceeds that under cloud computing when the job

sizes exceed some value, e.g., S2 > 0.8 Mb/job, as shown

in Fig. 6. The DBWA algorithm always provides the lowest

average e2e delay under various job sizes in comparison

with the other two algorithms, as show in Fig. 6. This is

because, DBWA can dynamically switch among local edge

node, neighbor edge nodes and the cloud adaptive to the

varying of job sizes for delay guarantee.

FIGURE 6. Average e2e delay vs. job size (S1 = S3 = 0.5S2).

D. GOODPUT

Finally, we evaluate the efficiency of the proposal for per-

job granular delay guarantee by investigating the delay per-

formance in terms of goodput in comparison with the edge

computing and cloud computing algorithms under scenarios

of various job generation rates and job sizes simulated in

Sections 5.2 and 5.3.

The goodput reflects the delay-guaranteed efficiency of a

workload allocation algorithm in per-job granularity, which

is defined as follows.

G =
♯ of jobs with job’s e2e delay ≤ job’s delay bound

total ♯ of jobs arrival

×100%

=

∑∞
t=0

∑

i∈M

∑Xi(t)−1
k=0 I (D(i,k)(t) ≤ d (i,k))

∑∞
t=0

∑

i∈M Xi(t)
× 100%

where I (k) = 1 if k is true; I (k) = 0 otherwise.

The simulation results are summarized in Table 2.

As shown in Table 2, the goodput given by edge com-

puting decreases explicitly with the increasing job genera-

tion rate. Particularly, when λ2 increases from 8 jobs/ms to

10 jobs/ms, the goodput decreases dramatically, e.g., from

93.88% to 63.58%. However, since that the cloud computing
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TABLE 2. Goodput.

resource is unlimited compared to an edge node, and that the

total transmission rate (λS) does not exceed the bandwidth

of the paths from edge nodes to the cloud, the goodput given

by the cloud could reach 100%. Since DBWA dynamically

adapts to the varying of job generation rate, it also bounds the

goodput to 100%under various job generation rates, as shown

in Table 2. Similar results are obtained under the scenario of

varying job sizes. As shown in Table 2, the goodput given

by edge computing decreases explicitly with the increasing

job size, while the goodput under both of cloud computing

and DBWA can be bounded to 100%. The simulation results

in Table 2 illustrate the delay guarantee efficiency of the

proposed DBWA algorithm.

VI. CONCLUSIONS

This paper has studied the energy-efficient and delay-

guaranteedworkload allocation problem in an IoT-edge-cloud

computing system. We develop a systematic framework,

including system, traffic, delay and energy consumption

models, to investigate the issue of energy consumption min-

imization constrained to per-job granular delay guarantee in

an IoT-edge-cloud computing system. We have formulated

the workload allocation problem and developed a delay-

based workload allocation scheme, e.g., DBWA scheme,

to solve the problem. Specifically, the Lyapunov drift-plus-

penalty properties of the queuing systems of edge servers are

analyzed. Then, the DBWA scheme is proposed to minimize

the drift-plus-penalty, for achieving the goal of minimizing

the energy consumption of the system while provisioning

per-job granular delay guarantee. The theoretical analysis

and simulation results have illustrated the efficiency of the

proposal in provisioning the energy efficiency and delay

guarantee.
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