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ABSTRACT 

IT service providers, employ server virtualization as a main building block to improve system utilization, 

improve system manageability, reduce operational costs which includes energy consumption driving 

economies of scale with shared resources. Virtualization enables co-locating and efficient assignments of 

virtual servers within the bounds of limited number of heterogeneous physical servers, with Virtual 

Machines (VM) sharing the limited physical server resources between them. Though virtualization 

technologies point to the fact that each virtual server has its very own isolated environment, but in reality, 

perfect isolation is not possible. Primary measure to achieve assignment efficiency is to ensure that system 

resources are utilized effectively and performance of VM (and application workloads) is consistent within 

the desired bounds. Interference or contention on the limited shared resources among VMs leads to 

performance degradation and is referred to as performance interference. This affects (a) application Quality 

of Service (QOS) and (b) server cluster or data centers’ energy-efficiency. In this work, we analyze the 

performance degradation using (a) energy efficiency heterogeneity measure and (b) interference aware 

measure, with the aim to reduce energy consumption in our environment. Experimental results on different 

scenarios with our energy efficiency and interference aware approach shows a reduction in energy 

consumption to the tune of 8 to 58% and 10× improvement in per request average response time in contrast 

to a default energy efficiency and interference oblivious approach.  
 
Keywords: Energy Efficiency, Performance Interference Aware, Server Heterogeneity Aware 

1. INTRODUCTION 

Main goal of a server cluster environment or Data 

Centers’ (DC) is to satisfy resource needs like 

processing, storage, memory, network resource 

capacities from an users’ perspective; and be financially 

viable from Data Center Owners’ (DCO) perspective. 

DCOs employ server virtualization as one of the building 

block to increase cost effectiveness. Economic benefits 

from server virtualization come from higher resource 

utilization, reduced maintenance and operational costs 

including energy consumption. Although, advanced 

hardware technology has improved the performance per 

hardware dollar cost, whereas, server power efficiency or 

performance per watt used has remained roughly flat 

over time (Goiri et al., 2013). As a result, the electricity 

consumption cost of servers in data centers will be more 

than the hardware cost and has become a major 

contributor to Total Cost of Ownership (TCO). Power 

consumption is one of the major concern that a DCO 

need to reduce. Data center power consumption has 

increased 400% over the last decade (Qian and Medhi, 

2011). From DC owners’ perspective, it is very 

important to answer the following question: “How to 

satisfy user needs (performance criteria) and still 

minimize power consumption.  
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 In this study, we focus on server heterogeneity and 
resource contention aspects to reduce energy 
consumption in a virtualized server cluster 
environment or data centre. 

DCOs normally have servers which heterogeneous 
server types. Workloads serviced by sub-optimal servers 
could be detrimental to DCO by increasing the energy 
consumption and to the user by increasing the request 
response-times. Each server configuration invariably 
exhibits a particular performance to power characteristics. 

With virtualization, many VMs can be consolidated 
into a server. Though these collocated VMs are supposed 
to exhibit performance isolation characteristics, but in 
reality these VMs share resources like cache, network 
interconnects, between them. This use of shared 
resources causes contention or interference between the 
collocated VMs and thereby leads to application or 
service performance degradation. Due to the contention, 
a collocated VM in the server could exhibit performance 
degradation or this VM could degrade performance of 
application hosted in the other collocated VMs. There is 
a need to understand interference or resource contention 
impacts with respect to application performance and 
energy consumption. In this study, we have not 
considered interference of VMs due to shared caches.  

Here, we breifly discuss on earlier works by 
researchers on (a) performance impacts due to resource 
contention of VMs collocated in a server (Interference) 
and (b) energy efficiency improvement of heterogeneous 
server cluster environment (Heterogenity).  

On Interference: Govindan et al. (2011) studied the 
Low Level Cache (LLC) interference by proposing 
simulated cache using synthetic cache loader 
benchmarks to profile the performance of applications. 
Chiang and Huang (2011) proposed TRACON, using 
modeling and control theory and machine learning 
techniques. Pu et al. (2010) present an analysis of 
performance interference in virtualized environments with a 
focus on contentions in input-output storage device usage. 
Blagodurov et al. (2013) proposed an approach which 
improves server utilization while meeting the SLAs of 
critical workloads by prioritizing resource access using 
Linux cgroup weights. Novakovic et al. (2013) proposed an 
approach called DeepDive. This approach identifies VMs 
with performance degradation due to resource contention 
by using performance counter metrics and arriving at 
interference factor by comparing the VM run with a 
sandbox run of the same application. It also identifies the 
exact resource types which cause the degradation and 
provides options to identify and differentiate false 
positives and false negatives from proper interference 
occurrences. Though the authors have reported that the 
overhead in creating a separate sandbox environment to 

confirm occurrences of interferences is within limits, we 
believe that a careful relook would be critical. 
Delimitrou and Kozyrakis (2013) proposed an approach 
called Paragon, which uses analytical methods 
leveraging system information from the past runs. It uses 
minimal training data and a collaborative filtering 
technique to classify the workload with respect to 
application and platform interferences in using shared 
resources. Mukherjee et al. (2013) proposed a probe 
based approach to identify and pin point occurrence of 
interferences in an virtualized single server environment. 
Moreover, this work makes an interesting point that 
identifying interference using probe based approach is 
accurate, when most of the above other works, at some 
level use performance counters to identify occurrences of 
interferences. Adoption of probe based approach in a 
realistic environment is still to be tested with seemingly 
high overhead to account for.  

In our study, we have adopted an offline approach to 

build interference degradation factor matrix and use the 

value while selecting the best server to process the 

workload. 

On Heterogenity: Delimitrou and Kozyrakis (2013) 
as part of their work called Paragon have also considered 
using Netflix like collaborative filtering technique to 

select the best server configuration amongst the 
heterogeneous servers in sample space. Moreno et al. 
(2013) proposed an approach to compute energy 

efficiency and select the best server from amongst the 
available heterogeneous servers in the data center. Our 
work with energy efficiency is close to the work done by 

Moreno. Our focus is more on to improve performance 
and optimally reduce energy consumption of the entire 
virtualized server cluster environment with an integrated 

scheme using DPM and DVFS techniques. 
 
We make the following contributions:  

•  Propose a heterogeneous energy efficient server 

selection approach  

•  Propose an approach to account for resource 

contention or interference impact on workload 

performance in using collocated virtualized servers  

•  Integrate the approach with Dynamic Voltage 

Frequency (DVFS) and Dynamic Power 

Management (DPM) to achieve performance and 

energy consumption optimality 

The rest of the study is organized as follows. In 
Section 2, we discuss important metrices used and the 
proposed solution methodology. In section 3 and 4, we 
discuss the results obtained. In section 5, we summarize 
our work with scope for future activities.  
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2. MATERIALS AND METHODS 

 We briefly discuss preliminary metrics required and 

approach methodology adopted in our work. 

2.1. Energy Efficiency  

We consider a server cluster with Servers from 

amongst H heterogeneous distinct host types or 

configurations. Each of these host types have unique 

performance and power characteristics:  

 

a) HT(k) is the Host type vector represented as a tuple 

{[ P
(i, k, j)

(util%) ], MIPS(k), Cores(k)};  

where k ∈  {1 .. H}; 

S
k
i i

th
 Server in k

th 
host type; where i  

∈  {1 .. Hk}; k ∈  {1 .. H}; Hk is the 

total servers of host type k 

 

util% is the CPU core utilization 

Equation (1) 

usedMIPS 100

TotalMIPS

×=   

 

 

(1) 

usedMIPS processor core MIPS used by 

active run-time requests processed 

by the server core  

= TotalMIPS – AvailableMIPS 

 

TotalMIPS Total processor core MIPS  

= Cores(k) × MIPS(k) 

 

AvailableMIPS free processor core MIPS  

P
(i, k, j)

(util%)  Power consumption at CPU util% 

of server S
k
i of host type k and 

frequency f
(k)

j 

where k ∈  {1 .. H}; j ∈  {1 .. Fk}; 

Fk is the maximum frequency for 

the host type k;  

util% ∈  {0 .. 100}; i ∈  {1 .. H
k
};  

 

MIPS(k) TotalMIPS of CPU of a Server of 

host type k 

 

Cores(k) number of cores of a Server of host 

type k 

 

b) Server S
k
i with the best energy efficient metric ratio 

(EE) in a Server cluster with i ∈  {1 .. H
k
); k ∈  {1 .. H), 

from amongst H heterogeneous host types is computed 

as follows: 

EE
k
i Energy Efficiency metric of 

server Equation (2 and 3) 

 S
k
i (i,k , j)

0%

Cores(k) MIPS(k)

P

×=   

 

 

(2) 

Server S
k
i with 

best EE metric 

= Max(EE
k
i);  

 where ∀ i ∈ {1 .. Hk};  

 ∀ k ∈ {1 .. H}; 

(3) 

 

Reason to consider server power consumption at idle 

state (cpu utilization at 0%) is to account for high 

contribution of static power to the total server power 

consumption. We can further extend Equation (2) to 

consider power consumption at different cpu 

utilization%. Considering this change would give a better 

efficiency value compared to the efficiency using idle 

power. But the issue with this is that cpu utilization% 

change is highly dynamic and is highly dependent on 

workloads. With workloads with small job-lengths, 

going with cpu utilization% would be a risky with 

efficiency value changing often. We did test the scenario 

with EE with in-process cpu utilization% as well as EE 

at cpu utilization% = 0. We could not see much of a 

difference in the results between the scenarios. Hence, 

we have taken a conservative approach to go with energy 

efficiency using idle power consumption as in Equation 

(2). Also, another point to note is that performance 

degradation factor due to interference or resource 

contention varies with cpu utilization.  

2.2. Power Model 

In this study, we consider physical server power 

consumption of different server configurations at 

different power states as in Table 1.  

P
(i, k, j)

(0%) is the server power consumption when no 
application is running in the server S

k
i, also known as 

idle power (cpu utilization is 0%) of the server with host 
type k and frequency f

(k)
j. Where k ∈ {1 .. H}; i ∈  {1 .. 

Hk}; j ∈  {1 .. Fk}, Fk is the maximum frequency for the 
host type k; Hk is servers of host type k; P

(i, k, j)
(100%) is the 

server power consumption when the server’s CPU 
utilization% = 100. 

We use the below model to calculate server power 
consumption when utilization% which is not covered in 
SPEC results Equation (4) (SPEC Benchmarks, 2013): 
 

( )i,k , j i,k , j

util% util%

i,k, j i,k , j

util% util%

util% util%
P P

100

P P

  

      

−      = + ∆ ×

∆ = −
 (4)
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Table 1.  Physical server state power consumption (in Watts) (SPEC Workloads) 
Host type k Power (1) (2) (3) (4) (5) (6) (7) 

PM(i, k, j) 169 117 135 113.0 113.0 247 222.0 
Pm(i, k, j) 105 86 93 41.6 42.3 67 58.4 
P(i, k, j)

SETUP 169 117 135 113.0 113.0 247 222.0 
P(i, k, j)

OFF 0 0 0 0.0 0.0 0 0.0 

(1)HpProLiantMl110G3PentiumD930, (2) HpProLiantMl110G4Xeon3040, (3) HpProLiantMl110G5Xeon3075, (4) 
IbmX3250XeonX3470, (5) IbmX3250XeonX3480 (6)IbmX3550XeonX5670, (7) IbmX3550XeonX5675 
 

2.3. Energy Model  

Our energy model accounts for power consumed 

when in operational (DVFS-ACTIVE, IDLE) power 

states and also non-zero power consumed in non-

operational (DPM-OFF, SETUP) power states: 
 

S
k
i: i

th
 Server in k

th 
host type; where i ∈  {1 .. Hk}; k ∈  

{1 .. H}; Hk is the total servers of host type k  
k

i
E : Total Energy consumed by the server: 

 
k i,k, j i,k , j i,k , j i,k , j i,k , j

i OFF SETUP SETUP util% util%
S 0 T P T P T= × + × + ×   

 

E: Server cluster Total Energy consumption 

Equation (5): 

 

H
k

i

i 1 k 1

Hk

E
= =

=∑ ∑  (5) 

 
k

i
P  : Total Power consumed by the server: 

 
k

k i
i i,k , j i,k, j i,k , j

OFF SETUP util%

E
S

T T T
=

+ +
  

 
P: Server cluster Total Power consumption 

Equation (6): 
 

H
k

i

i 1 k 1

Hk

P
= =

=∑ ∑  (6) 

 

where k ∈  {1 .. H}; j ∈  {1 .. Fk}; i ∈  {1 .. Hk}; Fk is the 

maximum frequency for the host type k  
i,k , j

SLEEP
P : Power consumed by server S

k
i in SLEEP mode 

i,k , j

SETUP
P : Power consumed by server S

k
i in SETUP mode 

i,k , j

SETUP
T : Time duration of server S

k
i in SETUP mode  

i,k , j

util%
P : Power consumed by server S

k
i in BUSY or IDLE 

mode; host type k and operating at a particular 

CPU utilization% and frequency f
(k)

j  
i,k , j

util%
T : Time duration of server S

k
i in BUSY or IDLE 

mode; host type k and operating at a particular 

CPU utilization% and frequency f
(k)

j  

2.4. Performance Model  

We use Operations Per Second (OPS) values from 

SPEC result for the host type when in operational/active 

power state. We consider the host type with Optimal 

energy efficiency (Equation 10) as the reference host 

type in arriving at the relative response time 

improvement factor of a server i,k, j

util%(Rel0PS ) at a particular 

utilization% and frequency. RefOPS
k,j

(util%index)-OPS 

consumed by the optimal PPM host type k at a particular 

CPU util%index and frequency f
(k)

j. Optimal host type 

server is derived using Equation 10; where k ∈  {1 .. H}; 

util%index ∈  {1 .. 11}; j ∈ {1.. Fk}: 
 
TAVG: Mean request response time (in seconds 

or milliseconds) for requests that 
complete during the course of the trace.  

OPS
k,j

(util%index): OPS consumed by a host type k at a 

particular cpu util%index and frequency 

f
(k)

j.  
 We use cpu util%index instead of cpu 

utilization% to help depict the 
computations more formally 

k, j

util%indexRelOPS : Relative response time improvement 

factor for host type k at util%index 

Equation (7) 
 

k, j

k, j

k, j k, j

k , j

util%index

util%index

2utilindex util%index-1(n-1)x

util%index-1

OPS

RefOPS

RefOPS RefOPS

RefOPS

−

= ×

 (7) 

 
Where util%index > 2 
 

k, j

k, j

util%index

util%index

OPS

RefOPS
1= ×  

 
Where util%index ∈  {1..2} 

i,k, j

util%RelOPS : Relative response time improvement 

factor at CPU utilization% of server S
k
i 

of host type k and frequency f
(k)

j 

where k ∈  {1 .. H}; j ∈  {1 .. Fk}; Fk is the maximum 

frequency for the host type k; util% ∈  {0 .. 100}; i ∈  {1 

.. Hk) Equation (8): 
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( )

i,k , j

util%

i,k, j i,k , j

util% util%

RelOPS

util% util%

100

RelOPS RelOPS

  

      

=

−      +∆ ×

∆ = −

 (8) 

 

2.5. Interference Factor Matrix  

We consider a server cluster with Servers from 
amongst H heterogeneous distinct host types. Each 
Server has set of VMs which is determined by the 
Servers’ available capacity and VMs resource demand.  

We have built the performance Degradation Factor 
(DF) matrix (Table 2), which tracks the performance 
degradation of a VM with application app1 and another 
VM with application app2, both applications running 
concurrently vs. VM with say application app1 allowed 
to run in standalone mode (no other VMs have apps 
which would interfere with app1’s performance or 
content with app1’s resource needs).  

Each (row, column) cell value for e.g., a (1,1) 
represents the performance degradation factor. We 
follow the approach given by (Govindan et al., 2011) to 
calculate Effective Degradation Factor (EDF) for the 
server. We consider per request execution time TAVG as 
the performance metric. Point to note here is depending 
on the application workload logic, degradation factor 
value for e.g., VM1→VM2 (isolated run of vm1 is 
compared with a concurrent run of vm1 alongside vm2) 
could be different than VM2→ VM1 (isolated run of vm2 
is compared with a concurrent run of vm2 alongside vm1).  

In our study, we have considered workloads (apps) 
which primarily exhibit of the following resource usage 
(cpu or storage or memory or network). A composite 
workload characteristic with different resources being 
used in phases is also a possibility. Workload phase 
dynamism needs bit more detailed effort. We would 
consider this as part of future work: 
 

WEE
k
i Weighted Energy Efficiency for S

k
i with 

interference performance degradation factor 

accounted for Equation (9): 
 

k

i

i, j,k

EE

EDF
=   (9) 

 

where k ∈  {1 .. H}; j ∈  {1 .. Fk}; Fk is the maximum 

frequency for the host type k; i ∈  {1 .. Hk};  

SEE
k
i Best energy efficient server is the server with  

 

( )k

i Max WEE=  (10) 

where k ∈  {1 .. H}; i ∈  {1 .. Hk}; Hk is the number of 

servers in host type k. 

2.6. System Architecture  

Our proposed architecture’s objective is control 

request response times processed in virtual machines 

while minimizing energy consumption of the server 

cluster. Figure 1, shows our system architecture which 

comprises of the following components:  

•  Energy Efficiency and Interference aware Server 

Sequencer  

•  DPM Controller  

•  DVFS Controller  

•  Arbitrator  

•  Monitor  

2.6.1. Energy Efficiency and Interference Aware 
Server Sequencer 

This module specifically identifies the host type 

configuration that has the best (optimal) EE
k
i ratio. We 

use Equation (2) to arrive at the server’s EE
k
i ratio. 

Higher the value in of a server’s SEE
k

i (or WEE
k
i 

computed using Equation (9 and 10) indicates that a 

application request when processed in this server can 

ultimately reduce energy consumption of the virtualized 

server cluster or data center and also can remediate 

performance issues due to interference or shared 

resource contentions.  

2.6.2. DPM Controller 

This module focusses on managing the servers’ 

power state transitions and answers the following 

questions: When should the server be switched ON from 

OFF state (waken up)? We follow a request batching 

approach [virtual batching] to answer the first question. 

The system waits for batching timeout then wakes up the 

CPU to process requests. CPU could be in either OFF 

before transitioned to IDLE state. This transition from 

low power state to high power state (OFF IDLE, has a 

time expend value T
(i, k, j)

OFF_IDLE as captured in Table 3. 

Batching timeout is determined periodically by an adhoc 

controller to drive the web server with the longest 

response time to a set point. 

We use power and energy consumption metrics 

models discussed earlier to compute power and energy 

consumption.  
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Table 2. Performance interference degradation factor Matrix   

  VM2 

 Workload ------------------------------------------------------------------------------------------------ 

 contention scenario Cpu Storage Memory Network 

VM1 Cpu a(1,1) a(1,2) a(1,3) a(1,4) 

 Storage a(2,1) a(2,2) a(2,3) a(2,4) 

 Memory a(3,1) a(3,2) a(3,3) a(3,4) 

 Network a(4,1) a(4,2) a(4,3) a(4,4) 

 

Table 3. Physical server sample state transition times (in seconds) 
Host type k state transition time (1) (2) (3) (4) (5) (6) (7) 

T(i, k, j)
OFF_IDLE 50 45 50 45 45 60 75 

T(i,k,j)
IDLE_OFF 5 5 5 4 4 5 5 

(1) HpProLiantMl110G3PentiumD930, (2) HpProLiantMl110G4Xeon3040, (3) HpProLiantMl110G5Xeon3075, (4) 

IbmX3250XeonX3470, (5) IbmX3250XeonX3480, (6) IbmX3550XeonX5670, (7) IbmX3550XeonX5675 
 

 
 

Fig. 1. System architecture 

 

2.6.3. DVFS Controller 

Focus of this module is to improve the response times 

of requests in the system dynamically by manipulating 

the cpu frequency. This controller is used when the 

processor is in active or operational state either 

processing a request or waiting for a request to start 

processing. In our work, we start (awaken) a server at the 

lowest possible frequency for the host type.  

We use SPEC results to formalize our power modeling 

exercise at different server cpu utilization% values. Server 

CPU utilization is computed using Equation (1). Server 

CPU utilization has a linear relationship with number of 

VMs/requests processed by the server at that point in time 

(also known as concurrency level of the server). We use 

the Equation (6) to compute server power consumption at 

different cpu utilization% values. 
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Fig. 2. Power Consumption to CPU Utilization at highest frequency f(k)
Fk (SPEC results) 

 

 
 

Fig. 3. OPS to Utilization at highest frequency f(k)
Fk OPSk,j (util% (SPEC results) 

 

 
 

Fig. 4. Response time performance improvement factor (RelOPS(i, k, j)
(util%)) 
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Fig. 5. Timeframe governed Work load -8 hour trace (captured at 5, 15, 30, 60 min time frames) (Qian and Medhi, 2011) 

 
Figure 2 shows the power consumption of different host 

types at different cpu utilization%. Also, using SPEC 

results, we propose a model to compute request response 

time improvement factor (RelOPS
(i, k, j)

(util%)) due to 

concurrency level (different cpu utilization%). Figure 3 

depicts the relative OPS vs. cpu utilization% exhibited 

by our scoped set of servers of different host types. It 

clearly shows that each host type’s OPS characteristics 

are unique. The model to arrive at relative response time 

improvement factor is based on Equation (8). This factor 

determines the relative delay imposed by the server of a 

particular host type to request response times when 

operating at a particular utilization% and particular 

frequency. Figure 4 shows the response-time 

improvement ratio at different cpu utilization% between 

servers of different host types.  

2.6.4. Arbitrator  

Arbitrator is the crucial intelligent module which 

orchestrates and controls functions of other modules in 

the architecture. Web requests or workload from the 

clients are redirected, based on load balancing scheme. 

Monitor module collects metrics like application request 

response-times, power consumption (Equation 6), energy 

consumption (Equation 5), from the applications and 

servers in our virtualized server cluster environment. 

Arbitrator module, using the collected metrics at periodic 

control time intervals and immediately after completion 

of each request, identifies the best energy efficient server 

(Equation 8) that could mitigate interference 

performance degradation. Any new work load request, is 

pushed to this server (VM in this server).  

2.6.5. Monitor 

 This module specifically probes the server cluster for 

parameters of interest like server cpu utilization%, server 

power states, server cpu processor frequency levels.  

2.7. Simulation Setup  

To achieve an efficient simulation that addresses 

various use case scenarios (in our case these solution 
schemes are discussed in the results section), the choice 

of a robust simulator is essential. We have used java based 

cloud simulator CloudSim (version 3) (Calheiros et al., 
2011) by enhancing and modifying components as 

required for our work. In CloudSim, a cloudlet represents 

a task that is submitted to a datacenter virtual machine. 
We treat requests as cloudlets. We have assumed the 

cloudlet job size in our simulation to be of constant 

value. Service rate of these cloudlets depend primarily 

on the server host type, DPM operation modes and 

DVFS frequency enabled on the physical servers. A 

cloud datacenter is a physical set of machines connected 

by a network available to receive the virtual machines 

and workload requests (cloudlets) accordingly.  

In our simulation setup, we have considered a cloud 

setup with non-federated datacenter scenario. We have 

considered 250 physical hosts (PM) of heterogeneous 
configuration, selected from amongst 7 host types in a 

round-robin distribution. Characteristics of each of the 

host types on power, performance, state details are 

captured as in Table 1-3 and Fig. 2-4. All physical 

servers are initially in OFF state. We have used 500 VM’s 
from amongst 4 VM types. Each of these VM types has 

different MIPS requirements from 500 to 1000 MIPS.  
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Also, to study time-slot specific controls, we have 

used a synthetic workload as in Fig. 5, which captures 

the demand profiled every 5 min in a 480 min (8 hours) 

period based on CPU demand trace. We consider 5 

different time slot sizes of demand capture: 5, 15, 30 and 

60 min. Based on the 5 min demand profile, the demand 

for larger time slot granularity is taken to be the 

maximum over all 5-min demands in that time slot.  

D(t, t+�) = max{ D(t),…,D(t +�) }; where D(t, t+�) 

denotes the maximum demand of �, for e.g., 5-min slot 

(from t to t+5) (Qian and Medhi, 2011). We have 2092, 

1134, 764, 468 total requests tracked against 5 min, 15 

min, 30 min and 60 min in 8 hours demand distribution 

trace. Arrival rate for 15 min workload run is done with 

284 requests per time slot; 30 min workload run is with 

126 requests per time slot; 45 min workload run is with 

84 requests per slot; and 60 min workload run is with 52 

requests per slot.  

We have considered 250 physical servers and 500 

virtual machines. Configuration settings of physical 

servers and virtual machines follow the same logic as 

captured for the grid workload. 

3. RESULTS 

We have used the simulation test bed described 

previously.. We show the effectiveness of our solution 

by contrasting:  

•  Our “energy-efficiency and interference aware” 

approach (“EE and interference aware” approach); 

with  

•  “Default energy-efficiency and interference 
oblivious” approach (“default EE and interference 
oblivious” approach)  

 

Default approach does not have interference 

degradation fitment logic and does not have the best case 

energy efficiency sequencer logic. 

We consider the following scenario extensions as 

follows: 

 

•  With datacenter servers in the cluster being in 
switch OFF state when we start our workload 
processing routine-ColdStart 

•  The server stays in ON power state thereafter 
•  With datacenter servers in the cluster already in 

switch ON power state-HotStart 
•  The server stays in ON power state thereafter 

•  With datacenter servers in the cluster being in 

switch OFF state when we start our workload 

processing routine; Adopt DPM and DVFS 

performance and power consumption improvement 

levers-ColdStart; with DPM and DVFS 

•  Server frequency, server power states are 

transitioned to low power mode according to 

respective DVFS and DPM rules 

 

With ColdStart scenario, we start our simulation, 

with all servers in switched-OFF state. With the arrival 

of workload requests, select server (as per Arbitrator 

logic) is switched ON. There is a setup time expend 

(Table 2) and non-zero power consumption expend 

(Table 1) to transition a server from OFF state to ON 

state. We have accounted for this transition time and 

power expends into our simulation logic.  

Summarized results from our experiments with our 

energy efficiency and interference aware approach is 

listed as follows: 

 

•  On virtualized server cluster total energy 

consumption 

•  With our “EE and interference aware” 

approach, we achieve a reduction of up to 8% 

with coldStart system and 58% with hotStart 

system compared to similar coldStart and 

hotStart scenario runs using the “default energy 

efficiency and interference oblivious” scheme  

•  On per request response times (TAVG) 

•  With our “EE and interference aware” 

approach, we achieve an improvement of at 

least 10 times when compared with the default 

energy efficiency and interference oblivious 

scheme run for both coldStart and hotStart 

scenarios 

 

Also, we have integrated DPM and DVFS control 

levers into our energy efficiency and interference aware 

approach for ColdStart scenario: 

 

•  On virtualized server cluster total energy 

consumption 

•  With our “EE, DPM and DVFS with 

interference aware” approach, we achieve a 

reduction of up to 40% on select workload 

request arrival rate scenarios when compared 

with the default energy efficiency and 

interference oblivious scheme 

•  On certain workload arrival rate scenarios, we see 

that default energy efficiency and interference 

oblivious scheme outperforms our approach  
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•  On per request response times (TAVG) 

•  With our “EE, DPM and DVFS with 

interference aware” approach, we achieve an 

improvement of at least 5 times better 

performance than with energy efficiency 

interference with DPM and DVFS interference 

oblivious scheme. 

4. DISCUSSION 

Initial results (Fig. 6) ColdStart scenario shows a 

significant improvement in per request response times 

TAVG. Lesser the response time value is termed as 

improvement. Improvement in per request response 

times is at-least 10 times (make-span or response times 

TAVG improvement) with our EE and interference aware 

approach in comparison to the default EE with 

interference oblivious approach. This clearly highlights 

the need to select the right performance centric server 

with less interference. In our setup, we find that energy 

efficient servers are also better in terms of performance 

aspect as-well. Also, we see a maximum of 8% 

(minimum 5%) reduction in server clusters’ energy 

consumption with our approach in comparison with 

interference oblivious approach Fig. 7.  

Another important aspect that shows up in our results 

is the relationship between request arrival rate and server 

cluster energy consumption and response-times. As the 

arrival rate increases, arbitrator module activates more 

servers to handle the load. Hence, we see a slight 

increase in energy consumption and power consumption 

with increase in request arrival rate. On per request 

response Time (TAVG), we see a slight drop in value with 

increase in request arrival rate. The reason is primarily 

due to the fact that with more number of activated 

servers, there is a higher probability of request getting 

serviced immediately than waiting for server to become 

available. This characteristics is common with both 

scenarios (a and b).  

With the case of HotStart scenarios, we see a similar 

improvement in both server cluster energy consumption 

and per request response times TAVG. With respect to, 

per request response-times (TAVG), (Fig. 8), an 

improvement of atleast 10 times is possible with our 

approach. Also, there is a further reduction in energy 

consumption (Fig. 9) due to the fact that energy expend 

due to server startup is avoided in this scenario. On a 

whole, we achieve a minimum of 58% (maximum of 

72%) improvement in energy consumption. The 

reasons for variations in energy consumption for 

different workload arrival rates is same as that with 

the ColdStart scenario runs.  

 

 
 

Fig. 6. ColdStart: Average request response times 
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Fig. 7. ColdStart: Energy consumption 

 

 
 

Fig. 8. HotStart: Average request response times 
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Fig. 9. HotStart: Energy Consumption 

 

 
 

Fig. 10. ColdStart with DPM and DVFS: Average request response times 

 

We have allowed the server once activated to an 

active ON state, to remain in active ON state all through 

the simulation duration in scenarios (a and b). We are 

aware of the fact that server clusters’ power consumption 

and possibly energy consumption savings could further 

be achieved by switching OFF unused servers. A quick 

look at scenario approach (c) ColdStart with DPM and 

DVFS control levers shows that the average request 

response time (TAVG) (Fig. 10), our EE interference with 

DPM and DVFS aware scheme gives atleast 5 times 

better performance than with EE interference with DPM 

and DVFS oblivious scheme. Also, energy consumption 

(Fig. 11) is reduced when compared to a pure ColdStart 

scenario (Fig. 7) on both default EE interference 

oblivious and EE interference aware approaches. Which 

is as expected with DPM and DVFS power control levers 

switching unused servers to low-power state and 

managing optimal frequency on servers in ON state.  
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Fig. 11. ColdStart with DPM and DVFS: Energy consumption 
 

We find an interesting aspect that, for workloads with 

certain arrival rates (here 126 and 284 requests/hr cases), 

energy consumption of our ColdStart EE and 

interference aware with DPM DVFS scheme consumes 

more energy than ColdStart EE and interference with 

DPM and DVFS oblivious scheme. One reason for this 

is, the setup or transition times of our best energy 

efficient and interference aware servers have higher 

setup time and/or DVFS higher frequency power 

contribution on such servers are higher. This specific 

result does highlight the fact that workload type and 

workload request arrival rate has a very good binding on 

why one should consider classical default EE 

interference with DPM and DVFS oblivious scheme vs. 

the EE interference with DPM and DVFS aware scheme 

to minimizing virtualized server clusters’ or datacenters’ 

total energy consumption.  

5. CONCLUSION 

In this study, we have considered heterogeneity with 

respect to a virtualized server cluster comprising of 

heterogeneous servers, with different set of workload 

scenarios. We have presented an energy efficiency and 

interference aware approach to reduce energy 

consumption in a virtualized server cluster or 

datacenter environment. We show that energy efficient 

interference aware mechanism reduces energy 

consumption by up to 8% in case of cold-start system 

and 58% with hot-start system compared to the default 

energy efficiency and interference oblivious system. 

With respect to per request response times (TAVG), we 

achieve an improvement of at least 10 times when 

compared with the default interference oblivious 

approach run. Also, we integrated our approach with 

DPM and DVFS control levers. Learning from this 

exercise is that, on certain runs with specific workload 

arrival rates, our EE interference with DPM and DVFS 

oblivious scheme performs better than EE interference 

with DPM and DVFS aware scheme on energy 

consumption aspect. As part of future work, we plan to 

consider workloads with composite resource needs in 

phases and work towards a generic online approach to 

predict and quantify energy expend due to interference.  
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