
Journal of Computer Science 10 (1): 143-156, 2014
ISSN: 1549-3636

© 2014 Science Publications

doi:10.3844/jcssp.2014.143.156 Published Online 10 (1) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Mohan Raj Velayudhan Kumar, Tata Research Development and Design Centre (TRDDC),

 Tata Consultancy Services Ltd., Pune, India

143 Science Publications

JCS

ENERGY EFFICIENT AND INTERFERENCE
AWARE PROVISIONING IN VIRTUALIZED

SERVER CLUSTER ENVIRONMENT

1,2Mohan Raj Velayudhan Kumar and 2Shriram Raghunathan

1Tata Research Development and Design Centre (TRDDC), Tata Consultancy Services Ltd., Pune, India
2Department of Computer Science and Engineering, BS Abdur Rahman University, Chennai, India

Received 2013-09-15, Revised 2013-09-18; Accepted 2013-11-12

ABSTRACT

IT service providers, employ server virtualization as a main building block to improve system utilization,

improve system manageability, reduce operational costs which includes energy consumption driving

economies of scale with shared resources. Virtualization enables co-locating and efficient assignments of

virtual servers within the bounds of limited number of heterogeneous physical servers, with Virtual

Machines (VM) sharing the limited physical server resources between them. Though virtualization

technologies point to the fact that each virtual server has its very own isolated environment, but in reality,

perfect isolation is not possible. Primary measure to achieve assignment efficiency is to ensure that system

resources are utilized effectively and performance of VM (and application workloads) is consistent within

the desired bounds. Interference or contention on the limited shared resources among VMs leads to

performance degradation and is referred to as performance interference. This affects (a) application Quality

of Service (QOS) and (b) server cluster or data centers’ energy-efficiency. In this work, we analyze the

performance degradation using (a) energy efficiency heterogeneity measure and (b) interference aware

measure, with the aim to reduce energy consumption in our environment. Experimental results on different

scenarios with our energy efficiency and interference aware approach shows a reduction in energy

consumption to the tune of 8 to 58% and 10× improvement in per request average response time in contrast

to a default energy efficiency and interference oblivious approach.

Keywords: Energy Efficiency, Performance Interference Aware, Server Heterogeneity Aware

1. INTRODUCTION

Main goal of a server cluster environment or Data

Centers’ (DC) is to satisfy resource needs like

processing, storage, memory, network resource

capacities from an users’ perspective; and be financially

viable from Data Center Owners’ (DCO) perspective.

DCOs employ server virtualization as one of the building

block to increase cost effectiveness. Economic benefits

from server virtualization come from higher resource

utilization, reduced maintenance and operational costs

including energy consumption. Although, advanced

hardware technology has improved the performance per

hardware dollar cost, whereas, server power efficiency or

performance per watt used has remained roughly flat

over time (Goiri et al., 2013). As a result, the electricity

consumption cost of servers in data centers will be more

than the hardware cost and has become a major

contributor to Total Cost of Ownership (TCO). Power

consumption is one of the major concern that a DCO

need to reduce. Data center power consumption has

increased 400% over the last decade (Qian and Medhi,

2011). From DC owners’ perspective, it is very

important to answer the following question: “How to

satisfy user needs (performance criteria) and still

minimize power consumption.

Mohan Raj Velayudhan Kumar and Shriram Raghunathan / Journal of Computer Science 10 (1): 143-156, 2014

144 Science Publications

JCS

 In this study, we focus on server heterogeneity and
resource contention aspects to reduce energy
consumption in a virtualized server cluster
environment or data centre.

DCOs normally have servers which heterogeneous
server types. Workloads serviced by sub-optimal servers
could be detrimental to DCO by increasing the energy
consumption and to the user by increasing the request
response-times. Each server configuration invariably
exhibits a particular performance to power characteristics.

With virtualization, many VMs can be consolidated
into a server. Though these collocated VMs are supposed
to exhibit performance isolation characteristics, but in
reality these VMs share resources like cache, network
interconnects, between them. This use of shared
resources causes contention or interference between the
collocated VMs and thereby leads to application or
service performance degradation. Due to the contention,
a collocated VM in the server could exhibit performance
degradation or this VM could degrade performance of
application hosted in the other collocated VMs. There is
a need to understand interference or resource contention
impacts with respect to application performance and
energy consumption. In this study, we have not
considered interference of VMs due to shared caches.

Here, we breifly discuss on earlier works by
researchers on (a) performance impacts due to resource
contention of VMs collocated in a server (Interference)
and (b) energy efficiency improvement of heterogeneous
server cluster environment (Heterogenity).

On Interference: Govindan et al. (2011) studied the
Low Level Cache (LLC) interference by proposing
simulated cache using synthetic cache loader
benchmarks to profile the performance of applications.
Chiang and Huang (2011) proposed TRACON, using
modeling and control theory and machine learning
techniques. Pu et al. (2010) present an analysis of
performance interference in virtualized environments with a
focus on contentions in input-output storage device usage.
Blagodurov et al. (2013) proposed an approach which
improves server utilization while meeting the SLAs of
critical workloads by prioritizing resource access using
Linux cgroup weights. Novakovic et al. (2013) proposed an
approach called DeepDive. This approach identifies VMs
with performance degradation due to resource contention
by using performance counter metrics and arriving at
interference factor by comparing the VM run with a
sandbox run of the same application. It also identifies the
exact resource types which cause the degradation and
provides options to identify and differentiate false
positives and false negatives from proper interference
occurrences. Though the authors have reported that the
overhead in creating a separate sandbox environment to

confirm occurrences of interferences is within limits, we
believe that a careful relook would be critical.
Delimitrou and Kozyrakis (2013) proposed an approach
called Paragon, which uses analytical methods
leveraging system information from the past runs. It uses
minimal training data and a collaborative filtering
technique to classify the workload with respect to
application and platform interferences in using shared
resources. Mukherjee et al. (2013) proposed a probe
based approach to identify and pin point occurrence of
interferences in an virtualized single server environment.
Moreover, this work makes an interesting point that
identifying interference using probe based approach is
accurate, when most of the above other works, at some
level use performance counters to identify occurrences of
interferences. Adoption of probe based approach in a
realistic environment is still to be tested with seemingly
high overhead to account for.

In our study, we have adopted an offline approach to

build interference degradation factor matrix and use the

value while selecting the best server to process the

workload.

On Heterogenity: Delimitrou and Kozyrakis (2013)
as part of their work called Paragon have also considered
using Netflix like collaborative filtering technique to

select the best server configuration amongst the
heterogeneous servers in sample space. Moreno et al.
(2013) proposed an approach to compute energy

efficiency and select the best server from amongst the
available heterogeneous servers in the data center. Our
work with energy efficiency is close to the work done by

Moreno. Our focus is more on to improve performance
and optimally reduce energy consumption of the entire
virtualized server cluster environment with an integrated

scheme using DPM and DVFS techniques.

We make the following contributions:

• Propose a heterogeneous energy efficient server

selection approach

• Propose an approach to account for resource

contention or interference impact on workload

performance in using collocated virtualized servers

• Integrate the approach with Dynamic Voltage

Frequency (DVFS) and Dynamic Power

Management (DPM) to achieve performance and

energy consumption optimality

The rest of the study is organized as follows. In
Section 2, we discuss important metrices used and the
proposed solution methodology. In section 3 and 4, we
discuss the results obtained. In section 5, we summarize
our work with scope for future activities.

Mohan Raj Velayudhan Kumar and Shriram Raghunathan / Journal of Computer Science 10 (1): 143-156, 2014

145 Science Publications

JCS

2. MATERIALS AND METHODS

 We briefly discuss preliminary metrics required and

approach methodology adopted in our work.

2.1. Energy Efficiency

We consider a server cluster with Servers from

amongst H heterogeneous distinct host types or

configurations. Each of these host types have unique

performance and power characteristics:

a) HT(k) is the Host type vector represented as a tuple

{[P
(i, k, j)

(util%)], MIPS(k), Cores(k)};

where k ∈ {1 .. H};

S
k
i i

th
 Server in k

th
host type; where i

∈ {1 .. Hk}; k ∈ {1 .. H}; Hk is the

total servers of host type k

util% is the CPU core utilization

Equation (1)

usedMIPS 100

TotalMIPS

×=

(1)

usedMIPS processor core MIPS used by

active run-time requests processed

by the server core

= TotalMIPS – AvailableMIPS

TotalMIPS Total processor core MIPS

= Cores(k) × MIPS(k)

AvailableMIPS free processor core MIPS

P
(i, k, j)

(util%) Power consumption at CPU util%

of server S
k
i of host type k and

frequency f
(k)

j

where k ∈ {1 .. H}; j ∈ {1 .. Fk};

Fk is the maximum frequency for

the host type k;

util% ∈ {0 .. 100}; i ∈ {1 .. H
k
};

MIPS(k) TotalMIPS of CPU of a Server of

host type k

Cores(k) number of cores of a Server of host

type k

b) Server S
k
i with the best energy efficient metric ratio

(EE) in a Server cluster with i ∈ {1 .. H
k
); k ∈ {1 .. H),

from amongst H heterogeneous host types is computed

as follows:

EE
k
i Energy Efficiency metric of

server Equation (2 and 3)

 S
k
i (i,k , j)

0%

Cores(k) MIPS(k)

P

×=

(2)

Server S
k
i with

best EE metric

= Max(EE
k
i);

 where ∀ i ∈ {1 .. Hk};

 ∀ k ∈ {1 .. H};

(3)

Reason to consider server power consumption at idle

state (cpu utilization at 0%) is to account for high

contribution of static power to the total server power

consumption. We can further extend Equation (2) to

consider power consumption at different cpu

utilization%. Considering this change would give a better

efficiency value compared to the efficiency using idle

power. But the issue with this is that cpu utilization%

change is highly dynamic and is highly dependent on

workloads. With workloads with small job-lengths,

going with cpu utilization% would be a risky with

efficiency value changing often. We did test the scenario

with EE with in-process cpu utilization% as well as EE

at cpu utilization% = 0. We could not see much of a

difference in the results between the scenarios. Hence,

we have taken a conservative approach to go with energy

efficiency using idle power consumption as in Equation

(2). Also, another point to note is that performance

degradation factor due to interference or resource

contention varies with cpu utilization.

2.2. Power Model

In this study, we consider physical server power

consumption of different server configurations at

different power states as in Table 1.

P
(i, k, j)

(0%) is the server power consumption when no
application is running in the server S

k
i, also known as

idle power (cpu utilization is 0%) of the server with host
type k and frequency f

(k)
j. Where k ∈ {1 .. H}; i ∈ {1 ..

Hk}; j ∈ {1 .. Fk}, Fk is the maximum frequency for the
host type k; Hk is servers of host type k; P

(i, k, j)
(100%) is the

server power consumption when the server’s CPU
utilization% = 100.

We use the below model to calculate server power
consumption when utilization% which is not covered in
SPEC results Equation (4) (SPEC Benchmarks, 2013):

()i,k , j i,k , j

util% util%

i,k, j i,k , j

util% util%

util% util%
P P

100

P P

− = + ∆ ×

∆ = −
 (4)

Mohan Raj Velayudhan Kumar and Shriram Raghunathan / Journal of Computer Science 10 (1): 143-156, 2014

146 Science Publications

JCS

Table 1. Physical server state power consumption (in Watts) (SPEC Workloads)
Host type k Power (1) (2) (3) (4) (5) (6) (7)

PM(i, k, j) 169 117 135 113.0 113.0 247 222.0
Pm(i, k, j) 105 86 93 41.6 42.3 67 58.4
P(i, k, j)

SETUP 169 117 135 113.0 113.0 247 222.0
P(i, k, j)

OFF 0 0 0 0.0 0.0 0 0.0

(1)HpProLiantMl110G3PentiumD930, (2) HpProLiantMl110G4Xeon3040, (3) HpProLiantMl110G5Xeon3075, (4)
IbmX3250XeonX3470, (5) IbmX3250XeonX3480 (6)IbmX3550XeonX5670, (7) IbmX3550XeonX5675

2.3. Energy Model

Our energy model accounts for power consumed

when in operational (DVFS-ACTIVE, IDLE) power

states and also non-zero power consumed in non-

operational (DPM-OFF, SETUP) power states:

S
k
i: i

th
 Server in k

th
host type; where i ∈ {1 .. Hk}; k ∈

{1 .. H}; Hk is the total servers of host type k
k

i
E : Total Energy consumed by the server:

k i,k, j i,k , j i,k , j i,k , j i,k , j

i OFF SETUP SETUP util% util%
S 0 T P T P T= × + × + ×

E: Server cluster Total Energy consumption

Equation (5):

H
k

i

i 1 k 1

Hk

E
= =

=∑ ∑ (5)

k

i
P : Total Power consumed by the server:

k

k i
i i,k , j i,k, j i,k , j

OFF SETUP util%

E
S

T T T
=

+ +

P: Server cluster Total Power consumption

Equation (6):

H
k

i

i 1 k 1

Hk

P
= =

=∑ ∑ (6)

where k ∈ {1 .. H}; j ∈ {1 .. Fk}; i ∈ {1 .. Hk}; Fk is the

maximum frequency for the host type k
i,k , j

SLEEP
P : Power consumed by server S

k
i in SLEEP mode

i,k , j

SETUP
P : Power consumed by server S

k
i in SETUP mode

i,k , j

SETUP
T : Time duration of server S

k
i in SETUP mode

i,k , j

util%
P : Power consumed by server S

k
i in BUSY or IDLE

mode; host type k and operating at a particular

CPU utilization% and frequency f
(k)

j
i,k , j

util%
T : Time duration of server S

k
i in BUSY or IDLE

mode; host type k and operating at a particular

CPU utilization% and frequency f
(k)

j

2.4. Performance Model

We use Operations Per Second (OPS) values from

SPEC result for the host type when in operational/active

power state. We consider the host type with Optimal

energy efficiency (Equation 10) as the reference host

type in arriving at the relative response time

improvement factor of a server i,k, j

util%(Rel0PS) at a particular

utilization% and frequency. RefOPS
k,j

(util%index)-OPS

consumed by the optimal PPM host type k at a particular

CPU util%index and frequency f
(k)

j. Optimal host type

server is derived using Equation 10; where k ∈ {1 .. H};

util%index ∈ {1 .. 11}; j ∈ {1.. Fk}:

TAVG: Mean request response time (in seconds

or milliseconds) for requests that
complete during the course of the trace.

OPS
k,j

(util%index): OPS consumed by a host type k at a

particular cpu util%index and frequency

f
(k)

j.
 We use cpu util%index instead of cpu

utilization% to help depict the
computations more formally

k, j

util%indexRelOPS : Relative response time improvement

factor for host type k at util%index

Equation (7)

k, j

k, j

k, j k, j

k , j

util%index

util%index

2utilindex util%index-1(n-1)x

util%index-1

OPS

RefOPS

RefOPS RefOPS

RefOPS

−

= ×

 (7)

Where util%index > 2

k, j

k, j

util%index

util%index

OPS

RefOPS
1= ×

Where util%index ∈ {1..2}

i,k, j

util%RelOPS : Relative response time improvement

factor at CPU utilization% of server S
k
i

of host type k and frequency f
(k)

j

where k ∈ {1 .. H}; j ∈ {1 .. Fk}; Fk is the maximum

frequency for the host type k; util% ∈ {0 .. 100}; i ∈ {1

.. Hk) Equation (8):

Mohan Raj Velayudhan Kumar and Shriram Raghunathan / Journal of Computer Science 10 (1): 143-156, 2014

147 Science Publications

JCS

()

i,k , j

util%

i,k, j i,k , j

util% util%

RelOPS

util% util%

100

RelOPS RelOPS

=

− +∆ ×

∆ = −

 (8)

2.5. Interference Factor Matrix

We consider a server cluster with Servers from
amongst H heterogeneous distinct host types. Each
Server has set of VMs which is determined by the
Servers’ available capacity and VMs resource demand.

We have built the performance Degradation Factor
(DF) matrix (Table 2), which tracks the performance
degradation of a VM with application app1 and another
VM with application app2, both applications running
concurrently vs. VM with say application app1 allowed
to run in standalone mode (no other VMs have apps
which would interfere with app1’s performance or
content with app1’s resource needs).

Each (row, column) cell value for e.g., a (1,1)
represents the performance degradation factor. We
follow the approach given by (Govindan et al., 2011) to
calculate Effective Degradation Factor (EDF) for the
server. We consider per request execution time TAVG as
the performance metric. Point to note here is depending
on the application workload logic, degradation factor
value for e.g., VM1→VM2 (isolated run of vm1 is
compared with a concurrent run of vm1 alongside vm2)
could be different than VM2→ VM1 (isolated run of vm2
is compared with a concurrent run of vm2 alongside vm1).

In our study, we have considered workloads (apps)
which primarily exhibit of the following resource usage
(cpu or storage or memory or network). A composite
workload characteristic with different resources being
used in phases is also a possibility. Workload phase
dynamism needs bit more detailed effort. We would
consider this as part of future work:

WEE
k
i Weighted Energy Efficiency for S

k
i with

interference performance degradation factor

accounted for Equation (9):

k

i

i, j,k

EE

EDF
= (9)

where k ∈ {1 .. H}; j ∈ {1 .. Fk}; Fk is the maximum

frequency for the host type k; i ∈ {1 .. Hk};

SEE
k
i Best energy efficient server is the server with

()k

i Max WEE= (10)

where k ∈ {1 .. H}; i ∈ {1 .. Hk}; Hk is the number of

servers in host type k.

2.6. System Architecture

Our proposed architecture’s objective is control

request response times processed in virtual machines

while minimizing energy consumption of the server

cluster. Figure 1, shows our system architecture which

comprises of the following components:

• Energy Efficiency and Interference aware Server

Sequencer

• DPM Controller

• DVFS Controller

• Arbitrator

• Monitor

2.6.1. Energy Efficiency and Interference Aware
Server Sequencer

This module specifically identifies the host type

configuration that has the best (optimal) EE
k
i ratio. We

use Equation (2) to arrive at the server’s EE
k
i ratio.

Higher the value in of a server’s SEE
k

i (or WEE
k
i

computed using Equation (9 and 10) indicates that a

application request when processed in this server can

ultimately reduce energy consumption of the virtualized

server cluster or data center and also can remediate

performance issues due to interference or shared

resource contentions.

2.6.2. DPM Controller

This module focusses on managing the servers’

power state transitions and answers the following

questions: When should the server be switched ON from

OFF state (waken up)? We follow a request batching

approach [virtual batching] to answer the first question.

The system waits for batching timeout then wakes up the

CPU to process requests. CPU could be in either OFF

before transitioned to IDLE state. This transition from

low power state to high power state (OFF IDLE, has a

time expend value T
(i, k, j)

OFF_IDLE as captured in Table 3.

Batching timeout is determined periodically by an adhoc

controller to drive the web server with the longest

response time to a set point.

We use power and energy consumption metrics

models discussed earlier to compute power and energy

consumption.

Mohan Raj Velayudhan Kumar and Shriram Raghunathan / Journal of Computer Science 10 (1): 143-156, 2014

148 Science Publications

JCS

Table 2. Performance interference degradation factor Matrix

 VM2

 Workload --

 contention scenario Cpu Storage Memory Network

VM1 Cpu a(1,1) a(1,2) a(1,3) a(1,4)

 Storage a(2,1) a(2,2) a(2,3) a(2,4)

 Memory a(3,1) a(3,2) a(3,3) a(3,4)

 Network a(4,1) a(4,2) a(4,3) a(4,4)

Table 3. Physical server sample state transition times (in seconds)
Host type k state transition time (1) (2) (3) (4) (5) (6) (7)

T(i, k, j)
OFF_IDLE 50 45 50 45 45 60 75

T(i,k,j)
IDLE_OFF 5 5 5 4 4 5 5

(1) HpProLiantMl110G3PentiumD930, (2) HpProLiantMl110G4Xeon3040, (3) HpProLiantMl110G5Xeon3075, (4)

IbmX3250XeonX3470, (5) IbmX3250XeonX3480, (6) IbmX3550XeonX5670, (7) IbmX3550XeonX5675

Fig. 1. System architecture

2.6.3. DVFS Controller

Focus of this module is to improve the response times

of requests in the system dynamically by manipulating

the cpu frequency. This controller is used when the

processor is in active or operational state either

processing a request or waiting for a request to start

processing. In our work, we start (awaken) a server at the

lowest possible frequency for the host type.

We use SPEC results to formalize our power modeling

exercise at different server cpu utilization% values. Server

CPU utilization is computed using Equation (1). Server

CPU utilization has a linear relationship with number of

VMs/requests processed by the server at that point in time

(also known as concurrency level of the server). We use

the Equation (6) to compute server power consumption at

different cpu utilization% values.

Mohan Raj Velayudhan Kumar and Shriram Raghunathan / Journal of Computer Science 10 (1): 143-156, 2014

149 Science Publications

JCS

Fig. 2. Power Consumption to CPU Utilization at highest frequency f(k)
Fk (SPEC results)

Fig. 3. OPS to Utilization at highest frequency f(k)
Fk OPSk,j (util% (SPEC results)

Fig. 4. Response time performance improvement factor (RelOPS(i, k, j)
(util%))

Mohan Raj Velayudhan Kumar and Shriram Raghunathan / Journal of Computer Science 10 (1): 143-156, 2014

150 Science Publications

JCS

Fig. 5. Timeframe governed Work load -8 hour trace (captured at 5, 15, 30, 60 min time frames) (Qian and Medhi, 2011)

Figure 2 shows the power consumption of different host

types at different cpu utilization%. Also, using SPEC

results, we propose a model to compute request response

time improvement factor (RelOPS
(i, k, j)

(util%)) due to

concurrency level (different cpu utilization%). Figure 3

depicts the relative OPS vs. cpu utilization% exhibited

by our scoped set of servers of different host types. It

clearly shows that each host type’s OPS characteristics

are unique. The model to arrive at relative response time

improvement factor is based on Equation (8). This factor

determines the relative delay imposed by the server of a

particular host type to request response times when

operating at a particular utilization% and particular

frequency. Figure 4 shows the response-time

improvement ratio at different cpu utilization% between

servers of different host types.

2.6.4. Arbitrator

Arbitrator is the crucial intelligent module which

orchestrates and controls functions of other modules in

the architecture. Web requests or workload from the

clients are redirected, based on load balancing scheme.

Monitor module collects metrics like application request

response-times, power consumption (Equation 6), energy

consumption (Equation 5), from the applications and

servers in our virtualized server cluster environment.

Arbitrator module, using the collected metrics at periodic

control time intervals and immediately after completion

of each request, identifies the best energy efficient server

(Equation 8) that could mitigate interference

performance degradation. Any new work load request, is

pushed to this server (VM in this server).

2.6.5. Monitor

 This module specifically probes the server cluster for

parameters of interest like server cpu utilization%, server

power states, server cpu processor frequency levels.

2.7. Simulation Setup

To achieve an efficient simulation that addresses

various use case scenarios (in our case these solution
schemes are discussed in the results section), the choice

of a robust simulator is essential. We have used java based

cloud simulator CloudSim (version 3) (Calheiros et al.,
2011) by enhancing and modifying components as

required for our work. In CloudSim, a cloudlet represents

a task that is submitted to a datacenter virtual machine.
We treat requests as cloudlets. We have assumed the

cloudlet job size in our simulation to be of constant

value. Service rate of these cloudlets depend primarily

on the server host type, DPM operation modes and

DVFS frequency enabled on the physical servers. A

cloud datacenter is a physical set of machines connected

by a network available to receive the virtual machines

and workload requests (cloudlets) accordingly.

In our simulation setup, we have considered a cloud

setup with non-federated datacenter scenario. We have

considered 250 physical hosts (PM) of heterogeneous
configuration, selected from amongst 7 host types in a

round-robin distribution. Characteristics of each of the

host types on power, performance, state details are

captured as in Table 1-3 and Fig. 2-4. All physical

servers are initially in OFF state. We have used 500 VM’s
from amongst 4 VM types. Each of these VM types has

different MIPS requirements from 500 to 1000 MIPS.

Mohan Raj Velayudhan Kumar and Shriram Raghunathan / Journal of Computer Science 10 (1): 143-156, 2014

151 Science Publications

JCS

Also, to study time-slot specific controls, we have

used a synthetic workload as in Fig. 5, which captures

the demand profiled every 5 min in a 480 min (8 hours)

period based on CPU demand trace. We consider 5

different time slot sizes of demand capture: 5, 15, 30 and

60 min. Based on the 5 min demand profile, the demand

for larger time slot granularity is taken to be the

maximum over all 5-min demands in that time slot.

D(t, t+�) = max{ D(t),…,D(t +�) }; where D(t, t+�)

denotes the maximum demand of �, for e.g., 5-min slot

(from t to t+5) (Qian and Medhi, 2011). We have 2092,

1134, 764, 468 total requests tracked against 5 min, 15

min, 30 min and 60 min in 8 hours demand distribution

trace. Arrival rate for 15 min workload run is done with

284 requests per time slot; 30 min workload run is with

126 requests per time slot; 45 min workload run is with

84 requests per slot; and 60 min workload run is with 52

requests per slot.

We have considered 250 physical servers and 500

virtual machines. Configuration settings of physical

servers and virtual machines follow the same logic as

captured for the grid workload.

3. RESULTS

We have used the simulation test bed described

previously.. We show the effectiveness of our solution

by contrasting:

• Our “energy-efficiency and interference aware”

approach (“EE and interference aware” approach);

with

• “Default energy-efficiency and interference
oblivious” approach (“default EE and interference
oblivious” approach)

Default approach does not have interference

degradation fitment logic and does not have the best case

energy efficiency sequencer logic.

We consider the following scenario extensions as

follows:

• With datacenter servers in the cluster being in
switch OFF state when we start our workload
processing routine-ColdStart

• The server stays in ON power state thereafter
• With datacenter servers in the cluster already in

switch ON power state-HotStart
• The server stays in ON power state thereafter

• With datacenter servers in the cluster being in

switch OFF state when we start our workload

processing routine; Adopt DPM and DVFS

performance and power consumption improvement

levers-ColdStart; with DPM and DVFS

• Server frequency, server power states are

transitioned to low power mode according to

respective DVFS and DPM rules

With ColdStart scenario, we start our simulation,

with all servers in switched-OFF state. With the arrival

of workload requests, select server (as per Arbitrator

logic) is switched ON. There is a setup time expend

(Table 2) and non-zero power consumption expend

(Table 1) to transition a server from OFF state to ON

state. We have accounted for this transition time and

power expends into our simulation logic.

Summarized results from our experiments with our

energy efficiency and interference aware approach is

listed as follows:

• On virtualized server cluster total energy

consumption

• With our “EE and interference aware”

approach, we achieve a reduction of up to 8%

with coldStart system and 58% with hotStart

system compared to similar coldStart and

hotStart scenario runs using the “default energy

efficiency and interference oblivious” scheme

• On per request response times (TAVG)

• With our “EE and interference aware”

approach, we achieve an improvement of at

least 10 times when compared with the default

energy efficiency and interference oblivious

scheme run for both coldStart and hotStart

scenarios

Also, we have integrated DPM and DVFS control

levers into our energy efficiency and interference aware

approach for ColdStart scenario:

• On virtualized server cluster total energy

consumption

• With our “EE, DPM and DVFS with

interference aware” approach, we achieve a

reduction of up to 40% on select workload

request arrival rate scenarios when compared

with the default energy efficiency and

interference oblivious scheme

• On certain workload arrival rate scenarios, we see

that default energy efficiency and interference

oblivious scheme outperforms our approach

Mohan Raj Velayudhan Kumar and Shriram Raghunathan / Journal of Computer Science 10 (1): 143-156, 2014

152 Science Publications

JCS

• On per request response times (TAVG)

• With our “EE, DPM and DVFS with

interference aware” approach, we achieve an

improvement of at least 5 times better

performance than with energy efficiency

interference with DPM and DVFS interference

oblivious scheme.

4. DISCUSSION

Initial results (Fig. 6) ColdStart scenario shows a

significant improvement in per request response times

TAVG. Lesser the response time value is termed as

improvement. Improvement in per request response

times is at-least 10 times (make-span or response times

TAVG improvement) with our EE and interference aware

approach in comparison to the default EE with

interference oblivious approach. This clearly highlights

the need to select the right performance centric server

with less interference. In our setup, we find that energy

efficient servers are also better in terms of performance

aspect as-well. Also, we see a maximum of 8%

(minimum 5%) reduction in server clusters’ energy

consumption with our approach in comparison with

interference oblivious approach Fig. 7.

Another important aspect that shows up in our results

is the relationship between request arrival rate and server

cluster energy consumption and response-times. As the

arrival rate increases, arbitrator module activates more

servers to handle the load. Hence, we see a slight

increase in energy consumption and power consumption

with increase in request arrival rate. On per request

response Time (TAVG), we see a slight drop in value with

increase in request arrival rate. The reason is primarily

due to the fact that with more number of activated

servers, there is a higher probability of request getting

serviced immediately than waiting for server to become

available. This characteristics is common with both

scenarios (a and b).

With the case of HotStart scenarios, we see a similar

improvement in both server cluster energy consumption

and per request response times TAVG. With respect to,

per request response-times (TAVG), (Fig. 8), an

improvement of atleast 10 times is possible with our

approach. Also, there is a further reduction in energy

consumption (Fig. 9) due to the fact that energy expend

due to server startup is avoided in this scenario. On a

whole, we achieve a minimum of 58% (maximum of

72%) improvement in energy consumption. The

reasons for variations in energy consumption for

different workload arrival rates is same as that with

the ColdStart scenario runs.

Fig. 6. ColdStart: Average request response times

Mohan Raj Velayudhan Kumar and Shriram Raghunathan / Journal of Computer Science 10 (1): 143-156, 2014

153 Science Publications

JCS

Fig. 7. ColdStart: Energy consumption

Fig. 8. HotStart: Average request response times

Mohan Raj Velayudhan Kumar and Shriram Raghunathan / Journal of Computer Science 10 (1): 143-156, 2014

154 Science Publications

JCS

Fig. 9. HotStart: Energy Consumption

Fig. 10. ColdStart with DPM and DVFS: Average request response times

We have allowed the server once activated to an

active ON state, to remain in active ON state all through

the simulation duration in scenarios (a and b). We are

aware of the fact that server clusters’ power consumption

and possibly energy consumption savings could further

be achieved by switching OFF unused servers. A quick

look at scenario approach (c) ColdStart with DPM and

DVFS control levers shows that the average request

response time (TAVG) (Fig. 10), our EE interference with

DPM and DVFS aware scheme gives atleast 5 times

better performance than with EE interference with DPM

and DVFS oblivious scheme. Also, energy consumption

(Fig. 11) is reduced when compared to a pure ColdStart

scenario (Fig. 7) on both default EE interference

oblivious and EE interference aware approaches. Which

is as expected with DPM and DVFS power control levers

switching unused servers to low-power state and

managing optimal frequency on servers in ON state.

Mohan Raj Velayudhan Kumar and Shriram Raghunathan / Journal of Computer Science 10 (1): 143-156, 2014

155 Science Publications

JCS

Fig. 11. ColdStart with DPM and DVFS: Energy consumption

We find an interesting aspect that, for workloads with

certain arrival rates (here 126 and 284 requests/hr cases),

energy consumption of our ColdStart EE and

interference aware with DPM DVFS scheme consumes

more energy than ColdStart EE and interference with

DPM and DVFS oblivious scheme. One reason for this

is, the setup or transition times of our best energy

efficient and interference aware servers have higher

setup time and/or DVFS higher frequency power

contribution on such servers are higher. This specific

result does highlight the fact that workload type and

workload request arrival rate has a very good binding on

why one should consider classical default EE

interference with DPM and DVFS oblivious scheme vs.

the EE interference with DPM and DVFS aware scheme

to minimizing virtualized server clusters’ or datacenters’

total energy consumption.

5. CONCLUSION

In this study, we have considered heterogeneity with

respect to a virtualized server cluster comprising of

heterogeneous servers, with different set of workload

scenarios. We have presented an energy efficiency and

interference aware approach to reduce energy

consumption in a virtualized server cluster or

datacenter environment. We show that energy efficient

interference aware mechanism reduces energy

consumption by up to 8% in case of cold-start system

and 58% with hot-start system compared to the default

energy efficiency and interference oblivious system.

With respect to per request response times (TAVG), we

achieve an improvement of at least 10 times when

compared with the default interference oblivious

approach run. Also, we integrated our approach with

DPM and DVFS control levers. Learning from this

exercise is that, on certain runs with specific workload

arrival rates, our EE interference with DPM and DVFS

oblivious scheme performs better than EE interference

with DPM and DVFS aware scheme on energy

consumption aspect. As part of future work, we plan to

consider workloads with composite resource needs in

phases and work towards a generic online approach to

predict and quantify energy expend due to interference.

6. ACKNOWLEDGEMENT

We would like to thank Dinesh Mavaluru for his

valuable help.

7. REFERENCES

Blagodurov, S., D. Gmach, F.M. Arlitt, Y. Chen and C.

Hyser, 2013. Maximizing server utilization while

meeting critical SLAs via weight-based collocation

management. Proceedings of the IFIP/IEEE

Symposium on Integrated Network and Service

Management (INSM’ 13), Canada, pp: 277-285.

Mohan Raj Velayudhan Kumar and Shriram Raghunathan / Journal of Computer Science 10 (1): 143-156, 2014

156 Science Publications

JCS

Calheiros, R.N., R. Ranjan, A. Beloglazov, C.A.F. De

Rose and R. Buyya, 2011. CloudSim: A toolkit for

modeling and simulation of cloud computing

environments and evaluation of resource

provisioning algorithms. Software: Practice Exp.,

41: 23-50. DOI: 10.1002/spe.995

Chiang, R.C. and H.H. Huang, 2011. TRACON:

Interference-aware scheduling for data-intensive

applications in virtualized environments.

Proceedings of the International Conference for

High Performance Computing, Networking, Storage

and Analysis, (Sc’ 11), ACM Press, New York,

USA. DOI: 10.1145/2063384.2063447

Delimitrou, C. and C. Kozyrakis, 2013. Paragon: QoS-

Aware scheduling for heterogeneous datacenters.

Proceedings of the 8th International Conference on

Architectural Support for Programming Languages

and Operating Systems, Mar. 16-20, ACM Press,

Houston, TX, USA., pp: 77-88. DOI:

10.1145/2451116.2451125

Goiri, I., W. Katsak, K. Ley, T.D. Nguyen and R.

Bianchini, 2013. Parasol and GreenSwitch:

Managing datacenters powered by renewable

energy. Proceedings of the 8th International

Conference on Architectural Support for

Programming Languages and Operating Systems,

Mar. 16-20, ACM Press, Houston, TX, USA., pp:

51-64. DOI: 10.1145/2451116.2451123

Govindan, S., J. Liu, A. Kansal and A.

Sivasubramanian, 2011. Cuanta: Quantifying

effects of shared on-chip resource interference for

consolidated virtual machines. Proceedings of the

2nd ACM Symposium on Cloud Computing, Oct.

26-28, ACM Press, Cascais, Portugal. DOI:

10.1145/2038916.2038938

Moreno, I.S., R. Yang, J. Xu and T. Wo, 2013. Improved

energy-efficiency in cloud datacenters with

interference-aware virtual machine placement.

Proceedings of the IEEE 11th International

Symposium on Autonomous Decentralized Systems,

Mar. 6-8, IEEE Xplore Press, Mexico City, Mexico,

pp: 1-8. DOI: 10.1109/ISADS.2013.6513411

Mukherjee, J., D. Krishnamurthy, J. Rolia and C. Hyser,

2013. Resource contention detection and

management for consolidated workloads.

Proceedings of the IFIP/IEEE International

Symposium on Integrated Network Management,

May 27-31, IEEE Xplore Press, Ghent, pp: 294-302.

Novakovic, D., N. Vasic, S. Novakovic, D. Kostic and R.

Bianchini, 2013. DeepDive: Transparently

identifying and managing performance interference

in virtualized environments. Proceedings of the

USENIX Annual Technical Conference, Jun. 26-28,

San Jose, CA.

Pu, X., L. Liu, Y. Mei, S. Sivathanu and Y. Koh, 2010.

Understanding performance interference of I/O

workload in virtualized cloud environments.

Proceedings of the IEEE 3rd International

Conference on Cloud Computing, Jul. 5-10, IEEE

Xplore Press, Miami, FL, pp: 51-58. DOI:

10.1109/CLOUD.2010.65

Qian, H. and D. Medhi, 2011. Server operational cost

optimization for cloud computing service providers

over a time horizon. Proceedings of the 11th USENIX

Conference on Hot Topics in Management of Internet,

Cloud and Enterprise Networks and Services, (Hot-

ICE’ 11), ACM Press, CA, USA., pp: 4-4.

SPEC Benchmarks, 2013. Standard Performance

Evaluation Corporation.

