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Energy Efficient Approximate Arithmetic for Error
Resilient Neuromorphic Computing

Yongtae Kim, Yong Zhang, and Peng Li

Abstract— This brief proposes a novel design scheme for approximate

adders and comparators to significantly reduce energy consumption while
maintaining a very low error rate. The considerably improved error

rate and critical path delay stem from the employed carry prediction

technique that leverages the information from less significant input bits

in a parallel manner. The proposed designs have been adopted in a
VLSI-based neuromorphic character recognition chip with unsupervised

learning implemented on chip. The approximation errors of the proposed

arithmetic units have been shown to have negligible impact on the training
process while archiving good energy efficiency.

Index Terms— Approximate adder and comparator, carry skip,

energy efficiency, error resilience, neuromorphic computing.

I. INTRODUCTION

Approximate computing allows remarkable power and energy

savings by relaxing computation accuracy while achieving an

acceptable processing quality [1]. The key observation is that

many applications, such as digital signal processing (DSP) and

neuromorphic systems, have inherent error resilience and hence 100%

precision in computation is not required. Particularly, the core of

many DSP and neuromorphic applications lies in processing specific

kernel functions. For example, spiking neural networks heavily

perform the leaky integrate-and-fire (LIF) operation to mimic neuron

behavior [2]. Obviously, adders are one primary component for

building these arithmetic kernel functions. In addition, comparators

are indispensable to determine firing activities in the LIF operation

of digital neurons. To this end, it is particularly attractive to design

approximate arithmetic units for considerable energy saving in

neuromorphic computing.

The approximate adder of [3] leverages a limited number of less

significant input bits for carry speculation to increase the overall

speed. The critical drawback of this approach is the use of a

considerable number of carry generators, which gives rise to large

area and high power dissipation. The error tolerant adder I (ETAI)

[4] and the lower part OR adder (LOA) [5] are split into an

accurate part for higher output bits and an inaccurate part, which

utilizes a modified XOR (ETAI) or an OR function (LOA) to

approximately compute the remaining lower bits. These approaches

are limited by high error rates. The segment-based approximate

adders are presented in [6] and [7], which are named the error

tolerant adder II (ETAII) and the variable latency carry selection

adder 1 (VLCSA-1), respectively. The carry for each k-bit segment

is predicted from the lower k-bit inputs to reduce the delay of carry
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Fig. 1. Block diagram of the proposed approximate adder.

propagation. Similarly, the accuracy-configurable adder (ACA) [8]

adopts a number of 2k-bit sub-adders (SAs) and leverages only the k

most significant bit (MSB) outputs of the SAs to achieve approximate

additions. Unfortunately, these adders have high error rates for carry

generation, particularly for two’s complement signed additions of

small numbers. In addition, the use of carry selection in VLCSA-1

and middle SAs in ACA results in high-power consumption and area

overhead. In [9], the approximation errors for less significant bits

are reduced using conditional bounding logic with dithering, which

causes area and power overheads. Recently, a general model for

approximate array-based arthritic units is presented in [10].

In this brief, we propose a novel approximate adder with a parallel

carry-skip scheme. While an approximate adder design has been

presented in our preliminary work [11], in this brief, we extend our

approximate scheme to comparator design and extensively compare

our designs with a large number of existing accurate and approximate

adders and comparators, and show the large improvements in area,

power, energy, timing, and error rate brought by our design technique.

The performance of our approximate units for neurocomputing appli-

cations is demonstrated based upon a VLSI-based spiking neural net-

work with over a thousand silicon neurons for character recognition.

II. PROPOSED APPROXIMATE ADDER

Our main focuses in the design of approximate arithmetic units

include a significant reduction of the error rate by the carry-skip

scheme enabling carry speculation in a parallel manner and its appli-

cation to the adder and comparator design. In particular, the carry for

each k-bit segment is predicted by only the lower kv bits and ignoring

the rest n −kv bits to reduce the long carry propagation delay. While

our preliminary work leverages only 2k (i.e., v = 2) bits for the

carry prediction [11], we generalize the parallel carry-skip scheme by

introducing an additional variable v . We adopt the same mathematical

notations with [11] to express equations throughout this brief.

Fig. 1 shows the block diagram of the proposed approximate n-bit

adder, which is divided into several k-bit sized blocks. Each block

contains a k-bit SA and a k-bit sub-carry generator (SCG), which

create a partial summation and partial carry-out signal, respectively.

Note that the SAs can be implemented by any accurate adders,

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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such as ripple-carry adder (RCA) and carry-lookahead adder (CLA).

At the beginning of an addition operation, all the SCGs simultane-

ously create the partial carry-out signals (. . ., Ĉ i+1
out , Ĉ i

out, Ĉ i−1
out , . . .)

using only their k-bit inputs. Then, the SAs’ carry-in signals

(. . ., Ĉ i+1
in , Ĉ i

in, Ĉ i−1
in , . . .) are also concurrently speculated from

the v (≥2) preceding k-bit SCGs with a multiplexer. Finally, the SAs

work with the speculated carries and produce the partial summations

(. . ., Si+1
apx,k−1:0

, Si
apx,k−1:0

, Si−1
apx,k−1:0

, . . .). When all the propagate

signals of the (i − 1)th block are true (i.e., P i−1
k−1:0 = 1), the carry-

out of a larger number of preceding blocks are required for more

accurate carry prediction for the (i)th SA. To obtain the (i)th carry-

in Ĉ i
in, the multiplexer selects Ĉu

out, where i − v ≤ u < i if any

propagate signal of the (u)th block is false. If all the propagate

signals of the v preceding blocks are true, it chooses Ĉ i−v
out . As in

Fig. 1, the multiplexer selection logic investigates the group propagate

signals (. . ., P i+1
k−1:0 , P i

k−1:0, P i−1
k−1:0, . . .) generated from the SCGs

and decides the carry-in signal of each SA through the multiplexer.

The carry prediction is incorrect if all the propagate signals of

more than v consecutive blocks are true and a carry is generated in

the preceding block, making a carry chain of a length greater than kv .

Assuming that the adder inputs A and B are bitwise independent, then

the propagate and generate signals are bitwise independent as well.

We denote the event that the carry-in prediction of the (i)th SA is

mistaken due to a carry propagation path of a length between kv and

k(v + 1)−1 by E i
cin

E i
cin = P i−1

k−1:0
P i−2

k−1:0
· · · P i−v

k−1:0
Gi−v−1

k−1:0
. (1)

The proposed adder produces an error if any error event E i
cin occurs

for any of the SAs except for the v + 1 least significant ones. Thus,

the error rate is expressed by

Perr(n, k, v) = P

(
E

⌈ n
k ⌉−1

cin + E
⌈ n

k ⌉−2

cin + · · · + Ev+2
cin + Ev+1

cin

)
. (2)

By the inclusion–exclusion principle and the independence of the

error events [11], the overall error rate of the proposed adder under

random inputs is

Perr(n, k, v)

=

m−v−1∑

r=1

(−1)r+1

⎛
⎜⎜⎜⎝

∑

v<i1<···<ir <m,
∀q:iq −iq−1>v

P
(
E

ir
cin

)
· · · P

(
E

i1
cin

)

⎞
⎟⎟⎟⎠

=

m−v−1∑

r=1

(−1)r+1

⎛
⎜⎜⎝

∑

v<i1<···<ir <m,
∀q:iq −iq−1>v

(
1

2kv+1

(
1 −

1

2k

))r

⎞
⎟⎟⎠

where m = ⌈n/k⌉. (3)

III. PROPOSED APPROXIMATE COMPARATOR

Basically, a comparator determines the larger of two inputs A and

B, and can be implemented using a subtraction. After subtracting

two inputs A − B, a comparison is readily done by checking the sign

bit (i.e., MSB) of the result. In short, A < B when the MSB = 1,

otherwise A ≥ B. Note that subtraction is achieved by addition of

two’s complement (i.e., A − B = A + B + 1). Thus, we exploit the

same idea of the parallel carry-skip scheme to improve the timing

and energy efficiency of the comparator.

Fig. 2 illustrates the block diagram of the proposed approximate

comparator. The n-bit comparator consists of a 1-bit full adder (FA)

and v (≥2) k-bit SCGs that are identical to the ones in the proposed

adder. It is worth noting that the proposed approximate comparator

exploits only kv + 1 MSBs of the n-bit inputs, resulting in area

Fig. 2. Block diagram of the proposed approximate comparator.

and power reductions. Importantly, the input B is inverted to achieve

subtraction operation. Since implementing two’s complement neces-

sitates an additional incrementor, we employ one’s complement to

further reduce area and energy with sacrificing an error rate, but

still achieving a very low error rate. The FA generates the sign bit

Sapx,n−1 (MSB output) of the subtraction between the two inputs

by leveraging the speculated carry-in signal Ĉin,n−1 and the MSB of

the two inputs. The speculated carry-in signal is obtained in the same

parallel way by the v SCGs and multiplexer selection logic. When the

two inputs have the different signs (i.e., An−1 ⊕ Bn−1 = 1), the

comparison result is readily obtained by the input MSB without

the FA. Therefore, the output multiplexer selects the MSB of the

input An−1 if the signs of two inputs are different from each other,

otherwise, it chooses the FA output Sapx,n−1.

The proposed comparator fails when the signs of the inputs are

the same and the carry prediction for the FA is incorrect. The carry

speculation is incorrect when all the propagate signals in the v SCGs

used for carry prediction are true and a carry generated from the

n − kv − 1 least significant bits (LSBs). It is important to note that,

we should consider all the propagate signals of the n − kv − 1 LSBs

are true since the proposed comparator adopts one’s complement,

instead of two’s complement, for the subtraction. We assume that the

inputs A and B are bitwise independent. Then, the event of the carry

prediction error for the FA is given by

Ecin,n−1 = Pv−1
k−1:0

Pv−2
k−1:0

· · · P0
k−1:0

(
Gn−kv−2:0 + Pn−kv−2:0

)
.

(4)

Then, the overall comparator error rate by the carry-skip scheme

under random inputs is

Perr,cmp(n, k, v) = P(An−1 ⊕ Bn−1)P(Ecin,n−1)

=
1

2kv+2

(
1 +

1

2n−kv−1

)
. (5)

IV. SIMULATION RESULTS

The proposed approximate arithmetic units were designed in

Verilog hardware description language and synthesized with a com-

mercial 90-nm CMOS technology and standard cell library using

Synopsys Design Compiler. In addition, the gate-level netlists were

translated into transistor-level to perform HSPICE simulations.

Table I summarizes the performance comparison. While our

preliminary brief [11] includes six previously presented approxi-

mate adder, which are Lu’s Adder (LUA) [3], LOA [5], ETAI [4],

ETAII [6], VLCSA-1 [7], and ACA [8], we also consider dither

approximate adder (DAA) [9] in this brief. The same configurations

as in [11] are set to these adders. Collectively, these adders are

compared in terms of energy-delay-product (EDP), energy-delay-area

product (EDAP), as well as more basic metrics such as area, delay,

power, energy, error rate, mean absolute error (MAE), and mean

squared error (MSE). Importantly, we use the energy-delay-error rate

product (EDERP) to jointly evaluate the energy and error rate of

an approximate arithmetic design. While the RCA is more energy

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:36:30 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE I

COMPARISON WITH OTHER 16-bit ADDERS

TABLE II

COMPARISON WITH OTHER 16-bit COMPARATORS

and area efficient than CLA, over 2× longer delay degrades its EDP

and EDAP. The carry prediction approach in LUA makes the errors

to be able to occur in higher significant bits, which leads to the

highest MAE and MSE among the approximate adders. The error

rate of ETAI (8-8) reaches 90%, which may limit its practical use,

due to lack of carry prediction for the accurate part (i.e., the carry is

fixed to zero) and worsens EDERP remarkably. On the other hand,

because of the simple carry speculation scheme of LOA (8-8), which

is achieved by ANDing two MSBs of each operand of the inaccurate

part, the error rate is improved to 43.75%, which is still fairly large.

The proposed dithering control for the inaccurate part in DAA (8-8)

further improves the error rate as well as the MAE/MSE with

area and power overheads. Fortunately, ETAI (8-8), LOA (8-8), and

DAA (8-8) have fairly low MAE and MSE despite of the high error

rates since approximation errors are concentrated on lower significant

bits (i.e., inaccurate parts). Among the adders having the same

error rate of 5.86%, the ETAII is the most efficient in terms of all

the metrics. As a result of the use of carry selection in VLCSA-1,

it dissipates the highest power, which is up to 3.9× more than

the others and incurs EDP, EDAP, and EDERP degradations. The

proposed adder is 2.4× faster and 3.3× EDP efficient than RCA.

The carry-skip scheme allows it to have the lowest error rate of

0.18% and EDERP of 14 among the approximate adders. Our design

is comparable to ACA with respect to area, delay, power, and energy

while having much lower error rate, MAE, MSE, and EDERP because

of carry-skip.

From the best of our knowledge, unfortunately, no approximate

comparator is presented to date. So, we compare the proposed

16-bit comparator with k = 4, v = 2 to the two accurate comparators,

which are ripple carry based comparators (RCC) and carry lookahead

based comparators, respectively. The implemented results are sum-

marized in Table II. The proposed comparator demonstrates the best

performance in all the aspects except that it consumes more power

than RCC. It is up to 18× more efficient than the other designs in

terms of EDP and EDAP with an extremely low error rate (< 0.1%),

which is well suitable for error tolerant applications.

V. APPLICATION OF THE PROPOSED ARITHMETIC UNITS IN

NEUROMORPHIC COMPUTING

We use the neuromorphic application and its evaluation environ-

ment described in [11] to systematically examine the impacts of adder

and comparator errors of several designs. While Kim et al. [11] take

into account only adders, in this brief, we include comparators

for the LIF operations to further reduce the energy dissipation.

In addition, we extend the application to have over a thou-

sand of silicon neurons for character recognition to accommodate

32 × 32 pixel input patterns.

A. Impacts of Approximation Errors on the

Neuromorphic Application

Fig. 3 shows the input character patterns A to Z for the training and

the receptive fields of all excitatory output neurons after the training

with the various adders. It is worth noting that the accurate 16-bit

comparator (RCC) is used for the digital LIF neurons to compare the

threshold voltage with the membrane potentials to generate neurons’

firing activities. The corresponding error rates and MAEs during the

learning process are listed in Table III. The receptive fields with the

accurate adders (RCA and CLA) as in Fig. 3(b) are trained well

to respond to the inputs from A to Z . This means that every letter

appears once at least in the receptive fields. The results in Fig. 3(b)

serves as a golden reference for the approximate adders. The proposed

adder has an error rate of merely 0.18% with an MAE of 0.03 for

the LIF computations during the training. Fortunately, because of the

error resilience of the neuromorphic system, Fig. 3(c) shows that the

receptive fields are trained successfully to recognize all the letters

and the approximation errors have negligible effect on the training

process of the character recognition system. We also test the various

approximate adders with the network. All these approximate adders

have an error rate of more than 13% during the learning process.

As seen in Fig. 3(d)–(j), the approximate adders produce a set of

receptive fields with random synaptic weights. These high error rates

give rise to failures in training the network since the approximation

errors cause the neurons to either fire randomly or cease to fire.

In particular, the two’s complement signed additions of small numbers

frequently occur during leaky operations. In this case, the LUA,

ETAII, VLCSA-1, and ACA produce many wrong carry predictions,

incurring an error rate of more than 14% and a high MAE over 200

during the learning process and unacceptable performance degrada-

tion. This result suggests the carry speculation with only 4-bit of less

significant inputs in these 16-bit adders might be insufficient for this

application.
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Fig. 3. (a) Input character patterns (32 × 32 pixel) and receptive fields with 16-bit. (b) Accurate adders. (c) Proposed approximate adder. (d) LUA.
(e) LOA (8-8). (f) ETAI (8-8). (g) ETAII. (h) VLCSA-1. (i) ACA. (j) DAA (8-8). (k) LOA (13-3). (l) ETAI (15-1). (m) DAA (11-5). (n) Accurate adder with
proposed comparator. (o) Proposed adder with proposed comparator.

TABLE III

ERROR RATES AND MAES OF VARIOUS ADDERS

DURING TRAINING PROCESS

To shed more light on this, we increase the accuracy of LOA,

ETAI, and DAA by expanding the accurate part of the adder at the

cost of increased delay and energy dissipation. When the LOA, ETAI,

and DAA have 13-, 15-, and 11-bit accurate parts, respectively, the

network starts to perform better. Although the LOA (13-3) still has

a relatively high error rate of 60.95%, the corresponding receptive

fields as in Fig. 3(k) are trained such that all alphabets except for

D, E , H , I , and K can be identified. Due to the expansion of the

accurate part of the adder, the errors now concentrate more on LSBs

and the MAE is reduced from 11.82 to 1.59. Similarly, the inclusion

of a 15-bit accurate part in ETAI (15-1) allows the network to be

trained for all letters except for B and I as illustrated in Fig. 3(l).

The DAA (11-5) achieves a relatively low MAE of 0.59 because of

the dithering scheme, however, its high error rate hinders the network

from training all the letters as seen in Fig. 3(m). Clearly, our design

outperforms all other approximate adders.

Next, to see the impacts of the errors of the proposed approximate

comparator on the neuromorphic computing, we replace the accurate

comparator by the proposed approximate one with k = 4 and

v = 2 in the neuron circuits. Fig. 3(n) is the receptive fields with

the accurate adder and the proposed approximate comparator. The

proposed comparator allows the trained network to recognize all the

letters by its virtue of the extremely low error rate of 0.45% and

the error resilience of neuromorphic computing. Additionally, when

trained with both our adder and comparator, the network also creates

good receptive fields that correspond to all letters as in Fig. 3(o).

B. Energy Efficiency of LIF Neuron With Adders

and Comparators in Scaled Supply

Fig. 4 plots the energy comparison of one LIF operation with the

neurons with the different adders under scaled power supply levels.

The energies are normalized against the neuron with RCA and RCC.

Neurons with LUA, ETAII, or VLCSA-1 can operate at a supply

voltage of 1 V. The ETAII is the most energy efficient adder design

while having a much larger error rate than the proposed adder and
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IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2015 2737

Fig. 4. Normalized energies of one digital LIF neuron with various adders with supply voltage scaling.

leading to poor learning performance [Fig. 3(g)]. Regretfully, the

high power consumption from the carry selection in VLCSA-1 is an

obstacle to attain energy efficiency. At the supply of 1.05 V, the LUA,

ETAI, and proposed adder show the similar energy efficiency and the

proposed adder consumes ∼8% and 6% less energy than ACA and

DAA (8-8), respectively. Our design achieves the energy savings of up

to 36.6% and 27.9% over RCA and CLA, respectively, in the scaled

supply. It can be seen that our adder has the most competitive energy

and error tradeoff among all these designs. We also compare a neuron

leveraging both the proposed adder and comparator to the others.

This neuron allows the supply voltage to decrease to 0.8 V. They

enable the neuron to be 1.97×, 2.73×, and 3.11× energy efficient

over the neuron adopting the proposed adder, CLA and RCA with the

accurate comparator RCC, respectively, in the scaled supply without

performance degradation [Fig. 3(o)]. Our comparator also provides

a great energy saving with very low error rate for the neuromorphic

computing.

VI. CONCLUSION

Novel approximate adder and comparator designs to considerably

reduce energy consumption with a very moderate error rate has

been presented for energy efficient neuromorphic VLSI systems. The

proposed adder is 2.4× faster and 43% more energy efficient over

traditional adders and our comparator achieves up to 71% energy

saving over the conventional counterparts. We have proven that the

approximation errors of our adder and comparator affect the training

performance negligibly under an unsupervised learning-based VLSI

neuromorphic character recognition chip. Moreover, the proposed

approximate units improve energy efficiencies of up to 3.11× over

traditional adders and comparators for the digital LIF operation

with scaled supply voltage levels. Accordingly, the proposed design

approach is applicable to energy efficient neuromorphic computing.
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