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Abstract—Specialized hardware accelerators can significantly
improve the performance and power efficiency of compute
systems. In this paper, we focus on hardware accelerators
for graph analytics applications and propose a configurable
architecture template that is specifically optimized for iterative
vertex-centric graph applications with irregular access patterns
and asymmetric convergence. The proposed architecture ad-
dresses the limitations of the existing multi-core CPU and GPU
architectures for these types of applications. The SystemC-based
template we provide can be customized easily for different
vertex-centric applications by inserting application-level data
structures and functions. After that, a cycle-accurate simulator
and RTL can be generated to model the target hardware
accelerators. In our experiments, we study several graph-parallel
applications, and show that the hardware accelerators generated
by our template can outperform a 24 core high end server CPU
system by up to 3x in terms of performance. We also estimate
the area requirement and power consumption of these hardware
accelerators through physical-aware logic synthesis, and show
up to 65x better power consumption with significantly smaller
area.

I. INTRODUCTION

With the end of Dennard scaling, computing systems are

becoming increasingly power limited. New transistor tech-

nologies allow packing more logic in a chip, but only a small

fraction of available logic can be used at a given time due

to power limitations, a phenomenon known as dark silicon.

This allows adding custom hardware accelerators targeted for

specific tasks and that are significantly more efficient in terms

of power and performance. It has been shown that acceler-

ator rich architectures can lead to significant improvements

through customizations for specific tasks.

Another motivation for customization is the increasing

prevalence of cloud computing and large server farms that

execute a small set of workloads repeatedly. Significant power

and performance gains can be achieved by customizing these

servers for the frequently executed workloads.

Many existing works focus on accelerating compute-

intensive tasks using programmable hardware (e.g. GPUs,

CPU vector extensions such as SSE and AVX) or custom

hardware. A common characteristic of these applications is

the regularity and the abundance of data and thread level

parallelism. In this paper, we focus on a certain class of graph

analytics applications with irregular execution patterns that

make them hard to accelerate using existing platforms.

Specifically, we focus on iterative graph-parallel applica-

tions with asynchronous execution and asymmetric conver-

gence. It has been shown in [1] that many graph analytics

applications have such execution patterns, and can be repre-

sented with a vertex-centric abstraction model. Using this ab-

straction model, the authors have proposed a software frame-

work called GraphLab to make it easy for domain experts to

develop parallel and distributed programs. While the domain

experts provide the application-level data structures and serial

operations per vertex, the underlying software framework

handles system-related complexities including scheduling,

communication, synchronization, and reliability.

Our objective in this paper is similar, but targeted for

architecture and hardware development of graph analytics

accelerators. We propose a customizable architecture template

that is specifically optimized for the target class of graph

applications. We implement the common operations (such

as memory access, communication, synchronization, etc.)

in the proposed template. The architects/designers can plug

in application-level data structures and operations into this

template and generate the hardware implementation easily.

This enables exploration and implementation of hardware

accelerators for a large class of graph applications.

Our main contributions in this paper can be summarized

as follows:

• We propose an architecture specifically optimized for

vertex-centric, iterative, graph-parallel applications with

irregular access patterns and asymmetric convergence. Our

architecture supports asynchronous execution, which is

known to be more work-efficient than bulk-synchronous

execution [1, 2, 3].

• We provide cycle-accurate and synthesizable SystemC

models that implement the proposed architecture template.

It is possible to plug in application-level data structures

and operations to easily generate hardware accelerators for

different graph applications.

• We provide an experimental study that compares the

area, power, and performance of the generated hardware

accelerators with CPU implementations. Our area and

power values are obtained through physical-aware RTL

synthesis of the functional blocks using industrial 22nm

libraries.

The rest of the paper is organized as follows. Section II

discusses the limitations of the existing CPU and GPU

architectures for irregular graph applications. The abstrac-

tion model and the proposed architecture are described in

Sections III and IV, respectively. Our experimental setup

is outlined in Section V, and our experimental results are

reported in Section VI.
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II. IRREGULAR GRAPH APPLICATIONS

Common characteristics of iterative graph-parallel applica-

tions have been studied recently [1, 2], and the desired

architectural features have been identified [3] as follows.

Asymmetric Convergence: The number of iterations each

vertex needs to be processed before convergence may vary

significantly for graph analytics applications [1]. For example,

it was observed that the PageRank algorithm converges in 77

iterations when executed on the soc-LiveJournal benchmark,

where 51% of the vertices converge in 36 iterations, and

99.7% converge in 50 iterations [3]. It was also shown that

maintaining the set of active vertices for PageRank improves

work efficiency by almost twice compared to processing all

vertices in every iteration.

Asynchronous Execution: A bulk-synchronous iterative al-

gorithm has well-defined iterations that are separated by

barriers. In the context of graph algorithms, when a vertex

needs to access the data of its neighbors, it accesses the

data computed in the previous iteration. In contrast, there

are no well defined iterations in an asynchronous algorithm,

and the vertices can access the latest data computed by

their neighbors. It was shown that asynchronous execution

converges much faster than synchronous execution for many

graph applications [1]. For example, the PageRank application

is shown to converge twice faster in the asynchronous mode

[4].

Although more work efficient, an asynchronous implemen-

tation may run slower because of potential synchronization

overheads. Race conditions are possible because the data

updated by a vertex may be read simultaneously by its

neighbors. This is in contrast to synchronous execution, where

the readers and writers are guaranteed to be separated by

barriers. Furthermore, a more strict sequential consistency

property1 may be needed for some algorithms to achieve

faster convergence (e.g. Alternating Least Squares) or to

guarantee correctness (e.g. Gibbs Sampling) [1].

Memory Access Bottlenecks: It is known that memory ac-

cess can be the main bottleneck for graph analytics workloads

[5]. The main reason is that a small amount of computation is

typically performed per vertex and edge, but a large number

of vertices and edges need to be processed for large graphs. A

vertex/edge processed is unlikely to be processed again before

most of the other vertices/edges are processed, which leads to

poor temporal locality. Furthermore, for real-life unstructured

graphs, the data of neighboring vertices are unlikely to be

in the same cache lines, leading to poor spatial locality. As

a result, each access to vertex or edge data can incur long

latency to the system memory.

Load Imbalance: Vertex degrees of real graphs (e.g. social

networks) follow the Power law distribution [2, 6, 7], where a

small percent of vertices cover most of the edges. Assigning

1A parallel execution is defined to be sequentially consistent if and only if
it is guaranteed to be equivalent to an execution where vertices are processed
in some sequential order.

vertices to threads statically can lead to severe load imbal-

ances due to the scale-free(Power Law degree distribution)

nature of the real graphs.

A. Limitations of General Purpose CPUs

A recent performance study has shown that even the best

serial and parallel implementations of graph algorithms ex-

ecute instructions on an IvyBridge server at surprisingly

low IPCs (most below 1.0 and many below 0.5) [8]. The

authors concluded for graph applications that 1) memory

latency is the main performance bottleneck, 2) low memory

level parallelism (MLP) leads to under-utilization of the

DRAM bandwidth, and 3) overall performance generally

scales linearly with memory bandwidth consumption because

of overlapped access latencies.

For a single OOO core, the maximum number of outstand-

ing memory requests is bounded by the number of miss-

status holding registers (MSHRs), which is equal to 10 for

an IvyBridge core. On the other hand, for a DRAM with

90ns latency, 64GB/s bandwidth, and 64B access granularity,

we need to have at least 90 outstanding memory requests

to fully utilize the available DRAM bandwidth. In contrast,

the authors of [8] have shown that most graph processing

workloads sustain far less than 10 outstanding memory re-

quests per core due to instruction window size limitations.

Furthermore, they showed that simply increasing the number

of hardware threads per core through simultaneous multi-

threading (SMT) is not sufficient to improve MLP (and hence

performance) substantially. More threads necessitate more

hardware resources (e.g. registers) and increase cache misses,

synchronization overheads, and load imbalance penalties.

Using multiple cores can allow better bandwidth utilization

but reduces the energy efficiency of computation by increas-

ing the number of stalled cores. The main problem here is

that general purpose CPU architectures rely on caches to hide

long memory latencies, assuming that most workloads have

reasonable data locality. However, this is not the case for

graph analytics applications.

Furthermore, multi-core CPU architectures incur synchro-

nization overheads in the asynchronous mode of execution.

For example, it has been shown that the Graphlab im-

plementation of PageRank slows down by more than an

order of magnitude on a multi-core system when sequential

consistency property is enabled [3]. Even without sequential

consistency, the computation throughput (measured as the

number of edges processed per second) of asynchronous

execution has been shown to be about 50% lower than

synchronous execution in the same study. As a result, the

work efficiency advantages of asynchronous execution do not

always translate to lower execution times on today’s multi-

core systems.

B. Limitations of Throughput Architectures

Throughput-oriented architectures have three key features:

simple cores, extensive multi-threading, and single-instruction

multiple-data (SIMD) execution [9]. Mainstream GPUs today
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are such throughput architectures. They consist of multiple

streaming processors (SMs), each of which is capable of

executing many threads. Threads are organized into warps

(or wavefronts), where execution within a warp happens in

a SIMD fashion. GPUs hide long memory access laten-

cies by scheduling thousands of threads. However, iterative

graph algorithms require synchronization and atomic access

to common data structures. Efficient global synchronization

among thousands of threads is not supported in today’s GPUs,

and may require separate kernel invocations (hence frequent

communications with the host). It has been shown that the

amount of interaction between GPU and CPU is an order of

magnitude larger for irregular graph applications compared

to regular applications [10].

Due to asymmetric convergence, the set of active vertices

can change significantly during execution. Statically assigning

vertices to GPU threads leads to under-utilization of compute

resources. Furthermore, it is hard to implement an efficient

data structure that keeps track of the active vertices, because

many threads need to write to it after every vertex update.

Asynchronous execution requires fine-grain synchroniza-

tion between neighboring vertices, which is not well-suited

for GPU architectures due to expensive locking mechanisms

among thousands of threads. Typical GPU implementations of

graph algorithms use the synchronous model and cannot take

advantage of the work efficiency of asynchronous execution.

The SIMD nature of GPU execution leads to both con-

trol and memory divergence due to irregularity of graph

applications. For example, a scale-free graph can have some

vertices connected to thousands or millions of edges, while

other vertices are connected to only tens of edges. Assigning

vertices to GPU threads can lead to severe load imbalances

within warps. For example, a recent performance study has

shown that the warp utilization ratio is less than 25% for

irregular graph applications [10].

Similarly, the memory access patterns are irregular for

unstructured graphs. In contrast, GPUs achieve their peak

memory bandwidth only when accesses are coalesced. Fre-

quent random memory accesses in graph applications lead to

under-utilization of faster shared memories [10], uncoalesced

global memory accesses, bank conflicts [11], DRAM latency

divergence within warps [12], and hence under-utilization of

the available memory bandwidth. A simulation-based perfor-

mance study on irregular GPU kernels has shown that only

less than 16% of the GPU cycles are fully utilized in the graph

applications studied, and the biggest performance bottlenecks

are load/store unit pipeline stalls and memory access latencies

[13].

III. GRAPH-PARALLEL ABSTRACTION

There have been several graph frameworks proposed in the

last few years to make it easy to develop parallel and dis-

tributed software for graph-parallel applications. Some exam-

ples are Pregel [14], GraphLab [1], Giraph [15], CombBLAS

[16], SociLite [17], and Galois [18]. The readers can refer

to [19] for an extensive comparison of these frameworks.

PageRank(Input graph: (V, E))

1. for each unconverged vertex v ∈V do:

2. sum = 0 // gather init()

3. for each vertex u for which (u → v) ∈ E

4. sum = sum+ ru
du

// gather edge()

5. rnew
v = (1−α)

|V | +α · sum // apply()

6. doScatter = |rnew
v − rv|> ε // apply()

7. rv = rnew
v // apply()

8. if doScatter then

9. for each vertex w for which (v → w) ∈ E

10. activate w // scatter edge()

Figure 1: Pseudo-code of the PageRank algorithm

In this paper, we focus on the vertex-centric (“think like

a vertex”) abstraction model that consists of Gather-Apply-

Scatter (GAS) functions as in GraphLab. In this model,

the users need to define basic data structures corresponding

to each vertex/edge and implement serial functions for the

following operations:

• Gather: Collect and accumulate data from the neighboring

vertices and edges.

• Apply: Perform the main computation for the input vertex

using the Gather results.

• Scatter: Distribute the vertex data computed in Apply to

neighbors. Determine whether to schedule the neighboring

vertices for future execution.

The GraphLab software framework enables asynchronous

execution with sequential consistency. It also keeps track

of the set of active vertices to avoid processing converged

vertices unnecessarily. We have chosen the GraphLab ab-

straction model because many graph analytics applications

can be naturally represented by this model, and there have

been ongoing efforts to map emerging workloads to it.

The exact programming interface for our architecture tem-

plate is not included in this paper due to page limitations.

However, it will be published in the future in another publica-

tion. The application specific data structures and functions in

the programming interface are clearly separated from the ar-

chitecture template implementation. The PageRank algorithm

is given in Figure 1 as an example. To implement PageRank

on our template, a user can define the data structure associated

with a vertex as a pair of fixed-point values, corresponding

to 1) one over vertex degree (1/dv) and 2) vertex rank (rv).

Then, the user needs to fill in the pre-defined functions

corresponding to different GAS operations, as shown in the

comments of Figure 1. For example, gather edge function

consists of a simple multiply-add operation (line 4), while

the scatter edge function sets a predicate parameter based

on the result of apply function to indicate if the neighboring

vertex needs to be activated (line 10).

All application-specific data structures and functions are

defined in plain C language, and are plugged into our ar-

chitecture template. The template automatically removes the

hardware corresponding to empty data structures and unused
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features. As an example, the application-specific part of our

PageRank implementation is about 20 lines of C code, while

the common architecture template is more than 25,000 lines

of SystemC code, and not visible to the user.

If the objective is architecture simulation, the users can

specify the latency and throughput of each GAS function.

RTL can also be generated for each GAS function through

High-Level Synthesis (HLS). All other operations involving

memory access, synchronization, communication, etc. are

implemented in the provided architecture templates, and they

are parameterizable based on application requirements.

IV. PROPOSED ARCHITECTURE

We propose a templatized architecture that can perform the

operations defined in Section III and that is specifically opti-

mized for graph-parallel applications that have the execution

patterns outlined in Section II. Its main features can be

summarized as follows:

1) Tens of vertices and hundreds of edges are processed

simultaneously to achieve high levels of memory-level

parallelism. This is done by maintaining partial states for

multiple vertices and edges while waiting for responses to

long-latency memory requests (Sections IV-A and IV-C).

2) Scale-free graphs are handled through dynamic load bal-

ancing. For example, hundreds of edge states can be

assigned to a single high-degree vertex or can be dis-

tributed to multiple low-degree vertices during execution

(Sections IV-A and IV-C).

3) Synchronization between concurrently processed vertices

and edges is done in the Sync Unit (SYU) module,

which is specifically designed for graph processing (Sec-

tion IV-D). This module ensures sequential consistency

with negligible performance overhead. Furthermore, it

works in a distributed fashion without a centralized bot-

tleneck (Section IV-H).

4) The set of active (not-yet-converged) vertices is main-

tained by the Active List Manager (ALM) module (Sec-

tion IV-E). This module enables simultaneous high-

throughput reads and writes from/to the distributed Active

List (AL) data structure without the need for expensive

locking mechanisms.

5) The memory subsystem is optimized for sparse graph data

structures (Section IV-G).

The proposed accelerator is loosely-coupled with the host

processor and it is connected to the system DRAM. It is

assumed that the host processor will populate the graph data

in DRAM, and send a start signal to the accelerator. Once the

accelerator finishes computation, it will send a signal back to

the host.

Figure 2 illustrates the proposed high-level architecture for

a single accelerator unit (AU). For simplicity of presentation,

we will first focus on the execution of a single AU, and

then describe how to combine multiple AUs to achieve higher

performance.

The Active List (AL) contains the set of vertices that

Gather

Unit

Apply

Unit

Scat ter

Unit

Sync

Unit

Runt ime

Act ive 

List  Mgr

Memory Request  Handler

Memory Interface

VertexInfo

Cache
VertexData

Cache

EdgeInfo

Buffer

EdgeData

Cache

Act iveList

Cache

System Memory (DRAM)

Figure 2: Single Accelerator Unit (AU) connected to the

system DRAM. For clarity of the figure, not all connections

between the blocks are shown.

need to be processed. The execution begins with Active List

Manager (ALM) extracting vertices from AL, and sending

them to Runtime (RT). RT controls how many vertices can

be processed at a given time based on the resource availability

in the rest of the system. If there are enough resources,

RT starts the execution of a vertex by sending it to the

Sync Unit (SYU), which is responsible for the sequential

consistency between the vertices that are being executed

concurrently in the system. SYU assigns a rank to each vertex,

and sends it to the Gather Unit (GU). GU loads the data

associated with each vertex. Then it iterates over all incoming

edges of a vertex, and accumulates the data specified by the

application. After the Gather operations are finished for a

vertex, the data associated with it is sent to the Apply Unit

(APU), where the main computation for the vertex is typically

performed. After that, the data computed in APU is sent to

the Scatter Unit (SCU) to be distributed to the neighbors

based on application specifications. SCU is also responsible

for scheduling neighbors for future execution if necessary.

At any given time, there are typically tens of vertices and

hundreds of edges being processed by GU and SCU. All

data accesses with potential race conditions must go through

SYU to ensure that all vertices and edges are processed in

a sequentially consistent way. Furthermore, SYU and ALM

coordinate together to make sure that there are no duplications

and unnecessary additions to AL.

The details of each block are described in the following

subsections.

A. Gather Unit

The Gather Unit (GU) implements the Gather Program for

each vertex v. Collecting and accumulating data from neigh-

bors requires several memory load operations, each of which

can have long latency to the system memory. For this reason,

we propose a latency tolerant architecture for the GU, where

many vertices and edges are processed concurrently, and
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partial states are stored locally. Let gv denote the number

of vertices and ge denote the number of edges that can be

processed concurrently in GU . In this case, GU needs to store

gv partial vertex states and ge partial edge states. These values

need to be set based on the application data structures, access

locality, and the latency to the system memory.

The limited local storage available in GU is shared among

all concurrently processing vertices. In the GU microarchitec-

ture we propose, a credit based mechanism is used to assign

the available edge slots dynamically to multiple vertices.

The vertices that are supposed to execute logically before

others (see Section IV-D) are given higher priority during

this assignment. For example, it is possible for a high-priority

and high-degree vertex to be assigned all available edge slots.

It is also possible for multiple low-degree vertices to share

the available storage. These decisions are done dynamically

based on vertex degrees and vertex priorities.

B. Apply Unit

The Apply Unit (APU) is the module that performs compu-

tation for each vertex using the data obtained in the Gather

State. The user defined Apply function operates on the data

received from Gather Unit. There is no access to the system

memory. The computation in this stage is typically pipelined

over multiple cycles so that different vertices can be processed

at different pipeline stages.

C. Scatter Unit

Scatter Unit (SCU) implements the Scatter Program for each

vertex v. The application specific Scatter functions determine

how to distribute the updated data of v to its neighbors.

Similar to GU, multiple vertices and edges are processed in

parallel to hide memory access latencies, and a credit-based

mechanism dynamically assigns local storage to vertices.

For each out-neighbor u of vertex v, the application-

specific function also determines whether v should activate

u (i.e. schedule u for future execution) or not. An activate

message is sent from SCU to SYU for each out-neighbor of

v with two potential purposes: 1) to schedule the neighbor

for future execution, and 2) to prevent WAR hazards. Even

if the neighboring vertex u is not supposed to be activated,

an activate message with false flag is sent to SYU for the

purpose of preventing hazards. SCU does not write the vertex

data of v or the data of the edge between u and v until an

acknowledgement message is received from SYU. If SYU

detects a WAR hazard, the acknowledgement message is not

sent back to SCU until the WAR hazard is resolved.

D. Sync Unit

The Sync Unit (SYU) is the critical module that allows race-

free and sequentially consistent execution of all vertices in

the proposed architecture. SYU is in charge of coordination

between vertices such that read-after-write (RAW) and write-

after-read (WAR) dependencies are respected and no redun-

dant activation occurs. The high level microarchitecture of

SYU is illustrated in Figure 3.

CAM RAW
detector

NVD
request

assign
rank

gather
done

new
vtx

scatter
done

activation
request CAM WAR

detector

activation
filter

vid rank state stalled reqs

activation
ack

��� ��

������

activation
request

NVD
request

Figure 3: High level microarchitecture of SYU

The basic idea to ensure sequential consistency is to assign

a unique rank value to each vertex before it begins execution.

The rank values are increased monotonically so that the

vertices that start execution earlier have lower ranks and

higher priorities. We use the edge consistency model [1],

which implements sequential consistency by enforcing order-

ing between adjacent vertices, because a vertex is allowed

to update only its own data and the data of edges connected

to it. We briefly describe the basic operations in the SYU

microarchitecture below.

Maintain vertex states: Once a new vertex is received

from Runtime, it is assigned a unique rank, and stored in

a table, which contains all vertices currently being executed

in the AU. The row corresponding to vertex v contains its ID,

rank, execution state, and all stalled requests for v (see the

paragraphs below). The execution state of v is also updated

when gather-done or scatter-done message is received.

Maintain RAW ordering: Consider an edge e : u → v where

rank(u) < rank(v), i.e. the execution of u should (logically)

happen before v. Sequential consistency dictates that v should

not read the data of vertex u or edge e before u updates them.

As shown in Figure 3, the neighboring vertex data (NVD)

requests from Gather Unit (GU) go through SYU to ensure

this ordering.

Assume that GU sends an NVD request for vertex u while

processing edge u → v. Once SYU receives this request, a

small content addressable memory (CAM) is used to check

if u is in the SYU table. If so, its rank is compared with

the rank of vertex v. A RAW dependency is detected iff

rank(u)< rank(v). In that case, index v is stored in the row

corresponding to u, and the request is stalled until u finishes

execution2. If u is not found in CAM or if rank(u)> rank(v),
then the NVQ request is sent out to the memory interface.

Maintain WAR ordering: Consider edge u → v. There is a

potential WAR dependency between u and v iff rank(u) >
rank(v). To maintain WAR ordering, the Scatter Unit (SCU)

sends an activation message to SYU corresponding to each

2There can be multiple stalled requests for vertex u from different vertices.
The row corresponding to u stores all such requests. When u finishes its
execution, the stalled requests are released in consecutive cycles.
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edge e : u → v, and waits for acknowledgement before it

writes data associated with e or u. The WAR detection

and prevention mechanism is similar to the RAW-related

mechanism described above.

Avoid Unnecessary Activations: An activation message

received from SCU contains a flag indicating whether the

target vertex should be activated or not. Consider an activation

message corresponding to edge u → v with a true flag. This

implies vertex v should be added to the Active List (AL)

for future execution. However, if vertices u and v are being

executed concurrently, activation of v may be unnecessary

depending on the vertex ranks. Specifically, if rank(u) <
rank(v), sequential consistency mechanisms guarantee that

vertex v will access the data most recently updated by vertex

u. So, it is unnecessary to schedule v for future execution

again. SYU filters out such unnecessary activations before

passing the activation requests to the Active List Manager.

Each task above is implemented as a separate pipeline

in SYU. Despite the interdependencies between different

pipelines, our implementation ensures high-throughput pro-

cessing of requests so that SYU does not become the per-

formance bottleneck. Note that the CAM structure in SYU

is guaranteed not to overflow because the total number of

vertices concurrently executed in the system is limited and

controlled by the Runtime module. The low-level implemen-

tation details are omitted due to page limitations.

E. Active List Manager

The Active List (AL) stores the set of vertices that need

to be executed in the future. The initial AL is application-

dependent and is part of the input data. Since the AL can

potentially contain all vertices in the input graph, it needs

to be stored in the system memory. As explained before, the

application-specific convergence condition is checked in SCU

to determine which vertices to schedule for future execution,

while the unnecessary activations are filtered out in SYU. The

Active List Manager (ALM) is responsible for the following

tasks: 1) Extract vertices from AL, and send them to Runtime

for execution. 2) Receive new activation requests from SYU,

and add them to AL while avoiding duplications.

For storage and data access efficiency, the AL consists

of two data structures: 1) A bit vector where each bit

corresponds to the presence or absence of a vertex in AL. 2)

A queue of bit vector indices where each index corresponds

to a 256-bit segment of the bit vector.

For the purpose of extracting new vertices for execution,

ALM reads the next bit vector index from the AL queue, and

loads the corresponding 256-bit segment of the bit vector.

Then, it starts sending the vertices that has set bits in the bit

vector to Runtime for execution.

When ALM receives an activation request for vertex v,

it first checks whether the bit corresponding to v is locally

stored in ALM. If so, it simply sets that bit locally. Other-

wise, it sends the request to the AL memory unit. Special

care needs to be taken to handle in-flight bit vectors and

vertex indices. Specifically, when a vertex index is sent to

Runtime, it also needs to be registered with Sync Unit, and

an acknowledgment needs to be received before removing the

corresponding bit from the local storage of ALM. Otherwise,

an incoming activation request for the same vertex may fail

to detect that the vertex is already being executed. Similarly,

the in-flight bit vectors between ALM and AL memory need

to be handled with care to avoid adding duplicate vertices to

AL.

Similar to SYU, there are multiple pipelines being pro-

cessed concurrently. The microarchitecture of ALM ensures

that the dependencies between these pipelines do not cause

race conditions. Furthermore, each pipeline can operate at full

throughput regardless of the inter-pipeline dependencies.

F. Runtime

The Runtime (RT) module is in charge of monitoring avail-

able resources in AU and scheduling new vertex executions.

It reads new vertices from ALM, and sends them to SYU

when it detects that there are available resources. It is also

responsible for detecting termination condition and sending

out completion signal when there are no in-flight or executing

vertices and AL is empty. RT is a simple module consisting

of two counters to keep track of the number of vertices in

Gather and Scatter stages.

G. Memory Subsystem

There are different data structures that need to be accessed

when a vertex program is executed. In this paper, we assume

that the popular Compressed Sparse Row (CSR) format is

used to store the input graph topology. In this format, indices

of the edges connected to each vertex are stored contiguously

in an array, which is denoted as EdgeInfo (EI) in this paper.

The offsets to this array are stored in a separate array denoted

as VertexInfo (VI). Specifically, the indices of the edges

connected to vertex v are stored in EI within the semi-open

range [V I[v],V I[v+1]). In addition, application specific data

structures can be defined per vertex and edge, which are

denoted as Vertex Data (VD) and EdgeData (ED) in this

paper. As explained in Section 4.5, the Active List (AL) also

needs to be stored in main memory.

In the proposed architecture, we define a custom cache

corresponding to each graph object type as shown in Figure 2.

The access patterns for different object types can vary signif-

icantly. For example, EI accesses tend to have good spatial

locality because of contiguous storage of indices. On the other

hand, VD and ED accesses typically have poor temporal and

spatial locality for unstructured graphs due to the random

nature of accesses to neighbors’ data. The individual cache

parameters are customizable in our templatized architecture,

and they can be determined based on the specific application

requirements.

H. Multiple Accelerator Units

As described before, a single accelerator unit (AU) can pro-

cess hundreds of vertices and edges concurrently. However,

the throughput can be improved further by replicating AUs

as shown in Figure 4. In this paper, we focus on fine-grain
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Figure 4: Multiple Accelerator Units with a crossbar

parallelism by tightly integrating a small number of AUs and

statically assigning vertices and edges to AUs based on their

indices. The memory subsystem is also partitioned according

to this assignment in a multi-bank fashion. For k AUs, the

partitioning is done based on the bits [8..8+ log2 k) of the

vertex and edge index values.

Assume vertex v and edge e are assigned to AUv and

AUe, respectively. In this context, we distinguish local and

global memory accesses as follows. If a data object associated

with vertex v (edge e) can be accessed by only AUv (AUe),

we define it as a local data structure. VertexInfo (VI) and

EdgeInfo (EI) are such data structures, and they are accessed

through the Local Memory Request Handler (MRH) as shown

in Figure 4. Similarly, if a data object can be accessed by

multiple AUs, it needs to be accessed through Global MRH

of the corresponding AU. VertexData (VD), EdgeData (ED),

and ActiveList (AL) are such data structures. Since SYU and

ALM modules control memory accesses for VD and AL,

respectively, they are connected to the corresponding blocks

of the Global MRH.

For example if the GU in AU 0 needs to access the data of

a neighboring vertex that is assigned to bank 1, the request is

sent to the SYU in AU 1. This SYU checks for RAW hazards,

and then forwards the request to the Global MRH in the same

AU. When the data response is ready, it is sent back to the

GU in AU 0 through the crossbar network.

Although not shown in Figure 4 for clarity, all data caches

are connected to a single memory interface for the system

DRAM, in a similar way as shown in Figure 2.

When multiple AUs are concurrently running, additional

synchronization mechanisms are needed. There are two light-

weight modules with minimal processing requirements as

outlined below.

Global Rank Counter (GRC): As described in Sec-

tion IV-D, sequential consistency is implemented by assigning

monotonically increasing unique ranks to vertices. When

multiple AUs are involved, monotonicity is achieved by a

global rank counter (GRC) that sends an increment signal

Table I: Parameters used for Accelerators Constructed
Gather Unit Scatter Unit Cache

# AUs # vtxs # edges # vtxs # edges size

PR 4 32 128 16 128 9.9 KB
SSSP 4 32 4 16 128 8.9 KB
LBP 4 16 64 16 64 34.8 KB
SGD 4 16 64 16 64 9.6 KB

to all SYUs whenever an SYU assigns a new rank. The

uniqueness of ranks is ensured by concatenating the AU ID

to the least significant bit of the original ranks. Although not

shown in Figure 4, GRC is connected to the SYU of each

AU.

Global Termination Detector (GTD): The Runtime (RT) of

each AU is responsible for detecting termination condition for

that AU. When multiple AUs are involved, GTD collects the

termination signals from individual RTs, and determines the

termination condition of the whole system. GTD is respon-

sible for notifying the host processor that the computation is

finished.

Note that GRC and GTD are the only centralized modules

in a multi-AU system. Both implement very simple operations

that are not in the critical path for performance. Hence,

the execution happens in a distributed fashion without any

centralized bottleneck.

V. EXPERIMENTAL SETUP

Using the proposed architecture template, we generated ac-

celerators for 4 applications (outlined in Section V-A), and

compared with a state-of-the-art IvyBridge server system.

Details of the execution environments are as follows:

• CPU: This is the baseline against which we compare

our accelerators. The system is composed of two sockets.

Each socket has 12 cores. Each core has private L1 and L2

caches, and the L3 cache is shared by cores on the same

socket. Total cache capacity is 768KB, 3MB and 30MB

for L1, L2 and L3 respectively. Total DRAM capacity

of the system is 132GB. Software is implemented in

OpenMP/C++. Applications are either hand optimized, or

reused from existing benchmark suites. Each application

is compiled using gcc 4.9.1 version with -O3 flag enabled.

When needed, we set the NUMA policy to divide the

memory allocation for an application to two different

sockets on the system to maximize the memory bandwidth

utilization. The applications in our experiments cannot

effectively utilize the vector extensions of the CPU due

to the reasons explained in Section II-B.

• ACC: This is the accelerator generated by the proposed

architecture template for each application. The architec-

tural parameters are customized per application. The main

parameters are listed in Table I. Observe that 4 Accelerator

Units (AUs) are used for all applications. The number of

vertices and edges concurrently processed in each AU are

also listed for the Gather and Scatter Units. Finally, the

total cache storage in the memory subsystem of each AU

is listed in the last column.

As discussed in Section II-B, GPUs are not well-suited
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for irregular graph applications. There are several existing

works that have compared GPU performance with CPUs.

For example, it is reported that a GPU implementation of

Stochastic Gradient Descent (SGD) performs as good as 14

cores on a 40-core CPU system [20]. For Single-Source

Shortest Path (SSSP) problem, it is reported that an efficient

serial implementation can outperform highly parallel GPU

implementations for high-diameter or scale-free graphs [21].

A GPU-based sparse matrix-vector multiplication implemen-

tation of PageRank has been proposed recently [22], where 5x

speed-up is observed with respect to a 4-core CPU. However,

this work ignores the work-efficiency advantages of asyn-

chronous execution and asymmetric convergence (Section II).

It has been shown that a synchronous implementation can be

up to 3x less work efficient compared to an implementation

that keeps track of active vertices and performs asynchronous

computation [3].

A. Graph Applications

In order to test our framework, we have selected widely used

graph applications from different domains, such as machine

learning, computer vision, and data mining, which are briefly

described below.

PageRank (PR): It is an important graph application used

to order web pages according to their importance. The pseudo

code of the algorithm is given in Figure 1. As a baseline, we

use the multi-core CPU implementation from the Berkeley

GAP Benchmarks [23]. We extended the existing implemen-

tation to improve convergence behavior by adding a bit vector

to keep track of active vertices. In our ACC implementation,

the PageRank (PR) value of a vertex and 1/out degree of a

vertex is stored as vertex data. In a vertex program execution,

the current vertex collects and accumulates the PR values

from its neighbors and updates its own PR value.

Loopy Belief Propagation (LBP): It is a well-known image

stitching algorithm that works on a grid graph. Each vertex

in the graph represents a pixel of a given image. More

specifically, each vertex has a belief vector where each entry

represents the probability of the corresponding label for the

vertex. The following 3 stages are performed for each vertex:

1) The messages from neighbors are accumulated. 2) The

belief of the vertex is updated based on the accumulated

value. 3) A new message is generated using min convolution

and sent to each neighboring vertex. The CPU implementation

uses a synchronized execution model. Specifically, a ”2-

coloring” scheme is implemented, where the vertices with

the same color are executed in parallel, avoiding the need

for locks. Our ACC implementation is similar to GraphLab,

where edges store the messages in both directions and vertices

keep belief values. Initially, a vertex program visits all inci-

dent edges of the vertex and calculates the log-sum (product)

of all incoming messages. Then, the vertex updates the belief

value of its own. Finally, for each incident edge of this vertex,

the outgoing message values are updated.

Stochastic Gradient Descent (SGD): It is an iterative ma-

chine learning algorithm used in recommender systems. SGD

operates on a bipartite graph, and tries to estimate a feature

vector for both user and item vertices of the graph. The dot

product of a user and item vector is expected to give the

estimated rating of the user for that item. We used the DSGD

algorithm [24] as the baseline CPU implementation because

it is shown to be the most efficient implementation of SGD

in [19].

Single Source Shortest Path (SSSP) As a baseline CPU

implementation, we used the SSSP implementation from

the Berkeley GAP benchmarks [23]. Special bucket-based

data structures are used in that implementation to achieve

high parallel performance. In our accelerator implementation,

distance of a vertex to a source node is stored as vertex data.

If the distance value of a vertex is updated, it sends a message

to its neighbors. Each edge is assigned a unit weight in the

input data that we use in our experiments.

B. Power, Performance, and Area Estimation

1) Methodology for CPU

We used the time measurement function calls that exist

in the OpenMP library. To calculate the energy and power

consumption of the native system, we used Running Average

Power Limit (RAPL) [25], which provides energy measure-

ments for core, uncore and DRAM by allowing us to read

MSR registers. The baseline CPU system uses DDR3 as the

system memory. For fair power comparisons with accelera-

tors, we estimated DDR4 power consumption separately from

the CPU system with DRAMSim2 [26]. For that purpose,

we generated DDR4 access traces that result in the same

bandwidth as DDR3 of the CPU system and then applied

them to DRAMSim2 with a DDR4 device model.

2) Methodology for Accelerator Compute Blocks

We used a commercial high-level synthesis (HLS) tool to

generate RTL from our SystemC-based performance models

in order to estimate area, performance and power for each

block. HLS was run for each application on five main blocks

of the accelerator unit: Gather, Scatter, Apply, Sync and

ALM. Then, the generated RTL was run through a commer-

cial physical-aware logic synthesis tool to confirm absence of

timing violations and to measure area and power at the gate-

level. We used 22nm technology library for standard cells

and metal layers and a 1GHz clock frequency. Significantly

large arrays (about 1Kb and larger) were implemented using

synthesizable latch-based register files (RF). For the crossbar

block, we estimated the wire length of interconnects between

all the blocks in the accelerator unit based on an approximate

floorplan and the area of the blocks. We estimated area

and power for the crossbar using the wire length, routing

resources and physical parameters of the metal layers.

Most of the SystemC template-related functions were mod-

eled at cycle-accurate level to provide accurate performance

estimates. Application-specific functions, such as scatter,

gather and apply, were pipelined using the pipelining feature

of the HLS tool. We were able to achieve a throughput of

1 function call per cycle for every user function except the

Gather function of SGD, which has throughput of 1/4 due to
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Table II: Datasets used in our experiments.

Application Dataset # Vert. # Edges

PageRank
SSSP
(Directed)

wg 916K 5.1M
pk 1.6M 30M
lj 4.8M 69M
g24 16.8M 268M
g25 33.5M 536M
g26 67M 1000M

LBP
(Undirected)

1M 1M 2M
4M 4M 8M
9M 9M 18M

SGD
(Undirected)

1M 9.7K 1M
10M 80K 10M

significantly more computation done per vertex. The latencies

were also one except for the Apply function of PageRank,

Scatter function of LBP, and the Gather function of SGD.

Their latencies are 3, 6, and 4 cycles, respectively.

The latency/throughput values for user functions are back-

annotated to the original SystemC model for performance

measurements. For power measurements, we used a hybrid

SystemC-Verilog simulation methodology, where RTL for the

block of interest and annotated SystemC models for the rest

of the blocks were used to generate power traces. During

simulation, we captured switching activity for all inputs and

sequential elements of the RTL block in SAIF format. Then,

we used a commercial power analysis tool that takes the

SAIF file as input and produces power values for the given

switching activity file.

3) Methodology for Memory Subsystem

The accelerator memory subsystem is composed of internal

memories such as caches and light-weight load/store queues,

and DRAM. We estimate the power and area of internal

memories using Cacti 6.5 [27]. Since Cacti only supports

down to 32nm technology, we apply three different scale

factors to convert them to 22nm technology. For area, we

used the scaling factor 0.5 based on [28, 29]. For dynamic

power, we used the scaling factor 0.569 as in [30]. Finally,

for the leakage power, we used the scaling factor 0.8 as in

[31]. In order to estimate dynamic power consumption, we

first compute the dynamic energy consumption by measuring

access count of each memory component and then multi-

plying it by the energy per access provided by Cacti. For

example, we collect energy per access through Cacti for a

cache and run simulation to get the access count of the cache.

Then, we multiply them together to estimate the dynamic

energy consumption of the cache. For leakage energy, since

leakage current is always consumed as long as power is turned

on, we simply multiply the total execution time by leakage

power. By summing up the dynamic and leakage energy,

we can compute the total energy consumption. Total power

consumption is simply computed by dividing total energy

with total execution time. DRAM power is computed using

DRAMSim2[26] with a DDR4 memory model.

C. Datasets

We tested each application with several datasets, either taken

from existing graph datasets or created synthetically. For
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Figure 5: Execution time comparisons. The y-axis is the

speed-up of the proposed accelerators with respect to multi-

core execution.

SSSP and PageRank applications, we selected 3 different di-

rected graphs from the SNAP datasets [32]: WebGoogle(wg),

soc-Pokec(pk), and soc-LiveJournal(lj). We generated three

large graphs using Graph500 [33] with 16, 32, and 67 millions

vertices. For LBP, we synthetically generated three different

graphs using GraphLab’s synthetic image generator [1]. Each

image has 4 different colors, and hence, there are 4 different

possible labels for each pixel. Images generated for LBP

tests include 1000x1000, 2000x2000, and 3000x3000 pixels

(vertices). For the SGD application, we selected two different

movie datasets from MovieLens [34]. The first movie dataset

(1M) includes approximately 1 million ratings and the sec-

ond one (10M) includes approximately 10 million ratings.

Table II shows the detailed description of each dataset with

its respective properties.

VI. EXPERIMENTAL RESULTS

In this section, we present our experimental results in terms

of execution time, power and area. We provide results for 17

different test cases, where each test case is an application-

dataset pair.

A. CPU and Accelerator Comparison

1) Execution Time and Throughput

As mentioned in Section V, we used a 24-core server

system as our baseline for these experiments. We used

identical convergence conditions for the CPU and accelerator

implementations so that the execution time comparisons make

sense. In this section, we report the performance results in

terms of total execution times (Figure 5) and throughput

values (Figure 6). Throughput is defined as the number of

edges processed per second. Note that throughput is a raw

performance metric, because it does not take into account the

convergence behavior. As shown in [3], an implementation

can have higher throughput, but worse execution time, espe-

cially if the properties described in Section 2 are not taken

into account.

PageRank is one of the best examples of an iterative, con-

verging graph application, which benefits from asynchronous

execution as shown in [1]. Although the baseline CPU
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Figure 6: Throughput comparisons. The y-axis is the ACC

throughput divided by the CPU throughput.

implementation has some asynchronous execution support,

its vertex scheduling is not asynchronous 3. Observe that the

performance benefits of our accelerators are higher when the

execution time metric is considered (Figure 5) compared to

the raw throughput metric alone (Figure 6). This shows the

importance of the asynchronous mode support in our archi-

tectures. Compared to the 24-core system, our accelerators

have better or equivalent execution times in 4 out of 6 test

cases4. Compared to 12 or fewer cores, the speed-up observed

is in the range of 2x to 20x.

For the LBP application, observe that our throughput values

are comparable to the throughput of 12 cores. However,

when the total execution time is considered, our accelerator

is between 2.5x and 3x faster than 24-cores. We believe the

reason for this is the sequential consistency support provided

in our accelerators. It was shown in [1] that LBP-like

applications have much better convergence behavior when

sequential consistency is enabled. However, as shown in [3],

implementing sequential consistency on a CPU can slow

down the execution by up to an order of magnitude due to

extra locking overheads.

For SGD, our accelerators perform better than a 24-core

CPU in terms of both execution time and throughput metrics.

The reason is the large number of arithmetic operations

performed per vertex, which is done more efficiently with

custom hardware.

SSSP is the only application where our accelerators do

not outperform 24-core performance. The baseline CPU im-

plementation is highly optimized with special data structures

that cannot be modeled as a vertex-centric program alone.

As future work, such data structures can be added to our

accelerator templates. The performance of our accelerators

is similar to the performance of 12-core CPU. However, as

will be shown in Section VI-A2, our accelerators consume

significantly less power than 12 cores.

3Fully asynchronous multi-core implementation would require more syn-
chronization, which would lead to worse execution times.

4The remaining two test cases are smaller, and CPU has better LLC
utilization for these cases. We would also expect better performance if our
accelerators were connected to an LLC instead of directly to DRAM.
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Figure 7: Power consumption comparisons. The y-axis is the

CPU power divided by the ACC power.

2) Power Efficiency

Power consumption of our accelerators is dominated by

the DDR4 power, which is around 3W for all test cases.

This is about 8x larger than the power consumed by the

rest of the system, including all accelerator units and cache

structures. Other studies have also observed that accelerator

power is dominated by DRAM access [35]. However, for

CPU executions, core+uncore power consumption is much

larger than the projected DDR4 power values.

Figure 7 shows the power consumption of the baseline

CPU with respect to our accelerators. Note that the CPU

power includes core, uncore, and the projected DDR4 power

values. The accelerator power includes all accelerator units,

caches, and DDR4. Observe that our accelerators have up to

65x better power efficiency compared to the CPU system.

Most importantly, even if our SSSP accelerator does not

perform as fast as 24 cores (Section VI-A1), we observe

about 64x lower power for most of the SSSP test cases.

B. Area and Power Analysis of Accelerator

In this subsection, we provide the detailed power and area

breakdown of accelerator units and cache units. As stated

in Section V-A, different applications have different com-

putational requirements. As shown in Tables III and IV,

area and power consumption of individual blocks depend on

the application. For example, for PageRank and SGD the

gather unit occupies the most area while the scatter unit

takes most of the area for LBP. Beside computational units,

depending on the application requirements, different basic

blocks in the accelerator unit can occupy different areas.

For example, LBP and SGD both implement support for

sequential consistency. Their synchronization unit occupies

a larger area than PageRank and SSSP.

Beside computational units, cache components also depend

on the data structures that are used in the application defini-

tion (see Section IV-G for the acronyms used for different

data structures). Tables V and VI show the details for

each cache unit. The data structure that has the maximum

amount of storage has generally the highest amount of power

consumption and area. For example, when we consider the

175175



Table III: Power Breakdown of Accelerator Units(in W)

Pagerank LBP SGD SSSP

Power % Power % Power % Power %

gather 0.029 33 0.045 23 0.438 80 0.008 13

scatter 0.015 16 0.066 34 0.012 2 0.022 39

apply 0.011 12 0.006 3 0.007 1 0.001 2

sync 0.014 16 0.035 18 0.062 11 0.007 13

alm 0.013 15 0.014 7 0.014 3 0.012 22

runtime 0.000 1 0.001 0 0.000 0 0.001 1

crossbar 0.006 7 0.029 15 0.013 2 0.006 10

Table IV: Area Breakdown of Accelerator Units (in mm2)

Pagerank LBP SGD SSSP

Area % Area % Area % Area %

gather 0.238 54 0.192 25 0.484 42 0.090 31

scatter 0.096 22 0.247 32 0.101 9 0.121 42

apply 0.030 7 0.010 1 0.012 1 0.005 2

sync 0.032 7 0.244 31 0.504 43 0.032 11

alm 0.030 7 0.029 4 0.029 3 0.029 10

runtime 0.002 0 0.002 0 0.002 0 0.002 0

crossbar 0.011 3 0.051 7 0.024 2 0.010 4

PageRank application, vertex data (VD) is the only storage

that the application has and we observe that 32% of power

consumption belongs to this cache. The same characteristics

are also valid for other applications such as LBP and its

edge data (ED) cache, SGD and its VD cache. In addition to

caches that are used for the application data storage, active list

(AL) caches consume significant amount of power and area

in our accelerator architecture. Yet, the power consumption

of the memory subsystem is still negligible compare to the

3W DRAM power.

C. Scalability and Sensitivity Analysis

The default architecture parameters for the proposed accel-

erators are listed Table I. In this section, we change one

parameter at a time and measure the change in performance.

As described in Section IV, processing multiple vertices

and edges allows us to achieve high levels of memory level

parallelism and tolerate long latencies. Figure 8 illustrates

the performance sensitivity with respect to the number of

concurrent edges in Gather and Scatter Units of a single AU.

Here, the y-axis value of 1.0 corresponds to the execution

time for the parameters in Table I, and values larger than 1.0

correspond to slower executions due to parameter change.

Observe that a certain number of concurrent vertices and

edges are needed to achieve the best performance, after which

the performance saturates. This is due to Little’s Law, which

states that the number of in-flight requests need to be at

least throughput times latency to be able to fully utilize the

available DRAM bandwidth.

VII. RELATED WORK

Previous work can be categorized into three main categories.

There have been several proposals for graph processing

environments to efficiently execute graph applications. One

of the first is Google’s Pregel [14]. Pregel suggests a bulk

synchronous environment which avoids the usage of locks

and focuses on very large scale computing. On the other

hand, GraphLab [1] focuses on asynchronous computations

and benefits from convergence characteristics of applications.

Table V: Power Breakdown for Cache structures (in W).

Pagerank LBP SGD SSSP

Power % Power % Power % Power %

VI 0.0019 6 0.0028 4 0.0007 2 0.0015 5

EI 0.0021 7 0.0080 13 0.0038 12 0.0008 3

VD 0.0098 33 0.0108 18 0.0069 23 0.0007 3

ED 0.0000 0 0.0199 33 0.0000 0 0.0000 0

AL 0.0160 54 0.0141 24 0.0191 63 0.0245 89

L/S Unit 0.0000 0 0.0044 7 0.0000 0 0.0000 0

Table VI: Area Breakdown for Cache Structures (in mm2).

Pagerank LBP SGD SSSP

Area % Area % Area % Area %

VI 0.0105 9 0.0187 5 0.0077 6 0.0082 9

EI 0.0050 4 0.0473 14 0.0095 8 0.0026 3

VD 0.0175 15 0.0647 19 0.0167 14 0.0037 4

ED 0.0000 0 0.1054 30 0.0000 0 0.0000 0

AL 0.0822 72 0.0830 24 0.0849 72 0.0799 84

L/S Unit 0.0000 0 0.0288 8 0.0000 0 0.0000 0

Galois [18] is another framework which also gives better per-

formance compared to naive implementations of applications.

Other examples of software solutions for graph applications

are Giraph [15], CombBLAS [16], and SociLite [17]. While

these are all optimized for graph parallel applications, they are

purely software-based systems. Our approach can be extended

to support any of these frameworks.

Secondly, there have been efforts on accelerating graph ap-

plications. In [36], the authors propose a warp centric execu-

tion model for graph applications. Additionally, Medusa [37]

is a processing framework which focuses on bulk synchronous

processing and targeted for GPUs. They also consider multi

GPU acceleration and optimize graph partitioning to reduce

the communication between GPUs. [38] adapts vertex centric

and message passing execution for CPU and MIC.

Finally, there are existing works on architectural support

for graph applications. One of these approaches [39] tries to

implement a hardware work-list that would make data driven

executions for irregular applications feasible on GPGPUs.

On the other hand, GraphGen [40] is a framework to create

application specific synthesized graph processor and memory

layout for FPGAs. GraphGen also uses a vertex centric

execution model to represent graph applications. However,

it is targeted towards regular applications and cannot handle

irregular applications such as PageRank. Recently, [5] has

provided a PIM (processing in memory) system that uses 3D

integration technology, and tries to maximize the available

memory bandwidth. GraphStep [41] implements a bulk syn-

chronous message passing execution model on FPGAs for

graph applications. To the best of our knowledge, our work

is the first accelerator architecture that specifically targets

asynchronous, iterative, vertex-centric graph applications with

irregular access patterns and asymmetric convergence.

VIII. CONCLUSIONS AND FUTURE WORK

The main contributions of this paper are: 1) an accelerator

architecture for iterative vertex-centric graph applications

with irregular access patterns and asymmetric convergence,

2) a hardware template to model graph analytics applications,

and 3) a detailed experimental study through physical-aware

176176



 1

 2

 3

 4

g
-8

g
-1

6

g
-3

2

g
-6

4

g
-1

2
8

s
-8

s
-1

6

s
-3

2

s
-6

4

s
-1

2
8

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

PR
SSSP

LBP
SGD

Figure 8: Sensitivity analysis for the number of concurrent

edges in (g-XX) Gather Unit and (s-XX) Scatter Unit of a

single AU. (XX is the number of concurrent edges in the

corresponding unit)

RTL synthesis using industrial 22nm libraries. Our proposed

accelerators have performance similar as or better than a

state-of-the-art 24-core CPU system for most of our test

cases, sometimes outperforming the 24-core system by up

to 3x. More importantly, we have estimated the area require-

ment and power consumption of these hardware accelerators

through physical-aware synthesis and show that significant

improvements can be achieved both in terms of area and

power. The results have shown that our proposed accelerator

is more power efficient than the 24-core server system by

up to a factor of 65x. Furthermore, the aforementioned

improvements are obtained with two orders of magnitude

smaller area requirements.

Although this paper has focused on fixed function acceler-

ators, the proposed architectural features are also applicable

to programmable hardware. In particular, we are currently

working on FPGA implementation of the proposed template.

Another planned future work is to replace the application-

specific logic with simple processors to create software pro-

grammable graph accelerators.
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