
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Energy‑efficient automated material handling
systems
Fang, Zhou
2016
Fang, Z. (2016). Energy‑efficient automated material handling systems. Doctoral thesis,
Nanyang Technological University, Singapore.
https://hdl.handle.net/10356/65952
https://doi.org/10.32657/10356/65952

Downloaded on 24 Aug 2022 20:34:33 SGT

Nanyang Technological University

Energy-Efficient Automated
Material Handling Systems

Ph.D Thesis

By

Fang Zhou

Supervisor: Asst. Prof. Mao Jianfeng

School of Mechanical and Aerospace Engineering

A thesis submitted to the Nanyang Technological University
in fulfillment of the requirement for the degree of

Doctor of Philosophy

July, 2015

Abstract

The cost for operating equipment in Automated Material Handling Systems

(AMHS)– like manufacturing facilities and distribution centers– is an ongoing cost

that requires a substantial commitment in electrical power. Many facilities are

extremely large, depending on the complexity of the facilities conveyor system, it

could account for as much as 50% of a facilitys electrical load [1]. Increased fuel

costs have pressured manufacturers to develop initiatives to find more efficient

management of energy usage. In addition, emerging environmental regulations

have forced companies to develop ways to reduce emissions without compromising

the quality of their products. This motivates us to look into energy issues in

AMHSs. However, the majority studies on the vehicle routing and dispatching

problems only focused on the completion time or traveling distance issues, few of

them paid energy issues any attention.

In this thesis, we investigate a minimum-energy consumption routing problem

of a stacker crane vehicle, which serves a multi-story storage and retrieval system

(AS/RS) inside an air cargo terminal. We name this problem Energy-efficient

Stacker Crane Problem (EESCP). This problem can be formulated as a Stacker

Crane Problem on a two-dimensional (2D) grid network with a cost function in

L1 norm. First, we prove this more specific problem to be NP-Complete. Still,

due to the cost function in Manhattan norm, we are able to identify a special

subset of 2D instances with certain arc patterns, to be polynomial-time solvable

with an algorithm developed for one-dimensional problem, a.k.a Stacker Crane

Problem on paths. For problem instances with more general arc patterns, we have

i

proposed a new exact formulation the scale of which is fixed by the underlying

grid network. We have also developed two polynomial-time approximation algo-

rithms with the grid network taken into account. One is asymptotically optimal

and has the time-complexity that grows linearly with the number of requests given

by the problem instance; the other has a bounded time-complexity and performs

better for instances with smaller arc lengths. These two algorithms together pro-

vide an improved 5/3 theoretical worst-case bound than the 9/5 in the work of

Frederickson, Hecht et al. [2].

Furthermore, we have adapted our static algorithm to the dynamic environ-

ment using a rolling-horizon approach. The dynamic algorithm has two param-

eters, look-ahead horizon and decision point. The algorithm performance under

various combinations of these two parameters is tested via simulations. Finally,

we propose an exact formulation for energy-efficient multi-capacity problem and

three heuristics. The exact formulation is bilinear and we have reformulated it

into the linear form. The performances of the heuristics are compared against the

exact solutions.

ii

Acknowledgments

Foremost I would like to express my sincere gratitude towards my supervisor

Prof. Mao Jianfeng for his guidance and support. Throughout my four years of

candidature, he has provided me with vision, showered me with encouragement

and sound advice on both professional and personal growth, patiently trained

me on independent research. Also, I am extremely grateful for the scholarship

and education provided from Nanyang Technological University. The efficient and

convenient campus life that the university has strived to provide has given me the

ease of mind to focus on my studies. Furthermore, I wish to thank my friends

all over the world for the friendship and companionship as well as good times.

Last but not the least, I would like to thank my family and loved ones for the

unconditional love and support through thick and thin. The work presented in

this thesis would not have been possible without any single one of you.

iii

Contents

Abstract . i

Acknowledgments . iii

List of Figures . vi

List of Tables . viii

List of Notations . x

1 Introduction 1

1.1 Automated Material Handling System 1

1.2 Automated Storage and Retrieval System 2

1.2.1 Definition of AS/RS . 2

1.2.2 Types and Variations of AS/RS 5

1.3 Energy Efficiency in AMHS . 5

1.4 Aims, Scope and Contributions . 8

1.5 Organization of the Thesis . 9

2 Related Work 11

2.1 Energy-efficiency in Material Handling Systems 11

2.2 Stacker Crane Problem . 12

2.3 Closely Related Combinatorial Problems 21

2.4 Summary . 24

3 Pseudo-2D Problems 26

3.1 Problem Statement . 26

3.2 NP-Completeness of EESCP . 32

3.3 Conditions for Free-Permutation . 33

3.3.1 Proof for Theorem 3.2 . 41

iv

4 Nodes Formulation and GRID Algorithm 48

4.1 A New Exact Formulation . 50

4.2 GRID-L . 54

4.2.1 Minimum Cost Flow Formulation 55

4.2.2 Transportation Problem Formulation 58

4.2.3 1D Bound on 2D Problems 61

4.3 Complexity of GRID-L . 63

4.4 Asymptotic Optimality of GRID-L 64

4.5 GRID-S . 65

4.6 Complexity of GRID-S . 68

4.7 Better Theoretical Bound . 70

4.8 Numerical Results . 71

5 Dynamic and Multi-Capacity Problem 79

5.1 Dynamic Problems . 79

5.1.1 Look-ahead Horizon . 80

5.1.2 Decision Point . 82

5.2 Multi-Capacity Problems . 86

5.2.1 Multi-Capacity Exact Formulation 87

5.2.2 Solution Approach . 89

5.2.3 2AS1 . 90

5.2.4 PPDD . 90

5.2.5 BUBBLE . 92

5.2.6 Simulation Results . 93

6 Conclusions and Future Work 98

6.1 Conclusions . 98

6.2 Future Work . 100

6.2.1 Integrate Time Information 100

6.2.2 Collaboration Between Multiple Vehicles 100

6.2.3 Further into the Multi-capacity Problem 101

6.2.4 Stochastic Framework . 101

References 104

v

List of Figures

1.1 Modern AMHS and AS/RS systems 3

1.2 Generic structure and principal constituents of an AS/RS 5

1.3 Various system concepts for AS/RSs, modified after Roodbergen

and Vis 2009 [3] . 6

1.4 Global Temperature, Primary energy consumption and Carbon diox-

ide concentration since 1965(Günthner, Tilke et al. 2010 [4]) 7

1.5 Electric Power consumption in the German industry (Kaschenz, Al-

bert et al. 2009 [5]) . 7

3.1 Two examples of storage and retrieval system in air cargo terminals 27

3.2 The EESCP instance with its underlying grid 28

3.3 The difference in energy cost when optimized in different metrics . . 31

3.4 The difference in traveling distance when optimized in different metrics 31

3.5 Problems with two different structures can be sovled with the same

algorithm . 34

3.6 (a) Degree-balancing and (b) connecting the graph to make an eu-

lerian graph that contains the optimal tour 35

3.7 The 2D instance and its two corresponding 1D problem instances . 36

3.8 In circuit printing problem, the optimal solution to vertical sub-

problem yeilds full permutation of the request arcs 37

3.9 Some similar examples to Ball and Magazine’s circuit printing prob-

lem and their free-permutation subproblems 38

3.10 Another example of “free-permutation” 1D problem 38

3.11 A demonstration of Lemma 3.3 . 39

3.12 A simple demonstration of Theorem 3.2 41

3.13 When all arcs are unidirectional, if they are of free-permutation,

they must overlap . 43

3.14 In Scenario B1), Condition 4) can be deduced 45

vi

3.15 Scenario B2), when nL = 1, Condition 1) can be deduced 46

3.16 In Scenario B2), when nL ≥ 2, Condition 1) can be deduced 47

4.1 No augmenting arcs from a vertex in D in the optimal eulerian

graph, due to triangular inequality 53

4.2 A 3× 3 grid limit decision variables number to 24 58

4.3 T ∗
H ,T

∗
V provide extra information for the 2D problem 62

4.4 T ∗
H ,T

∗
V can be translated into constraints to eliminate some obvious

sub-tours in the 2D algorithm . 63

4.5 An instance with 6 requests and 3 connected components 66

4.6 How K grows with the number of requests at different level of N . . 69

4.7 The computation time of solving ATSP Formulation and Nodes For-

mulation . 72

4.8 The optimality gap of GRID-L narrows when the number of requests

goes up . 73

4.9 In a small-length arcs setting, GRID-S out performs both GRID-L

and SMALLARCS . 74

4.10 The computation time of GRID-L grows linearly, can be used in-

stances with large M . 75

4.11 The computation time of GRID-L and SPLICE 76

4.12 The computation time of GRID-S 77

4.13 The computation time of GRID-S has a high variance 78

5.1 The performance of Dynamic GRID improves as larger look-ahead

horizon is adopted . 81

5.2 On average, smaller decision points provide smaller gaps 82

5.3 The combined effect of look-ahead horizon and decision point 84

5.4 Relative performance of Nearest-Neighbour against Dynamic GRID 85

5.5 The relative performance between Nearest-Neighbour and Dynamic

GRID has a high variance . 86

5.6 The optimality gaps of the three heuristics 95

5.7 The relative performances of the three heuristics 96

5.8 The computation time of PPDD and BUBBLE 97

6.1 The deterministic equivalent of an uncertain request 102

vii

List of Tables

2.1 The state of art for static unit-capacity SCPs 18

2.2 The state of art for static multi-capacity SCPs 18

3.1 The difference in energy cost when optimized in different metrics (%) 30

3.2 The difference in traveling distance when optimized in different met-

rics (%) . 32

3.3 Six conditions in Theorem 3.3 . 40

4.1 Algorithm: GRID-L(GF) . 57

4.2 Algorithm: GRID-L(TF) . 60

4.3 The time complexity of GRID-L . 64

4.4 Algorithm: GRID-S . 67

4.5 The time complexity of GRID-S . 68

4.6 The computation time of solving ATSP and Nodes formulation (s) 72

4.7 Maximum optimality gap at different instance size for GRID-L(GF)

and (TF), over 100 instances (%) 73

4.8 The optimal gaps of SMALLARCS, GRID-L, and GRID-S, over 50

instances (%) . 74

4.9 The computation time of GRID-L and SPLICE(s) 76

5.1 The performance of Dynamic GRID with different look-ahead hori-

zon (%) . 81

5.2 The performance of Dynamic GRID with different values of decision

point (%) . 83

5.3 Algorithm: 2AS1 . 91

5.4 Algorithm: PPDD . 92

5.5 Algorithm: Multi-capacity Nearest-Neighbour 93

5.6 Algorithm: BUBBLE . 94

viii

5.7 The relative performances of the 2AS1 and PPDD againstBUBBLE

(%) . 96

ix

List of Notations

Sets

R Set of all the requests

A Set of all the arcs representing the requests

V Set of all the vertices on the grid

E Set of all the edges on the grid

S S = {i ∈ V |Gi > 0}

D D = {i ∈ V |Gi < 0}

U U is the set of vertices that are visited by at least one arc in

A, whose final net in-degree is zero

P P = S ∪D ∪U is the set of all the vertices that are visited at

least once in the instance

NB i Set of neighboring cells of cell i

NBH
i The horizontal neighboring cells of cell i

NBV
i The vertical neighboring cells of cell i

A1 Set of arcs that represents the requests in a 1D SCP istance

Ts The set of arcs that forms the trajectory (eulerian graph) of

the vehicle if it performs A1 in sequence s

PH(Ts), PV (Ts) The horizontal and vertical projections of Ts. They themselves

are 1D eulerian graphs

IH , IV The horizontal and vertical 1D subproblem instances of a 2D

instance I;

x

T ∗
H , T

∗
V The optimal eulerian graph obtained by respectively solving

IH and IV

S∗
H , S

∗
V The respective sets of all the sequences that can be obtained

from T ∗
H and T ∗

V

Parameters

M The total number of all requests

NV The number of rows of the storage rack

NH The number columns of the storage rack

N N = NV ×NH , is the total number of storage cells on the rack

K The number of connected components

cH , cV The energy consumption for the stacker crane vehicle to per-

form a single move horizontally/ vertically when empty-loaded

Gi The net in-degree of cell i induced by the arcs in A

xO
i , x

D
i The respective coordinates of the pickup and drop-off positions

of arc i ∈ A1

n The number of arcs in A1

aij The number of arcs starting from vertex i to vertex j in A,

∀i, j ∈ P

cij The cost of arc (i, j)

Others

c(s) The cost incurred by sequence s;

c(A) The cost incurred by the set of arcs A

C∗ The optimal tour cost for the EESCP instance

xi

Chapter 1

Introduction

This chapter provides some background knowledge for this thesis, which in-

cludes a general description of Automated Material Handling System (AMHS),

one of its most widely adopted equipment, Automated Storage/Retrieval System

(AS/RS), and the rising awareness of energy-efficiency. The research aims, scope,

contributions and the organization of the thesis are also summarized.

1.1 Automated Material Handling System

Expressed in simple language, material handling is moving and controlling of

materials. The current widely used definition of material handling is presented

by Tompkins et al. [6] as the function of “providing the right amount of the

right material, in the right condition, at the right place, at the right time, in the

right position, in the right sequence, and for the right cost, by using the right

methods”. And as the American Society of Mechanical Engineers(ASME) defines

it: “Materials handling is the art and science involving the moving, packaging

and storing of substances in any form.” Materials handling serves as an essential

part of production, but is a process of cost rather than value adding. Inefficient

materials handling practices have put many enterprises out of business. Thus it

is vital to reduce the cost of material handling to the minimum. And companies

1

Chapter 1. Introduction

try to stay ahead of their competitors by adopting advanced material handling

systems.

A well-designed material handling system attempts to achieve the following [7]:

• Ensure the right quantity of materials delivered at the right place at the

right time most economically;

• Cut down indirect labor cost and overall cost;

• Improve the customer service by reducing the response and thereby waiting

time;

• Maximize space utilization by proper storage of materials and thereby reduce

storage and handling cost;

• Reduce damage of materials during storage and movement;

• Minimize accidents during materials handling.

1.2 Automated Storage and Retrieval System

1.2.1 Definition of AS/RS

Since its introduction in 1950s, AS/RS has been one of the major tools used for

warehouse materials handling and inventory control. It plays an essential role in

many integrated manufacturing systems and is widely used in automated produc-

tion and distribution centers. AS/RSs provide many advantages such as improved

utilization of time and space, improved efficiency and inventory control at lower

cost [8] [9].

In a general sense, AS/RSs can be defined as a combination of equipment

and controls, which automatically handle, store and retrieve materials with great

speed and accuracy, without direct handling by human workers [9]. Though this

2

Chapter 1. Introduction

is a rather broad definition, the term AS/RS somehow has come to mean a com-

mon type of system consisting of one stacker crane (also referred to as storage

and retrieval (S/R) machine), one or multiple parallel aisles of storage racks, in-

put/output stations (I/O stations, also pickup/delivery stations or docks), con-

veyors, a communication system and a central supervisory computer (Figure 1.1).

Figure 1.1: Modern AMHS and AS/RS systems

The stacker crane (S/R machine) in an AS/RS is a geometric robot that moves

3

Chapter 1. Introduction

rectangularly, and is used to store and retrieve loads into/from storage cells. Two

drives, one for horizontal motion and the other for vertical drive this autonomous

vehicle. The horizontal drive moves the items back-and-forth along the aisle and

the vertical one lifts and lowers the load. And they can move simultaneously for

the sake of efficiency. Due to their different functions, these two drives often consist

of motors of different power. Normally the vertical motor is of higher power than

the horizontal one, for it is used to balance the weight of the load and the cart,

while the horizontal one only needs to balance the friction. Typically the vehicle is

also equipped with one or two shuttle drives that perform the storing or retrieving

action.

Empty spaces between the racks form the aisles, along which the stacker cranes

can move. An I/O station (P/D station) is usually located at the end or the

beginning of the aisle. It is where the incoming loads for storage are picked up

and retrieved outgoing loads are dropped off. Figure 1.2 illustrates the generic

structure and principle constituents of an AS/RS. A conventional AS/RS operates

as follows: first the incoming items for storage are sorted and put into containers

or pallets within load size and weight limits. Then they arrive at I/O stations

and are registered to central computer. This computer then assigns the items to

different storage locations on the storage racks based on the content of the items

and the inventory level of the storage racks. Then the stacker cranes pick the

items up, move and drop them off at their assigned locations. Upon receipt of a

request to retrieve an item, the computer will look through its database and find

the storage location of the requested item, then direct the stacker crane to retrieve

the load and drop it at the I/O station [10]. Our studied AS/RS, however, is

of tremendous size and volume, and highly integrated into the terminal building.

The system stretches over several levels, and serves as the transportation hub,

linking the storage space to various functional areas. So instead of a single I/O

station, our studied systems have multiple entries across the storage racks, so that

a request does not always start or end at the I/O station.

4

Chapter 1. Introduction

Figure 1.2: Generic structure and principal constituents of an
AS/RS

1.2.2 Types and Variations of AS/RS

As diverse as materials handling itself, numerous options and configurations for

AS/RSs can be found. We focus on the most basic version of an AS/RS. A basic

version of AS/RSs has one stacker crane in each aisle, which is aisle-captive and

can only transport one unit-load at a time (single shuttle). In this case, no human

interaction is involved, and the storage racks are single-deep, which means that

the stacker crane can directly access every load. This AS/RS type is referred to

as a single unit-load aisle-captive AS/RS. Numerous AS/RSs vary from this basic

version, and an overview is presented in Figure 1.3. The shaded blocks represent

the basic version of AS/RS.

1.3 Energy Efficiency in AMHS

The topic of energy efficiency is particularly popular today. Reports and re-

searches have shown that, since the beginning of the industrialization, the carbon

5

Chapter 1. Introduction

Figure 1.3: Various system concepts for AS/RSs, modified after
Roodbergen and Vis 2009 [3]

dioxide percentage in the atmosphere has increased significantly, mainly during

the last 50 years (Figure 1.4). This shows that an increase of the concentration of

carbon dioxide in earth atmosphere contributes directly to global warming. The

disastrous consequence of uncontrolled energy consumption (fossil fuel mostly),

which may threaten the very existence of us mankind, has brought the topic of en-

ergy efficiency to the global-politic level. Developments in this area are currently

getting an additional boost from political resolutions and decisions. The EU’s

energy policy action plan requires a reduction in CO2 emissions by 30 percent by

the year 2020 – in relation to 1990 levels. As a critical measure for the imple-

mentation of this goal, the increase in energy efficiency was set at 20 percent [11].

In summary, responsible and efficient energy consumption is the most important

contribution to climate protection.

The cost for operating equipment in automated material handling systems

(AMHS)– like manufacturing facilities and distribution centers– is an ongoing cost

that requires a substantial commitment in electrical power (Figure 1.5). Many fa-

cilities are extremely large, depending on the complexity of the facilities conveyor

system, it could account for as much as 50% of a facilitys electrical load [12]. In-

creased raw material costs and fuel costs have pressured manufacturers to develop

initiatives to reduce their material waste and find ways to more efficiently manage

6

Chapter 1. Introduction

Figure 1.4: Global Temperature, Primary energy consumption
and Carbon dioxide concentration since 1965(Günthner, Tilke et

al. 2010 [4])

energy usage. In addition, emerging environmental regulations have motivated

companies to develop ways to reduce emissions without compromising the quality

of their products.

Figure 1.5: Electric Power consumption in the German industry
(Kaschenz, Albert et al. 2009 [5])

7

Chapter 1. Introduction

1.4 Aims, Scope and Contributions

Energy-Efficiency

The first of our objectives is to adopt energy efficiency in a well-studied classic

routing problem. To be specific, we try to address the energy efficiency issue

in the stacker crane vehicle routing in an automated material handling system

located in a large air cargo terminal in Singapore. We name the studied problem

Energy-efficient Stacker Crane Problem (EESCP). Unlike most of previous work

in which a lot attention has been paid to enhance time efficiency, our problem is

set in a context where time is of less significance and energy matters. In this new

perspective, for the same instance, the optimal solution in the traveling distance

metric can deviate a lot from the optimal solution in the energy consumption metric

(See Section 3.1). The energy metric further allows us to make other discoveries

about the problem structures.

Arc Patterns and Grid Network

Stacker crane routing problem instances that arise in practice usually come

with structured underlying networks or specific arc patterns. In the studied prob-

lem, a grid network and the energy cost metric impose constraints and structural

properties that have an impact on the complexity of finding solutions, which effect

enables us to devise more efficient and accurate models and algorithms than in the

general problems.

Our work focuses on two themes about stacker crane routing problems gen-

eralized from real-life systems: (1) the request patterns that can be found in the

practice; (2) the underlying network of the real systems; and to utilize them to pro-

vide better algorithms. On these two topics, our contribution is fourfold: Firstly,

we can show that EESCP is NP-Complete, by proving its special case, TSP on solid

grid graph in Manhattan norm, is NP-Complete. Secondly, we have discovered a

8

Chapter 1. Introduction

subset of EESCP with special arc patterns that can be solved as Stacker Crane

Problem on linear track, and proposed the sufficient and necessary conditions to

identify them. Thirdly, we propose a new exact formulation for our EESCP, the

scale of which does not grow with the number of requests in the instance. Finally,

for more general cases of EESCP, with the introduction of the grid network in our

formulation, we propose the algorithm GRID, which consists of two approximation

algorithms: GRID-L and GRID-S. GRID-L is asymptotically optimal, and has a

complexity that grows linearly with the number of requests. GRID-S performs

well with small-length arcs instances. When GRID-L and GRID-S are combined,

they provide a worst-case bound of 5/3.

Dynamic Problem and Multi-capacity Problem

We extend our work to the dynamic problem where not all requests information

are given beforehand. We develop a dynamic algorithm using a rolling-horizon

approach. The effect of two parameters, look-ahead horizon and decision point,

on the performance of the dynamic algorithm are tested via simulations.

An exact formulation is proposed for the multi-capacity problem. The for-

mulation is naturally a bilinear programming, we have alternatively reformulated

it into linear form. Given solving the exact formulation is still time consuming,

several time-efficient heuristic algorithms are proposed. The performance of these

algorithms are tested via simulations.

1.5 Organization of the Thesis

This thesis is organized into six chapters. The rest five are as follows:

• Chapter 2 introduces some highly related work to our studied problem.

• In Chapter 3, we start by stating our studied problem, and point out its NP-

Completeness. Then we discuss the Pseudo 2D problem, a peculiar subset of

9

Chapter 1. Introduction

2D Stacker Crane Problem instances in Manhattan norm that can be solved

to optimal in polynomial-time with 1D algorithm.

• For general EESCP instances, we propose a new exact formulation in Chapter

4, and later present two approximate algorithms, GRID-L and GRID-S in

Section 4.2 and 4.5. The claimed properties of the two algorithms, such as

asymptotic optimality, time complexity and worst-case theoretical bound,

are duly examined.

• In Chapter 5, we extend our work to both dynamic and multi-capacity prob-

lems. A dynamic algorithm is proposed using the rolling-horizon approach.

The algorithm performance under different combinations of its two param-

eters is discussed. For multi-capacity problem, an exact formulation and

three heuristic algorithms are proposed. The performances of the heuristics

are tested via simulations.

• In Chapter 6, the conclusions and future work are discussed.

10

Chapter 2

Related Work

In this chapter, we summarize the existing work that is related to our research

issues. Firstly, we will review some general literature on energy-efficiency in ma-

terial handling systems and warehouses. Secondly, we discuss the most closely

related combinatorial optimization problem to our studied problem, the Stacker

Crane Problem, and its many variants. Then we look at literature on some other

relevant combinatorial optimization problems.

2.1 Energy-efficiency in Material Handling Sys-

tems

The topic of energy-efficiency in material handling systems and warehouses

are still scarce. Economic and environmental requirements are rarely taken into

account concerning power consumption.

W.A. Gnthner, Ch. Tilke et al. [4] did an empirical study on the topic of

energy efficiency in the bulk materials handling industry. They brought up some

interesting points: that according to statistics, the electric motors make up 60%

of the energy consumption of the whole system; and that if you use an electric

motor with an annual service life of more than 3,000 hours, 95% of the entire costs

during the durability fall on energy consumption, less than 3% on acquisition; it is

11

Chapter 2. Related Work

therefore short-sighted to make decisions only dependent on the acquisition price.

Then they went ahead and did a comparison on transportation energy consumption

between using trucks and conveyor belts. They also identified that unloading a

ship had the greatest potential of reduction in energy consumption in the context

of port handling.

P. Christian, K. Andreas et al. designed a monitoring system in a testing

facility [13]. They also discussed the possibilities to save energy by changing the

constant speed running conveyor belt motors to on-demand mode; or lowering the

drives rotating speed while they are not conveying any goods.

Finally, P.A. Makris, A.P. Makri et al. addressed an energy-efficient order pick-

ing problem in ware housing environment [14]. Their problem is directly related

to the Traveling Salesman Problem. They concluded that a relatively small loss

of service time in many cases may lead to a significant decrease of consumed en-

ergy without any additional cost. They solved this problem by changing the cost

function in the k-interchange heuristics.

2.2 Stacker Crane Problem

Our studied problem can be classified as a special case of the Stacker Crane

Problem (SCP), in which objects (such as containers or pallets) need to be trans-

ported from their origins to their assigned destinations via a unit-capacity vehicle.

The vehicle performs a set of movements (traverse a set of arcs) to load and un-

load objects at their origins and destinations respectively. The objective is to plan

the vehicle movements so as to minimize the total tour cost. Usually this cost is

represented by the total tour time, or in some other cases, the Euclidean distance

traveled. The SCP can be considered an arc routing problem, particularly a special

case of the Directed Rural Postman Problem, a Pickup and Delivery Problem, or

a special case of the Asymmetric Traveling Salesman Problem.

The SCP is defined as follows: Let G = (V,E,A) be a mixed graph, where

V is the set of vertices with a distinguished initial vertex vs. E is the set of

12

Chapter 2. Related Work

edges and A the set of arcs. Let c be a cost function from (E,A) to the set of

nonnegative integers, such that for every arc there is a non-negative cost. The

corresponding optimization problem is to find a tour starting at vs and traversing

each arc in A and ending at vs for the unit-capacity vehicle, such that the cost

of the tour is minimized [2]. The SCP, being a generalization of the Traveling

Salesman Problem, is NP-complete on general graphs [15].

There has been fair amount of significant work on this problem. In SCPs, a

single vehicle with unit-capacity is the most common assumption. Systems with

more than one vehicle, and vehicles with multi-capacity have also been investi-

gated despite their hardness. Common SCPs that arise from various literature can

be generally classified based on 4 criteria other than the number of vehicle: Pre-

emptive or Non-Preemptive; Static or Dynamic; Unit-capacity or Multi-capcity;

Underlying graph being on Paths/Trees/Euclidean Space/General Graph etc. In

non-preemptive problems, once a request is initiated, the item on the vehicle can-

not be dropped off until the delivery is made; whereas in preemptive problems, the

item can be dropped off at any intermediate nodes and to be picked up later for

delivery. If all the requests information is given before hand, we say the problem

is static; If the information of incoming requests is revealed over time, we say the

problem is dynamic. In the following sections, we will use [· | · | ·] to indicated

how each literature falls into these categories, for example, [pre|mc|trees] indicates

a preemptive and multi-capacity SCP on trees (pre stands for preemptive, while

npre for non-preemptive); and [npre|uc|general] indicates a non-preemptive and

unit-capacity SCP on general graphs. We start with static problems.

Static Problems

Atallah and Kosaraju studied a SCP problem with a unit-load vehicle that

is confined to linear track with no other constraints imposed on the requests

[npre|uc|paths]. They showed that the problem can be solved in O(m + nα(n))

time, where m is the number of requests, n the number of vertices, and α(n) the

13

Chapter 2. Related Work

extremely slowly growing functional inverse of Ackermann’s function [16]. They

also developed an algorithm that runs in O(m+n log n) for SCP on circular tracks

[npre|uc|circle]. For preemptive problems, they were able to develop an O(m+ n)

time algorithm, either on linear or circular track [pre|uc|paths/circles]. Michael

O. Ball and M. Magazine solved an insertions sequencing problem that arises in

a printed circuit board assembly [npre|uc|paths]. They developed a polynomial-

time “Balance and Connect” heuristic for their studied RPP, and proved that the

heuristic can find the optimal solution when the Manhattan metric is used [17].

Though the application is very different from Atallah and Kosaraju’s work, the

insights and developed algorithms for their problem are innately the same. We

notice the fact that, though being an SCP in the 2D plane, Ball and Magazine’s

studied problem can be solved with Atallah and Kosaraju’s algorithm for SCP on

paths. For preemptive problems, Atallah and Kosaraju found an O(m + n) time

algorithm for either circular or linear track [pre|uc|paths/circles] [16].

Frederickson and Guan proved the problem to be NP-complete on trees [npre|

uc|trees] [18]. They presented several approximation algorithms for SCP on tree

graphs with different worst-case bound ranging from 1.21 to 1.5 in [18]. One

of these algorithms, which has a 4/3 approximation ration, has been shown to

provide optimal solutions on almost all inputs [19]. Frederickson and Guan are

able to developed two polynomial-time exact algorithms for preemptive SCP on

trees [pre|uc|trees] [15]. One of them runs in O(k+qn) time, where k is the number

of objects, n is the number of vertices in the tree, and q is the number of nontrivial

connected components. The other algorithm runs in O(k + n log n) time.

Treleaven, Pavone et al. recently provided an efficient O(n2+ε) and asymp-

totically optimal (almost surely) class of algorithms to solve stochastic SCPs

[npre|uc|Euclidean] in Euclidean norm and uncertain environments [20]. They also

had investigated the SCP on roadmaps to address SCPs that arise in small and

densely traveled context [npre|uc|general], such as modern robotics and transporta-

tion contexts. In their work an asymptotically optimal algorithm was developed

for this special case of SCPs [21].

14

Chapter 2. Related Work

For general graphs, the best approximation ratio is 9/5 and is achieved by the

algorithm CRANE developed by Frederickson, Hecht et al. [npre|uc|general] [2].

The algorithm is a combination of two algorithms. One consists of a minimum-

cost matching and then a minimum spanning tree. It works better if the cost

of the arcs is large compared to the cost of the optimal solution. The other

is based on the transformation of the SCP instance into a TSP one, then using

Christofides algorithm [22], which is more suitable for the opposite situation. Each

SCP instance is solved by both algorithms and the better solution is chosen.

Recently, T. Ávila, Á. Corberán addressed the polyhedral description and the

resolution of directed general routing problem (DGRP) and the SCP [npre|uc|

Euclidean] [23]. They have described large families of facet-defining inequalities

and implemented a branch-and-cut algorithm for these problems. They observe

that removing non-required vertices may not always help solve the problem, and

there are instances where working with the original graph seems to be the only

successful way of solving the problem.

It is worth noting that the only known method to solve the SCP on a general

graph [npre|uc|general] to optimality, by far, is by generalizing an SCP instance

into an Asymmetric Travelling Salesman Problem (ATSP) instance and solve it.

Larporte formulated and solved six classes of Arc Routing Problem as TSP, SCP

was one of them [24]. Cirasella, Johnson et al. [25] presented a study about ATSP

heuristics on eleven types of instances, one of which corresponds to the SCP. Zheng

and Zheng used genetic algorithm to solve the ATSP formulation of SCP and its

multi-vehicle variant [26]. Jordan Srour and Steef van de Velde [27] have presented

a statistical study comparing the difficulty of the resolution of SCP instances with

that of general ATSP instances. Their conclusion is that SCPs are not necessarily

easier than other ATSPs, but a special subset of SCPs, termed drayage problems,

are more readily solved.

15

Chapter 2. Related Work

Multi-Capacity Problems

Though the most literature on SCP assumes a unit-load vehicle, multi-capacity

vehicle systems widely exist in practice. If the vehicle has multi-capacity, the

problem is NP-hard even if the underlying graph is a simple path [npre|mc|paths]

[28]. For preemptive multi-capacity cases, Guan D.J. et al. proved it P on paths

[pre|mc|paths] and NP-complete on trees [pre|mc|trees] [28]. He proved that for

the multi-capacity problem on paths, the optimal solution can be found in O(k +

n) time if the starting vertex is at one of the endpoints of the path. Despite

the hardness to get theoretical results, in practice it is shown that increasing

the capacity of the vehicle will yield better system throughput [29], so multi-

capacity problems never lack attention. In fact, in most literature, SCPs with

multi-capacity are often referred to as the Single Vehicle Routing Problem with

Pickup and Delivery (SVRPPD).

For uncapacitated SVRPPD (unlimited capacity), one of the first studies was

made by Stein [30]. The author proposed a simple heuristic with an asymptotic

performance ratio of 1.06. Psaraftis developed a O(N2) heuristic for this problem

in Euclidean plane, though by the name of single vehicle many-to-many dial-a-ride

problem with no time constraints. The heuristic’s worst-case perfformance is 300%

over optimal, if the TSP heuristic of Christofides [22] is used in the first step [31].

Psaraftis also introduced one of the first local search methods for the SVRPPD,

the k-interchange procedure [32].

For the capacitated SVRPPD, Kubo and Kasugai made an experimental com-

parison of classical construction heuristics and local search methods [33]. Van der

Bruggen et al. have constructed a 2-phase local-search heuristic for the capacitated

SVRPPD with time windows [34]. In the first phase, a feasible solution is obtained

according to each request’s time window, while taking load and precedence con-

straints into account. If the solution still violates some time windows, in the second

phase an arc-exchange procedure is applied to obtain feasibility. Desrosiers et al.

introduced an exact dynamic programming algorithm for the capacitated problem

16

Chapter 2. Related Work

with time windows [35]. Their algorithm was able to efficiently eliminates infea-

sible and dominated states,and solve instances with up to 40 vertices in a very

short time. Kalantari et al. developed a branch-and-bound algorithm for both

capacitated and uncapacitated SVRPPD. Their algorithm eliminates the branches

on the search tree that would lead to solutions violating precedence constraints.

Ruland and Rodin presented an exact branch-and-cut algorithm using four classes

of inequalities as cuts [36].

Multi-capacity SCPs are also studied in practical context as multi-load AGV

dispatching problem for specified environments. Grunow, Gnther et al. studied the

dispatching of multi-load AGVs in container terminals [37]. In contrast to single

load vehicles, a multi-load vehicle can still be partially available to load another

container if one of its many item-holding positins is free. This results in a new

decision which can be made in the assignment procedure, namely how to insert a

new request in the already scheduled route. A mixed integer linear programming

model has been formulated to dispatch multi-load AGVs such that the lateness

of AGVs is minimized. Furthermore, the authors showed that the heuristic, in

contrast to the optimal approach, can efficiently be applied to real-life container

terminals with large numbers of AGVs and high workloads for the AGV system.

Sinriech and Palni developed an optimal scheduling algorithm for a single multi-

load vehicle travelling in a closed loop during a finite planning horizon [38]. The

arrival time and processing time of each job are known. Sinriech and Kotlarski ex-

tended this algorithm such that it can be used to schedule dynamically multi-load

vehicles in a single loop while minimizing transfer times of jobs and the number

of loops travelled by the vehicles [39]. Due to the dynamic nature of the algo-

rithm, changes in the scheduling plan can be made to react to unexpected events.

It has been shown that this dynamic algorithm outperforms existing commonly

used non-dynamic scheduling rules from a perspective of cycle times and work in

progress. In Table 2.1 and 2.2 we summarize the state of art on the research of

unit-capacity and multi-capacity static SCPs.

17

Chapter 2. Related Work

Unit-Capacity Non-preemptive Preemptive

Path P:O(m+ nα(n))[16] P:O(m+ n)[16]

Circle P:O(m+ n log n)[16] P:O(m+ n)[16]

Tree NPC:4
3
C∗[18] P:O(k + n log n)[15]

Euclidean NPC:Asymptotically Optimal
almost surely[20]

NPC

General NPC:9
5
C∗[2] NPC

Table 2.1: The state of art for static unit-capacity SCPs

Multi-Capacity Non-preemptive Preemptive

Path NPC[28] P:O(m+ n)[28]

Tree NPC NPC[28]

General NPC NPC

Table 2.2: The state of art for static multi-capacity SCPs

Multi-Vehicle Problems

SCPs with a fleet of vehicles rather than a single vehicle are usually referred to

as multi-vehicle routing problem with pickup and deliveries (full-form VRPPD).

Dumas et al. studied a VRPPD with time windows, and developed an exact

column generation algorithm that can handle multiple depots and different type of

vehicles [40], and can solve instances with 55 requests. Xu et al. studied a practical

VRPPD with time windows and many restrictions from real-world logistics, such

as multiple time windows, compatibility between carriers, and driver work rules

[41]. They proposed a column generation algorithm to solve this problem. Their

algorithm was able to provide near-optimal solutions to instances as large as 200

requests within a reasonable time. Ropke and Cordeau proposed a branch-and-

cut-and-price algorithm for a VRPPDTW. They formulated their studied problem

using two new formulations, and introduced several families of valid constraints to

strengthen these two formulations [42].

18

Chapter 2. Related Work

Lau and Liang presented a two-phase heuristic method for VRPPD, in which

the vehicle number is unlimited. In the first phase, they combine construction and

a sweep procedure to generate an initial solution. Then the second phase uses a

tabu search with three different neighborhood moves to improve the solution [43].

Another two-stage hybrid heuristic for a VRPPDTW problem was developed by

Bent and Van Hentenryck [44]. The first stage of the algorithm uses a simulated

annealing algorithm to decrease the number of routes, while the second stage uses

Large Neighborhood Search (LNS) to decrease total travel cost. The neighborhood

in this LNS is defined as the set of solutions that are reachable by relocating at

most p requests.

Some other relevant studies can be found in practical contexts such as Auto-

mated Guided Vehicle Systems. The literature on this topic focuses more on the

design issues such as collision avoidance [45] [46] [47], or AGVs dispatching. Most

of the research efforts on the AGV dispatching problem have been designed for

specific environments, and especially flexible manufacturing systems. Lee tested

the performance of three composite AGV dispatching rules on a simulated multi-

vehicle system based on discrete event simulation [48]. And Schouwenaars, De

Moor et al. presented a mixed linear integer programming model, to solve the

problem of multi-vehicle moving to different positions avoiding each other and

stationary obstacles [49].

Dynamic Problems

In this section we review some literature on the Dynamic SCP, with single

or multiple vehicles. A Dynamic SCP is an SCP where transportation requests

arrive dynamically and stochastically. Some of the requests are revealed or updated

during the period of time in which operations take place. Research on dynamic

problems assumes the requests arrive in a known or unknown stochastic process.

A commonly used strategy to address the dynamic component of the problem is

to adapt an algorithm that solves the static version of the problem.

19

Chapter 2. Related Work

The main application of the Dynamic SCP is the problem of operating a truck-

ing fleet to move full truckloads between pickup and delivery locations. For this

reason the Dynamic SCP is sometimes referred to as the dynamic full truckload

pickup and delivery problem. For a survey of dynamic models for this problem

see [50]. Powell studied a dynamic SCP that arose in the truckload motor carrier

industry [51] [52]. A fleet of vehicles serve regions all over the country. One or

a few vehicles may be requested to transport a load of freight from one city to

another, with only little advance knowledge about future requests. Information

on probability distribution of the requests between any pair of regions, and the

average net revenue per request is assumed known. He used a network flow model

with two types of arcs to calculate an approximate marginal value of an addi-

tional vehicle in the future. Then with this calculated information he generated a

standard network to be optimized and give dispatching decisions for a day.

Swihart and Papastavrou [53] analyzed the performance of three developed

policies on both single-vehicle and multi-vehicle dynamic PDPs under different

traffic intensity, by means of Queuing Theory and simulation. Yang, Jaillet et al.

[54] studied a real-time multi-vehicle truckload Pickup and Delivery problem. To

handle the dynamic component, they used a rolling-horizon framework to solve

this problem many times, each time as a static problem. Their computation result

showed that though their approach outperformed all others, similar results could be

achieved by some simple policies with much less computation effort. Later in [55],

they examined a similar problem with two new policies. These new policies involve

re-optimizing every time a new request arrives and assume some knowledge about

the probability distribution of incoming requests. They concluded that knowing

the distribution indeed improved the result.

A study was carried out by Tjokroamidjojo, Kutanoglu et al. [56]. Their study

examined the effects of two parameters (τ, T) in the routing policies, in which a

re-optimizing is carried out every time a request becomes known. The parameter τ

represents how many days in advance requests are known, while T represents how

many days in advance the decision was made. The results showed that policies

20

Chapter 2. Related Work

(3,1),(5,1),(5,3) performed significantly better than the policies (3,3),(5,5),(5,5)

respectively, suggesting that instant decision will lead to worse result.

Tabu search and annealing heuristic were used in a complex Dynamic SCP

arising from a real-world dispatching problem of an electric monorail system [57].

Their solution strategy consists of solving a static problem several times without

any knowledge about the future. The objective of the static problem was modified

to improve the overall performance of the online algorithm. Mes, van der Heijden

et al. developed an agent-based approach for a version of the Dynamic SCP. An

agent-based model attempts to model complex phenomena using a set of individual

agents with specific tasks and goals. Their simulation experiments showed that the

agent-based approach behaved generally better than simple scheduling heuristics

[58].

2.3 Closely Related Combinatorial Problems

In addition to the SCP, we review a selection of important and related combi-

natorial problems.

Pickup and Delivery Problem

Among others, Pickup and Delivery Problems (PDPs) constitute an important

class of vehicle routing problems in which commodities or people are transported

between locations in a physical environment. PDPs arise in many contexts such

as logistics, transportation systems and material handling systems, etc. PDP

generally consists of a fleet of vehicles and a set of customer requests. Each request

specifies the locations of the pickup point and delivery point and the size of the

load to be transported. A request is considered served if the load of commodities

that the request specifies is picked up at the pickup point and then the same load

is dropped at the delivery point. Furthermore, the same vehicle must visit the

pickup location before the delivery location. Each vehicle in the fleet has a given

21

Chapter 2. Related Work

capacity and a start location. The objective is to minimize the total cost, which

may include the fixed vehicle cost and the travel cost, while satisfying all customer

demand.

PDPs are generally classified into 3 different groups based on the perspective of

the commodities [59]. 1) Many-to-many PDP, characterized by several origins and

destinations for each commodity/customer; 2) one-to-many-to-one PDP, where

commodities are first located at the depot to be transported to many customers

and then back to the depot; 3) one-to-one PDP, where each commodity (which can

be seen as a request) has a given origin and a given destination. Comprehensive

reviews of PDP can be found in [60] [61] and [62].

Two important problems belong to the family of one-to-one PDP, one is Vehicle

Routing Problem with Pickup and Delivery (VRPPD), and the other is Dial-A-

Ride Problem (DARP). The former deals with transportation with objects, while

the DARP applies to the transportation of people, with customers convenience

taken into account [63] [59]. When one adds the unit capacity constraint to the

fleet of vehicles, the one-to-one PDP is referred to as the Stacker Crane Problem

(SCP). In this sense, we could say that SCP is a unit-load VRPPD. Also in many

studies of the SCP, single-vehicle constraint is assumed.

The Dial-a-Ride Problem

The Dial-a-Ride Problem (DARP) is a particular case of the VRPPD arising

in contexts where passengers are transported, either in groups or individually, be-

tween specified origins and destinations. Recently there is a surge in the DARP

popularity due to internet transportation companies like Uber. DARP arises in

several practical applications [64], such as shared taxi services [65] [66], the trans-

portation of elderly and/or disabled persons [67] [68], Telebuses [69], and provid-

ing transportation services in regions with low population density [70]. Generally,

these problems contain several constraints that control user inconvenience, which

also distinguish itself from the basic VRPPD. Examples of such constraints are

22

Chapter 2. Related Work

tight time windows and maximum ride times [71] [72] [73]. The minimization of

user inconvenience often has to be balanced with operation costs since these ob-

jectives usually conflict. Models and algorithms for the static and the dynamic

versions of the DARP were surveyed by [63].

The Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is reducible to the aforementioned PDP

and a generalization of the Traveling Salesman Problem. The VRP can be defined

as a problem of finding the optimal routes of delivery or collection from one or sev-

eral depots to a number of cities or customers, while satisfying some constraints.

Collection of household waste, gasoline delivery trucks, goods distribution, snow

plough and mail delivery are the most used applications of the VRP. It is one of

the most important and studied combinatorial optimization problems. First intro-

duced by Dantzig and Ramser [74], more than 50 years have passed, and hundreds

of models and algorithms have been proposed for the optimal and approximate

solution of the different versions of the vehicle routing problems. The constant

interest in vehicle routing problems is motivated by its practical relevance as well

as its considerable difficulty [75]. There are dedicated books on the VRP such as

[75] [62] and many state-of-the-art reviews like [76].

The Traveling Salesman Problem

The well-known Traveling Salesman Problem (TSP), formulated on a weighted

graph, is to find a minimum-weight simple closed exhaustive tour that visits all

nodes in the graph. The TSP is reducible to the VRP, and is NP-Hard even under

a number of limiting assumptions. A common such assumption is that either the

problem graph is undirected, or else the edge weights are symmetric. In the more

general case, of directed, asymmetric problem graphs, the TSP is often called

instead the Asymmetric Traveling Salesman Problem.

23

Chapter 2. Related Work

In both the symmetrical and asymmetrical cases, the TSP is made hard specif-

ically because of sub-tour elimination. Consider instead a relaxation of the TSP:

to find a minimum-weight set of mutually disjoint simple closed tours together

visiting all nodes. The union of such tours is sometimes referred to as a cycle

factor. The Cycle Factor Problem (CFP) has a straightforward reduction to the

Assignment Problem (AP) [77]. The AP has a concise linear programming formu-

lation, and there are a number of exact and approximate algorithms to solve it in

polynomial time [78].

The AP features in a number of exact and approximate algorithms for the

TSP and ATSP [79]: it is a common starting point for branch-and-cut approach

algorithms; in approximation algorithms, the idea is to identify a minimum-weight

cycle factor, and then use good heuristics to combine the sub-tours into a single

feasible tour.

As every SCP instance can be generalized into an ATSP instance, there have

been studies on solving SCP instances (as well as some other arc routing problems)

as ATSP instances [24]. The author concluded that this approach works well on

low-density graphs containing few edges. And to our knowledge, this is the only

known approach to solve SCP to optimality by far.

In all, the TSP has been one of the most widely studied combinatorial opti-

mization problems and occupies a central place in operation research, ever since

its introduction around 1930s [80]. For extensive methodologies, case studies on

this problem, see [80] [81] [82] [83].

2.4 Summary

Further, Eiselt, Gendreau et al. [84] presented a survey on the Rural Postman

Problem and devoted a section to the SCP. For an extensive review on static and

dynamic pickup and delivery problem, see [59] and [85] respectively. In summary,

the SCP, as an important problem that generalizes many practical issues, as well

24

Chapter 2. Related Work

as an important class of Arc Routing Problem, has been extensively studied. How-

ever, the structured underlying networks or special arc patterns that the practical

problem instances usually come with have not been paid enough attention to. In

this thesis, we study a problem with a grid network and special cost metric that

impose constraints and structural properties that have an impact on the complex-

ity of solving the problems, which effect enables us to devise more efficient and

accurate models and algorithms.

25

Chapter 3

Pseudo-2D Problems

First we give a formal definition and introduction to our studied problem.

3.1 Problem Statement

We investigate a problem that arises in an automated material handling sys-

tem located in a large air cargo terminal in Singapore (as shown in Figure 3.1).

Everyday, large batches of outbound/ inbound/ transfer cargoes are transported

to the terminal to be processed. Usually when they arrive, they are temporarily

stored inside a storage and retrieval system inside the terminal, and to be retrieved

some time later. The storage and retrieval system, which is served by a stacker

crane vehicle, is of several stories high. In our studied system, the transhipment

cargoes usually stay for a couple of days before getting picked up. Consequently,

the time window of each cargo request and the total finishing time are no longer of

the highest priorities, and energy-efficiency of the operations becomes important.

This motivates us to look for solutions to the stacker crane routing with the min-

imal energy consumption. We call this problem Energy-Efficient Stacker Crane

Problem(EESCP).

Our studied problem can be classified as a special case of the Stacker Crane

Problem (SCP), in which objects (such as containers or pallets) need to be trans-

ported from their origins to their assigned destinations via a unit-capacity vehicle.

26

Chapter 3. Pseudo-2D Problems

Figure 3.1: Two examples of storage and retrieval system in air
cargo terminals

The vehicle performs a set of movements (traverses a set of arcs) to load and

unload objects at their origins and destinations respectively. The objective is to

plan the vehicle movements so as to minimize the total tour cost. Usually this

cost is represented by the total tour time, or in some other cases, the Euclidean

traveled distance. In this work, the tour cost is the total operating cost measured

in energy consumption, which can be equivalently converted to the weighted trav-

eled distance in Manhattan norm (explained in Section 3.1). Also in this problem,

the items come in batches, thus all pickup and delivery requests information are

collected and known in advance, consequently our studied problem is considered

static.

The Energy-Efficient Stacker Crane Problem(EESCP): In this problem, a unit-

capacity stacker crane vehicle serves a storage rack with NV rows and NH columns

(as shown in Figure 3.2). Every cell on this storage rack is of the same size, h in

width and v in height. The vehicle itself has a net mass of m0 when empty-loaded,

and can move freely to any cell on this rack to perform either a pickup action or a

27

Chapter 3. Pseudo-2D Problems

drop-off action. A set of pickup and delivery requests R is given. Once a request

is initiated, the stacker crane cannot perform another task before the current one

is finished (non-preemptive). The cost induced is measured in terms of energy

consumption. A solution, or a tour, is a sequence in which the stacker crane can

perform all the given requests and return to its starting position. The objective is

to find such a tour with the minimum energy cost.

Figure 3.2: The EESCP instance with its underlying grid

This problem setting is more specific than the general SCP:

• The vehicle is traveling on a fixed, connected and undirected grid graph;

• The cost is in Manhattan norm and associated with the horizontal and ver-

tical displacement the stacker crane travelled rather than the Euclidean dis-

tance. Consequently, in this problem, while the vehicle can move freely in any

diagonal direction, the cost that a diagonal movement incurs always equals

to the cost incurred by its corresponding horizontal and vertical components

combined;

Observe that for unit-capacity and non-preemptive problems, the given re-

quests arcs are always part of the optimal tour. Thus the part of energy consump-

tion incurred by the given requests is in fact fixed and irrelevant to neither the

28

Chapter 3. Pseudo-2D Problems

vehicle tour decisions nor the weight of carried items. So the optimization only ap-

plies to the tour cost in-between given requests, where the vehicle is empty-loaded.

The energy consumption for the empty vehicle to travel from one cell to the one

next to it is calculated as follows:

energy cost per horizontal move:

cH = kH ·m0gµ · h (3.1)

energy cost per vertical move:

cV = kV ·m0g · v (3.2)

where kH and kV are constant coefficients when the stacker crane is working under

certain condition, e.g., fixed cruising and rising speed. g and µ are the constant

of gravitation and friction coefficient respectively. A “move” is defined as a unit

horizontal or vertical movement from one cell to one of its neighboring cells for

the vehicle.

In practice, the energy cost function of movement actually depends on the type

of equipment. Detailed energy cost calculations can be given according to the

diagrams of specific equipment. However varied they are, they are all more or less

linear functions of the weight. This is understandable, as what governs the energy

costs of horizontal and vertical displacements are still the fundamental principles

of physics. Thus we used an extremely simplified version of cost functions, and

aggregated all the variations and uncertainties into parameters kH ,kV . This way,

our analysis can be simplified, and be applied to a wide variety of cases. For

literature to support this assumption, please refer to [86]. Furthermore, we can

find similar use of linear energy cost function in other literature such as [14].

The difference between minimizing the total traveling distance and the total

energy consumption is mainly affected by the different ratio of k = kH ·µ

kV
. In reality,

k is expected to be smaller than 1. In Figure 3.3 and Table 3.1 we see the difference

29

Chapter 3. Pseudo-2D Problems

in incurred energy cost between the distance-minimal optimal solution and the

energy-minimal optimal solution under different values of k. A smaller k implies

a larger energy-cost difference between minimizing the two different objectives, as

much as 83%. On the other hand, we also run a simulation to show how much

distance cost of an energy-optimal tour would deviate from a distance-optimal

tour (if the vehicle velocity is assumed constant, we can also interpret this result

in terms of time). In Figure 3.4 and Table 3.2 we see that the largest deviation

happens when k is close to zero, and smallest when k is close to 1, similar to the

trend shown in Figure 3.3. Comparing Figure 3.3 and Figure 3.4, we also notice

that, at the same k, the percentages of deviations are not the same. For example,

in Figure 3.3, the largest deviation is around 20% when k = 0.1. Compare this

to the largest energy deviation, which is 30%, we can draw the conclusion that

for the current k, we can averagely sacrifice around 20% of time to gain 30% of

energy, which is a good tradeoff in some situations. Also, we find that the standard

deviation of the difference in Table 3.2 is much smaller than that in Table 3.1. This

phenomenon also implies that for the same loss of time, there can be strategies to

maximize the gain of energy.

Difference in Energy Cost (%)

k 1:10 3:10 5:10 7:10 9:10

Max. 82.99 21.16 13.48 6.80 5.73
Ave. 29.51 9.68 5.53 3.16 2.19
Min. 5.58 1.23 1.12 0.75 0

Table 3.1: The difference in energy cost when optimized in
different metrics (%)

Then an EESCP instance is defined by I = G(V,E,A) and its cost function

c(·). G(V,E) is the graph representation of the grid that the vehicle serves, V =

{v = (xv, yv)} being the set of vertices, E the set of edges. Arc set A represents

the requests in R on the gird. For any arc a = (v1, v2) on the grid, c(a) =

cH |xv1 − xv2 |+ cV |yv1 − yv2 |. The EESCP is essentially an SCP on a solid grid in

Manhattan norm.

30

Chapter 3. Pseudo-2D Problems

Figure 3.3: The difference in energy cost when optimized in
different metrics

Figure 3.4: The difference in traveling distance when optimized
in different metrics

31

Chapter 3. Pseudo-2D Problems

Difference in Traveling Distance (%)

k 1:10 3:10 5:10 7:10 9:10

Max. 35.45 25.85 16.55 10.45 9.92
Ave. 20.20 13.51 9.13 6.83 6.69
Min. 7.49 4.57 4.02 2.11 1.97

Table 3.2: The difference in traveling distance when optimized in
different metrics (%)

A solution to I is a sequence to traverse all the arcs in A. Let S∗ be the optimal

sequence set. Every sequence s, when viewed on the graph, can be translated into

the trajectory of the vehicle. This trajectory, denoted by Ts, is a degree-balanced

and connected (eulerian) graph that starts and ends at the same position in the

2D plane. c(s) = c(Ts) is the cost incurred by s ∈ S∗, excluding the fixed cost of

arcs in A.

3.2 NP-Completeness of EESCP

EESCP is a essentially an SCP on solid grid graph in Manhattan norm (SCPSM).

For definition on solid grid graph, see [87].

Theorem 3.1 The SCP in Manhattan norm on solid grid graph (SCPSM) is NP-

Complete.

Proof: Note that the Traveling Salesman Problem on solid grid graph in

Manhattan norm (TSPSM) is a special case of SCPSM. In an SCPSM instance

I = G(V,E,A), if we restrict that ∀a = (vi, vj) ∈ A, vi = vj, then we have reduced

A to a node set A j V on the grid graph. Thus TSPSM is a special case of

SCPSM.

C.H. Papadimitriou [88] has shown that the Traveling Salesman Problem with

rectilinear structure and in Manhattan norm is NP-Complete. With a similar

method to his, the NP-Completeness of TSPSM can be obtained. The NP-

Completeness of TSPSM then implies the NP-Completeness of SCPSM. Thus we

have proved that EESCP is NP-Complete.

32

Chapter 3. Pseudo-2D Problems

3.3 Conditions for Free-Permutation

Back in 1988, Atallah and Kosaraju developed an algorithm that runs in

O(m+ nα(n)) time for one-dimensional(1D) SCP on linear tracks, when studying

to minimize the movement of robot arms [16]. Almost at the same time, Ball

and Magazine developed the exact same algorithm to solve the SCP in Manhattan

norm that arises in circuit printing problem [17]. What interesting is, the SCP

which Ball and Magazine studied is a 2D problem that does not fit the description

of “SCP on linear tracks” (Figure 3.5). As we investigate, the implication that a

subset of 2D problems can be simply solved by 1D problem algorithms, is true.

We call this subset of 2D problems Pseudo-2D problems, since they seem to exist

somewhere in between these two dimensions. But how to identify these problem

instances among others? And to what extent can we push the 1D algorithm to

apply to the 2D problems? In this chapter we try to answer these two questions.

The following is a list of frequently used notation in the following sections.

Notation in this chapter:

Sets

A1 Set of arcs that represents the requests in a 1D SCP istance;

Ts The set of arcs that forms the trajectory (eulerian graph) of

the vehicle if it performs A1 in sequence s;

PH(Ts), PV (Ts) The horizontal and vertical projections of Ts. They themselves

are 1D eulerian graphs;

IH , IV The horizontal and vertical 1D subproblem instances of a 2D

instance I;

T ∗
H , T

∗
V The optimal eulerian graph obtained by respectively solving

IH and IV ;

S∗
H , S

∗
V The respective sets of all the sequences that can be obtained

from T ∗
H and T ∗

V ;

33

Chapter 3. Pseudo-2D Problems

Parameters

xO
i , x

D
i The respective coordinates of the pickup and drop-off positions

of arc i ∈ A1;

n The number of arcs in A1;

Others

c(s) The cost incurred by sequence s;

c(A) The cost incurred by the set of arcs A.

Figure 3.5: Problems with two different structures can be sovled
with the same algorithm

A general instance of SCP on paths I1, can be defined by an arc set I1 =

G(A1), A1 = {ai = (xO
i , x

D
i), i = 1, 2, ..., n}, |A1| = n, xO

i ∈ R is the coordinate of

the pickup position of arc i on the axis, and xD
i the drop-off position.

We briefly introduce some key points about Atahhah and Kosaraju’s algorithm

for solving 1D SCP. See Figure 3.6 for demonstration. The algorithm starts by

constructing the optimal 1D eulerian graph. The construction is done by the

following two steps:

Step (1): Degree-balancing every node with minimum number of augmenting

arcs; (illustrated by dashed arrows in (a) of Fig. 3.6);

Step (2): If the resulting graph has disconnected sub-tours, use minimum

pairs of arcs in opposite directions to connect the sub-tours. Then

any euler tour of the resulting eulerian graph gives an optimal cost.

34

Chapter 3. Pseudo-2D Problems

Note that the resulting graph of step (1) is unique, while that of step (2) is not

necessarily unique. Due to multiple solutions of step (2), we can identify multiple

optimal 1D eulerian graphs with this algorithm. Also note that within the same

optimal eulerian graph, usually multiple optimal sequences can be identified. For

more details, see [16].

Figure 3.6: (a) Degree-balancing and (b) connecting the graph to
make an eulerian graph that contains the optimal tour

Assume that we have an EESCP instance I = G(V,E,A), S∗ its optimal se-

quence set, and C∗ its optimal cost. Then we project Ts∗ , ∀s
∗ ∈ S∗ horizontally

and vertically, and let PH(Ts∗) and PV (Ts∗) be the respective horizontal and ver-

tical projections. Note these two projections are also two 1D eulerian graphs on

their own. As the cost is measured in Manhattan norm, c(PH(Ts∗))+c(PV (Ts∗)) =

c(Ts∗).

On the other hand, by projecting the arc set A of I horizontally and verti-

cally, we generate two 1D subproblem instances IH = G(AH) and IV = G(AV),

respectively, as seen in Figure 3.7. AH and AV are the respective horizontal and

vertical ”shadow” of arcs in A while retaining their own identities in A. The op-

timal eulerian graphs to these two 1D instances can be obtained independently

by aforementioned algorithm for SCP on paths, let them be T ∗
H and T ∗

V respec-

tively. Let S∗
H and S∗

V be the sets of all the optimal sequences that can be deduced

respectively from T ∗
H and T ∗

V . Now let us first introduce a lemma:

Lemma 3.1 Let S ′ = S∗
H

⋂
S∗
V If S ′ 6= ∅, then S ′ j S∗.

Proof: Let us assume on the contrary, that S ′ = S∗
H

⋂
S∗
V 6= ∅, but S ′ " S∗.

Then there must ∃s′ ∈ S ′ and C∗ < c(s′), where c(s′) is the cost that incurred

35

Chapter 3. Pseudo-2D Problems

Figure 3.7: The 2D instance and its two corresponding 1D
problem instances

by sequence s′. Let s∗ be any sequence in S∗, c(s∗) = C∗. We then examine the

projections of Ts∗ , PH(Ts∗) and PV (Ts∗). Since the problem is in Manhattan norm,

so we have:

c(s∗) = c(PH(Ts∗)) + c(PV (Ts∗)) = C∗ < c(T ∗
H) + c(T ∗

V) = c(s′) ∀s′ ∈ S ′ (3.3)

But according to the definition of T ∗
H , c(T

∗
H) is the minimum cost possible for

any 1D eulerian trajectory to exist at all. Thus c(PH(Ts∗)) ≥ c(T ∗
H). The similar

holds for c(T ∗
V). Thus c(PH(Ts∗)) + c(PV (Ts∗)) ≥ c(T ∗

H) + c(T ∗
V). Hence the con-

tradiction, and we have the conclusion that if s′ is a sequence that simultaneously

minimizes the horizontal and vertical subproblems, then s′ ∈ S∗.

Lemma 3.1 gives us an interesting perspective. If we work on the two 1D

subproblems independently and their solutions agreed on some optimal sequences,

then these optimal sequences are optimal to the original 2D problem as well.

However, this insight is not very helpful to directly solve the 2D problem for the

following reasons: (1) For a given optimal 1D eulerian trajectory, there can be an

exponential number of optimal sequences, generating all of them is impractical;

36

Chapter 3. Pseudo-2D Problems

(2) Often the prerequisite S ′ = S∗
H

⋂
S∗
V 6= ∅ simply does not hold.

However, Lemma 3.1 does help us understand what happened in the 2D prob-

lem of Ball and Magazine. In Figure 3.8 we have an instance of the circuit printing

problem. We proceed to project the instance into two 1D instances and had their

optimal eulerian trajectory drawn. We immediately notice that, in the 1D eule-

rian trajectory on the vertical axis, (1) the sequence does not matter: this eulerian

graph allows full permutation of the request arcs to be optimal and (2) the opti-

mal cost (excluding the cost of request arcs) is a constant c(AV). We call this 1D

instance is of ”free-permutation”, which refers to the fact that any sequence is op-

timal. Now that S∗
V is full permutation, we know S ′ = S∗

H

⋂
S∗
V = S∗

H 6= ∅. This

means that the solution to the horizontal 1D subproblem IH alone, can determine

the optimal sequences for the 2D problem. And this is exactly what happened in

Ball and Magazine’s circuit printing problem.

Figure 3.8: In circuit printing problem, the optimal solution to
vertical subproblem yeilds full permutation of the request arcs

This observation implies that, for a 2D SCP in Manhattan norm, if we can

identify that one of its two 1D subproblems is of free-permutation, then this 2D

problem can be solved to optimal in O(m + nα(n)) time by solving the other

subproblem with Atallah and Kosaraju’s algorithm. One can point out some extra

similar examples, like those listed in Figure 3.9, and draw the conclusion that “all

37

Chapter 3. Pseudo-2D Problems

the request arcs starts from/ ends at the same straight line” is what guarantees an

free-permutation 1D subproblem. While this condition is indeed sufficient, but not

necessary. There are some other free-permutation 1D instances that have different

structures, though not obvious, like the one shown in Figure 3.10. Also note that

all these examples are given in continuous space, it is true that the space does not

necessarily need to be discrete or continuous. Now we answer the question of under

what precise circumstances can we identify an free-permutation 1D instance.

Figure 3.9: Some similar examples to Ball and Magazine’s circuit
printing problem and their free-permutation subproblems

Figure 3.10: Another example of “free-permutation” 1D problem

First we introduce two necessary conditions for a free-permutation 1D instance.

Lemma 3.2 Assume that the eulerian graph contains no disconnected sub-tours

after the degree-balancing process (step (1) in Atahhah and Kosaraju’s algorithm).

If the instance is of free-permutation, then in its eulerian graph T ∗
H , for any arc

i = (xO
i , x

D
i) ∈ A1, starting from xD

i , there must exist an “augmenting path”

(xD
i , x

O
j), a path that consists of solely augmenting arcs, to reach the pickup position

xO
j of any other arc j 6= i ∈ A1.

38

Chapter 3. Pseudo-2D Problems

Proof: Under the no sub-tours assumption, T ∗
H is unique. So any optimal

sequence of the 1D instance can only be deduced from T ∗
H . Suppose in T ∗

H , ∃i, j ∈

A1, that there is no such path as described above between xD
i and xO

j . Any solution

sequence that has arc j right after arc i, such as s = {s1, s2, ...i, j, ..., sn−1, sn},

cannot be deduced from T ∗
H . This contradicts the condition that the instance is of

free-permutation. Thus we complete the proof for this lemma.

Lemma 3.3 Let Y = {y1, y2, ...ym} be the set of the coordinates of all the vertices

of arcs in A1. Since some of the elements in Y are equal, m = |Y | ≤ 2n. On

the axis, mark these coordinates in ascending order as (y1, y2, ..., ym−1, ym). Un-

der the no sub-tours assumption, if there exist augmenting arcs over any interval

[yi, yi+1], i = 1, ...,m − 1 of T ∗
H , they are in the same direction, i.e. either to the

left or to the right, not both (Figure 3.11).

Proof: This lemma is an observation from the the degree-balancing process un-

der the no sub-tour assumption. If the resulting graph T ∗
H is optimal and eulerian

after the degree-balancing, and there is an interval over which it has augmenting

arcs in both directions. Then we can remove the pair of augmenting arcs over

that interval without affecting the degree-balance or the connectivity of T ∗
H , this

contradicts that T ∗
H is optimal.

Figure 3.11: A demonstration of Lemma 3.3

Theorem 3.2 In a 1D SCP problem instance, suppose its arc set A1 = {ai =

(xO
i , x

D
i), i = 1, 2, ..., n} contains n arcs in total. Let c(a), a ∈ A1 be the cost of

arc a, and c(A1) be the total cost of all the arcs in A1. If the resulting graph

contains no disconnected sub-tours after degree-balancing, the 1D instance is of

free-permutation, if and only if the arc set A1 satisfies one or more of the following

conditions 1)-6); otherwise, the 1D instance is of free-permutation if and only if

the arc set A1 satisfies one of the two conditions 7)-8) (Table 3.3 and Figure 3.12):

39

Chapter 3. Pseudo-2D Problems

1) xO
i = xO

j ∀i, j = 1, 2, ..., n

2) xD
i = xD

j ∀i, j = 1, 2, ..., n

3) xO
i ≤ xD

j ∀i, j = 1, 2, ..., n (the other di-
rection symmetrical)

4) max
i=1,...,n;i 6=l

{xO
i } ≤ xD

l ≤ xO
l ≤ min

i=1,...,n;i 6=l
{xD

i } ∃ only one l ∈ {1, 2, ..., n}

xO
i ≤ xD

j ∀i 6= l ∨ j 6= l; i, j = 1, 2, ..., n
(symmetrical)

5) xO ≤ xO
l ≤ min

i=1,...,n;i 6=l
{xD

i } ∃ only one l ∈ {1, 2, ..., n}

xO
i ≤ xD

i , x
O
i = xO

j = xO ∀i, j ∈ {1, 2, ..., n}; i, j 6= l
(symmetrical)

6) max
i=1,...,n;i 6=l

{xO
i } ≤ xD

l ≤ xD ∃ only one l ∈ {1, 2, ..., n}

xO
i ≤ xD

i , x
D
i = xD

j = xD ∀i, j ∈ {1, 2, ..., n}; i, j 6= l
(symmetrical)

7) xO
l , x

D
l ≤ xO ∃ only one l ∈ {1, 2, ..., n}

xO
i ≤ xD

i , x
O
i = xO

j = xO ∀i, j ∈ {1, 2, ..., n}; i, j 6= l
(symmetrical)

8) xO
l , x

D
l ≥ xD ∃ only one l ∈ {1, 2, ..., n}

xO
i ≤ xD

i , x
D
i = xD

j = xD ∀i, j ∈ {1, 2, ..., n}; i, j 6= l
(symmetrical)

Table 3.3: Six conditions in Theorem 3.3

40

Chapter 3. Pseudo-2D Problems

Figure 3.12: A simple demonstration of Theorem 3.2

3.3.1 Proof for Theorem 3.2

Proof:

Necessity: Pick any sequence of A1, seq = s1, s2, ..., sn, si = 1, 2, ...n. Then the

cost of the tour completing the sequence is:

c(seq) = |xO
s2
− xD

s1
|+ |xO

s3
− xD

s2
|+ |xO

s4
− xD

s3
|...+ |xO

sn
− xD

sn−1
|+ |xO

s1
− xD

sn
| (3.4)

Condition 1): If xO
i = xO

j = xO, ∀i, j = 1, 2, ..., n, then equation (3.4) becomes:

c(seq) = |xO − xD
s1
|+ |xO − xD

s2
|+ |xO − xD

s3
|...+ |xO − xD

sn−1
|+ |xO − xD

sn
|

= |xO
s1
− xD

s1
|+ |xO

s2
− xD

s2
|+ |xO

s3
− xD

s3
|...+ |xO

sn−1 − xD
sn−1

|+ |xO
sn

− xD
sn
|

= c(a1) + c(a2) + c(a3)...+ c(an−1) + c(an)

= c(A1);

Condition 2): Can be proved similarly to Condition 1);

41

Chapter 3. Pseudo-2D Problems

Condition 3): If xO
i ≤ xD

j , ∀i, j = 1, 2, ..., n, then equation (3.4) becomes:

c(seq) = (xD
s1
− xO

s2
) + (xD

s2
− xO

s3
) + (xD

s3
− xO

s4
)...+ (xD

sn−1
− xO

sn
) + (xD

sn
− xO

s1
)

= (xD
s1
− xO

s1
) + (xD

s2
− xO

s2
) + (xD

s3
− xO

s3
)...+ (xD

sn−1
− xO

sn−1
) + (xD

sn
− xO

sn
)

= c(a1) + c(a2) + c(a3) + ...+ c(an−1) + c(an)

= c(A1);

Condition 4): Suppose that arc l is the slth in the sequence. Notice how

Condition 4) is just Condition 3) with one modification: allowing one and only

one arc to be in the opposite direction to the others. In Condition 4), since

max
i=1,...,n;i 6=l

{xO
i } ≤ xD

l ≤ xO
l ≤ min

i=1,...,n;i 6=l
{xD

i } holds, the proof follows exactly the

same as that of Condition 3) with only a minor difference:

c(seq) = (xD
s1
− xO

s2
) + (xD

s2
− xO

s3
)...+ (xD

sl−1
− xO

sl
) + (xD

sl
− xO

sl+1
)...+ (xD

sn
− xO

s1
)

= (xD
s1
− xO

s1
) + (xD

s2
− xO

s2
)...+ (xD

sl
− xO

sl
)...+ (xO

sn−1
− xD

sn−1
) + (xO

sn
− xD

sn
)

= c(a1) + c(a2) + ...+ c(an−1) + c(an)− c(al)(Constant)

Condition 5): Under the conditions of Condition 5), suppose that arc r is the

srth in the sequence, then equation (3.4) becomes:

c(seq) = |xO − xD
s1
|+ |xO − xD

s2
|...+ |xO

l − xD
sl−1

|+ |xO
sl+1

− xD
l |...+ |xO − xD

sn
|

= c(a1) + c(a2)...+ xD
sl−1

− xO
l + xO

sl+1
− xD

l ...+ c(an)

= c(a1) + c(a2)...+ (xD
sl−1

− xO
sl−1

)− xO
l − xD

l + xO
sl+1

+ xO
sl−1

...+ c(an)

= c(a1) + c(a2)...+ c(al−1)− xO
l − xD

l + 2× xO...+ c(an)(Constant)

Condition 6): The proof for Condition 6) is similar to Condition 5).

Hence we proved the necessity.

Sufficiency:

42

Chapter 3. Pseudo-2D Problems

We will prove that, under the assumption that the resulting graph TH is optimal

and contains no sub-tours after the degree-balancing process, if the 1D instance

is of free-permutation, then the arc set A1 satisfies one or more of the above six

conditions.

We divide all the 1D instances into 2 major categories: (1) Unidirectional:

where all arcs are in only one direction; (2) Bidirectional: where there can exist arcs

in both directions. In this proof, we will automatically assume that n = |A1| ≥ 3

since the cases where n ≤ 2 are trivial.

(1) Unidirectional (Scenario U1):

When all arcs in A1 are of the same direction (without loss of generality, we

assume they are to the right), and are of free-permutation. Assume on the contrary

that there exist arcs i, j that do not overlap, that is, xO
i ≤ xD

i < xO
j ≤ xD

j (See

Figure 3.13). According to Lemma 3.2, we know that augmenting paths (xD
j , x

O
i)

and (xD
i , x

O
j) must both exist, and their directions must be the way shown in

Figure 3.13. Then the interval between xD
i and xO

j clearly contradicts Lemma 3.3.

Applied to both directions, we have the “overlapping property”:

xO
i ≤ xD

j ∀i, j = 1, 2, ..., n

or xO
i ≥ xD

j ∀i, j = 1, 2, ..., n

These conclusions are exactly Case 3).

Figure 3.13: When all arcs are unidirectional, if they are of
free-permutation, they must overlap

(2) Bidirectional:

When bidirectional arcs are allowed, there are a few scenarios to consider.

Let AL be the set of arcs that point to the left, AR the set of arcs to the right,

43

Chapter 3. Pseudo-2D Problems

AL ∪AR = A1. |AL| = nL, |AR| = nR. Locate four critical coordinates on the axis

for AR:

xO
max = max

i∈AR

{xO
i }

xO
min = min

i∈AR

{xO
i }

xD
max = max

i∈AR

{xD
i }

xD
min = min

i∈AR

{xD
i }

Since arcs in A1 are of free-permutation, it can be inferred that, arcs in AR

and AL are also of free-permutation. Hence the overlapping property must still

hold for arcs in AR and AL respectively. For any pair of arcs i, j ∈ AR/AL,

[xO
i , x

D
i]∩ [xO

j , x
D
j] 6= ∅. As a result, when n ≥ 3, all situations can be divided into

three mutually exclusive and collectively exhaustive scenarios. Since nL + nR =

n ≥ 3, without loss of generality, we will assume that nR ≥ 2, nL ≥ 1.

Scenario B1): Nonhomogeneous pickup and drop-off positions in AR

In this scenario, ∃i, j ∈ AR, x
O
i 6= xO

j and ∃a, b ∈ AR, x
D
a 6= xD

b . We will

prove that in this scenario, under the assumption that A1 is of free-permutation,

if there exist arcs in AL, then nL = 1, and this only arc l = (xO
l , x

D
l) satisfies

xO
max ≤ xD

l ≤ xO
l ≤ xD

min.

Note the fact that, according to Lemma 3.2, for the arc in AR with the largest

drop-off position (xD
max) to reach all other arcs in AR, and for all the other arcs

in AR to reach the arc with the smallest pickup position (xO
min), there will always

exist an augmenting path (xD
max, x

O
min), see Figure 3.14. This augmenting path

alone enforces very strong limitations on arcs in AL.

Assume on the contrary, there exists arc l = (xO
l , x

D
l) ∈ AL, x

O
l > xD

min. See

Figure 3.14 (a), for the arc in AR with the smallest drop-off position to reach arc

l, according to Lemma 3.2 there should be an augmenting path (xD
min, x

O
l). Now

over the interval [xD
min, x

O
l] there are opposing augmenting paths, this contradicts

Lemma 3.3. Thus we have xO
l ≤ xD

min.

44

Chapter 3. Pseudo-2D Problems

Again assume on the contrary, there exists arc l ∈ AL, x
D
l < xO

max. In Fig-

ure 3.14 (b), for arc l to reach the arc with the largest pickup position in AR,

according to Lemma 3.2, there should exist an augmenting path (xD
l , x

O
max). Now

over the interval [xD
l , x

O
max], there exist augmenting paths in both directions, this

contradicts Lemma 3.3. We have xO
max ≤ xD

l .

Furthermore, assume on the contrary, that nL ≥ 2. Demonstrated in Figure

3.14 (c), pick any pair of arcs l,m ∈ AL (they will overlap), for them to reach each

other, say, m to reach l, there should be an augmenting path (xD
m, x

O
l). Over the

interval [xD
m, x

O
l] there are augmenting paths in both directions, hence contradicts

Lemma 3.3. So we have nL = 1.

Thus We have deduced Condition 4).

Figure 3.14: In Scenario B1), Condition 4) can be deduced

Scenario B2): Homogeneous pickup positions in AR

In this scenario, all arcs in AR share the same pickup position xO (See Figure

3.15 for a comprehensive demonstration). Now we consider the possible positions

and the number of arcs in AL.

Case a): nL = 1

In this case, we will prove that, under the conditions that A1 is of free-

permutation and all arcs in AR has homogeneous pickup positions xO. If there

exists any arc l ∈ AL, then xO ≤ xO
l ≤ xD

min.

Assume on the contrary that there exists an arc l = (xO
l , x

D
l) ∈ AL, x

O
l > xD

min

or xO
l < xO. When xO

l > xD
min, as interpreted in Figure 3.15 (a), according to

Lemma 3.2, for the arc that has the minimum drop-off coordinate in AR, m, to

reach l, there exists an augmenting path (xD
min, x

O
l). On the other hand, for the arc

45

Chapter 3. Pseudo-2D Problems

that has the maximum drop-off coordinate in AR, n to reach any other arc in AR,

there exists an augmenting path (xD
max, x

O
min = xO). Over the interval [xD

min, x
O
l],

now we have augmenting arcs in both directions, thus contradicts Lemma 3.3.

When xO
l < xO (Figure 3.15 (b)), according to Lemma 3.2, for arc l to reach

any arc in AR, there must exist an augmenting path (xD
l , x

O). On the other hand,

for arcs in AR to reach l, there also must exist an augmenting path (xD
min, x

O
l). We

see over the interval [xO
l , x

O], there are opposing augmenting paths that violate

Lemma 3.3.

Thus we have the contradiction.

Figure 3.15: Scenario B2), when nL = 1, Condition 1) can be
deduced

Case b): nL ≥ 2

In this case, we will prove that, if A1 is of free-permutation and all arcs in AR

has homogeneous pickup positions xO. If there exists nL ≥ 2 arcs in AL, then

xO
l = xO, ∀l ∈ AL.

Assume on the contrary that ∃l = (xO
l , x

D
l) ∈ AL, x

O
l 6= xO. From Case a) we

already know that xO
l ∈ [xO, xD

min], so xO
l 6= xO means that xO

l ∈ (xO, xD
min]. We

can identify the arc in AL with the largest pickup position, n = (xO
n , x

D
n), x

O
n =

maxi∈AL
{xO

i }. Since xO
n is the largest, we have xD

l ≤ xO
l ≤ xO

n ∀l ∈ AL. Demon-

strated in Figure 3.16, according to Lemma 3.2 for the same reason in Case a),

there exists augmenting path (xD
max, x

O); on the other hand, for any other arc

m ∈ AL to reach arc n, there should be an augmenting path (xD
m, x

O
n). Over the

interval [xD
m, x

O
n], we will observe opposing augmenting paths that violate Lemma

3.3. Thus we have the contradiction.

46

Chapter 3. Pseudo-2D Problems

Figure 3.16: In Scenario B2), when nL ≥ 2, Condition 1) can be
deduced

Case a) and b) combined, we have exactly deduced Conditions 1) and 5).

Scenario B3): Homogeneous drop-off positions in AR

Pickup and drop-off locations are essentially symmetrical. Thus in this sce-

nario, with similar proof in Scenario B2), we can deduce Conditions 2) and 6).

Scenario U1, B1, B2, B3 are mutually exclusive and collectively exhaustive,

thus beginning from the condition of free-permutation, we have deduced all six

conditions of Theorem 3.2. This completes the proof for sufficiency.

47

Chapter 4

Nodes Formulation and GRID

Algorithm

Our work in the previous section only identifies a small subset of polynomial-

time solvable EESCP, with certain arc patterns. In most cases, as we have shown,

the problem is NP-Complete and its optimal solutions are resource-demanding to

obtain. A common exact solution is to formulate and solve it as an ATSP problem,

which has an exponential time complexity. In this section, we propose a new exact

formulation for EESCP based on its fixed network with finite number of vertices,

the solving time of which does not grow exponentially with the number of requests

in the instance. And then we introduce two approximation algorithms GRID-L

and GRID-S.

Notation in the following sections:

48

Chapter 4. Nodes Formulation and GRID Algorithm

Sets

NB i Set of neighboring cells of cell i

NBH
i The horizontal neighboring cells of cell i

NBV
i The vertical neighboring cells of cell i

R Set of all the requests

A Set of all the arcs representing the requests

V Set of all the vertices on the grid

E Set of all the edges on the grid

S S = {i ∈ V |Gi > 0}

D D = {i ∈ V |Gi < 0}

U U is the set of vertices that are visited by at least one arc in

A, whose final net in-degree is zero

P P = S ∪D ∪U is the set of all the vertices that are visited at

least once in the instance

Parameters

M The total number of all requests

NV The number of rows of the storage rack

NH The number columns of the storage rack

N N = NV ×NH , is the total number of storage cells on the

rack

K The number of connected components

cH , cV The energy consumption for the stacker crane vehicle

to perform a single move horizontally/ vertically when

empty-loaded

Gi The net in-degree of cell i induced by the arcs in A

49

Chapter 4. Nodes Formulation and GRID Algorithm

aij The number of arcs starting from vertex i to vertex j in

A, ∀i, j ∈ P

cij The cost of arc (i, j)

Decision Variables

xij/yij xij/yij ∈ N, xij/yij = n means that there would be n

moves from cell i to cell j in the final vehicle tour

zij zij = n if there are n units of commodity flow through arc

(i, j)

Others

C∗ The optimal tour cost for the EESCP instance

CA The cost of the given requests in A

4.1 A New Exact Formulation

Given an instance G(V,E,A)For each vertex in V , do:

1) For each cell i on the grid, calculate its “net in-degree” Gi by subtracting the

number of requests that origin at cell i from the number of requests that end

at cell i;

2) Define set S = {i ∈ V |Gi > 0} and D = {i ∈ V |Gi < 0}. Next we observe that

all the unbalanced vertices are included in S and D. Define a set of vertices

U , u ∈ U is a vertex that is visited by at least one arc in A, but its final net

in-degree is zero;

3) Let S∪D∪U = P , then P is the set of all the vertices that are relevant (visited

at least once) in this problem instance;

4) Let aij be the number of arcs starting from vertex i to vertex j in A, ∀i, j ∈

P . Also introduce another set of “commodity flow” variable Z = {zij|zij =

1, 2..., |P |} for sub-tour elimination.

50

Chapter 4. Nodes Formulation and GRID Algorithm

5) Let cij be the cost of arc (i, j). For general graphs, cij would often need to be

solved by a shortest path algorithm, and cij = cji. In a solid grid, however, cij

is easy to obtain;

6) Notice that to make every vertex in P degree-balanced, is to find a single tour

to “transport” positive in-degrees from vertices in S ∪ U to vertices in D ∪ U ,

with minimum energy cost.

Then the formulation is as follows:

Decision Variables:

Y = {yij ∈ N}, yij = n if the solution contains n augementing arcs starting from

vertex i to j, ∀i, j ∈ P

Z = {zij|zij = 1, 2..., |P |}, zij = n if there are n units of commodity flow through

arc (i, j)

Objective Function:

min .
∑

i∈P

∑

j∈P

cijyij (4.1)

Constraints:

∑

i∈S∪U

yij = −Gj ∀j ∈ D (4.2)

∑

j∈D∪U

yij = Gi ∀i ∈ S (4.3)

∑

j∈P

yij = 0 ∀i ∈ D (4.4)

∑

i∈P

yij = 0 ∀j ∈ S (4.5)

∑

j∈D∪U,j 6=i

yij =
∑

j∈S∪U,j 6=i

yji ∀i ∈ U (4.6)

∑

j∈P

zji −
∑

j∈P

zij = 1 ∀i ∈ P, i 6= 1 (4.7)

∑

j∈P,j 6=1

z1j = |P | (4.8)

zij ≥ 1 if aij ≥ 1 or yij ≥ 1 ∀i, j ∈ P (4.9)

51

Chapter 4. Nodes Formulation and GRID Algorithm

yij ≥ 0 ∀i ∈ S ∪ U, j ∈ D ∪ U

We call this formulation “Nodes Formulation”, for the scale of this formulation

is bounded by the number of vertices of the grid network. This formulation is

a mixed integer programming. It has 2|P |2 decision variables, 2N2 at most. It

has roughly 2P 2 + 2P constraints, 2N2 + 2N at most. The objective function is

to use arcs with the least amount of cost to construct an eulerian graph. The

objective function (4.1) is to find a set of augmenting arcs with the minimum cost

to be combined with A to form an eulerian graph. aij represents the part of the

graph that is given by the request set A; Constraint (4.2) says that the vertices

with a negative net in-degree is going to be balanced by the vertices with positive

or zero net in-degrees; Constraint (4.3) says that the vertices with a positive net

in-degree is going to supply its surplus to those with a negative or zero in-degree.

Constraint (4.6) means that for vertices in U , the number of arcs that go in must

equal the number that go out; The rest of the constraints (4.7) to (4.9) are using

“flow variables” to guarantee there will be no sub-tour in the solution [89].

Note that in Constraints (4.4) and (4.5), we have made a claim that, in the

optimal eulerian graph, there would neither necessarily be an augmenting arc

starting from a vertex with a negative net in-degree, nor one ending at a vertex

already with a positive net in-degree. We provide a brief proof that this necessary

condition is true.

Theorem 4.3 In an EESCP instance I = G(V,E,A), let P j V be the set of

vertices that are visited (i.e. being the pickup or drop-off node) by at least one arc

in A. Calculate the net in-degree Gi for each vertex i ∈ P , and categorize them into

three sets: S = {i ∈ P |Gi > 0}, D = {i ∈ P |Gi < 0}, U = {i ∈ P |Gi = 0}. Then

there exists an optimal eulerian graph G(A,A′) for this instance I, the augmenting

arcs A′ of which satisfies that: ∀(i, j) ∈ A′, i /∈ D, j /∈ S.

Proof: First we prove the i /∈ D part. In the optimal eulerian graph G(A,A′),

identify any vertex v1 ∈ D, the net in-degree of which is negative before adding

52

Chapter 4. Nodes Formulation and GRID Algorithm

the augmenting arcs. As shown in Figure 4.1 (a), since it is in D, there will be

at least one augmenting arc r ending at v1. Assume on the contrary, that in the

optimal eulerian graph, there must exist an augmenting arc n that starts from v1,

and ends at some other vertex v2. For the graph to be eulerian, there must exist

an augmenting arc m, from some other vertex v3, that ends in v1 (Figure 4.1 (a)).

We can replace m,n with a single augmenting arc b that directly goes from v2 to

v3, without affecting the degree-balance (Figure 4.1 (b)). On a grid graph, even in

Manhattan norm, the triangular inequality holds, we have that c(b) ≤ c(m)+c(n).

So if replacing m,n with b does not break the connectivity of the graph, we already

have the contradiction.

Now consider the case where replacing m,n with b does break the connectivity

of G(A,A′). In this case, the topology of G(A,A′) must be in the form shown in

Figure 4.1 (c), wherem,n are the only arcs that linking v2, v3 to v1, and the vertices

and arcs that are not directly associated with v1, v2, v3 are represented by black

boxes. This is true because if there are other arcs between either v1, v2 or v1, v3,

replacingm,n with b would not break connectivity in the first place. As we already

understand the existence of arc r, in Figure 4.1 (d), we see that in this situation,

we can always replace r, n with a direct augmenting arc d, without affecting either

the degree-balance or the connectivity of the optimal eulerian graph. Since we

have c(d) ≤ c(r) + c(n), hence the contradiction.

The j /∈ S part can be proved similarly. This completes the proof.

Figure 4.1: No augmenting arcs from a vertex in D in the
optimal eulerian graph, due to triangular inequality

On a given fixed network, the computation time for solving the new formulation

does not grow exponentially with the number of requests in A like that of ATSP

53

Chapter 4. Nodes Formulation and GRID Algorithm

formulation, but is instead bounded, as shown later in Section 4.8. However, for

an instance with a large underlying network, it can still be very time consuming to

solve the instance to optimal. So we turn to approximation algorithms with both

good time complexity and theoretical bound. Frederickson, Hecht et al. proposed

the algorithm CRANE to solve general SCP, which consists of two polynomial-time

approximation algorithms, LARGEARCS and SMALLARCS, and it has the best

proven worst-case bound to date [2]. Treleaven, Pavone et al. recently combined

Bipartite Matching with Euclidean SCP and provided a asymptotically optimal

(almost surely) class of algorithms with the complexity of O(n2+ε) [20].

Next we will propose two algorithms for EESCP, GRID-L and GRID-S, that

utilize the underlying grid network. We will show that, when the grid size is fixed,

GRID-L is asymptotically optimal, and has a complexity of O(M), M being the

number of requests. GRID-S makes up for situations where GRID-L has a large

optimality gap, and also takes the fixed grid size into account. When these two

combined, they provide a worst-case theoretical bound of 5/3.

4.2 GRID-L

GRID-L has a similar structure to that of LARGEARCS, which consists of two

steps, degree-balancing and sub-tours connecting. In the SPLICE algorithm of

Treleaven, Pavone et al., they used Bipartite Matching (O(n2+ε) time complexity)

to replace the degree-balancing process, n being the number of requests. This

complexity is also the complexity for their algorithm, SPLICE. However in GRID-

L, with the introduction of the grid network, we use two network flow models to

complete the degree-balancing, making the time complexity of this process almost

irrelevant to number of requests. One of them is a Minimum Cost Flow model,

which has a better optimality gap when used in algorithm, while the other is

Transportation Problem model, which has smaller computation time in general.

The structure of GRID-L is as follows: First it produces disconnected sub-tours by

degree-balancing the given arcs in A (solving a linear programming model), then

54

Chapter 4. Nodes Formulation and GRID Algorithm

use Minimum Spanning Tree algorithm to connect resulting sub-tours. Finally

the algorithm ends by identifying a feasible Euler tour in the constructed eulerian

graph, and a post-process is called to eliminate the unnecessary detours.

4.2.1 Minimum Cost Flow Formulation

We use the Minimum Cost Flow Problem formulation on the grid network for a

relaxed version of EESCP as the first step by leaving out the sub-tour elimination

constraints in the formulation. Observe that when Manhattan norm is used, no

matter what the final tour is, all the arcs that represent empty-loaded movements

must be along the edges of the grid; and that if the final tour is degree-balanced,

for every vertex on the grid, the number of arcs goes into it must equal the number

that goes out. Thus gives us the formulation as follows:

1) The problem instance has M requests in total.

2) The pickup and drop-off vertices of each request are both generated randomly

over the grid. R = {1, 2, 3, ...,M} is the set of all the requests.

3) Consider the storage rack as a NV ×NH grid. So the grid contains |V | = N =

NV ×NH rectangular cells in total.

4) Define “neighboring cell” NB i for each cell i ∈ V : a cell on the grid has normally

four neighboring cell that are directly adjacent to itself in four directions. Cells

along the four edges of the grid have 3 neighboring cells while those at the

four corners have only 2. Since moving to a horizontal adjacent neighboring

cell incurs different energy consumption from moving to a vertical adjacent

one, we denote the horizontal and vertical neighboring cells with NBH
i ,NB

V
i

respectively.

5) Define a “move” as a unit movement of the stacker crane vehicle from one cell

to one of its neighboring cells.

55

Chapter 4. Nodes Formulation and GRID Algorithm

6) Cost parameter cH , cV equal the respective energy consumption for the stacker

crane to perform a single move horizontally and vertically when empty-loaded.

7) Define Gi for each cell i ∈ V , Gi is the net in-degree of cell i induced by the

arcs in A. It is calculated by subtracting the number of requests that origin at

cell i from the number of requests that end at cell i.

Then the relaxed problem will be presented as follows:

Decision Variables:

xij ∈ N, xij = n means that there would be n moves from cell i to cell j in the

solution

Objective Function:

min .
∑

i=1,2...N

∑

j∈NB
H

i

cHxij+
∑

i=1,2...N

∑

j∈NB
V

i

cV xij

Constraints:

∑

j∈NB i

xij −
∑

j∈NB i

xji = Gi ∀i ∈ V (4.10)

xij = 0 ∀j /∈ NB i, ∀i ∈ V (4.11)

xij ≥ 0 ∀i, j ∈ V (4.12)

We call this formulation GRID Formulation (GF) for the fact that the decision

variables are set on the grid network. Also note that this formulation works on any

type of network. Its solution, A′, is the set of added unit augmenting arcs (moves)

to make a degree-balanced graph. This formulation, objective and constraints

combined, means to add the fewest moves possible—along the grid edges both hor-

izontally and vertically—to make the resulting graph (V,A,A′) degree-balanced.

Constraint (4.10) means every vertex on the grid must be strictly degree-balanced.

Constraints (4.11) and (4.12) mean that every move is unit and confined to the

edges of the grid; and that for each vertex on the grid, we only consider its rela-

tionship with its neighboring cells.

56

Chapter 4. Nodes Formulation and GRID Algorithm

This formulation is a linear integer programming; it has 2NH(NV − 1) +

2NV (NH − 1) nonnegative integer variables and N constraints. The matrix (MA)

specified by constraint (4.10) is actually totally unimodular. To see this, one need

only see that MA is the incidence matrix of the grid graph. Since the grid graph

is degree-balanced, according to [90] and [91], MA must be totally unimodular.

Thus the integer decision variables in this formulation can be relaxed to contin-

uous variables and solved by simplex methods and Linear Programming solvers.

We propose the complete GRID-L in Table 4.1.

Algorithm: GRID-L(GF)

Step 1. Formulate the problem using GF;

Step 2. Solve the formulation with LP solver. For each xij = k in the solution,
add k unit arcs from cell i to cell j. Let A′ be the set of arcs specified
by the solution to GF, and S = {S1, S2...Sp} the connected sub-tours
in graph (V,A,A′);

Step 3. Define a undirected network (NS, ES), where:

NS = 1, 2, ...p is a node set, each node stands for a sub-tour in S,

ES = {(i, j) : i, j ∈ NS},

wij = min{eab : a ∈ Si, b ∈ Sj},

where eab is the energy cost associated with arc (a, b);

Step 4. Find the minimum spanning tree in (NS, ES). Let Ē be the solution.
For each undirected edge (a, b) ∈ Ē, generate two directed arcs (a, b)
and (b, a). Let T be the set of these arcs;

Step 5. (V,A,A′, T) is now strongly connected and degree-balanced. Find
an Euler tour to traverse it by means of any Euler tour construction
algorithm;

Step 6. Post-process to eliminate unnecessary detours.

Table 4.1: Algorithm: GRID-L(GF)

GRID-L(GF) is an approximate algorithm thus does not guarantee optimality.

However, it stands out in that:

• Degree-balancing is completed by solving the network flow model GF. Since

GF is independent of the number of the requests M , unlike LARGEARCS

57

Chapter 4. Nodes Formulation and GRID Algorithm

or SPLICE, the computational time of Step 1 does not grow with number

of requests at all (fixed by the size of grid) which fact further contributes to

the linear time complexity of GRID-L (See Section 4.3);

• In GF we break any empty-loaded trajectory of the vehicle into unit moves,

which fact further benefits Step 3. In LARGEARCS, after the degree-

balancing, the linking of sub-tours can only happen at a pickup or delivery

location. However, the solution of GF gives a lot more options for the link-

ing algorithm to choose from—the linking of sub-tours can happen at any

vertex that A′ bypasses, which is quite intuitive since all arcs in A′ stand

for empty-loaded vehicle movement. This improvement results in smaller

optimality gaps;

• GRID-L is asymptotically optimal (see the proof in Section 4.4);

• The number of decision variables can be further reduced by limiting the

movement to a Hanan grid [92] [93], and removing redundant vertices in the

problem instance.

Figure 4.2: A 3× 3 grid limit decision variables number to 24

4.2.2 Transportation Problem Formulation

Some might argue that the GRID formulation can waste computation resource

when the number of requests M is small while the grid is large. We propose

another formulation that is more suitable for a small number of requests:

58

Chapter 4. Nodes Formulation and GRID Algorithm

1) For each cell i on the grid, calculate its “net in-degree” Gi by subtracting the

number of requests that origin at cell i from the number of requests that end

at cell i;

2) Define set S = {i ∈ V |Gi > 0} and D = {i ∈ V |Gi < 0}. Next we observe

that all the unbalanced vertices are included in S and D, and that to make

them degree-balanced is to find a solution to “transport” positive in-degrees

from vertices in S to vertices in D, with minimum energy cost.

This defines a Transportation Problem relaxation for the original problem. The

details are as follows:

Decision Variables:

xij ∈ N is the number of augmenting arcs that start from vertex i and end in

vertex j, ∀i ∈ S, j ∈ D

Objective Function:

min .
∑

i∈S

∑

j∈D

cijxij

Constraints:

∑

i∈S

xij = −Gj ∀j ∈ D (4.13)

∑

j∈D

xij = Gi ∀i ∈ S (4.14)

xij ≥ 0 ∀i ∈ S, j ∈ D

We call this formulation Transportation Formulation (TF). It is only a relax-

ation because again this formulation does not include sub-tour elimination con-

straints. In this formulation, the decision variables are different from the GF in

the sense that each xij is not restricted to its neighboring cells, and cij must be

calculated for each i ∈ S and j ∈ D . Constraint (4.13) means that for every cell

that has a negative net in-degree, we will “demand” exactly the same amount of

augmented movements that end in it from “suppliers”. Constraint (4.14) means

59

Chapter 4. Nodes Formulation and GRID Algorithm

that for each cell that has a positive net in-degree, we will “supply” all of its

net in-degree to those “customers” with negative net in-degrees. In essence, this

formulation is just another way to describe “degree-balance” necessary condition.

TF has the following features:

• It has |S| × |D| positive integer variables, small when M is small, but can

increase to as much as N2/4, and it only has |S|+ |D| constraints in total.

• In the current problem setting, where cij is very straightforward to determine,

this approach is very advantageous. But when trying to extend this method

onto a more general network, determining every cij is actually a Shortest

Path problem and should be dealt with accordingly.

• When used in algorithm, the algorithm is still asymptotically optimal in the

same sense as GRID-L(GF) and can be proved similarly.

• The algorithm run-time also scales linearly with number of requests M .

The algorithm is as in Table 4.2:

Algorithm: GRID-L(TF)

Step 1. Formulate the relaxed problem with TF;

Step 2. Follow Step 2 to 6 in GRID-L(GF)

Table 4.2: Algorithm: GRID-L(TF)

A final word on GRID-L(GF) and GRID-L(TF) is that, they provide similar

efficiency. They both have linear time complexity with respect to the number

of requests M . GRID-L(GF) has a smaller optimality gap than that of GRID-

L(TF), for it searches a larger space for better solution for the MST algorithm (all

augmenting arcs in unit length). For the same reason, GRID-L(GF) generally has

a longer computation time, for its input size to the Euler Tour finding algorithm

is usually a lot larger than than of GRID-L(TF).

60

Chapter 4. Nodes Formulation and GRID Algorithm

4.2.3 1D Bound on 2D Problems

Suppose we have a 2D EESCP instance I, and its two projections instances,

IH , IV . In Chapter 3, we discussed about the relationship between T ∗
H , T

∗
V , the

optimal eulerian graph of IH , IV , and PH(Ts∗), PV (Ts∗), the horizontal and vertical

projections of the 2D optimal eulerian graph for I. We understand that in term

of cost, we have:

c(T ∗
H) ≤ PH(Ts∗); c(T

∗
V) ≤ PV (Ts∗) (4.15)

Equation (4.15) means that T ∗
H and T ∗

V provide lower bounds for the optimal

2D solution. This inspires us to use the solution of 1D instances as constraints in

the 2D algorithm to help improve its performance. In fact, the degree-balancing

procedure in algorithm GRID often results in sub-tours, whose 1D projections

often are also disconnected; On the other hand, the solution to the projection 1D

instances are always connected. Intuitively, we can use the latter to eliminate

some obvious sub-tours for the former. This concept is demonstrated in Figure

4.3: the degree-balancing procedures result in sub-tours, whose projections are

visually disconnected. If we can feed the extra information provided by T ∗
H and

T ∗
V (highlighted with a box) to the degree-balancing procedures, some of the sub-

tours can be avoided.

As demonstrated in Figure 4.3, the only extra information that T ∗
H and T ∗

V can

provide is in fact produced by the Minimum Spanning Tree connecting procedures

in the 1D algorithm from Atallah and Kosaraju (See Chapter 3). This information

can be translated into valid constraints for the 2D problem. See in Figure 4.4, as

the “shadow” T ∗
H indicates that in the middle interval, there should be at least

one augmenting arc goes from left to right, and vice versa. Using Transportation

Formulation, this can be translated into:

61

Chapter 4. Nodes Formulation and GRID Algorithm

Figure 4.3: T ∗
H ,T

∗
V provide extra information for the 2D problem

xd1p3 + xd1p2 ≥ 1

xd3p1 + xd2p1 ≥ 1

Likewise, the extra information T ∗
V provides can be translated to:

xd1p3 + xd2p3 ≥ 1

xd3p1 + xd3p2 ≥ 1

With the constraints above, the degree-balancing procedures can directly jump

to the true optimal solutions without sub-tours as shown in Figure 4.4. In practical

simulations, with these extra constraints, the degree-balancing procedures produce

a lot less sub-tours than without, improving the optimality gap tremendously.

However, there are two points to take note of: (1) These constraints are only

valid if T ∗
H or T ∗

V is unique, i.e., T ∗
H and T ∗

V fail to provide precise constraints when

there are multiple optimal eulerian graphs for 1D projection sub-problems. In fact,

occasionally these constraints can even bring the algorithm further away from the

true optimal. (2) In instances with large number of requests arcs, there are often

62

Chapter 4. Nodes Formulation and GRID Algorithm

Figure 4.4: T ∗
H ,T

∗
V can be translated into constraints to eliminate

some obvious sub-tours in the 2D algorithm

no such empty intervals, reducing these constraints insignificant.

4.3 Complexity of GRID-L

First we examine how the computation time of GRID-L grows linearly with

number of requests M . To see this, we understand that this algorithm consists of

three procedures:

1) Degree-balancing (DB): solving a linear programming;

2) Linking sub-tours (LS): use Minimum Spanning Tree algorithm;

3) Tour construction (TC): any Euler tour finding algorithm.

Table 4.3 show the complexity for each part of GRID-L algorithm under dif-

ferent formulation. Recall that N is the number of vertices on the grid and M

the number of requests. These two tables show clearly that the total run-time

of GRID-L grows linearly with the number of requests. The observation is that,

by setting the decision variables on the fixed grid graph rather than individual

requests: the DB run-time is fixed by, or, in the case of TF, bounded by N ; the LS

run-time is averagely fixed by N ; and that the TC run-time grows linearly with

M and will eventually outweigh the sum of the former two, becoming dominant.

63

Chapter 4. Nodes Formulation and GRID Algorithm

Procedure Time Complexity

GRID-L(GF) GRID-L(TF)

DB O(N3) min{O(N6), O(M6)}

LS O(N) in worst case O(N) in worst case

TC O(M ·N) in worst case O(M ·N) in worst case

Table 4.3: The time complexity of GRID-L

4.4 Asymptotic Optimality of GRID-L

In this section we will prove the asymptotic optimality for GRID-L.

In GRID-L, the cost of its solution is decided by DB and Linking LS procedures.

The solution after DB process is the solution to GF, A′ . At this stage (V,A,A′) is

already degree-balanced but may contain sub-tours. c(A′)+ c(A) is the total cost.

Since GF is a relaxation of the original SCP problem, c(A′) + c(A) is a lower

bound for the original optimal value C∗(the cost of A included). The second part

LS is the linking process that links all the sub-tours in (V,A,A′). Its solution

is T at the cost of c(T). The objective value algorithm GRID-L yields is CL =

c(A′) + c(A) + c(T). We will first show that c(T) is bounded.

Lemma 4.4 For a given graph G = (V,E), a fixed set of linking arcs can be found

to make any sub-tours on G connected, which means that for any given graph, c(T)

is always bounded.

Proof: Suppose T (G) is an arbitrary spanning tree of G. Then replace every

edge in T (G) with a pair of arcs in opposite direction. We call the resulting graph

TA(G). Note that TA(G) is a directed graph that connects every vertex in G.

Then we combine (V,A,A′) and TA(G), the resulting graph (V,A,A′, TA(G)) is a

connected graph with the introduction of TA(G). Since T is obtained from the

minimum spanning tree of a subset of vertices of G, we know c(T) is bounded, and

should not exceed c(TA(G)).

64

Chapter 4. Nodes Formulation and GRID Algorithm

Theorem 4.4 Algorithm GRID-L is asymptotically optimal when the number of

requests M → +∞

Proof: The proof is quite straightforward, we already know that c(A′) + c(A)

is a lower bound for the optimal value C∗, thus c(A′) + c(A) ≤ C∗ holds.

(V,A,A′, T) is a feasible solution for the original problem, so C∗ ≤ c(A′) +

c(A) + c(T) must hold. Thus

c(A′) + c(A) ≤ C∗ ≤ c(A′) + c(A) + c(T)

⇒
c(A′) + c(A)

c(A′) + c(A) + c(T)
≤

C∗

CL

≤ 1

When M → +∞, c(A′) + c(A) → +∞ while c(T) is bounded(Lemma 4.4), so

lim
M→+∞

c(A′) + c(A)

c(A′) + c(A) + c(T)
= 1

We have:

lim
M→+∞

CL

C∗
= 1

This completes the proof.

In fact, c(T) is far less than c(TA(G)) in most cases, thus the optimality gap

can be narrowed down to 5% when M is as small as 30.

4.5 GRID-S

It is worth noting that, when the requests on the grid are quite sparse and the

lengths of the request arcs are small, GRID-L usually has unsatisfying approxima-

tion rate. GRID-S, like SMALLARCS [2], is designed to deal with this situation.

However, in reality SMALLARCS often yields very unsatisfying results even in

situations that it supposedly can handle well (which can be seen in Section 4.8).

On the grid, unlike that of a continuous Euclidean space, the size of vertices

set is limited. In this case, pickup and drop-off points of the requests often overlap

65

Chapter 4. Nodes Formulation and GRID Algorithm

on the same vertex. In graph theory, a connected component (or component) of

an undirected graph is a subgraph in which any two vertices are connected to each

other by paths, and which is connected to no additional vertices in the supergraph.

For our directed graph (V,A), we define “connected component” as below:

Definition 4.1 Connected Component (for directed graph): Let A be a arc set.

All the arcs in AS j A form a “connected component” if their corresponding

undirected graph is also a connected component (Figure 4.5).

The connected component is a partition of A. Let CP = {C1, C2, ..., Cc} be the

set of connected components in A, then C1∪C2∪...∪Cc = A and Ci∩Cj = ∅ ∀i, j =

1, ..., c. In GRID-S, we will be dealing with connected components instead of

individual requests. Observe that arcs in the same connected component will

always end up in the same sub-tour if degree-balancing procedure is ever applied

to the problem instance, so using connected components provides a certain level

of aggregation.

Figure 4.5: An instance with 6 requests and 3 connected
components

In GRID-S, a preprocess is called to transform the problem instance into an

Asymmetric Traveling Salesman Problem instance. To do this, we first identify

all the connected components (CC) in A. Inside each CC, there would be vertices

with positive, zero or negative net in-degree. Then, treating every CC as a node,

we define the inter-node distance for node i and j to be the minimum energy cost

from a vertex with positive net in-degree in i, to one with negative net in-degree

in j. We present the full GRID-S in Table 4.4.

66

Chapter 4. Nodes Formulation and GRID Algorithm

Algorithm: GRID-S

Step 1. Identify all the connected components in A. Let CP =
{C1, C2, ..., Cc} be the set of connected components in A;

Step 2. Define a directed network (NC , AC), where:

NC = {1, 2, ..., c} is a node set, in which each node represents a CC
in CP ,

AC = {(i, j) : i, j ∈ NC}, dij = min{emn : m ∈ Ci, n ∈ Cj}

m ∈ Ci is a vertex with a positive net in-degree

n ∈ Cj is one with a negative net in-degree

emn is the energy cost associated with arc (m,n);

Step 3. Solve this transformed ATSP defined by (NC , AC). Let the solution
be AT , combine it with (V,A) to get a connected graph (V,A,AT);

Step 4. Use minimum matching on (V,A,AT) to get a strongly connected
and degree-balanced graph (V,A,AT , AM). Find an Euler tour by
means of any Euler tour construction algorithm;

Step 5. Post-process to eliminate unnecessary detours.

Table 4.4: Algorithm: GRID-S

67

Chapter 4. Nodes Formulation and GRID Algorithm

GRID-S involves solving a transformed ATSP where each node in the ATSP is

a connected component. This approach can be justified by its strengths:

• It automatically solves the problem to optimality when the number of re-

quests is small.

• The number of connected component K is bounded by the layout of the

grid. In fact, assuming a uniform distribution of the pickup and delivery

vertices, K will reduces drastically when the number of requests is sufficiently

large, which makes solving the ATSP very efficient even with large number

of requests M (See Figure 4.6).

• Combined with GRID-L it provides a better theoretical worst-case bound

(See Section 4.8).

4.6 Complexity of GRID-S

The computation time for GRID-S is not exponential in the number of requests

M . To be specific, the GRID-S algorithm consists of 4 steps, the time complexity

of each step is shown in Table 4.5:

Procedure Complexity

Identify Connected Components (CCs) O(M)

Solving the ATSP Defined by CCs TC(K(M))

Degree Balancing O(N3)

Identify an Euler Tour O(M ·N)

Table 4.5: The time complexity of GRID-S

In the table above, we have denoted the computation time of solving the ATSP

defined by CCs as TC . TC is a function of M . Intuitively, the larger the M , the

larger the TC . However, TC is not a monotonic increasing function of M .

68

Chapter 4. Nodes Formulation and GRID Algorithm

The solving time of the transformed ATSP instance in GRID-S is determined

by the number of connected components, K. By the definition of connected com-

ponents, N/2 is a natural upper bound for K; Thus we know for sure that K is

bounded by the size of the underlying graph, so is TC . Furthermore, in practice,

assuming that pickup and delivery vertices are independently randomly distributed

over the grid, the expected number of connected component can be calculated by

means of simulation. In Figure 4.6, how the number of connected component K

grows with the number of requests at different level of N is shown.

Figure 4.6: How K grows with the number of requests at
different level of N

We can see that on a fixed-size grid, the expected number of K is not only

bounded, but also decreases when number of requests M passes certain threshold.

The peak number of K and the threshold is only determined by the size of the

grid N . Thus we can treat this part of computation time as a bounded constant

(as long as N and M are not simultaneously too large). In this sense, we say that

GRID-S is “polynomial time solvable with respect to M”. And this is how the

time-efficiency of GRID-S is retained.

69

Chapter 4. Nodes Formulation and GRID Algorithm

4.7 Better Theoretical Bound

Theorem 4.5 Let C∗ be the optimal tour cost for the EESCP, and CL, CS the

cost generated by algorithm GRID-L and GRID-S respectively. CG = min{CL, CS},

then:

CG/C
∗ ≤ 5/3

Proof:

The cost of GRID-L is like that of LARGEARCS, which provides an upper

bound of CL ≤ 3C∗ − 2CA [2].

The cost of GRID-S is at most C∗ + CA. The cost of the first three steps

of GRID-S is at most C∗ − CA, this is due to that the transformed ATSP is

essentially performed on a subset of arcs in A. Now consider step 4. Observe CP

before step 3, we see that in every CC, the total number of in-degree equals the

total number of out-degree. The resulting graph after step 3 is G′ = (V,A,AT).

Since AT is the solution to an ATSP, observe that the effect of adding AT to G

is that it takes exactly one in-degree and one out-degree from every CC in CP .

Let CP ′ = {C ′
1, C

′
2, ..., C

′
c} be the set of effected CCs, and M(·) be the result of

matching operation. The matching process on G′ is effectively applied on CP ′. We

know that the number of in-degree still equals out-degree in each C ′
i, ∀i = 1, ..., c,

thus {M(C ′
1),M(C ′

2), ...,M(C ′
c)} is a feasible solution to the matching over CP ′.

Let cM(·) be the cost of the matching, then

cM(CP ′) ≤ cM(C ′
1) + cM(C ′

2)...+ cM(C ′
c) ≤ cM(C1) + cM(C2)...+ cM(Cc) ≤ CA

Thus the total cost of GRID-S is CS ≤ CA + C∗ − CA + CA = C∗ + CA.

Now if CA ≥ 2

3
C∗, we use GRID-L and:

CG/C
∗ ≤ (3C∗ − 2CA)/C

∗ ≤
3C∗ − 2(2

3
C∗)

C∗
=

5

3

70

Chapter 4. Nodes Formulation and GRID Algorithm

If CA ≤ 2

3
C∗, we apply GRID-S, then:

CG/C
∗ ≤ (C∗ + CA)/C

∗ ≤
C∗ + (2

3
C∗)

C∗
=

5

3

4.8 Numerical Results

In this section, we present some simulation results for our proposed algorithms

and models. Our simulations are run on a solid grid graph with 400 vertices

unless pointed out otherwise, and assume uniform and independent distributions

of pickup and drop-off vertices by default.

Exact Models

First, we see the computation time for solving the two exact formulations

for EESCP (Figure 4.7) and Table 4.6: ATSP and Nodes Formulation. Due to

memory shortage, the simulation is run on a grid structure with 100 vertices in

total. The observation is that, Solving Nodes Formulation does tend to be more

storage-demanding, but its required computation storage and the computation

time are bounded by the grid size. On the other hand, the computation time and

memory needed for solving the ATSP formulation, will go up exponentially with

the number of requests.

Optimality Gap

We showcase the average optimality gaps of GRID-L under two different for-

mulations in Figure 4.8, and the maximum optimality gaps in Table 4.7 (The

minimum gaps are not shown because they are all zeros). We see that when the

number of requests is small, these two algorithms can have optimality gaps as large

as 20%. However, due to the postprocess and uniformly distributed arc lengths,

71

Chapter 4. Nodes Formulation and GRID Algorithm

Figure 4.7: The computation time of solving ATSP Formulation
and Nodes Formulation

Computation Time (s)

ATSP NODES

M Max. Ave. Min. Max. Ave. Min.
20 0.16 0.05 0.02 0.20 0.06 0.03
40 0.35 0.19 0.07 0.31 0.21 0.13
60 1.04 0.41 0.19 0.76 0.48 0.30
80 3.21 1.11 0.45 1.18 0.75 0.53
100 8.43 2.99 1.02 1.38 0.96 0.71
120 16.31 7.50 1.83 1.72 1.12 0.84
140 26.64 14.13 2.97 1.52 1.23 0.92
160 - - - 1.39 1.20 0.99
180 - - - 1.46 1.28 1.12
200 - - - 1.59 1.31 1.11
220 - - - 1.82 1.35 1.19

Table 4.6: The computation time of solving ATSP and Nodes
formulation (s)

72

Chapter 4. Nodes Formulation and GRID Algorithm

these two algorithms have very small optimality gaps overall. In both cases the

cost gap between GRID-L and exact solution diminishes as the number of requests

M grows. And the average optimality gap can be as small as 2% when the number

of requests is 30. The lower optimality gap under GRID Formulation than Trans-

portation Formulation can be explained by the fact that the solution to GRID

Formulation provides more and better options for the later linking process.

Figure 4.8: The optimality gap of GRID-L narrows when the
number of requests goes up

Maximum Optimality Gap (%)

M 10 20 30 40 50 60 70 80 90 100 110 120

TF 21.8 14.0 10.1 8.5 6.3 4.8 4.7 3.3 2.6 2.8 3.1 1.8
GF 17.0 10.7 5.3 5.9 3.1 2.8 3.4 2.3 2.3 1.9 1.1 1.7

Table 4.7: Maximum optimality gap at different instance size for
GRID-L(GF) and (TF), over 100 instances (%)

In Figure 4.9 we compare the optimality gaps of GRID-L, GRID-S and SMAL-

LARCS. In this simulation we generated 50 instances, whose arcs in A are set

small in length, putting GRID-S and SMALLARCS into their supposed advan-

tage against GRID-L. From the result we see that GRID-S indeed performs better

73

Chapter 4. Nodes Formulation and GRID Algorithm

than GRID-L when the number of requests is not large. Later as the optimality

gap of GRID-L diminishes, it tends to merge with that of GRID-S. Also we see

that the SMALLARCS could not outperform either GRID-L or GRID-S, often

resulting with optimality gap as large as above 50% to 80%. See Table 4.8 for

more detailed numerical results.

Figure 4.9: In a small-length arcs setting, GRID-S out performs
both GRID-L and SMALLARCS

Optimality Gaps (%)

SMALLARCS GRID-L GRID-S

M Max. Ave. Min. Max. Ave. Min. Max. Ave. Min.
10 47.06 15.21 0 53.13 19.82 0 8.33 0.28 0
20 79.01 37.70 4.26 56.76 31.59 8.08 5.33 1.09 0
30 86.87 45.07 9.26 45.36 32.10 13.08 10.10 1.36 0
40 90.76 57.05 23.42 47.54 28.93 16.95 9.52 3.26 0
50 86.61 61.33 39.39 44.09 27.30 7.94 13.22 4.10 0
60 102.9 64.99 34.59 37.96 23.86 11.11 23.26 5.33 0
70 115.9 73.84 36.60 46.51 22.99 8.70 23.08 6.56 0
80 101.3 72.76 40.00 36.00 20.30 8.43 34.44 8.73 1.18

Table 4.8: The optimal gaps of SMALLARCS, GRID-L, and
GRID-S, over 50 instances (%)

74

Chapter 4. Nodes Formulation and GRID Algorithm

Computational Time

The computation time of GRID-L under two formulations is shown in Figure

4.10. The average computation time of GRID-L is linear as predicted. And due to

this linearity, the algorithm can easily compute up to instances with M as large

as thousands in seconds. The variances of the computation time of these two

algorithms are actually very small, see Table 4.9 for more numerical details.

Figure 4.10: The computation time of GRID-L grows linearly,
can be used instances with large M

In Figure 4.11 and Table 4.9 we compare the computation time of GRID-L and

SPLICE. In GRID-L, we replaced the Bipartite Matching in SPLICE with solving

a network-flow model. We do observe the advantage of doing this in our problem.

The computation time of GRID-L grows linearly, while on the other hand, that of

SPLICE still has a complexity of O(n2+ε).

Finally we observe the computation time GRID-S in Figure 4.12. It is noted

that since GRID-S involves solving an ATSP to optimal, the computation time

depends a lot on the instances structure (large arcs or small arcs). And the com-

putation time for an instance with mixed arc lengths is a lot less than that of one

75

Chapter 4. Nodes Formulation and GRID Algorithm

Figure 4.11: The computation time of GRID-L and SPLICE

Computation Time (s)

GRID-L(GF) GRID-L(TF) SPLICE

M Max. Ave. Min. Max. Ave. Min. Max. Ave. Min.
40 0.21 0.12 0.08 0.08 0.03 0.02 0.06 0.03 0.02
120 0.53 0.35 0.22 0.32 0.16 0.13 0.34 0.21 0.18
200 0.91 0.61 0.45 0.56 0.33 0.27 0.66 0.53 0.46
280 1.20 0.86 0.65 0.65 0.50 0.43 1.41 1.07 0.91
360 1.68 1.16 0.92 0.95 0.70 0.59 2.93 1.93 1.51
440 2.29 1.44 1.14 1.61 0.94 0.81 4.47 3.02 2.36

Table 4.9: The computation time of GRID-L and SPLICE(s)

76

Chapter 4. Nodes Formulation and GRID Algorithm

with only small arc lengths. To show its capability in worst case, we only focus

on the computation time of GRID-S on small arc instances. And we see that the

average computation time of GRID-S is within half a minute, bounded and display

similar growth trend with that of the expected number of connected components

K (Figure 4.6), which is quite expected. On the other hand, due to the ATSP

solving procedure, the variance in computation time of GRID-S is high. See a box

graph for the computation time of GRID-S in Figure 4.13.

Figure 4.12: The computation time of GRID-S

77

Chapter 4. Nodes Formulation and GRID Algorithm

Figure 4.13: The computation time of GRID-S has a high
variance

78

Chapter 5

Dynamic and Multi-Capacity

Problem

5.1 Dynamic Problems

All previous chapters discuss static problems, where all information about

pickup and delivery requests is given beforehand. In this chapter, we apply GRID

algorithm to a dynamic environment, where the requests information is revealed

over time. To adapt the algorithm to the dynamic environment, we develop a dy-

namic algorithm (Dynamic GRID) that applies the static algorithm repeatedly on

the set of known requests that keeps updating. This dynamic algorithm is simple:

(1) It first gathers(also wait for) a reasonable amount of requests information and

start scheduling the sequence s with the static algorithm GRID; (2) After carrying

out a certain number of requests in s, as new requests come, the algorithm initiates

a re-optimization to update its scheduling. Dynamic GRID has two parameters:

(1) Look-ahead horizon (h): how much request information the algorithm tries

to gather before making a decision. This is measured by the number of requests

the algorithm takes into account as input; (2) Decision point (dp): after an initial

decision making, the number of requests the vehicle actually carries out before a

re-optimization is initiated by the algorithm. We use simulations to investigate

79

Chapter 5. Dynamic and Multi-Capacity Problem

the effect of these two parameters on the performance of the dynamic algorithm

in this section.

5.1.1 Look-ahead Horizon

Intuitively, the larger the look-ahead horizon, the better the overall perfor-

mance of the dynamic algorithm.

In the first simulation, 60 problem instances are randomly generated. In each

instance, a total number of 300 pickup and delivery requests are uniformly dis-

tributed over a grid with 400 cells. The look-ahead horizon ranges from 10 to 100,

which means in each iteration the algorithm tries to optimize a subset of requests of

the size of 10 to 100 (To the algorithm, the remaining requests are still unknown).

The decision-point is fixed at 10, i.e. a re-optimization is called after the vehicle

finishes 10 requests in the solution to its last optimization. We assume that, before

a new round of optimization, the vehicle will stop at the drop-off position of the

last request of each iteration, instead of its initial position. Since the simulation

is only for analysis purposes, we can assume that the arrival rate of the requests

is high enough, so that in each iteration the number of requests waiting in queue

is always larger or equal to the look-ahead horizon. To see purely the effect of

look-ahead horizon on the dynamic algorithm performance, for each instance, the

cost output by the Dynamic GRID at each h is normalized by the cost at h = 100

(supposedly the best result). The relative performance when h = hi is calculated as

relative performance =
cost at hi

cost at h = 100
− 1

The average result over 60 instances are shown in Figure 5.1 and Table 5.1, we

see that not surprisingly, the shorter the look-ahead horizon, the worse the cost of

the dynamic solution. The gap is as large as 230% when the dynamic algorithm

only tries to optimize 10 requests each iteration, then gradually reduces as the

look-ahead horizon becomes larger.

80

Chapter 5. Dynamic and Multi-Capacity Problem

Figure 5.1: The performance of Dynamic GRID improves as
larger look-ahead horizon is adopted

Relative Performance (%)

h 10 20 30 40 50 60 70 80 90 100

Max. 297.2 180.6 126.6 99.4 68.8 47.4 44.4 25.4 18.4 0
Ave. 230.9 136.4 89.7 63.9 44.5 30.7 20.7 11.9 4.8 0
Min. 186.2 103.9 62.0 40.7 21.7 10.7 0 -1.6 -5.8 0

Table 5.1: The performance of Dynamic GRID with different
look-ahead horizon (%)

81

Chapter 5. Dynamic and Multi-Capacity Problem

5.1.2 Decision Point

On the other hand, given the look-ahead horizon, reducing decision point (more

frequent re-optimization) also seems to have an positive effect on the algorithm

performance. In another 60 randomly generated instances, we fix the look-ahead

horizon at 50, then change the decision point from 5 to 45 (1/10 to 9/10 of h). We

do not examine when the decision point equals the look-ahead horizon for when

dp = h, there would be no re-optimization at all. Then the average relative per-

formance at each decision point is calculated over the 60 instances. The result is

in Figure 5.2 and Table 5.2, we see that when the look-ahead horizon is fixed at

50, a more frequent re-optimization can resulting a 25% overall better gap than

nearly no re-optimization. The relative performance when dp = dpi is calculated as

relative performance =
cost at dpi

cost at dp = 5
− 1

Figure 5.2: On average, smaller decision points provide smaller
gaps

Which is the more influential factor among these two? To answer this question,

we must have a better view over the impact of these two parameters combined.

82

Chapter 5. Dynamic and Multi-Capacity Problem

Relative Performance (%)

dp 5 10 15 20 25 30 35 40 45

Max. 0 16.1 16.2 26.4 23.5 30.1 34.5 37.4 42.7
Ave. 0 4.9 9.1 11.7 14.0 17.8 20.2 23.9 25.7
Min. 0 -5.4 -2.3 1.6 3.5 5.9 6.7 12.0 11.5

Table 5.2: The performance of Dynamic GRID with different
values of decision point (%)

The look-ahead horizon h and decision point dp are in fact inter-related: deci-

sion point is obviously bounded by the look-ahead horizon. In this simulation,

we randomly generate 60 instances with 300 uniformly distributed requests. Each

instance is input into the dynamic algorithm under 10 different settings of look-

ahead horizon, ranging from 10 to 100. At each value of h, 9 different settings,

1/10 to 9/10 of h, of decision point are chosen to run each instance. For example,

for any instance, we run simulation on dp = {2, 4, 6, 8, 10, 12, 14, 16, 18} when h

is fixed at 20; and on dp = {5, 10, 15, 20, 25, 30, 35, 40, 45} when h is fixed at 50.

The average algorithm performance is observed over the 60 random instances. The

relative performance at hi, dpj is calculated as

relative performance =
cost at hi, dpj

cost at h = 100, dp = 10
− 1

Figure 5.3 indicates that, indeed, both h and dp have a clear effect on the per-

formance of the dynamic algorithm. Larger h implies better relative performance.

On the other hand, within each h, a smaller dp has a positive impact on the per-

formance on average– dp = h
10

generally has a huge gap between that of dp = 9h
10
.

We further observe that, when the look-ahead horizon h is small, increasing the

h by 10 has a larger impact on the performance: the performance of the smallest

decision point dp at h = 10 is still much worse than that of the largest dp at

h = 20. This almost still holds when h is increased from 20 to 30. However, this

fact does not hold anymore if we increase h from 30 to 40: the smallest dp at

h = 30 outperforms a medium decision point (around 25) at h = 40. Then the

impact of increasing h by 10 continues to dwindle when h becomes larger. From

83

Chapter 5. Dynamic and Multi-Capacity Problem

Figure 5.3, we seem to have the rule of thumb that: when h ≥ 30, the performance

of smallest dp = h
10

is almost as good as that of dp = h+10

4
.

Figure 5.3: The combined effect of look-ahead horizon and
decision point

To summarize, the implication of the simulation result is simple: the dynamic

algorithm should try to optimize as many as requests as allowed by the time

constraints, and as frequent as possible when new requests appear. In practice,

the look-ahead horizon is generally determined by how urgent the time constraints

are. The more controllable parameter of these two is apparently the frequency of

re-optimization. However, also note that dp = h
10

means 9 times the computation

effort over that of dp = 9h
10
.

Finally, Dynamic GRID is compared against another commonly used heuristic

in dynamic problems– Nearest-Neighbour. In Nearest-Neighbour, once a delivery

is made, it will immediately go to the next pickup location that is the nearest

to its current location. In this simulation, 30 instances with number of requests

ranging from 100 to 300 are sovled by these two algorithms. For the dynamic

84

Chapter 5. Dynamic and Multi-Capacity Problem

GRID algorithm, the look-ahead horizon and decision point are fixed at 50 and 1

respectively. The Nearest-Neighbour runs in a similar fashion: the vehicle decides

its next request by picking the nearest request to itself among the available 50

requests. In this simulation, the relative performance is defined as

relative performance =
cost by Nearest Neighbour

cost by Dynamic GRID
− 1

As demonstrated by Figure 5.4, when the number of requests is relatively small,

the performance of Nearest-Neighbour is nearly 25% worse than that of Dynamic

GRID. The performance gap narrows as the number of requests gets larger, to

as small as 10% when M = 300. The relative performance between these two

algorithms has a high variance, see the box graph in Figure 5.5: though being worse

overall, the Nearest-Neighbour can outperform Dynamic GRID, to the extent of

(−)17% when M = 250.

Figure 5.4: Relative performance of Nearest-Neighbour against
Dynamic GRID

85

Chapter 5. Dynamic and Multi-Capacity Problem

Figure 5.5: The relative performance between Nearest-Neighbour
and Dynamic GRID has a high variance

5.2 Multi-Capacity Problems

Multi-capacity problem is referred to as the problem in which the capacity of

the vehicle is greater than 1. Compared with unit-capacity problem, it is much

harder to solve for four reasons: First, to construct a feasible sequence, each

request will have to be broken down to two action nodes, pickup and drop-off,

hence twice the sequence size than that of the unit-capacity problem. Secondly,

for each request, the pickup and drop-off nodes are related in such a way that

the pickup must come before drop-off (preceding constraint). The third reason

is that, the problem now has a capacity constraint– the number of items on the

vehicle cannot exceed its capacity at all time. Finally, in multi-capacity problems,

the energy cost incurred by any movement of the vehicle is now a function of its

current load.

In this section, we first introduce an exact formulation for multi-capacity prob-

lem. Since the formulation is bilinear, we discuss the solution approach to trans-

form it into linear form. Then we propose three heuristic algorithms for multi-

86

Chapter 5. Dynamic and Multi-Capacity Problem

capacity EESCPs. Their pseudo codes are presented for when capacity equals two.

And we show these heuristics can be extended to cases with arbitrary (integer)

capacity.

5.2.1 Multi-Capacity Exact Formulation

In multi-capacity problems, we must translate an input of M requests into an

input of 2M action nodes. Let P = {P1, P2, P3...PM} be the set of all the pickup

action nodes, D = {D1, D2, D3...DM} the set of all the drop-off nodes. Then we

combine P and D and index all the action nodes from 1 to 2M . Let this set be

AN = {a1, a2, ..., aM , aM+1, ..., a2M}, a1, a2 to aM represent action nodes from P ,

and aM+1, aM+2 to a2M represent action nodes from D. To simplify the problem,

we assume that the load in each request is of the same mass ml, the vehicle itself

has a mass of m0. Now we define the decision variables:

Decision Variables:

X = {xij ∈ {0, 1}}, xij = 1 if action ai is followed by action aj, ∀i, j =

1, 2, ..., 2M ,i 6= j +M ;

U = {uk ∈ [1, 2M]}, uk is a continuous variable; uk = s if the action ak is the sth

in the solution sequence;

W = {wl ∈ {0, 1, ..., CAP}}, wl is the load of the vehicle after the lth action in

the solution sequence;

Parameters:

CAP is a positive integer, the capacity of the vehicle;

cij(wi) is the cost incurred by the vehicle going from action ai directly to aj, with

load wi. It is a function of wi;

m0 is the mass of the empty vehicle. ml is the mass of the load in each request;

hij, vij are the horizontal and vertical displacements between action node i and j

respectively

87

Chapter 5. Dynamic and Multi-Capacity Problem

qj ∈ {−1, 1} is the effect on the load of the vehicle of action aj. qj = 1 if

j = 1, ...,M ; qj = −1 if j = M + 1, ..., 2M ;

Objective Function:

min .
∑

i=1,...,2M

∑

j=1,...,2M

cij(wi)xij

Constraints:

∑

i=1,...,2M

xij = 1 ∀j = 1..., 2M

∑

j=1,...,2M

xij = 1 ∀i = 1..., 2M (5.1)

if xij = 1 ⇒ ui ≤ uj − 1 ∀i, j = 1..., 2M(5.2)

j 6= 1

ui ≤ ui+M − 1 ∀i = 1...,M (5.3)

1 ≤ uk ≤ 2M ∀k = 1..., 2M

u1 = 1 (5.4)

if xij = 1 ⇒ wj = wi + qj ∀i, j = 1..., 2M(5.5)

0 ≤ wl ≤ CAP ∀l = 1..., 2M (5.6)

cij = (m0 + wi ·ml)(kH · gµ · hij + kV · g · vij) ∀i, j = 1..., 2M(5.7)

This formulation is bilinear programming, obtained by adding the load con-

straints to a sequential formulation for ATSP problems [89]. The objective function

is to find the minimum-cost tour to go through all the action nodes. Constraint

(5.2) is about the order of the sequence, indicating if action aj follows action ai,

then the order of aj should be at least that of ai plus one. Constraint (5.3) en-

forces that the pickup action must happen before the drop-off action of the same

request. And constraint (5.4) fixes the pickup action of the first request as its first

action. In fact, this choice can be made arbitrarily to any pickup action according

to the problem setting. Constraint (5.5) and (5.6) are the load constraints– the

88

Chapter 5. Dynamic and Multi-Capacity Problem

load of the vehicle must not exceed the capacity at all time. Constraint (5.7) is

the functional relationship between cij and wi. Though this formulation appears

simple, it is in fact difficult to be solved.

5.2.2 Solution Approach

Let kH · gµ · hij + kV · g · vij = αij. Note that the objective function can be

rewritten as:

∑

i,j=1,...,2M

cij(wi)xij =
∑

i,j=1,...,2M

(m0 + wi ·ml) · αijxij

which contains bilinear terms of wixij. This makes it harder to solve this problem.

Fortunately, the objective function can be linearized by introducing new decision

variables and additional linear constraints.

First, we replace the term cij(wi)xij with zij ≥ 0, then the objective function

is equivalent to:
∑

i,j=1,...,2M

cij(wi)xij =
∑

i,j=1,...,2M

zij

subject to,

xij = 1 ⇒ zij = (m0 +ml · wi)αij ∀i, j = 1, 2, ..., 2M

Further note that it is unnecessary to introduce zij for every xij, since by

constraint (5.1), there exists one and only one immediate successor j to i such that

xij = 1. Thus the above can be finally written as:

min.
∑

i,j=1,...,2M

zi

s.t.

zi ≥ (m0 +ml · wi)αij − β(1− xij) ∀i, j = 1, 2, ..., 2M

89

Chapter 5. Dynamic and Multi-Capacity Problem

β is a large positive real number, it can be chosen as the upper bound of

(m0 +ml · wi)αij. Now the formulation is reformulated in linear form, we can use

solver like CPLEX to solve this exact formulation, to serve as benchmark for our

proposed three heuristics later.

5.2.3 2AS1

This heuristic comes from the insight that, for a 2-capacity vehicle, once it

has 1 item onboard, it becomes a single-capacity vehicle. Initially the vehicle is in

state Load=0, it then decides on one item to pickup with single-capacity algorithm

GRID, and enter state Load=1. In state Load=1, it proceeds to decide to pick up

another item to enter state Load=2 or to drop off the item on board to enter state

Load=0. In state Load=2, the vehicle decides on which of the two items onboard

to be dropped first, and enter state Load=1 again. The algorithm runs until all

the requests are fulfilled. Table 5.3 is the pseudo code for this algorithm, this

algorithm can be extended to when capacity equals C ≥ 3 by introducing another

C − 2 intermediate state like STATE:1.

5.2.4 PPDD

This heuristic takes the output of a single-capacity algorithm, and adjust the

sequence of the single-capacity solution into a 2-capacity fashion. Given a single-

capacity solution sequence, say, [3, 1, 4, 2], since the unit-capacity vehicle cannot

perform another pickup action before dropping off the item onboard, the real oper-

ation sequence for the vehicle is actually AS = [P3, D3, P1, D1, P4, D4, P2, D2]. The

heuristic PPDD is simple: adjust AS to a new sequence in the form of two pick-

ups followed by two drop-off actions without violating any preceding constraints

([PPDDPPDD]), hence the name. The pseudo code for this algorithm is given

in Table 5.4.

90

Chapter 5. Dynamic and Multi-Capacity Problem

Algorithm: 2AS1

Input: R– all pickup and delivery locations; R’=R

Initialize: the vehicle in STATE:0 ONBOARD :empty;

All requests in R as STATUS:P (waiting to be picked up);

While R’ is not empty

If STATE:0

Input R’ to algorithm GRID, in the output of GRID, choose the pickup
point ap of the first request a as the next point to visit;

Register the delivery point ad of a as onboard, ONBOARD+ = ad; Mark
request a as STATUS:D (waiting to be dropped off);

Modify R’ by changing (ap, ad) in R’ to (ad, ad). As ad is yet to be visited;

Enter STATE:1;

If STATE:1

Input R’ to GRID, in the output of GRID, check the first request b:

If STATUS(b)=P

Register the delivery point bd of b as onboard, ONBOARD+ = bd;
Mark request b in STATUS:D (waiting to be dropped off)

Modify R’ by changing (bp, bd) in R’ to (bd, bd);

Enter STATE:2;

If STATUS(b)=D

Delete the delivery point bd from onboard, ONBOARD− = bd;

Modify R’ by deleting (bd, bd) in R’;

Enter STATE:0;

If STATE:2

Among the two items onboard, choose the nearest one to drop off accord-
ing to the vehicle’s current location;

Modify R’ accordingly;

Enter STATE:1;

End While

Table 5.3: Algorithm: 2AS1

91

Chapter 5. Dynamic and Multi-Capacity Problem

Algorithm: PPDD

Input: R– all pickup and delivery locations;

Initialize: The vehicle’s initial location;

Input R to algorithm GRID, from the output sequence, generate the unit-
capacity action sequence S1;

The capacity is 2, calculate the number of [PPDD] segments ns in S1;

For segment from 1 to ns:

Rearrange each segment [Px, Dx, Py, Dy] into:

[Px, Py, Dx, Dy]/[Px, Py, Dy, Dx]/[Py, Px, Dy, Dx]/[Py, Px, Dx, Dy]

Choose the one arrangement with the lowest cost given the vehicle’s cur-
rent location;

Add the rearranged segment to the final sequence; Update the vehicle’s
location;

End For

Table 5.4: Algorithm: PPDD

5.2.5 BUBBLE

This heuristic starts with any solution sequence, and tries to improve it, by

repeatedly swapping each pickup/ delivery action in the original solution with

its neighboring actions to achieve less overall cost. Note that the swapping can

sometimes lead to infeasible solutions for violating preceding constraints as well as

capacity constraints: A pickup action cannot be sequenced after its correspond-

ing delivery action, likewise, a delivery action cannot be moved before its pickup

action; The number of items on the vehicle cannot exceed its capacity at all time.

The heuristic is designed in such a way that each swapping is only valid if it passes

the feasibility check.

Note that since this is a heuristic based on any input sequence, better outcome

can be achieved by a change in the initial input of S1. In our implementation

of BUBBLE, we used the output of a Multi-capacity Nearest-Neighbour heuristic

as the initial input sequence (Table 5.5). By changing the capacity constraint

feasibility check function, this algorithm can be easily extend to problem with any

92

Chapter 5. Dynamic and Multi-Capacity Problem

capacity size. This heuristic takes the name from the well-known sorting algorithm,

and its pseudo code is shown in Table 5.6.

Algorithm: Multi-capacity Nearest-Neighbour

Input: R– all pickup and delivery locations;

Initialize: The vehicle’s initial location; LOAD=0;

While there is still pickup or drop-off nodes left:

If LOAD:0

Among all the remaining pickup nodes, choose the nearest one as
its next pickup action;

Enter LOAD=1;

If LOAD:1

Among all the remaining pickup nodes, and the drop-off node on-
board, choose the nearest one as its next action;

If a pickup node is chosen:

Enter STATE:2;

If the drop-off node is chosen:

Enter STATE:0;

If LOAD:2

Among the two drop-off nodes of the items onboard, choose the
nearest one as its next drop-off action;

Enter LOAD=1;

End While

Table 5.5: Algorithm: Multi-capacity Nearest-Neighbour

5.2.6 Simulation Results

First we compare our three heuristics against the 2-capacity exact formulation

to see their optimality gaps. Being NP-complete, the 2-capacity problems are in

fact very hard to solve to optimal in a reasonable amount of time. So the largest

instances in this simulation only have 10 requests. The average optimality gaps

of the three heuristics are calculated over 30 randomly generated instances whose

request number ranges from 4 to 10.

93

Chapter 5. Dynamic and Multi-Capacity Problem

Algorithm: BUBBLE

Input: R– all pickup and delivery locations;

Initialize: The vehicle’s initial location; CHANGE=TRUE;

Input R to Nearest-Neighbour Heuristic, from the output request sequence, gen-
erate the initial action sequence S1; S

′ = S1

While there is change to S ′:

For each node s ∈ S ′(iterate from left to right):

If s is a pickup node: p = s;

Locate the location of corresponding delivery node of p, d(p), in S ′;

In the range of [1, d(p)], put p into each new position, check if
the capacity constraint is violated anywhere in the new formed
sequence; Mark these new locations as “feasible” or “infeasible”
accordingly;

Relocate p to the “feasible” location with the minimum cost; Mod-
ify S ′ accordingly;

If s is a drop-off node: d = s;

Locate the location of corresponding delivery node of d, p(d), in S ′;

In the range of [p(d), end], put d into each new position, check
if the capacity constraint is violated anywhere in the new formed
sequence; Mark these new locations as “feasible” or “infeasible”
accordingly;

Relocate d to the “feasible” location with the minimum cost; Mod-
ify S ′ accordingly;

End While

Table 5.6: Algorithm: BUBBLE

94

Chapter 5. Dynamic and Multi-Capacity Problem

Shown in Figure 5.6, BUBBLE is the closest to the optimal among the three,

PPDD has a mediocre performance and 2AS1 has generally a very large gap from

optimality (more than 200%, thus not a very satisfactory algorithm). Within the

range of 10 requests, the optimality gaps of PPDD and BUBBLE are between 20-

60%. Considering the BUBBLE algorithm has a larger search effort than PPDD,

its better performance is expected.

Figure 5.6: The optimality gaps of the three heuristics

We further use the heuristics to solve larger instances. Since BUBBLE seems

to be the best of the three, we use the cost output of BUBBLE as benchmark to

examine the other two. Figure 5.7 and Table 5.7shows that BUBBLE remains the

best of the three in terms of objective value. 2AS1 is still more than 150% worse

than BUBBLE, and the performance gap between PPDD and BUBBLE grows

larger as the size of instances increases.

Finally we examine the computation time of PPDD and BUBBLE in Figure

5.8. The computation time of PPDD is minimal for its simplicity; BUBBLE, on

the other hand, takes longer to converge to local optimums.

95

Chapter 5. Dynamic and Multi-Capacity Problem

Figure 5.7: The relative performances of the three heuristics

Relative Performance against BUBBLE (%)

PPDD 2AS1

M Max. Ave. Min. Max. Ave. Min.
10 75.0 28.4 3.1 380.0 204.8 136.8
20 66.4 42.8 17.5 287.3 210.2 135.7
30 64.6 44.4 20.0 247.6 191.0 140.0
40 74.4 53.9 33.8 262.3 192.0 142.2
50 74.8 55.0 37.3 245.8 185.5 141.0
60 78.1 59.3 39.9 257.0 179.7 140.7
70 78.7 61.3 48.7 219.6 176.5 140.6
80 79.2 64.0 49.2 201.9 171.5 139.4
90 84.5 68.6 52.3 223.0 176.4 133.4
100 85.5 68.7 53.1 204.5 169.2 136.4

Table 5.7: The relative performances of the 2AS1 and PPDD
againstBUBBLE (%)

96

Chapter 5. Dynamic and Multi-Capacity Problem

Figure 5.8: The computation time of PPDD and BUBBLE

97

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Modern Automated Material Handling Systems are an essential part to modern

businesses, productions and logistics. Many optimization problems that arise in

AMHSs still impose meaningful and valuable research topics. In this thesis, start-

ing from a practical problem, we defined our studied problem: Energy-Efficient

Stacker Crane Problem (EESCP) as a stacker crane routing problem on a grid

network with cost function in Manhattan norm. The structural properties of this

specific problem bring about many insightful discoveries.

First, we showed that EESCP, being the SCP on grid network in Manhattan

norm, is still NP-Complete. This proof is based on from C.H. Papadimitriou’s

work [88].

Secondly, due to the Manhattan norm, some 2D problems can be easily solved

to optimal in polynomial time with 1D problem algorithm, if their arc patterns

satisfy a set of conditions. The arc pattern is such that, when we divide a 2D

instance into its two 1D sub-problems (horizontally and vertically), at least one of

the sub-problem satisfies the “free-permutation” property, enabling the other sub-

problem to decide the optimal sequence for the original 2D problem alone. Under

certain assumptions, we have thoroughly identified all the possible arc patterns for

the “free-permutation” property. This can be very useful when applied to some

98

Chapter 6. Conclusions and Future Work

problems that arise in practical operations similar to Ball and Magazine’s circuit

printing problem and Atallah and Kosaraju’s robotic arm routing problem.

Then we looked into general EESCP instances without the “free-permutation”

property. With the introduction of the underlying grid network in our formulation,

we are able to improve a very classic algorithm CRANE proposed by Frederick-

son, Hecht et al. [2]. The improvements are four-fold: GRID-L is asymptotically

optimal, and converges to optimal very fast in practical problems; GRID-L also

has a linear time complexity with respect to the number of requests in the prob-

lem instances; GRID-S is designed in such a way that when the arc lengths are

small, it can indeed outperform GRID-L, unlike SMALLARCS in CRANE, whose

performance is in fact worse than LARGEARCS even if the arc lengths are small;

GRID-L and GRID-S together provide a 5/3 theoretical bound, improving from

9/5.

We tentatively try to adopt our static algorithm GRID to dynamic environ-

ments by adding two dynamic parameters: Look-ahead Horizon and Decision

Point. The effects on the performance when changing these two parameters are

examined by simulations. The simulation result shows that the look-ahead hori-

zon has a significant impact on the dynamic algorithm performance: the larger

the look-ahead horizon, the smaller optimality gap. A smaller decision point gen-

erally means a higher frequency of re-optimization. The simulations have also

shown that frequent re-optimizations statistically improve the performance of the

dynamic algorithm.

Finally, we investigate the multi-capacity problem. The formulation for this

problem is bilinear due to the problem being innately more difficult. We propose

a technique to reformulate it into linear form. Then we develop three heuristics

in total. Two of them are based on rearranging other feasible sequence into a new

sequence of pickup and drop-off actions that better utilize the extra capacity, with-

out violating any preceding constraints or load constraints. These two heuristics

turn out to have quite small gaps from optimality, especially BUBBLE.

99

Chapter 6. Conclusions and Future Work

6.2 Future Work

In this section, we will discuss how the work reported in this thesis can be

further extended.

6.2.1 Integrate Time Information

In our specific problem, we have assumed no time window for each request.

Though there are practical cases where this assumption holds, for our work to

extend to more general routing problems in various kinds of AMHSs, we have

to address the energy efficiency issues as well as time issues such as service rate,

total makespan, or longest waiting time. For example, in a problem where energy

efficiency is the only concern, a request that comes first has a chance to get served

last, making its waiting time unreasonably long. To take on time information

such as “estimated time of arrival” or “latest time of delivery” is to add time

windows into the studied problem and make the model to fit in more general

scenarios, while making the problem harder to solve. Still, “slacking” as much

as time constraints allow is the ultimate goal of an energy-efficient algorithm.

To find the optimal balance between the two objectives of time and energy in a

multi-objective optimization problem can be a valuable issue to further look into.

6.2.2 Collaboration Between Multiple Vehicles

As a means to increase system throughput, many AHMSs adopt multiple ve-

hicles. To determine how to distribute the workload between all the available

vehicles, as well as how to coordinate the vehicles to avoid potential collisions,

adds a new level of complexity to this problem. As we have discussed in Chapter

2, there have been studies on multi-vehicle SCPs. Previous work was either in

industries and problems where collision avoidance is not an issue, or the result

was too system-design specific. So it is still meaningful to devise schemes or algo-

rithms to help collaborate multiple vehicles to achieve better overall energy and

time efficiency.

100

Chapter 6. Conclusions and Future Work

6.2.3 Further into the Multi-capacity Problem

Multi-capacity operations are essentially a trade-off between throughput and

the energy consumption– picking up another item while having items onboard

often means unnecessary detour for the items onboard and hence extra energy

consumption for the system. In this sense, the philosophy of energy-efficient op-

erations somehow discourages full-load operations, unless necessary. This is an

interesting balance to further look into. Also, the solution method used in this

thesis for multi-capacity is in a general form, more effort could be put into finding

ways to integrate more system structure into the modeling.

6.2.4 Stochastic Framework

Most of our work in this thesis is about solving static problems, and assumes

no advance knowledge about the future. However, the real-world problems are

never truly static– they are always dynamic on a infinite time horizon. Forecasts

such as the seasonal, daily or hourly expected arrival rate, experience on the

frequently seen request patterns issued in the system, are valuable information to

be integrated into the dynamic model. These information can shape the decision

making and help increase the expected overall energy-efficiency. It would be useful

and also viable to extend this work to use stochastic programming framework to

tackle meaningful dynamic problems, given some information about the future.

The first application is the Docking Problem. For instance, after the stacker

crane vehicle having completed all the given requests, knowing that the next re-

quest would come sometime later, the vehicle wants to choose a location to dock,

to minimize the response time once the next request comes. Assuming that there

are 3 very likely locations for the next pickup point to be, at the immediate stage,

the vehicle needs to choose the expected location to minimize the expected travel-

ing time to any one of these three locations. At stage two, once there is an update

of the information of the incoming request, the vehicle then adjust its docking

locations accordingly.

101

Chapter 6. Conclusions and Future Work

The second is to use the deterministic equivalent of stochastic incoming requests

to incorporate uncertainties into the deterministic frame work. To do this, for each

uncertain incoming request, given the distributions of its pickup node and delivery

node, we can use the expectation (weighted mean) of the distributions to generate

a deterministic equivalent request. See Figure 6.1 for a demonstration.

Figure 6.1: The deterministic equivalent of an uncertain request

However, this is only an estimate of future requests, once valid information

about the future requests is obtained, the routing must be actively re-optimized.

102

Author’s Publications

Papers under Preparation

(i) Fang Zhou, Jianfeng Mao,“Energy-Efficient Stacker Crane Routing on a

Grid”. Under Preparation.

103

References

[1] J. Huston. Save energy in your warehouse to meet green initiatives, 2013.

Available at: http://www.supplychaindigital.com/warehousing/1905/

Save-Energy-in-Your-Warehouse-to-Meet-Green-Initiatives.

[2] G.N. Frederickson, M.S. Hecht, and C.E. Kim. Approximation algorithms

for some routing problems. In Foundations of Computer Science, 1976., 17th

Annual Symposium on, pages 216–227, Oct 1976.

[3] K.J. Roodbergen and I.F.A. Vis. A survey of literature on automated storage

and retrieval systems. European Journal of Operational Research, 194(2):343

– 362, 2009.

[4] W.A. Günthner, C. Tilke, and S. Rakitsch. Energy efficiency in bulk materials

handling. Bulk Solids Handling, 30(3):138 – 142, 2010.

[5] German Federal Environment Agency (UBA). Stromsparen: weniger

kosten, weniger kraftwerke, weniger co2 fakten und argumente für

das handeln auf der verbraucherseite, Dec 2009. Available at:

http://www2.fml.mw.tum.de/fml/images/Publikationen/Gunthner_

Tilke_Rakitsch_BulkSolidsHandling_03-10_EnergyEfficiency.pdf.

[6] Y.A. Bozer J.A. Tompkins, J.A. White and J.M.A. Tanchoco. Facilities plan-

ning. Wiley, 4th edition, 2010.

[7] R. Siddhartha. Introduction to Materials Handling. New Age International,

1st edition, Oct 2007.

[8] S. Hur, Y.H. Lee, S.Y. Lim, and M.H. Lee. A performance estimation model

for as/rs by m/g/1 queuing system. Computers & Industrial Engineering,

46(2):233 – 241, 2004. Special Issue on Selected Papers from the 27th. Inter-

national Conference on Computers and Industrial Engineering, Part 1.

104

REFERENCES

[9] R. Manzini, M. Gamberi, and A. Regattieri. Design and control of an

as/rs. The International Journal of Advanced Manufacturing Technology,

28(7-8):766–774, 2006.

[10] R.J. Linn and R.A. Wysk. An expert system framework for automated storage

and retrieval system control. Computers & Industrial Engineering, 18(1):37

– 48, 1990.

[11] T. Balluff. Energy Efficiency-Intralogistics focused on energy efficiency, 2009.

Available at: http://www.daifukueurope.com/news/press/146/2009-28/

Energy-Efficiency.

[12] J. Huston. Save energy in your warehouse to meet green initiatives, 2013.

[13] C. Prasse, A. Kamagaew, S. Gruber, K. Kalischewski, S. Soter, and

M. Ten Hompel. Survey on energy efficiency measurements in heterogenous

facility logistics systems. In Industrial Engineering and Engineering Man-

agement (IEEM), 2011 IEEE International Conference on, pages 1140–1144.

IEEE, 2011.

[14] P.A. Makris, A.P. Makri, and C.G. Provatidis. Energy-saving methodology

for material handling applications. Applied energy, 83(10):1116–1124, 2006.

[15] G. Frederickson and D. Guan. Preemptive ensemble motion planning on a

tree. SIAM Journal on Computing, 21(6):1130–1152, 1992.

[16] M. Atallah and S. Kosaraju. Efficient solutions to some transportation prob-

lems with applications to minimizing robot arm travel. SIAM Journal on

Computing, 17(5):849–869, 1988.

[17] M.O. Ball and M.J. Magazine. Sequencing of insertions in printed circuit

board assembly. Operations Research, 36(2):192–201, 1988.

[18] G.N. Frederickson and D.J. Guan. Nonpreemptive ensemble motion planning

on a tree. Journal of Algorithms, 15(1):29 – 60, 1993.

[19] A. Coja-Oghlan, S.O. Krumke, and T. Nierhoff. A heuristic for the stacker

crane problem on trees which is almost surely exact. Journal of Algorithms,

61(1):1 – 19, 2006.

105

REFERENCES

[20] K. Treleaven, M. Pavone, and E. Frazzoli. Asymptotically optimal algorithms

for one-to-one pickup and delivery problems with applications to transporta-

tion systems. IEEE Transactions on Automatic Control, 58(9):2261–2276,

Sept 2013.

[21] K. Treleaven, M. Pavone, and E. Frazzoli. Models and efficient algorithms

for pickup and delivery problems on roadmaps. In 2012 IEEE 51st Annual

Conference on Decision and Control (CDC), pages 5691–5698, Dec 2012.

[22] N. Christofides. Worst-case analysis of a new heuristic for the travelling sales-

man problem. Management Sciencies Research Report No.388, 1976.

[23] T. Ávila, Á. Corberán, I. Plana, and J.M. Sanchis. The stacker crane problem

and the directed general routing problem. Networks, 65(1):43–55, 2015.

[24] G. Laporte. Modeling and solving several classes of arc routing problems as

traveling salesman problems. Computers & Operations Research, 24(11):1057

– 1061, 1997.

[25] J. Cirasella, D. Johnson, L. McGeoch, and W. Zhang. The asymmetric trav-

eling salesman problem: Algorithms, instance generators, and tests. In Al-

gorithm Engineering and Experimentation, volume 2153 of Lecture Notes in

Computer Science, pages 32–59. Springer Berlin Heidelberg, 2001.

[26] L. Zheng and W. Zheng. Genetic coding for solving both the stacker crane

problem and its k-variant. In IEEE International Conference on Systems,

Man and Cybernetics, 1995. Intelligent Systems for the 21st Century., vol-

ume 2, pages 1061–1066 vol.2, Oct 1995.

[27] F.J. Srour and S. Velde. Are stacker crane problems easy? A statistical study.

Computers & Operations Research, 40(3):674 – 690, 2013.

[28] D.J. Guan. Routing a vehicle of capacity greater than one. Discrete Applied

Mathematics, 81(13):41 – 57, 1998.

[29] M. Ozden. A simulation study of multiple-load-carrying automated guided ve-

hicles in a flexible manufacturing system. International Journal of Production

Research, 26(8):1353–1366, 1988.

[30] D.M. Stein. An asymptotic, probabilistic analysis of a routing problem. Math-

ematics of Operations Research, 3(2):89–101, 1978.

106

REFERENCES

[31] H.N. Psaraftis. Analysis of an o(N2) heuristic for the single vehicle many-to-

many euclidean dial-a-ride problem. Transportation Research Part B: Method-

ological, 17(2):133 – 145, 1983.

[32] H.N. Psaraftis. An exact algorithm for the single vehicle many-to-many dial-

a-ride problem with time windows. Transportation Science, 17(3):351–357,

1983.

[33] M. Kubo and H. Kasugai. Heuristic algorithms for the single vehicle dial-a-ride

problem. Journal of the Operations Research Society of Japan, 33(4):354–365,

1990.

[34] L.J.J. Bruggen, J.K. Lenstra, and P.C. Schuur. Variable-depth search for the

single-vehicle pickup and delivery problem with time windows. Transportation

Science, 27(3):298–311, 1993.

[35] J. Desrosiers, Y. Dumas, and F. Soumis. A dynamic programming solution of

the large-scale single-vehicle dial-a-ride problem with time windows. American

Journal of Mathematical and Management Sciences, 6(3-4):301–325, 1986.

[36] K.S. Ruland and E.Y. Rodin. The pickup and delivery problem: Faces

and branch-and-cut algorithm. Computers & Mathematics with Applications,

33(12):1 – 13, 1997.

[37] M. Grunow, H. Günther, and M. Lehmann. Dispatching multi-load agvs in

highly automated seaport container terminals. OR Spectrum, 26(2):211–235,

2004.

[38] D. Sinriech and L. Palni. Scheduling pickup and deliveries in a multiple-load

discrete carrier environment. IIE Transactions, 30(11):1035–1047, 1998.

[39] D. Sinriech and J. Kotlarski. A dynamic scheduling algorithm for a multiple-

load multiple-carrier system. International Journal of Production Research,

40(5):1065–1080, 2002.

[40] Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem

with time windows. European Journal of Operational Research, 54(1):7 – 22,

1991.

[41] H. Xu, Z. Chen, S. Rajagopal, and S. Arunapuram. Solving a practical pickup

and delivery problem. Transportation science, 37(3):347–364, 2003.

107

REFERENCES

[42] S. Røpke, J. Cordeau, and G. Laporte. Models and a branch-and-cut al-

gorithm for pickup and delivery problems with time windows. Networks,

49(4):258–272, 2007.

[43] H.C. Lau and Z. Liang. Pickup and delivery with time windows: Algorithms

and test case generation. International Journal on Artificial Intelligence Tools,

11(03):455–472, 2002.

[44] R. Bent and P. Van Hentenryck. A two-stage hybrid algorithm for pickup and

delivery vehicle routing problems with time windows. Computers & Opera-

tions Research, 33(4):875–893, 2006.

[45] B. Mahadevan and T.T. Narendran. Design of an automated guided vehicle-

based material handling system for a flexible manufacturing system. Interna-

tional Journal of Production Research, 28(9):1611–1622, 1990.

[46] M.E. Johnson and M.L. Brandeau. An analytic model for design of a multi-

vehicle automated guided vehicle system. Management Science, 39(12):1477–

1489, 1993.

[47] T. Ganesharajah, N. Hall, and C. Sriskandarajah. Design and operational

issues in agv-served manufacturing systems. Annals of Operations Research,

76(0):109–154, 1998.

[48] J. Lee. Composite dispatching rules for multiple-vehicle agv systems. SIMU-

LATION, 66(2):121–130, 1996.

[49] T. Schouwenaars, B. De Moor, E. Feron, and J. How. Mixed integer pro-

gramming for multi-vehicle path planning. In European control conference,

volume 1, pages 2603–2608, 2001.

[50] W.B. Powell, B. Bouzaene-Ayari, and H.P. Simo. Chapter 5 dynamic models

for freight transportation. In C. Barnhart and G. Laporte, editors, Trans-

portation, volume 14 of Handbooks in Operations Research and Management

Science, pages 285 – 365. Elsevier, 2007.

[51] W.B. Powell. An operational planning model for the dynamic vehicle allo-

cation problem with uncertain demands. Transportation Research Part B:

Methodological, 21(3):217–232, 1987.

108

REFERENCES

[52] W.B. Powell, Y. Sheffi, K.S. Nickerson, K. Butterbaugh, and S. Atherton.

Maximizing profits for north american van lines’ truckload division: A new

framework for pricing and operations. Interfaces, 18(1):21–41, 1988.

[53] M.R. Swihart and J.D. Papastavrou. A stochastic and dynamic model for the

single-vehicle pick-up and delivery problem. European Journal of Operational

Research, 114(3):447 – 464, 1999.

[54] J. Yang, P. Jaillet, and H. Mahmassani. On-line algorithms for truck fleet

assignment and scheduling under real-time information. Transportation Re-

search Record: Journal of the Transportation Research Board, 1667:107–113,

1999.

[55] J. Yang, P. Jaillet, and H. Mahmassani. Real-time multivehicle truckload

pickup and delivery problems. Transportation Science, 38(2):135–148, 2004.

[56] D. Tjokroamidjojo, E. Kutanoglu, and G.D. Taylor. Quantifying the value

of advance load information in truckload trucking. Transportation Research

Part E: Logistics and Transportation Review, 42(4):340 – 357, 2006.

[57] K. Gutenschwager, C. Niklaus, and S. Vo. Dispatching of an electric monorail

system: Applying metaheuristics to an online pickup and delivery problem.

Transportation Science, 38(4):434–446, 2004.

[58] M. Mes, M. Heijden, and A. Harten. Comparison of agent-based scheduling to

look-ahead heuristics for real-time transportation problems. European Journal

of Operational Research, 181(1):59 – 75, 2007.

[59] G. Berbeglia, J. Cordeau, I. Gribkovskaia, and G. Laporte. Static pickup and

delivery problems: aclassification scheme and survey. TOP, 15(1):1–31, 2007.

[60] M.W.P. Savelsbergh and M. Sol. The general pickup and delivery problem.

Transportation Science, 29(1):17–29, 1995.

[61] S. Parragh, K. Doerner, and R. Hartl. A survey on pickup and delivery

problems. Journal fr Betriebswirtschaft, 58(1):21–51, 2008.

[62] B.L. Golden, S. Raghavan, and E.A. Wasil. The Vehicle Routing Problem:

Latest Advances and New Challenges: latest advances and new challenges,

volume 43. Springer Science & Business Media, 2008.

109

REFERENCES

[63] J. Cordeau, G. Laporte, J. Potvin, and M. Savelsbergh. Transportation on

demand. Handbooks in operations research and management science, 14:429–

466, 2007.

[64] O.G. Madsen, H. Ravn, and J. Rygaard. A heuristic algorithm for a dial-a-

ride problem with time windows, multiple capacities, and multiple objectives.

Annals of Operations Research, 60(1):193–208, 1995.

[65] L. Suen, A. Ebrahim, and M. Oksenhendler. Computerised dispatching for

sharedride taxi operations in canada. Transportation Planning and Technol-

ogy, 7(1):33–48, 1981.

[66] D.O. Santos and E.C. Xavier. Taxi and ride sharing: A dynamic dial-a-

ride problem with money as an incentive. Expert Systems with Applications,

42(19):6728 – 6737, 2015.

[67] P. Toth and D. Vigo. Fast local search algorithms for the handicapped persons

transportation problem. In IbrahimH. Osman and JamesP. Kelly, editors,

Meta-Heuristics, pages 677–690. Springer US, 1996.

[68] B. Rekiek, A. Delchambre, and H.A. Saleh. Handicapped person transporta-

tion: An application of the grouping genetic algorithm. Engineering Applica-

tions of Artificial Intelligence, 19(5):511 – 520, 2006.

[69] R. Borndörfer, M. Grötschel, F. Klostermeier, and C. Küttner. Telebus

berlin: Vehicle scheduling in a dial-a-ride system. In NigelH.M. Wilson,

editor, Computer-Aided Transit Scheduling, volume 471 of Lecture Notes in

Economics and Mathematical Systems, pages 391–422. Springer Berlin Hei-

delberg, 1999.

[70] J. Mageean and J.D. Nelson. The evaluation of demand responsive transport

services in europe. Journal of Transport Geography, 11(4):255 – 270, 2003.

[71] J. Cordeau and G. Laporte. The dial-a-ride problem (darp): Variants, mod-

eling issues and algorithms. Quarterly Journal of the Belgian, French and

Italian Operations Research Societies, 1(2):89–101, 2003.

[72] J. Cordeau and G. Laporte. A tabu search heuristic for the static multi-

vehicle dial-a-ride problem. Transportation Research Part B: Methodological,

37(6):579 – 594, 2003.

110

REFERENCES

[73] J. Cordeau, M. Iori, G. Laporte, and J.J. Salazar Gonzlez. A branch-and-cut

algorithm for the pickup and delivery traveling salesman problem with lifo

loading. Networks, 55(1):46–59, 2010.

[74] G.B. Dantzig and J.H. Ramser. The truck dispatching problem. Management

Science, 6(1):80–91, 1959.

[75] P. Toth and D. Vigo, editors. The Vehicle Routing Problem. Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001.

[76] G. Laporte. Fifty years of vehicle routing. Transportation Science, 43(4):408–

416, November 2009.

[77] R.M. Karp. A patching algorithm for the nonsymmetric traveling-salesman

problem. SIAM Journal on Computing, 8(4):561–573, 1979.

[78] A. Schrijver. Combinatorial optimization: polyhedra and efficiency, vol-

ume 24. Springer Science & Business Media, 2003.

[79] G. Gutin and A. Yeo. Assignment problem based algorithms are impractical

for the generalized tsp. Australasian Journal of Combinatorics, 27:149–154,

2003.

[80] J. Marecek. The traveling salesman problem: A computational study. IN-

FORMS 7240 PARKWAY DR, STE 310, HANOVER, MD 21076-1344 USA,

2008.

[81] R. Matai, M.L. Mittal, and S. Singh. Traveling salesman problem: An

overview of applications, formulations, and solution approaches. INTECH

Open Access Publisher, 2010.

[82] G. Gutin and A.P. Punnen. The traveling salesman problem and its variations,

volume 12. Springer Science & Business Media, 2002.

[83] G. Laporte. The traveling salesman problem: An overview of exact and ap-

proximate algorithms. European Journal of Operational Research, 59(2):231–

247, 1992.

[84] H.A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, Part II:

The rural postman problem. Operations Research, 43(3):399–414, 1995.

111

REFERENCES

[85] G. Berbeglia, J. Cordeau, and G. Laporte. Dynamic pickup and delivery

problems. European Journal of Operational Research, 202(1):8 – 15, 2010.

[86] P. Zajac. Evaluation method of energy consumption in logistic warehouse

systems, 2015.

[87] C. Umans and W. Lenhart. Hamiltonian cycles in solid grid graphs. In 38th

Annual Symposium on Foundations of Computer Science, Proceedings, pages

496–505, Oct 1997.

[88] C.H. Papadimitriou. The euclidean travelling salesman problem is np-

complete. Theoretical Computer Science, 4(3):237–244, 1977.

[89] A.J. Orman and H.P. Williams. A survey of different integer programming for-

mulations of the travelling salesman problem. In Optimisation, Econometric

and Financial Analysis, volume 9 of Advances in Computational Management

Science, pages 91–104. Springer Berlin Heidelberg, 2007.

[90] A.W. Tucker H.W. Kuhn. An extension of a theorem of dantzig’s. Linear

Inequalities and Related Systems, Annals of Mathematics Studies (AM-38),

pages 247 – 254, 1956.

[91] T. Zaslavsky. Signed graphs. Discrete Applied Mathematics, 4(1):47 – 74,

1982.

[92] M. Hanan. On steiner’s problem with rectilinear distance. SIAM Journal on

Applied Mathematics, 14(2):255–265, 1966.

[93] M. Zachariasen. A catalog of hanan grid problems. Networks, 38(2):76–83,

2001.

112

