
Innovations Syst Softw Eng (2005)
DOI 10.1007/s11334-005-0015-z

REGULAR ARTI CLE

Rajesh Mathew · Mohamed Younis · Sameh M. Elsharkawy

Energy-efficient bootstrapping for wireless sensor networks

Received: / Accepted: / Published online:
© Springer-Verlag 2005

Abstract Wireless sensor networks are poised for increas-
ingly wider uses in many military and civil applications. Such
applications has stimulated research in a number of research
areas related to energy conservation in such networks. Most
such research focuses on energy saving in tasks after the net-
work has been organized. Very little attention has been paid
to network bootstrapping as a possible phase where energy
can be saved. Bootstrapping is the phase in which the entities
in a network are made aware of the presence of all or some
of the other entities in the network. This paper describes a
bootstrapping protocol for a class of sensor networks con-
sisting of a mix of low-energy sensor nodes and a small
number of high-energy entities called gateways. We pro-
pose a new approach, namely the slotted sensor bootstrapping
(SSB) protocol, which focuses on avoiding collisions in the
bootstrapping phase and emphasizes turning off node radio
circuits whenever possible to save energy. Our mechanism
synchronizes the sensor nodes to the gateway’s clock so that
time-based communication can be used. The proposed SSB
protocol tackles the issue of node coverage in scenarios, when
physical device limitations and security precautions prevent
some sensor nodes from communicating with the gateways.
Additionally, we present an extension of the bootstrapping
protocol, which leverages possible gateway mobility.

Keywords Sensor networks · Network bootstrapping ·
Energy-aware design · Communication protocols

R. Mathew · M. Younis
Dept. of Computer Science and Electrical Eng.,
University of Maryland Baltimore County,
1000 Hilltop Circle, Baltimore, MD 21250, USA
E-mail: rmathe3@umbc.edu, younis@cs.umbc.edu
Tel.: +410-4553968

S.M. Elsharkawy
Dept. of Electrical Eng. and Computer Science,
The Catholic University of America,
620 Michigan Ave. NE, Washington, DC 20064, USA
E-mail: elsharkawy@cua.edu
Tel.: +202-3194620

1 Introduction

There has been growing interest in recent years in the potential
of sensor networks in a variety of military and civil applica-
tions, such as target tracking and geographical studies. With
the aid of sensor devices, such tasks can be accomplished
with limited human intervention. Military reconnaissance
can be done remotely using scattered low-energy sensing
devices in the zone where targets are expected, and thus data
can be gathered from hostile environments at low cost and
minimal risk. In addition, sensor nodes are gaining popu-
larity in geographical studies in hostile terrain, or in studies
where terrain is not necessarily hostile but large amounts of
readings are required, while at the same time keeping hard-
ware costs under acceptable limits, thereby necessitating very
light devices with limited communication and computation
capabilities.

An important characteristic of sensor devices is that their
battery capacity is very small, much smaller than conven-
tional wireless devices like laptops and even PDAs, thereby
making energy conservation one of the most important is-
sues in sensor network research. Sensor nodes are usually
equipped with short-haul radios, and communication accounts
for a major portion of energy usage. Therefore, energy-
efficient communication protocols are essential for sensor
networks in order to enhance their robustness and extend
systems’ lifetimes [1–6].

Typically, a set of sensors is spread throughout an area
of interest in order to detect and possibly track events/tar-
gets in this area. The sensing circuitry probes the surround-
ing environment. After performing signal processing of the
observed data, sensors communicate these data to a command
center usually through a relay or a data concentrator called
a gateway. Gateway nodes are capable of long-haul com-
munication and have richer energy resources compared to
sensor nodes. The gateway can perform a host of other tasks
such as arbitration of medium access and generating rout-
ing tables [7]. Due to scalability requirements and a desire
to avoid overloading the gateway, network clustering is rec-
ommended through the involvement of multiple gateways, as

R. Mathew et al.

Command Node

Sensor nodes

Gateway Node

Fig. 1 Multigateway clustered sensor network

shown in Fig. 1. Clusters are formed such that its gateway is
located within the communication range of all the sensors in
its cluster.

Before a network is clustered, sensors and gateway nodes
need to be informed about the presence of their surround-
ing nodes. Bootstrapping the sensor network refers to the
discovery of deployed sensors and establishing single-or
multihop communication links between each gateway and
sensors that are accessible to it. Bootstrapping in sensor net-
works can be very challenging because human intervention
in setting up and administering the network is not possi-
ble for many of the applications that sensor networks are
used for. As we elaborate in the sections ahead, inefficient
bootstrapping protocols can consume a substantial portion
of the very limited sensor energy. In many sensor networks,
battery capacities cannot be replenished and replacement
of batteries is not feasible. Every unit of energy saved by
optimal use increases the lifetime and, consequently, the util-
ity of the network. The complexity of bootstrapping signifi-
cantly diminishes if energy is not an issue and a number
of mechanisms may be used. We show in this paper that
bootstrapping can be a significant energy-consuming pro-
cess and needs to be studied in greater details. We present an
energy-efficient bootstrapping protocol that conserves sen-
sor energy and synchronizes sensor clocks, thereby reaping
the benefits of synchronization at this early phase of network
operation.

1.1 Problem statement

Sensor discovery can typically be performed through repet-
itive sensor beaconing or through continual probing for the
gateway. In repetitive beaconing each sensor broadcasts hello
messages to discover its neighbors and flood such infor-
mation to the gateway. Such an approach involves many,
and often excessive, messages, making it an energy bur-
den. In addition, it will not suit setups in which the gateway
is deployed a while after the sensors are deployed. Such a
scenario is expected in many applications like combat field
surveillance and disaster management. Moreover, repetitive

sensor beaconing requires an initial intersensor trust, which
may allow unauthorized nodes to join the network or even
hinder the node discovery process, a scenario that is totally
unacceptable in security-sensitive applications. On the other
hand, probing for gateway announcements and establishing
direct contact with it can be very energy efficient and secure.
However, gateway-based protocols for node discovery typ-
ically need sensors to keep their receivers ON during the
discovery phase waiting for an indication that the gateway
has begun operation. In many cases imposing this require-
ment on the sensors causes a substantial portion of the sen-
sors’battery to be consumed until the network is bootstrapped
and the nodes are recognized by the gateways. Furthermore,
sensors may deplete the bulk of their batteries if there is a
significant time lag between the deployment of sensors and
gateways.

When sensors keep their receivers active after deploy-
ment, the gateways can send out announcements to indicate
their presence and start network bootstrapping. Such a
scheme, as depicted in Fig. 2, has one of the gateways transmit
information indicating that the nodes are now permitted to re-
ply. The sensor nodes then begin to transmit their replies. As
there is no sense of time base at this point in time, the sensors
often face collision and have to retransmit the reply message.
One possible strategy for countering collision has the sensor
node pick a random time after the gateway’s announcement
to reply and, on detecting a collision at a predetermined time,
sleep for a random interval and repeat the entire procedure.
We will consider this protocol as the baseline to which we
compare the performance of our energy slotted sensor boot-
strapping (SSB) efficient protocol.

When sensors are deployed earlier than the gateways, the
sensors keep trying to bootstrap repeatedly but succeed only
after the gateways are deployed. In some scenarios, a num-
ber of sensor nodes may not hear the gateway’s announce-
ment when they are deployed later. Hence, if the gateway
comes up before the sensors and sends out an announcement
that is missed by the sensors, the sensors will be left with
their receivers ON, unaware that the gateway has already sent
out its announcement. This would lead to battery depletion.
Moreover, the effect of collisions on sensor transmissions can
be very dramatic. Not only will unorganized sensors’ trans-
missions extend the bootstrapping time and increase energy
consumption, but they can also lead to long periods of failed
retransmissions during which gateways cannot even exchange
messages among themselves or communicate with other sen-
sors. The importance of solving this problem is further
underscored when we consider scenarios where the number
of nodes may run into the hundreds of thousands.1

1.2 Our contribution

In this paper, we present Slotted Sensor Bootstrapping (SSB),
an energy-efficient, highly scalable bootstrapping protocol.

1 Wireless Ad Hoc Networks: Smart Sensor Networks,
http://w3.antd.nist.gov/wahn ssn.shtml

Energy-efficient bootstrapping for wireless sensor networks

Gateway Announcement

R4

Collision

R3

R2

R1

Sensor Nodes’

Replies

Fig. 2 Collisions in bootstrapping phase

The moot concept of the SSB protocol is that we permit
the sensors to intermittently switch their receivers ON and
OFF during the bootstrapping phase, thereby accruing con-
siderable savings in battery power. If the gateway is deployed
after the sensors, the SSB mechanism becomes even more
effective. To achieve this, we introduce time-based synchro-
nization during the bootstrapping phase, thereby reaping the
benefits of such synchronization through network operation
instead of synchronizing the nodes at a later stage, e.g., after
network clustering. This feature helps in making the proto-
col very efficient in terms of energy consumption. We also
leverage such synchronization at various points during the
operation of the protocol.

At the end of the bootstrapping phase, each gateway should
know the set of reachable sensors and synchronize their clocks
with its own clock. Clock synchronization enables the use of a
time-multiplexed model of communication, such as TDMA.
TDMA-based medium access control has been shown to be
very energy efficient for sensor networks [8,9]. At the end
of the network bootstrapping, the nodes are already synchro-
nized with the gateways, and hence it is easier to incorporate
TDMA-like schemes at this juncture.

We have extended the bootstrapping protocol to benefit
from possible gateway mobility so that node coverage is
enhanced. Sensor nodes often have physical limitations as
far as transmission capabilities are concerned that intrin-
sically reduce the ratio of nodes that may be discovered
as compared to the total number of nodes actually pres-
ent in the network. If gateways possess motion capabili-
ties, a greater number of nodes can be discovered during
bootstrapping. We have developed an algorithm to deter-
mine appropriate motion patterns for the gateway to effi-
ciently discover additional sensors that could not be reached
initially.

The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 describes the details
of the SSB protocol. In this section, we also present simula-
tion results that demonstrate the efficiency and scalability of
the proposed SSB scheme. Section 4 looks at the problem
of deciding motion patterns for enhanced node discovery
in scenarios where gateways possess motion capabilities.
Section 5 concludes the paper and points out future research
directions.

2 Related work

Energy constraints distinguish sensor networks from other
wireless communication networks. Such constraints have
motivated research at different layers of the protocol stack
and in other related problems such as clustering, routing, and
data aggregation. However, most such research pays little
attention to energy efficiency in the bootstrapping phase. In
this paper, we make the case that the bootstrapping phase
can potentially be an expensive one in terms of energy and,
hence, is one that merits a closer look than it currently
receives.

Time-based bootstrapping of sensor networks has been
studied in [10]. In that paper, the authors use the notion of
a “frame” in time, which is divided into many parts serv-
ing different functionalities. The schedule within a frame is
fixed and includes slots for all types of communication. A
recently powered-up sensor will listen to traffic to find neigh-
bors and engage with them in order to join the network. A
gradual increase in transmission range strategy, known as
incremental shouting, is applied in [11] for sensor discovery.
Every node sends announcements with increasing energy to
explore the neighborhood. Close sensors, which hear such
announcements, would acknowledge the message and indi-
cate their location. The process is repeated by every sen-
sor and stops when every sensor knows a preset number of
neighbors and considers them its group. A group can take on
sensing tasks and arbitrate the load among the members. The
same approach is applied to groups in order to form a network
topology. Such approaches are so complicated that they may
consume lots of energy by themselves. In addition, there is no
clear termination condition, which makes their convergence
questionable.

Approaches for sensor discovery and location determina-
tion were suggested in [12]. The basic idea is to use beacons
to make the presence of a sensor known to its neighbors and
use multilateration to estimate the relative location of sen-
sors. Absolute location can be calculated with the availability
of reference sensors that are either hand-placed or equipped
with GPS. We assume that every sensor knows its location,
although in the future we would like to explore such ideas as
a complementary procedure to the SSB protocol, using the
gateways as the base reference locations.

R. Mathew et al.

GW 1 Frame GW 2 Frame GW 3 Frame GW N Frame

One SuperFrame

One Frame

n1 Announcements n2 Reply Slots n2 Ack Slots

CON

Guard Bits

Synchronization
Sequence

Number of
Remaining

Announcement
Slots

Number
of Reply

Slots

Unique
Identifer

Initial
Energy

Position
Coordinates

Fig. 3 Frames and superframes

With sensor devices being extremely energy constrained,
it is beneficial to save energy at all possible phases of sensor’s
design and in the network operation, thus justifying the need
for low-energy hardware design, energy-aware software, and
energy-efficient communication protocols. Low-power elec-
tronics, power-down modes, and energy-efficient modulation
are examples of hardware-based techniques [1,13,14].
Examples of energy-aware software includes operating sys-
tems such as TinyOS [15] and duty-cycle-controlled software
execution [16].

Further, great focus is being placed on energy-efficient
physical layer protocols. Energy saving through the use of
time-based MAC in wireless sensor networks has been ex-
plored in [8,9,17,18]. The principle is to schedule activation
of the radio receiver so that it can be turned off when a
message is not expected. Turning off the receiver has been
shown to achieve savings of up to 70% in energy consump-
tion [17]. Approaches for determining when to turn off the
receiver vary.While slots are prescheduled in [9,18], the deci-
sion for deactivating the receiving circuit is made autonomous
in [17] by probing the environment. A reservation-based
approach for scheduling medium access is pursued in [8].
Nodes make a request to a base station, which responds
with a traffic control message indicating medium access
schedule. Nodes not included in the traffic control message

can turn off their receivers. Mechanisms like S-MAC [19,
20], a MAC protocol similar to TDMA, also provide solu-
tions to the problem of optimizing the MAC layer. However,
all published mechanisms address normal network operation
and do not investigate the potential of time synchronization
in the bootstrapping process.

Clustering a sensor network is important for increasing
the scalability of the network, and many approaches to doing
this have been proposed. Clusters can be assigned different
frequencies or codes if FDM or CDMA is used, thus ben-
efiting from spatial reuse of bandwidth [21]. The dynamic
leader selection mechanism of LEACH [22] has the sensor
nodes themselves decide whether they would be cluster heads
or not, and other nodes form clusters around these “cluster-
heads.” All these approaches help the sensors save energy.

In addition, energy-aware routing has received lots of
attention [1,23]. A number of approaches—Minimum Total
Power Transmission Power Routing, Minimum Battery Cost
Routing, Min-Max Battery Cost Routing, and Conditional
Max-Min Battery Capacity Routing—and their relative advan-
tages and drawbacks are discussed in [24]. A survey can be
found in [25].

Apart from algorithms, which advise nodes about routes
to be used for transmission, there also exist algorithms that
suggest precisely how much or what part of the available

Energy-efficient bootstrapping for wireless sensor networks

Announcement Reply, ACK and CON Announcement Reply, ACK and CON

 x1 x2 x3
 y1 y2 y3

x1 - Sensor sets receiver ON for first time
x2-x3 - Sensor sets receiver ON
y1-y2 - Sensor switches receiver OFF w/o detecting announcement
y3 - Sensor switches receiver OFF after detecting announcement

Fig. 4 Node detection announcement within one frame if gateway is already deployed

Announcement Reply, ACK and CON

x1 x2 x3
y1 y2 z y3

x1 - Sensor sets receiver ON for first time
x2-x3 - Sensor sets receiver ON
y1-y2 - Sensor switches receiver OFF w/o detecting announcement
y3 - Sensor switches receiver OFF after detecting announcement
z - Gateway is deployed

Gateway Deployment Delay

Fig. 5 Sensor’s receiver ON time is minimized even if gateway is deployed late

information should be actually transmitted to the gateway.
Instead of each node transmitting the raw data to its respective
gateway, it is possible for the nodes to locally fuse information
using data aggregation techniques and then send these fused
data to the gateway. Though this implies increased compu-
tational costs in terms of processing for aggregation of data,
it also means possibly a large reduction in communication
costs, as these procedures may reduce the volumes of data
flowing from the sensors to the gateways. A number of such
data aggregation techniques are discussed in [26], and the
impact of such techniques is studied in [27].

3 Energy-efficient bootstrapping protocol

In this section, we present the SSB bootstrapping protocol.At
the outset, we assume that gateways are high-power entities
and can run any distributed algorithm, such as those presented
in [28], to establish transmission ordering among themselves.
Hence, once deployed, gateway nodes will establish

communication links among themselves, negotiate ordering
for transmitting announcement messages to the sensors, and
then proceed to the bootstrapping procedure.

3.1 Bootstrapping phases

This section studies the information that needs to be ex-
changed between the network’s entities, namely the gate-
ways and sensors, to perform the bootstrapping function and
presents the motivation for the various phases in the proposed
bootstrapping protocol. First, the gateways need to indicate
to other nodes that they are operational and must indicate this
fact in some unique manner, in the sense that no other data
transmission should be mistaken for a gateway announcing
its operational presence. Following the gateway’s announce-
ment, the nodes should be provided with timing information
for their reply. When the nodes reply, we assume that they
have a unique identifier, which they simply send to the gate-
ways, possibly encrypted with a key that only the gateway

R. Mathew et al.

Nodes

Start
1. Set receiver to ON
2. While announcement not detected
3. Listen to [2*n(bits in one announcement slot)] bits
4. Sleep for T(number of announcement slots-2)
5. End while
6. Decide whether to send in reply or not
7. If sending reply
8. Pick slot at random and send reply
9. If collision detected
10. sleep till next frame
11. go to 6
12. end if
13. Else
14. Sleep for one frame
15. go to 6
16. end if
17. Come up each frame/super-frame for synchronization.
end

Gateways

start
1. Decide an ordering amongst themselves

2. If myId=currentSenderId then

3. Send announcements

4. Listen for Replies. For each reply call processNodeReply

5. Send CON.

6. If NO_NEW_NODES entry

7. Set for all gateways including self, send out control message BOOTSTRAPPING_OVER

8. Else

9. Set receiver to ON

10. Based on expected schedule, decide whether incoming packet is from Node or Gateway and process accordingly, by
calling processGatewayMessage if it is a gateway message or else tabulating node information.

11. end if

end

Fig. 6 Boostrapping protocol algorithm

knows. The gateways in turn tabulate these replies and use
this information for clustering and further network opera-
tions. The gateway announcement contains a sequence of
bits, which the nodes use to synchronize their time bases
with those of the gateways. Once the sensors have been time
synchronized with the gateways, they need to be periodically
resynchronized in order to counter any clock drifts.

We propose that the bootstrapping procedure be divided
into the following four phases:
1) Announcement phase: The gateways announce their pres-

ence and solicit responses.
2) Reply phase: Sensor nodes reply back to the gateways

and report their identifications and operational parame-
ters such as transmission range.

3) Acknowledgement phase: The gateways acknowledge the
sensors’ replies.

4) CON phase: Gateways send control instructions to the
sensor nodes.
These phases are discussed in greater detail in the fol-

lowing subsections. Before we proceed with the details of
the various phases, it is important to introduce the concepts
of frames and superframes.

Frames A set of one announcement phase, one reply phase,
one acknowledgement phase, and one CON phase consti-
tutes a frame. A frame serves as a TDMA slot reserved for a
gateway to transmit its announcements.

Superframes A set of g frames, each one corresponding to a
unique gateway, forms a superframe. Hence, the number of
frames in a superframe is equal to the number of gateways in
the network. Therefore, the superframe is used as a TDMA-
like transmission calendar for the gateways to eliminate or

Energy-efficient bootstrapping for wireless sensor networks

Average Sensor Energy consumed in Bootstrapping
(With no time lag in gateway deployment)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 1000 2000 3000 4000 5000 6000

Number of Nodes

S
en

so
r

E
n

er
g

y
(J

)

SSB Protocol
(n1=n2=N/4)

SSB Protocol
(n1=n2=10)

Baseline

Fig. 7 Average sensor’s energy consumed in bootstrapping

Maximum Sensor Energy consumed in Bootstrapping
(With no time lag in gateway deployment)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 1000 2000 3000 4000 5000 6000

Number of Nodes

S
en

so
r

E
n

er
g

y(
J)

SSB Protocol
(n1=n2=n/4)

SSB Protocol
(n1=n2=10)

Baseline

Fig. 8 Maximum energy consumed in bootstrapping

minimize collisions among their announcement messages
during the bootstraping phase. A gateway and the sensor
nodes sending responses to it can only use the gateway’s
corresponding frame to send these messages. We set down
the additional condition that a set of frames is a superframe
only if the first frame in the superframe is the frame cor-
responding to the gateway, which has been elected leader
by the leader election algorithm. This algorithm can also
generate a unique priority for each gateway to be used for
ordering the gateways’ transmission frames. Thus, given an
ordered sequence of g gateways, G1 to Gg , we have g frames
constituting a superframe if and only if frame i corresponds
to Gi for all i, 1 ≤ i ≤ g. Superframes keep repeating un-
til no gateway receives a reply in one superframe; this is
considered to be the termination condition for the SSB pro-
tocol. The number of superframes required for the bootstrap-
ping depends on the number of sensors and on the quality
of sensor-to-gateway communication links. Figure 3 shows
the structure of superframes and the different phases in a
frame.

Announcement phase In the announcement phase of the pro-
tocol, the gateway indicates to the sensor nodes its presence
and a time range during which they can reply.All this informa-
tion is packed into what is termed a “slot.” Each announce-

ment phase consists of n1 such slots. In each slot, the follow-
ing information has to be included:
1) Synchronization bits: Before the gateway supplies any

information to the sensors, it will need to transmit a syn-
chronization sequence, a few bits to aid the sensors to
synchronize their clock. Clock synchronization enables
the sensor to recognize packet boundaries. This is an
important characteristic of the SSB protocol and is one of
the concepts responsible for energy saving. Algorithms
for clock synchronization and the choice for unique bit
sequence are explained in [29]. It should be noted that we
employ only frame-based clock synchronization. There-
fore, sensors and gateways are synchronized to the same
frame boundaries and not necessarily the same clock read-
ing. The approach can be extended to include adjustments
to the global time as well. We assume that a total of n3
bits are needed for clock synchronization.

2) Number of remaining announcement slots: This conveys
to the sensor nodes how many more announcement slots
exist before they can start replying. This prevents the sen-
sor nodes from replying before the gateway concludes its
announcements, causing collisions and further eating up
of energy. For n1 announcement slots, log n1) bits will be
needed to transmit this information.

R. Mathew et al.

Average Energy Consumed during Bootstrapping (With
Gateway Deployment Time Lag = 1 sec)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1000 2000 3000 4000 5000 6000

Number of Nodes

S
en

so
r

E
n

er
g

y(
J)

SSB Protocol
(n1=n2=N/4)

Baseline

Fig. 9 Effect of deployment time lag on sensor energy

Maximum Energy Consumed during Bootstrapping
(with Gateway Deployment Time lag = 1 sec)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1000 2000 3000 4000 5000 6000

S
en

so
r

E
n

er
g

y(
J)

SSB Protocol
(n1=n2=N/4)

Baseline

Fig. 10 Maximum consumed energy with deployment time lag

3) Number of reply slots: The previous piece of information
tells the nodes when they can begin transmitting their
replies. However, the sensors also need to be told when
they can start transmitting their replies. Incorporating
information about the number of reply slots in the protocol
also offers flexibility. For instance, when sufficient nodes
from one zone have replied, the gateway may cut down
dynamically on the number of reply slots. This dynamic
adjustment is an application- and scenario-specific exten-
sion and can be incorporated if needed. For n2 reply slots,
the number of bits required is log n2).

Thus, the total number of bits in an announcement “a” will
be a = n3 + log(n1) + log(n2).

We selected the synchronization bit sequence to be a set
of ones. As indicated in Fig. 3, we use guard bits of zeros
to prevent contiguous sequences of ones being formed and
mistaken for the synchronization sequence transmitted by the
gateways. Thus, we ensure that the synchronization sequence
is the largest single sequence of ones during the bootstrap-
ping phase. In addition, the synchronization sequence ends
with a zero, providing an edge trigger for the sensor nodes

to synchronize with the transmitting gateway. We will ana-
lyze the length of the synchronization sequence later in this
section.

Reply phase The sensor nodes, which can listen to any of
the gateways’ broadcasts, recognize the announcement upon
seeing the synchronization bit sequence and use the edge
trigger to synchronize their clock with that of the transmit-
ting gateway. They now have the number of announcement
slots that have passed and the number of available reply slots.
Hence, the nodes switch their receivers and transmitters to
the OFF mode. At the end of the announcement phase, sensor
nodes start replying. The reply can include any information
the gateway will need to tabulate. Examples of information
that the nodes might want to send to the gateway include
unique node identifiers, geographical coordinates, remaining
energy, and transmission range. The information listed may
not always be necessary, depending on the type of application
and the clustering and routing mechanisms used in conjunc-
tion with the SSB protocol. For instance, the need for geo-
graphical coordinates can be eliminated if the network uses
multilateration or other location discovery techniques such

Energy-efficient bootstrapping for wireless sensor networks

Gateway G

A
r B

Gateway G

A
r B

Fig. 11 Node range and gateway reachability

as those described in [12]. Further, some parameters such
as range might be requested by the gateway at a later stage
and may not be required right at the bootstrapping phase and
consequently may be kept out of the reply phase.

We have eliminated the possibility of collisions occurring
in the reply phase due to a lack of synchronization between
the nodes. However, there is a finite number of reply slots in
the reply phase, and the sensors present must choose from
these slots. We use a random function, and the nodes pick up
slots to reply and send in their replies during that slot. How-
ever, it is not possible to ensure that no conflict will occur
among the nodes for the same reply slots. Even with a random
function it is possible that multiple nodes will select the same
reply slot to transmit. We use an exponential backoff scheme.
Thus a node first decides whether it is going to reply or not
and, only if it decides to, goes ahead picking a slot at random.
The exponential backoff scheme keeps reducing the proba-
bility of replying each time the node detects a collision. We
assume that the nodes possess a carrier sense capability.

When a node decides not to reply in the current frame,
it should come up in each frame from that point on and
repeat the decision-making process. That is, it should decide
whether to reply or not, and if it decides to, it will choose
a random slot from the available reply slots. A node that
sends in a reply successfully stops transmission until the func-
tional network operation begins and does not attempt to reply
any more when any other gateway sends out announcements.
All the gateways that hear the node’s reply will tabulate its
information.

Acknowledgement phase The above phases would by them-
selves suffice if high-energy efficiency were the only goal
and node coverage were not as important, possibly because
of the presence of a large number of sensor nodes, a subset
of which might be able to satisfy the functional needs of the
nodes. However, we add a degree of robustness to our scheme
by adding acknowledgements. Acknowledgements can sim-
ply take the form of the gateways sending back identifiers to
the sensors. This serves as notification to the sensor node that
it has been recognized and has become part of the network.
We may have varying situations where the sensor node sends
out a reply that is not received correctly by the gateway, jus-
tifying the presence of an acknowledgement. Examples of
such situations include the following:

(1) The node sends a reply, but the gateway is not within its
transmission range.

S2

S4

S3

S1
S2

S4

S3

Fig. 12 New and old convex hulls

(2) We face the hidden terminal problem, in which the node
under consideration sends a reply and simultaneously
another node sends a reply to the gateway. If these two
sensor nodes cannot detect each others’ transmissions and
transmit the entire reply message, collision can occur at
the gateway, and consequently neither reply gets tabulated
correctly by the gateway.

Acknowledgement is one of the phases where we leverage the
concept of time slots.A sensor that has replied in slot m needs
to keep its receiver ON only during acknowledgement slot m
instead of keeping it ON while all the acknowledgements are
transmitted.

Control phase The CON phase is very short and contains
control information for any sensor nodes; else it could be
a sequence of 0 s. This control information could be any-
thing that the gateways need to convey to the sensor nodes
to ensure proper operation. For instance, it could be a direc-
tive to start normal operation or a signal that the bootstrap-
ping phase is over and the next few slots would contain the
clustering information or even the routing table. Further, this
phase could be used to indicate to the nodes that have already
replied that the information in the next frame is not related to
bootstrapping and is, in fact, data being exchanged between
the gateways. Thus, the control phase offers great flexibility
and can be used to perform a wide range of functions.

The sensor nodes that successfully reply to any gate-
way switch their receivers OFF and wake up periodically
when the synchronization sequence is transmitted as part
of the announcement by each gateway. This ensures that
the nodes remain synchronized with the gateways. Also,
they must come up at the end of each frame for the CON
message.

Analysis of the synchronization sequence The length of the
synchronization sequence depends on the normal data being
transmitted. The sequence should be long enough to avoid
misinterpretation, and hence we must choose a sequence
length such that it is greater than the possible length of data
that may occur during the bootstrapping phase. Let the num-
ber of bits required for the reply message, e.g., for the unique
node identifier, position coordinates, remaining energy, and/or
any other attributes, be n4.

R. Mathew et al.

G1

G2

G3

A

Fig. 13 Area internal to convex hull may be uncovered

Therefore, the number of ones in the synchronization se-
quence has to be greater than log(n1), log(n2), and n4 in order
to eliminate the need for bit stuffing [29]. In this context, bit
stuffing refers to the mechanism of inserting redundant bits
in a transmission to avoid its being mistaken for a sequence
of bits, which has a special significance. Handling bit stuff-
ing would either require additional specialized hardware or
software capabilities, both of which would introduce addi-
tional complexity to the resource-constrained sensor nodes.
Hence, we have selected the number of synchronization bits
n3 to be max[(log(n1), log(n2), n4)]. As mentioned earlier,
the attached guard bits eliminate the possibility that the num-
ber of remaining announcement slots and number of reply
slots when transmitted sequentially will present a similar
possibility.

Management of sensor’s receiver So far, this paper has been
discussing the bootstrapping steps to be taken assuming that
the nodes hear an announcement from the gateways as soon
as they are deployed. However, it is possible that the nodes
will be deployed and not perceive any announcement either
because they wake up during some phase of the protocol other
than the announcement phase or even that the gateway has not
been deployed. In this context, “hearing an announcement”
refers to the node’s detection of the unique synchronization
sequence. During the announcement phase, the sensor nodes
that come up will detect an announcement being made. The
baseline bootstrapping protocol discussed in Sect. 1 would
require that the sensors keep their receivers ON till they detect
an announcement. This could be inefficient for the nodes
that do not hear the synchronization sequence on waking up.
However, we aim at avoiding this condition, thereby saving
energy.

The sensors that come up during the announcement will
realize that they are in an announcement phase when they see
a sequence of ones (the synchronization pattern) after hearing
(a) bits, where a = the number of bits in one announcement
slot. To increase the probability that they hear an announce-
ment even if they come up in the midst of an announce-
ment slot, we provide for a window of detection by requiring
that the nodes keep their receivers ON for time required to

transmit two announcement slots, as shown in Fig. 4. Thus,
we require that they stay on for T(2), where T(n) henceforth
denotes the time required to receive n announcement slots. If
in this period the nodes hear an announcement, they proceed
as described above by sending in replies.

When the sensors do not hear an announcement, the pro-
cess must be optimized. Instead of having the nodes stay
awake till they detect an announcement in such a case, we per-
mit them to switch their receivers OFF for period T (n1 − 2),
where n1 = the number of announcement slots. Then they
come up again and listen forT (2). They repeat this process till
they encounter an announcement. By sleeping for T (n1 −2),
it is ensured that the node will converge to an announcement
slot within the time span of a frame, as shown in Fig. 4.
This is because if the node sets its receiver OFF just before
the announcement phase in a frame begins, it will sleep for
T (n1 − 2) and wake up with (n1 − (n1 − 2)) = 2 announce-
ments yet to go, thereby ensuring that the complete window
of two announcements is heard. Further, if the node sets its
receiver OFF after hearing a fraction f of an announcement
where f < 1, it will wake up with (n1 − (n1 − 2) − f)
announcements, that is, (2 − f) announcements, yet to go,
and f being less than one, we ensure that the sensor node
hears one complete announcement.

In Figs. 4 and 5, we show the time instants (xi and yj) at
which the nodes arise and sleep, respectively. Figure 5 shows
that even when the gateway is deployed with a time lag, by
sleeping for T (n1 −2) the sensor node can switch its receiver
OFF for long periods. This contributes to significant energy
savings as confirmed by our simulations, discussed later in
this section. Figure 6 outlines the bootstrapping protocol.

3.2 Mathematical analysis

This section presents a mathematical model for the energy
consumption of the SSB protocol and that of the baseline
protocol described in Sect. 1. Applying the deployment-spe-
cific values for the model’s parameters gives an idea of how
the two protocols match up against each other. The terms
used in this section are defined as follows:
n1: Number of announcement slots
a: Number of bits in each announcement slot
n2: Number of reply slots
s: Number of bits in the CONTROL phase
N: Number of sensor nodes in the system
log(N): Number of bits in each acknowledgement slot (since
it contains the sensor ID). log(N) is used as a shorthand for
�Log(N)�
r: Number of bits in a reply slot
p: Number of bits needed to encode one position
coordinate

Assuming that the reply consists of a unique node identi-
fier and the node’s position coordinates, we have r = log(N)+
2 × log(p). In the baseline approach, the gateway sends out
an announcement and all the sensor nodes reply at randomly

Energy-efficient bootstrapping for wireless sensor networks

Outer Motion

i. Draw Convex Hull around nodes that have replied so far using any of the methods explained

in [31]

ii. Positions are computed such that they are at distance r from each other on the convex hull

iii. Place each Gateway at assigned positions and perform bootstrapping procedure for each

position

iv. Using tabulated replies, draw convex hull again

v. Find stretches along convex hull which are “new”

vi. If no such new stretches exist END

vii. Compute points at distance r from each other on each of the stretches

viii. Go to iii

Inner Motion

i. Initialize boundary to initial convex hull

ii. Use Packing Algorithm to determine where to position gateways to cover maximum area in

minimum steps within this boundary

iii. Divide these points between the gateways and position them at each point

iv. Repeat the bootstrapping protocol for each positioning of the gateways

Fig. 14 Algorithm for enhanced node discovery

chosen instants.The process continues till all the sensor nodes
have replied. Even without factoring in the collisions that fre-
quently occur, the average number of bits that a node would
have to receive before successfully replying is (r × N/2).
This is because each node would, on average, have to listen
to N/2 replies, each of length r, before it got a chance itself to
reply.

In the SSB protocol, for each node that tries to become a
part of the network, the following two scenarios are possible:
1. The node comes up and immediately perceives an

announcement within the first T (2) = 2a bits it receives.
The probability of this happening is (n1×a)

(n1×a)+(n2×r)+(n2×log(N))+s
.

In this case, the node will have to hear 3×a
2 bits on average.

Furthermore, from that point on, it will have to receive an
average of N

2×n2
× s bits, since the node has to receive the

“s” CON bits N
2×n2

times on average from the time that
it correctly hears an announcement, assuming that there
are no collisions while replying.

2. The second possibility we have is that the sensor node
wakes up when either the reply phase or the CON phase is
going on. This happens with a probability of

((n2×log(n2))+(n2×r)+s)

(n1×a)+(n2×r)+(n2×log(N))+s
. In this case, the node has to lis-

ten to (2a) bits for an average of (n1×a)+(n2×r)+(n2×log(N))+s

(n1−2)×a

× 1
2 times before it detects an announcement, that is, an

average of (n1×a)+(n2×r)+(n2×log(N))+s

(n1−2)×a
× a bits, and then

analysis proceeds as in case (1) above.

Thus on average a node has to receive the following number
of replies:{

(n1 × a)

(n1 × a) + (n2 × r) + (n2 × log(N)) + s

×
[(

3 × a

2

)
+

(
N

2 × n2
× (s)

)]}

+
{

((n2 × r) + (n2 × log(N)) + s)

(n1 × a) + (n2 × r) + (n2 × log(N)) + s

×
[
(n1 × a) + (n2 × r) + (n2 × log(N)) + s

(n1 − 2) × a

×a +
(

3 × a

2

)
+

(
N

2 × n2
× (s)

)]}
.

Consider a network that spreads over a 1000×1000 m network,
where the number of nodes = 2000. Using the simple mecha-
nism, the average number of bits a node has to transmit/receive
is 22,000. On the other hand, the SSB protocol performs
admirably when the parameters for the same network are
plugged in. With the parameters n1=500, n2=500, the aver-
age number of bits received is 107.64, whereas for n1=50 and
n2=50, it is 183.33, thus giving a large performance gain.

3.3 Simulation results

We used C++ to build an event-driven simulator for sensor
networks to run our experiments. This simulator permits us

R. Mathew et al.

Node Coverage in Phase I and using gateway
motion

0

50

100

150

200

250

300

0 100 200 300
Sensor Range (m)

N
u

m
b

er
 o

fn
o

d
es

d

is
co

ve
re

d

Number of
Nodes
detected by
Stationary
Gateway

Number of
nodes
detected by
Mobile
Gateway

Fig. 15 Number of nodes discovered—enhanced algorithm (maximum:
250 nodes)

to fill in parameters like number of sensors, sensor range,
initial energy, dimensions of deployment area, etc. and of-
fers flexibility in terms of sensor distribution patterns. The
pattern that we use is a uniform distribution. The sensor
nodes are assumed to possess the following communication
model characteristics: initial energy = 0.5 J, Eelec= 50 nJ/bit,
Eamp=100 pJ/bit/m2 [14]. The channel transmission energy is
assumed to be proportional to the square of the distance (d2).

We selected a deployment area of size 10 × 10 km. We
ran the simulations for the following number of nodes in
the network: 200, 500, 1000, 2000, 3000, 4000, and 5000,
for both the baseline protocol and the SSB protocol. For the
SSB protocol, the values we have chosen in our experiments
for the number of reply slots and announcement slots are:
(1) n1 = n2 = N/4 and (2) n1 = n2 = 10, where N is the
number of sensors in the network.

We chose these values to have one set of results with n1
and n2 comparable to N and another set with constant small
values of n1 and n2. In all our experiments, we limited the
number of gateways to 3. We present two sets of results,
with one case where the gateways and the sensors all come
up immediately on deployment and a second case where the
gateways come up after some time lag. The performance of
the baseline protocol as well as that of the SSB protocol with
the two sets of values of reply slots are shown in Figs. 7–10.

Figures 7 and 8 depict the results for the scenario where
the nodes and the gateway are all deployed at exactly the
same instant. Figures 9 and 10 show results taken for the case
where the gateway does not come up at time instant T = 0 but
takes some time before it starts sending out announcements.
We have selected this period to be 1 s. For Figs. 7 and 8,
we show the performance result of the SSB protocol with
n1= n2 = N/4 and n1 = n2 = 10 compared to the baseline pro-
tocol. For Figs. 9 and 10, we chose only to use n1 = n2 =
N/4 as the performance of the SSB protocol is similar over
this wide range of values, as seen in Figs. 7 and 8. Figures 7
and 9 show the average sensor energy consumed during the
bootstrapping phase, whereas Figs. 8 and 10 show the maxi-
mum energy consumed by a sensor. This is a very important
parameter, as this may directly affect the time for the first
node to die, which consequently affects data routes. As is
evident in Figs. 7–10, the SSB protocol performs well for
all permutations of the parameters and scales well, as seen

Node Coverage in Phase I and using gateway
motion

0

100

200

300

400

500

600

0 100 200 300

Sensor Range (m)

N
u

m
b

er
 o

f
n

o
d

es
d

is
co

ve
re

d

Number of
Nodes
detected by
Stationary
Gateway

Number of
nodes
detected by
Mobile
Gateway

Fig. 16 Number of nodes discovered—enhanced algorithm (maximum:
500 nodes)

from the fact that its performance at 5000 nodes is not very
different from that at 200 nodes. This is a big advantage for
the SSB protocol, especially considering that the baseline
approach uses up as much as 9% of battery capacity in the
bootstrapping phase when there are 5000 nodes in the net-
work, without any time lag in the deployment of sensors and
gateways. The worth of the SSB protocol is further under-
scored when we assume a time lag in gateway deployment, as
seen in Fig. 10. In this case, the sensors’energy levels may fall
by 0.1 J when using the baseline protocol, whereas the SSB
protocol still provides appreciable performance preventing
the energy from falling more than 0.005 J.

4 Gateway motion for enhanced node discovery

Bootstrapping of the network should detect as many sensor
nodes as possible. In the SSB protocol, we have assumed that
the gateways can reach all the nodes as they have sufficiently
high transmission ranges and energy levels. However, it may
happen that the sensor nodes are not able to communicate
with the gateways because of large distances separating them
or because the existence of obstacles in the transmission path.
Such conditions may prevent the nodes with their low power
transmitters from reaching the gateways. This issue can be
handled to a certain extent if we have gateways with some
motion capability. In such a case, we can have the gateways
move to locations determined to ensure greater coverage and,
consequently, end up with a network with a larger number
of discovered nodes. However, it is practically impossible
in most scenarios for the gateways to possess beforehand
information about the boundaries of the area of deployment.
Hence, in this section, we propose an approach that would
not require that the gateways have prior knowledge about the
extent of deployment. Our approach efficiently determines
possible positions for the gateway to move in order to increase
the probability of discovering additional sensors.

4.1 Problem statement

At the outset, we consider some possible scenarios in terms
of spatial coverage when the gateways do not possess motion

Energy-efficient bootstrapping for wireless sensor networks

Node Coverage in Phase I and using gateway
motion

0

200

400

600

800

1000

1200

0 200 400 600 800
Sensor Range (m)

N
u

m
b

er
 o

f
n

o
d

es
d

is
co

ve
re

d

Number of
Nodes
detected by
Stationary
Gateway

Number of
nodes
detected by
Mobile
Gateway

Fig. 17 Number of nodes discovered—enhanced algorithm (maximum:
1000 nodes)

capabilities. In the scenario shown in Fig. 11, sensor node A
and sensor node B have a radius of transmission r . However,
gateway G in this case lies at a distance d ≤ r from sensor A
and at a distance d ′ > r from sensor node B. If the gateway
does not possess motion capabilities, but only sensor nodes,
which lie in its initial transmission radius r , those nodes will
be recognized by the gateways. Thus, if we have g gateways
in an area R, having sensor nodes with transmission radius r
scattered, each will recognize the nodes within an area πr2

lying within the circle of radius r centered at the individual
gateway.

Thus, the total number of nodes that would be recognized
if no such circles created overlap with each other would be
proportional to g(πr2), assuming that the sensor nodes were
uniformly distributed across the area under consideration.
Hence, the ratio of nodes that will be recognized by the gate-
ways to the total number of sensor nodes scattered in the net-
work can be expressed as g(πr2)/R. Therefore, if the value
of r is very small as compared to the value of R, we will
discover a small portion of the nodes in the network, thereby
decreasing the network’s full functionality and resource lev-
els. This value is also an upper bound assuming a uniform
distribution and the actual number of nodes discovered by
the gateways could be less than such an upper bound due to
the following reasons:

1. This value of node coverage has been derived assuming
that the circles of coverage do not overlap or, in other
words, that no two gateways are at a distance d < 2r
from each other. If two gateways are closer to each other
than this distance, the number of nodes discovered will
decrease further. This is because some of the nodes that
fall within a distance r from one gateway could also be
within a distance r from another gateway. Additionally,
some gateways’ transmission areas might extend outside
the deployment area, further decreasing the percentage
of the area covered by the gateways.

2. Irrespective of the bootstrapping mechanism used at the
outset, it is possible that repeated collisions would prevent
some sensor nodes from successfully registering with the
gateways. This continues to be an issue regardless of gate-
way motion but serves to remind us that the calculated

upper bound may be very hard to achieve and that we
need to incorporate measures to increase node coverage
within these constraints imposed by collisions.

We intend to address this issue using mobile gateways to
increase sensor node coverage using the SSB protocol and
repeating the steps involved, with the variant that the steps
are now repeated for different positions of the gateways. Our
approach is detailed in the following subsection.

4.2 Gateway motion algorithm

We start with the SSB protocol described in the previous sec-
tion. Once the termination condition is met, that is, when no
replies are received in a superframe by any gateway, the algo-
rithm for enhanced node discovery kicks in. Applying such
an algorithm generates a set of locations that the gateways
are advised to move to for enhanced node discovery. We next
discuss two directions of motion: outer and inner motion of
the convex hull of the initially discovered sensors.

4.2.1 Outer motion

The basic idea behind the algorithm is that we draw the
periphery of the network as we know it at a given point in
time. This can be done by drawing the convex hull around the
nodes discovered thus far. A convex hull for a set of points Q
is defined as the smallest convex polygon P for which each
point in Q is either on the boundary of P or in its interior.
Techniques for determining the convex hull of a set of points
are described in [30]. Once the convex hull is determined,
the problem reduces to deciding points along this convex
hull at which the gateways should be placed. The algorithm
marks out points at a distance r from each other on this con-
vex hull and proceeds to place the gateways at these points
from which they will carry out the steps of the SSB protocol.
This process is repeated for each of the locations selected on
the convex hull. Nodes that reply when the gateways are in
these new positions are tabulated and added to the previously
recorded entries. Assume that we have k points for position-
ing and g gateways; each gateway on average would have to
be positioned at k/g locations. The convex hull is hence not
recalculated till all locations are covered.

Once the k points on the present convex hull are cov-
ered, the information for the new replies is also taken into
account, the convex hull is reconstructed, and a new set of
k′ points are determined as the new gateway locations. Thus
the convex hull keeps growing outwards and new nodes are
continuously tabulated. Whenever it is determined that the
convex hull has not changed from one iteration to the next,
the process is terminated and the nodes that have replied thus
far are assumed to be those existing in the network.

Consider that we have a scenario like that shown in Fig. 12.
We have the new convex hull and the old hull differing only
in two stretches S1–S2 and S3–S4, with S1–S2 and S3–S4
lying on the new hull. Therefore, we do not position gate-
ways all along the new convex hull but instead optimize on

R. Mathew et al.

the time required by positioning the gateways only along
the new stretches. For this we need to have an intermediate
conversion process that would pick out any such similarities
between the two convex hulls, discard them, and retain only
the new stretches.

While the gateways move to the locations determined by
our algorithm, they continue to broadcast the synchroniza-
tion and control messages. Thus the nodes are kept synchro-
nized. The important characteristic of our protocol that aids in
gateway motion for enhanced node discovery is that once the
nodes are recognized and acknowledged by the gateways, the
nodes do not need to send any information to the gateways.
They are only required to keep receiving the synchronization
and control messages that the gateways send. Thus, the fact
that the gateways that have received replies from the nodes are
no longer within the transmission range of the nodes does not
hamper our algorithm in any way. Since the gateways have
sufficient transmission energy, they can manage to reach all
nodes, thus ensuring smooth operation of the protocol.

As mentioned above, the procedure is terminated when
the convex hull drawn does not change from one iteration of
the algorithm to the next. Assuming that we have a normal
or uniform distribution for the sensor nodes, the fact that no
gateways have received any replies would imply that the den-
sity of sensors has fallen sufficiently to justify terminating the
discovery process. If the gateways are not able to hear from
additional sensors, this does not necessarily mean that all the
nodes have been discovered. However, as most deployments
would typically employ a normal or uniform distribution, this
termination condition would allow our algorithm to discover
most of the deployed sensors.

4.2.2 Inner motion

However, after the above procedure is carried out, it is possible
that large portions within the initially constructed convex hull
will not be covered. For instance, consider the scenario shown
in Fig. 13, in which we have three gateways, G1, G2, and G3.
The convex hull constructed around the nodes, which replied
successfully to these gateways while in these positions, is
used for moving outwards as explained earlier. However, this
motion leaves a large area to be covered within this initially
constructed convex hull. Therefore, we need to position the
gateways within this initial convex hull optimally, in the sense
that we should cover as much area as possible in a minimum
number of repositioning steps. Given that we are considering
circles of radius r as the area that would be covered by each
gateway in one position, our problem reduces to fitting in a
maximum number of such circles into the convex hull. Hence
we suggest that a two-dimensional circle packing algorithm
[31] be used for this purpose, with the radius of the circle
being r, the range of the sensor nodes. Using a circle packing
algorithm would ensure that we cover much of the area under
consideration in a minimum number of gateway reposition-
ing steps.

We use a simple packing algorithm by constructing the
smallest rectangle possible, which will contain the convex

hull as well as an integral number of circles of radius r hori-
zontally and vertically. The centers of these circles are chosen
as the points where the gateways will position themselves.
These points are treated in a similar manner to those picked
on the convex hull, and after positioning themselves on these
points, the gateways perform the SSB procedure.

We perform the inner motion first and then proceed to the
outer motion so that the gateways will not be in effect retrac-
ing their paths in case they perform the outer motion first. This
saves time for gateway motion. In both outer and inner node
discovery, the computation is done at one gateway. This gate-
way then indicates to the other gateways their next locations.
Similarly, at the end of an iteration of the bootstrapping pro-
tocol, the gateways transmit information about which nodes
have replied to the gateway elected as leader using the same
mechanism. The algorithm for gateway motion is outlined in
Fig. 14.

4.3 Experimental results

We extended the simulation setup described in Sect. 3.3 to
incorporate our algorithm for enhanced node discovery. We
ran the simulations for a variety of scenarios and compared
the number of nodes discovered using the SSB protocol to the
number of nodes discovered using this enhanced node dis-
covery algorithm. We simulated three deployments, in each
of which we had three gateways. The deployments simulated
were as follows:

1. 250 sensors scattered within a 250 × 250 m area. The
sensor ranges used were 25, 50, 100, and 200 m.

2. 500 sensors scattered within a 500 × 500 m area. Sensor
ranges used were 50, 100, 150, 200, and 250 m.

3. 1000 nodes scattered in a 1000 × 1000 m area. Sensor
ranges were 50, 100, 210, 250, 400, and 600 m.

Figures 15–17 present the number of nodes discovered by the
enhanced algorithm as compared to the number of nodes dis-
covered if we had just the SSB protocol. As the results show,
the node coverage increases using the enhanced node discov-
ery mechanism for all the scenarios. The difference between
the node coverage with and without gateway motion is less
drastic when the sensors’ range is relatively large compared
to the dimensions of the area of deployment because most of
the sensors can reach the gateway directly. However, when
the sensors’ transmission range is small, the difference in the
number of discovered nodes is very high.

5 Conclusions and future work

Although recent research on sensor networks has tackled
energy efficiency and awareness of network operation and
management, very little attention has been paid to energy
consumption during network bootstrapping. In this paper, we
have shown that sensors can deplete significant portions of
their batteries during bootstrapping if it is not done efficiently.
We have described SSB, an energy-efficient bootstrapping

Energy-efficient bootstrapping for wireless sensor networks

protocol for sensor networks. The protocol synchronizes
nodes during the discovery process and thus prevents colli-
sion in wireless transmission and ensures coordination among
the nodes. The presented SSB protocol permits the sensors
to switch their receiver OFF for a large portion of the boot-
strapping phase and prevents energy wastage when there is a
time difference in node deployment.

Simulation results have confirmed the superiority of the
performance of the SSB protocol in terms of energy effi-
ciency and scalability. If the gateway is deployed at the same
instant as the sensors, our approach consumes only 25% of
the energy required by contemporary protocols. When the
gateway is deployed after a time lag, the SSB protocol can
achieve one to two orders of magnitude in energy saving.

Node coverage is an important parameter, and the util-
ity of a network grows as the number of discovered nodes
increases. For scenarios where physical limitations of the sen-
sor device prevent it from communicating with the
gateway for bootstrapping purposes, we have proposed a
solution that involves gateways with motion capabilities and
presented an algorithm to determine motion patterns for the
gateways in order to locate new sensor nodes. Our algorithm
finds locations for gateways to move to without the knowl-
edge of the size or boundaries of the area of deployment. The
effectiveness of this algorithm has also been confirmed by
simulation.

Our future plans include extending the presented gate-
way motion algorithm to better arbitrate new locations among
gateways and further optimize their motion patterns. In the
current version, the distance of the locations from the gate-
ways’current location is not factored in. Therefore, this entire
phase could be further optimized by having more optimal
strategies for location assignment, whereby the gateways
could cover the same area as they do at present, but in less
time, by making better decisions as to which gateway goes
to which new location.

References

1. Abidi AA, Pottie GJ, Kaiser WJ (2000) Power-conscious design of
wireless circuits and systems. Proc IEEE 88(10):1528–45

2. Akyildiz F et al (2002) Wireless sensor networks: a survey. Comput
Netw 38:393–422

3. Estrin D et al (1999) Next century challenges: scalable coordination
in sensor networks. In: Proceedings of the 5th annual international
conference on mobile computing and networks (MobiCOM ’99),
Seattle

4. Pottie GJ, Kaiser WJ (2000) Wireless integrated network sensors.
Commun ACM 43(5):51–58

5. Sohrabi K et al (2000) Protocols for self-organization of a wireless
sensor network. IEEE Pers Commun 7(5):16–27

6. Min R et al (2001) Low power wireless sensor networks. In:
Proceedings of the international conference on VLSI design,
Bangalore, India

7. Younis M, Youssef M, Arisha K (2002) Energy-aware routing
in cluster-based sensor networks. In: Proceedings of the 10th
IEEE/ACM international symposium on modeling, analysis and
simulation of computer and telecommunication systems (MAS-
COTS2002), Fort Worth, TX

8. Havinga P, Smit G (2000) Energy-efficient TDMA medium access
control protocol scheduling. In: Proceedings of the Asian interna-
tional mobile computing conference (AMOC 2000)

9. Jolly G,Younis M (2005)An energy efficient, scalable and collision
less MAC layer protocol for wireless sensor networks. J Wireless
Commun Mobile Comput 5(3):285–304

10. Sohrabi K, Gao J, Ailawadhi V, Pottie G (1999) A self-organizing
sensor network. In: Proceedings of the 37th allerton conference on
communication, control, and computing, Monticello, IL

11. Subramanian L, Katz R (2000) An architecture for building self-
configurable systems. In: Proceedings of the IEEE/ACM workshop
on mobile ad hoc networking and computing (MobiHOC 2000),
Boston

12. Meguerdichian S et al (2001) Localized algorithms in wireless ad
hoc networks: location discovery and sensor exposure. In: Proceed-
ings of the IEEE/ACM workshop on mobile ad hoc networking and
computing (MobiHOC 2001)

13. Havinga PJM, Smit GJM (2000) Design techniques for low power
systems. J Syst Arch 46(1):1–21

14. Min R, Bhardwaj M, Cho S, Sinha A, Shih E, Wang A,
Chandrakasan A (2000) An architecture for a power aware distrib-
uted microsensor node. In: IEEE workshop on signal processing
systems (SiPS ’00)

15. Hill J, Szewczyk R, Woo A, Hollar S, Culler D, Pister K (2000)
System architecture directions for networked sensors. In: Proceed-
ings of the 9th international conference on architectural support for
programming languages and operating systems, Cambridge, MA

16. Chandrakasan SA (2000) Energy aware software. In: Proceedings
of the 13th international conference on VLSI design, Calcutta, In-
dia, pp 50–55

17. Singh S, Raghavendra CS (1998) PAMAS: power aware multi-
access protocol with signaling for ad hoc networks. ACM Comput
Commun Rev 28(3):5–26

18. Arisha K, Youssef M, Younis M (2002) Energy-aware TDMA-
based MAC for sensor networks. In: Proceedings of the IEEE work-
shop on integrated management of power aware communications,
computing and networking (IMPACCT 2002), New York

19. Ye W, Heidemann J, Estrin D (2002) An energy efficient MAC
protocol for wireless sensor networks. In: Proceedings of the 21st
international annual joint conference of the IEEE Computer and
Communications Societies (INFOCOM 2002), New York

20. Elson J, Romer K (2002) Wireless sensor networks a new regime
of time synchronization. In: Proceedings of the 1st workshop on
hot topics in networks (HotNets-I), Princeton, NJ

21. Lin CR, Gerla M (1997) Adaptive clustering for mobile wireless
networks. IEEE J Select Areas Commun 15(7):1265–1275

22. Heinzelman WR, Chandrakasan A, Balakrishnan H (2000) En-
ergy efficient communication protocol for wireless microsensor
networks. In: Proceedings of the 33rd international conference on
system sciences (HICSS ’00)

23. Youssef M,Younis M, Arisha K (2002) A constrained shortest-path
energy aware routing algorithm for wireless sensor networks. In:
Proceedings of the IEEE wireless communication and networks
conference (WCNC 2002), Orlando, FL

24. Toh C-K (2001) Maximum battery life routing to support ubiqui-
tous mobile computing in wireless adhoc networks. IEEE Commun
39(6):138–147

25. Akkaya K, Younis M (2005) A survey on routing protocols for
wireless sensor networks. Elsevier J Ad Hoc Netw 3(3):325–349

26. Heinzelman W, Kulik J, Balakrishnan H (1999) Adaptive proto-
cols for information dissemination in wireless sensor networks. In:
Proceedings of the 5th ACM/IEEE mobicom conference, Seattle

27. Krishnamachari B, Estrin D, Wicker S (2002) The impact of data
aggregation in wireless sensor networks. In: International work-
shop on distributed event-based systems, (DEBS ’02), Vienna,
Austria

28. Malpani N, Welch JL, Vaidya N (2000) Leader election algorithms
for mobile adhoc networks. In: 4th international workshop on dis-
crete algorithms and methods for mobile computing and commu-
nications, Boston

29. Stallings W (2000) Data and computer communications 6/e.
Prentice Hall, Englewood Cliffs, NJ

R. Mathew et al.

30. Cormen T, Leiserson C, Rivest R Introduction to algorithms.
Prentice Hall of India

31. Collins CR, Stephenson K (1997) A circle packing algo-
rithm. Manuscript. http://www.math.utk.edu/∼kens/
ACPA/ACPA.ps.gz

