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Abstract

In all-wireless networks, minimizing energy consumption is crucial as in most cases the nodes
are battery-operated. We focus on the problem of power-optimal broadcast, for which it is well
known that the broadcast nature of radio transmissions can be exploited to optimize energy con-
sumption. This problem appears to be difficult to solve [31]. We provide a formal proof of
NP-completeness for the general case and give an NP-completeness result for the geometric case;
in the former, the network topology is represented by a generic graph with arbitrary weights,
whereas in the latter a Euclidean distance is considered. For the general case, we show that it
cannot be approximated better than O(log N), where N is the total number of nodes. We then
describe an approximation algorithm that achieves the O(log N) approximation ratio. We also
describe a new heuristic, Embedded Wireless Multicast Advantage. We show that it compares
well with other proposals and we explain how it can be distributed.

Keywords: wireless ad hoc networks, minimum-energy networks, energy efficiency, approxima-
tion algorithms, complexity theory

1 Introduction

In recent years, all-wireless networks have attracted significant attention due to their potential appli-
cations in civil and military domains [21, 22, 4, 11]. An all-wireless network consists of numerous
devices (nodes) that are equipped with processing, memory and wireless communication capabilities,
and are linked via short-range ad hoc radio connections. This kind of network has no pre-installed
infrastructure, but communication between the network nodes is supported by multi-hop transmis-
sions. In these networks, each node has a limited energy resource (battery) and operates unattended;
consequently, energy efficiency is an important design consideration [26, 32].

∗ c© by Kluwer Academic Publishers. To appear in ACM/Kluwer Mobile Networks and Applications (MONET)
†Corresponding author.
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In this paper, we focus on the source-initiated broadcasting of data in static all-wireless networks.
Data are distributed from a source node to each node in a network. Our main objective is to construct
a minimum-energy broadcast tree rooted at the source node. Nodes belonging to a broadcast tree can
be divided into two categories: relay nodes and leaf nodes. The relay nodes are those that relay data
by forwarding it to other nodes (relaying or leaf), and leaf nodes only receive data. Each node can
transmit at different power levels and thus reach a different number of neighboring nodes. Given the
source node r, we want to find a set of relaying nodes and their respective transmission levels so that
all nodes in the network receive a message sent by r, whereby the total energy expenditure for this
task is minimized. We call this broadcasting problem the minimum-energy broadcast problem.
We base our work on the so called node-based multicast model [31]. In this model there is a trade-off
between reaching more nodes in a single hop thus using more energy and reaching fewer nodes using
less energy. This trade-off is made possible by the broadcast nature of the wireless channel.
In Section 2, we overview related work concerning the minimum-energy broadcast problem. In Sec-
tion 3, we discuss the system model used. In Section 4, we prove that the minimum-energy broadcast
problem is NP-complete and show that it cannot be approximated better than O(logN) for a general
graph, where N is the number of nodes in a network; we also give the NP-completeness result for
the geometric version of the minimum-energy broadcast problem. Then, in Section 5, we present
O(logN)-approximation algorithms for the general graph version and a heuristic algorithm that is
easy to distribute. Performance evaluation results are presented in Section 6. Finally in Section 7 we
conclude.

2 Related work

Minimizing the energy consumption of all-wireless networks has received significant attention over
the last few years [1, 24, 9, 14, 33, 15, 25, 12]. We were inspired by the exciting results related to
the problem of minimum-energy broadcasting in all-wireless networks [26, 30, 5, 13, 19, 20], and
in particular by the work of Wieselthier et al. [31, 32]. In this work they introduce the node-based
multicast model for wireless networks upon which they have built several broadcast and multicast
heuristics. One of the most notable contributions of their work is the Broadcast Incremental Power
(BIP) algorithm. The main objective of BIP is to construct a minimum-energy broadcast tree rooted
at the source node. It constructs the tree by first determining the node that the source can reach
with a minimum expenditure of power. BIP constructs a tree that initially contains a single node; it
then determines which uncovered node can be added to the tree at a minimum additional cost. At each
iteration of BIP, the nodes that have already covered some node can further increase their transmission
power to reach some other yet uncovered node. BIP is similar to Prim’s algorithm [3] for the formation
of minimum spanning trees, but with the difference that weights, with BIP, are dynamically updated
at each step.
In [30] Wan et al. provide the first analytical results for the minimum energy broadcast problem. By
exploring geometric structures of an Euclidean minimum spanning tree (MST), they prove that the
approximation ratio of MST is between 6 and 12, and that the approximation ratio of BIP is between
13
6 and 12. They also found that for some instances, BIP fails to use the broadcast nature of the

wireless channel. This happens because BIP adds only one node at each iteration, the one that can
be added at a minimum additional cost. Thus BIP, although centralized, does not use all the available
information about the network. As a result, it may construct a broadcast tree that coincides with the
shortest path tree of a network graph, where the broadcast nature of the media is completely ignored.
A possible approach to alleviate this problem is to add to the tree more than one node at each iteration,
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and not necessarily at a minimum additional cost. But, in this case, there must be another criterion for
the selection of nodes. Another difficulty with BIP is that distributing it is not obvious and according
to the authors of BIP and of [30], the development of distributed algorithms is the major challenge for
a minimum energy broadcast problem. However, Wan et al. [30] and Wieselthier et al. [31] do not
really address this challenge. In Section 5.2 we present a heuristic algorithm that achieves the same
approximation ration as BIP for the geometric case, and yet is easy to distribute.
Li et al., in another closely related work [13], also recognize the weaknesses of BIP and propose
another centralized heuristic to tackle the broadcasting problem. However, they do not consider the
issue of developing a distributed algorithm for a minimum energy broadcast. Li et al. [13] also sketch
a proof of the NP-hardness of a general version of the minimum energy broadcast.
A proof of NP-hardness of the minimum energy broadcast problem in metric space has been proposed
by Eğecioğlu et al. [5]. However, in their interpretation of the minimum energy broadcast problem,
they restrict the transmission ranges of the nodes to a set of integers, which captures very few instances
of the problem in metric space.
In [16] Liang provide a proof of NP-completeness of the minimum-energy broadcast problem, as well
as an approximation algorithm for the problem in general setting, which delivers a feasible solution of
cost O(log3 n) times the optimum. The time complexity of the proposed algorithm is O(kn2 log n),
where k is the total number of power levels at each node. However, [16] does not provide an answer
to the question: “Is there an approximation algorithm for the problem with a constant performance
ratio?”. We do provide an answer in Section 4 (Theorem 2).
Very recently, it was brought to our attention that more researchers are also studying the problem of
minimum-energy broadcasting in all-wireless networks [2, 6, 17].

3 System model

We first provide a model of wireless communications. Then using it as a basis, we develop a graph
model that will be used to assess the complexity of the minimum-energy broadcast problem and to
develop an approximation algorithm.
In our model of a wireless network, nodes are stationary. In this paper, we assume a large availability
of bandwidth resources, i.e. communication channels. We do so because we focus only on minimum
energy broadcast communication and do not consider issues like contention for the channel or lack
of bandwidth resources. We also assume that nodes in a network are equipped with omnidirectional
antennas. Thus, due to the broadcast nature of wireless channels, all nodes that fall in the transmission
range of a transmitting node can receive its transmission. This property of wireless media is called
Wireless Multicast Advantage, which we refer to as WMA [31].
In this model, each node can choose to transmit at different power levels that do not exceed some
maximum value pmax. Let P denote the set of power levels at which a node can transmit. When
a node i transmits at some power level p ∈ P , we assign it a weight equal to p, which we call a
node power. The connectivity of the network depends on the transmission power. Node i is said to
be connected to node j if node j falls in the transmission range of node i. This link is then assigned a
link cost cij that is equal to the minimum power that is necessary to sustain link (i, j).
Next we define a graph model for wireless networks, which captures important properties of wireless
media (including the wireless multicast advantage). An all-wireless network can be modeled by a di-
rected graph G = (V,E), where V represents the finite set of nodes and E the set of communication
links between the nodes. Each edge (arc) (i, j) ∈ E has link cost cij ∈ R+ assigned to it, and each
node i ∈ V is assigned a variable node power pvi . The variable node power takes a value from the
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set P defined above. Initially, the variable node power assigned to a node is equal to zero and is set
to value p ∈ P if the node transmits at p. Let Vi denote the set of neighbors of node i. Node j is
said to be a neighbor of node i if node j falls in the maximum transmission range of node i, which is
determined by pmax. All nodes j ∈ Vi that satisfy cij ≤ pvi are said to be covered by node i. Thus, if
node i transmits at power pmax, all the nodes of Vi will be covered.
Now that we have the model, we study in detail the intrinsic complexity of the minimum-energy
broadcast problem in the following section.

4 Complexity issues

In this section, we give an in-depth analysis of the complexity of the minimum-energy broadcast
problem. Let us first briefly recall a few concepts from complexity theory [8]. The problems polyno-
mially solvable by deterministic algorithms belong to the P class. Whereas, all the problems solvable
by nondeterministic algorithms belong to the NP class. It can easily be shown that P ⊆ NP. Also,
there is widespread belief that P 6= NP. The theory of complexity is focused on decision problems,
i.e., problems that have either yes or no as an answer. Notice that each optimization problem can be
easily stated as the corresponding decision problem. Informally, a decision problem Π is said to be
NP-complete if Π ∈ NP and for all other problems Π

′
∈ NP, there exists a polynomial transforma-

tion from Π
′

to Π (we write Π
′
∝ Π) [8]. There are two important properties of the NP-complete

class. If any NP-complete problem could be solved in polynomial time, then all problems in NP could
also be solved in polynomial time. If any problem in NP is intractable1, then so are all NP-complete
problems. Presently, there is a large collection of problems considered to be intractable.
In this section, we consider the problem of minimum-energy broadcast in two different graph models,
specifically a general graph and a graph in Euclidean metric space. In general graphs, links are
arbitrarily distributed and have weights arbitrarily chosen from the set P . This graph model is well
suited for modeling wireless networks in indoor environments. Whereas, for graphs in Euclidean
metric space, the existence and the weight of the link between two nodes depends exclusively on
the distance between the nodes and their transmission levels. This graph model fits well for outdoor
scenarios.

4.1 General graph version

In the following, we show that a general graph version of the minimum-energy broadcast problem is
intractable, that is, it belongs to the NP-complete class. Because of its similarity to the well-known
Set Cover problem [10] that aims at finding the minimum cost cover for a given set of nodes, we call
it the Minimum Broadcast Cover and refer to it as MBC. We convert MBC into a decision problem in
the following way:
MINIMUM BROADCAST COVER (MBC)
INSTANCE: A directed graph G = (V,E), a set P consisting of all power levels at which a node can
transmit, edge costs cij : E(G) → R+, a source node r ∈ V , an assignment operation pvi : V (G) →
P and some constant B ∈ R+.
QUESTION: Is there a node power assignment vector A = [pv1 pv2 . . . pv|V |] such that it induces the

directed graph G
′
= (V,E

′
), where E

′
= {(i, j) ∈ E : cij ≤ pvi }, in which there is a path from r to

any node of V (all nodes are covered), and such that
∑

i∈V pvi ≤ B?

1We refer to a problem as intractable if no polynomial time algorithm can possibly solve it.
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Notice that the above question is the equivalent of asking if there is a broadcast tree rooted at r with
total cost B or less, and such that all nodes in V are included in the tree (covered).
We prove NP-completeness of MBC for a general graph by showing that a special case of MBC is NP-
complete. In order to obtain this special case of MBC, we define the following restriction to be placed
on the instances of MBC: All the links between any node i and its neighbors j ∈ Vi have the same cost
c. Consequently, the node i either does not transmit or it transmits with pvi = c. We call this special
case SINGLE POWER MBC. We prove NP-completeness of the SINGLE POWER MBC problem by
reduction from the SET COVER (SC) problem, which is well known to be NP-complete [8].
SET COVER (SC)
INSTANCE: A set I of m elements to be covered and a collection of sets Sj ∈ I , j ∈ J = {1, ..., n}.
Weights wj for each j ∈ J ,and a constant B ∈ R

+.
QUESTION: Is there a subcollection of sets C that form a cover, i.e., ∪j∈CSj = I and such that
∑

j∈C wj ≤ B?
First we describe the construction of a graph G that represents any instance of the set cover problem.
The graph G has a vertex set I ∪ {v1, v2, ..., vn}, that is, G consists of elements of I and set vertices
vj representing sets Sj ∈ I , j ∈ J = {1, ..., n}. There is an edge between an element e ∈ I and a set
node vi if the set Si contains the element. Each set node vi is assigned the weight wi of the set Si the
node represents. All other nodes and all edges are not weighted, that is, they have a weight of zero.
Thus, G = (V,E) is a bipartite graph, as is illustrated in Figure 1 (the graph on left).
The transformation from SC to SINGLE POWER MBC consists first in adding a source (root) node r to
G and making it adjacent to all the set nodes vj . Note that we use undirected edges here to emphasize
that the links between the source r and nodes vj are bidirectional. We proceed by assigning a zero
weight to every edge the root node r shares with the set nodes vj . Then, the edges between vj and
elements e ∈ I are directed in order to capture the fact that no element e ∈ I is ever selected into
the cover set C. Finally, the directed edges the node vj shares with elements e ∈ I are assigned the
weight wj . The resulting graph, which we denote with Gb = (Vb, Eb), is illustrated in Figure 1 (the
graph on right). It is easy to see that the transformation can be done in polynomial time.
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e
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p

Figure 1: The reduction of SET COVER (left) to MINIMUM BROADCAST COVER (right)

Next, we prove the following theorem.

Theorem 1 SINGLE POWER MBC is NP-complete.

Proof:
The proof consists first in showing that SINGLE POWER MBC belongs to the NP class and then in
showing that the above polynomial transformation (Figure 1) reduces SC to SINGLE POWER MBC.
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It is easy to see that SINGLE POWER MBC belongs to the NP class since a nondeterministic algorithm
needs only to guess a set of transmitting nodes (pvi > 0) and to check in polynomial time whether
there is a path from the source node r to any node in a final solution and whether the cost of the final
solution is ≤ B.
We continue the proof by showing that given the minimum broadcast cover Cb of Gb with cost
cost(Cb), the set Cb − {r} always corresponds to the minimum set cover C of G of the same
cost (cost(C) = cost(Cb)), and vice versa. Let C denote the minimum set cover of G. Let
cost(C) =

∑

j∈C wj denote the cost of this cover. It is easy to see that all nodes of Gb can also
be covered with total cost cost(C). This can be achieved by having the source node r cover all the
set nodes vj , j ∈ J = {1, ..., n} at zero cost and then by selecting among the covered nodes those
corresponding to the nodes of G that satisfy vj ∈ C as new transmitting nodes, which we refer to as
Cb − {r}. Hence the minimum broadcast cover of Gb is Cb with total cost cost(Cb) = cost(C).
Conversely, suppose that we have the minimum broadcast cover Cb of Gb with total cost cost(Cb).
Thus the minimum set cover C of G must be C = Cb − {r}, i.e., cost(C) = cost(Cb). We prove
this by contradiction. Let us first assume that cost(C) < cost(Cb) (hence C 6= Cb − {r}). In
this case, with the same reasoning as before, Gb can be covered by C

′

b = C + {r} that satisfies
cost(C

′

b) < cost(Cb). This, however, contradicts the preceding assumption that Cb is the minimum
broadcast cover of Gb. On the other hand, let us assume that cost(Cb) < cost(C) (hence C 6=
Cb − {r}). Since Cb covers all the elements e ∈ I , we can obtain a set cover C

′
for this instance

as follows: C
′
= Cb − {r}. Now we have cost(C

′
) = cost(Cb) < cost(C), which contradicts the

optimality of C and concludes the proof.
¤

Since the SINGLE POWER MBC problem is a special case of the MBC problem, and MBC belongs to
the NP class, which can be shown along the similar lines as for THE SINGLE POWER MBC problem,
we have the following corollary:

Corollary 1 MINIMUM BROADCAST COVER (MBC) is NP-complete.

Another important implication of Theorem 1 is the following theorem. Let N denote the total number
of nodes in an instance of MBC.

Theorem 2 There exists a constant c > 0 such that MINIMUM BROADCAST COVER (MBC) cannot
be approximate better than c logN , if P 6= NP.

Proof: To prove this we recall that there exists a constant c
′
> 0 such that no polynomial-time

approximation algorithm for SC achieves an approximation ratio smaller than c
′
log n if P 6= NP,

where n is the total number of elements in an instance of SC [29]. We showed above how any instance
of the SC problem can be transformed to the corresponding instance of MBC. Now, assume that we
have an approximation algorithm for MBC with the performance guarantee better than c

′
log (N−1).

By applying this algorithm to the instance of MBC obtained from the SC instance, we would get a
solution with a cost lower than c

′
log(n + 1 − 1) · OPT = c

′
log n · OPT . Since this solution is

also feasible to the instance of SC, this would mean that we can approximate SC better than c
′
logn,

which contradicts the fact that SC is hard to approximate better than c
′
log n. We obtain the theorem

by noting that c
′
log(N − 1) = c logN , where 0 < c ≤ c

′
for N > 2. ¤

Fortunately, Theorem 2 does not hold for all instances of the minimum-energy broadcast problem.
By exploring the geometric structure of the minimum-energy broadcast problem, Wan et al. were
able to show that the Euclidean minimum spanning tree approximates the minimum-energy broadcast
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problem within a factor of 12 [30]. But, whether the geometric instances of the minimum-energy
broadcast problem can be solved in polynomial time was left as an open question. We provide an
answer in the next subsection.

4.2 Geometric version

In this section, we show that the minimum-energy broadcast problem in two-dimensional Euclidean
metric space is intractable. In metric space, the distance between points (nodes) obeys triangle in-
equality, that is, dij ≤ dik + dkj , where dxy is the Euclidean distance between nodes x and y. We
have seen that given the graph version of the minimum-energy broadcast problem we can have ar-
bitrary costs of links between nodes. This is because we did not have to worry about the distances
between nodes and all links have been imposed by a given graph. On the contrary, in metric space,
links and their respective costs are dictated by the distances between nodes and their transmission
energies. The cost cij between two nodes i and j is given as

cij = kdαij (1)

where k ∈ R
+ is constant depending on the environment and α is a propagation loss exponent that

takes values between 2 and 5 [23].
We refer to this instance of the minimum-energy broadcast problem as the Geometric Minimum Broad-
cast Cover (GMBC) problem. The decision problem related to GMBC can be formulated as follows:
GEOMETRIC MINIMUM BROADCAST COVER (GMBC)
INSTANCE: A set of nodes V in the plane, a set P consisting of all power levels at which a node can
transmit, a constant k ∈ R+, costs of edges cij = kdαij where dij is the Euclidean distance between i
and j, a real constant α ∈ [2..4] , a source node r ∈ V , an assignment operation pvi : V (G)→ P and
some constant B ∈ R+.
QUESTION: Is there a node power assignment vector A = [pv1 pv2 . . . pv|V |] such that it induces the
directed graph G = (V,E), with an edge (arc) directed form node i to node j if and only if cij ≤ pvi ,
in which there is a path from r to any node of V (all nodes are covered), and such that

∑

i∈V pvi ≤ B?
Given the above formal definition of the geometric version of the minimum-energy broadcast problem,
we have the following theorem:

Theorem 3 GEOMETRIC MINIMUM BROADCAST COVER (GMBC) is NP-complete.

The proof of the theorem is in [28]. We proved NP-completeness of GMBC is done by reduction from
the PLANAR 3-SAT problem, which is known to be NP-complete [18].
In the following section, we devise approximation algorithms that enable us to find good solutions to
the minimum-energy broadcast problem.

5 Proposed algorithms

In this section, we first present an approximation algorithm that achieves O(logN) approximation
ratio for any instance of MBC. Then, we elaborate on the algorithm EWMA, designed deliberately
for the geometric version of the minimum energy broadcast problem, and we explain how to convert
it to a distributed algorithm.
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5.1 O(log N)-approximation algorithm

The MBC problem can be seen as a special case of the hitting set problem. The hitting set problem
is defined as follows [10]: Given subsets S1, . . . , Sp of a ground set E and given a nonnegative cost
ce for every element e ∈ E, find a minimum-cost subset A ⊆ E such that A ∩ Si 6= ∅ for every
i = 1, . . . , p (i.e. A hits every Si).
In our case, we are given a connected graph G = (V,E) with positive edge costs and a spe-
cial root node r. The sets to hit are all r directed cuts, i.e. the sets of edges of the form
δ− (S) = {(i, j) ∈ E : i /∈ S, j ∈ S} where S ⊆ V − {r}. Informally, for any subset of
nodes S ⊆ V − {r}, we should have at least one transmitter i /∈ S that covers at least one node
j ∈ S. It is easy to see that, if this is fulfilled for all S ⊆ V − {r}, we obtain a feasible solution
for MBC. Consequently, any set S ⊆ V − {r} that has no edge incoming to it is said to be violated.
For simplicity, we will say that S is not hit while meaning that δ− (S) is not hit. The number of
violated sets can be in theory as large as 2|V |−1, i.e. exponential in the total number of nodes. In
order to drastically reduce this number, we apply the technique described in [10], where, instead of
considering all possible violated sets, we take into account only minimal violated sets. Any violated
S is said to be a minimal violated set if there exists no violated S

′
with S

′
⊂ S. The rule we use to

calculate minimal violated sets is defined by the following:

Definition 1 The minimal violated set is a strongly connected component (i.e. collection of nodes)
S ⊆ V − {r} that contains no directed edge incoming to it.

We next describe an approximation algorithm (Algorithm 1)that achieves an O(logN) approximation
ratio for MBC. Let C denote the set comprising pairs (i, k) where i ∈ V is transmitter and where
k ∈ P its respective transmission power level. The algorithm iteratively selects the most cost-effective
pair (i, k) and puts it into the set C and updates correspondingly the collection of minimal violated
sets V , until V is empty (i.e. C is a feasible solution).

Algorithm 1 O(logN)-approximation algorithm

1 C ← ∅; t = 0

2 While C is not feasible

3 t← t+ 1; V(t)← V iolation(C)

4 (i, k)t = argmin(i,k)
cki (t)−ci(t)
|S(t)|

5 C ← (i, k)t; ci(t) = cki (t)

6 For all S ∈ S(t)

7 price(S) = cki (t)−ci(t)
|S(t)|

8 For j ← t downto 1

9 if C − {(i, k)j} is feasible C ← C − {(i, k)j}

At the beginning of the algorithm, the set C is empty (and thus not feasible). Let Violation(C) be an
oracle that calculates the minimal violated sets of the graph G for a given C; the oracle does this by
following Definition 1. The set V(t) holds all the minimal violated sets returned by the oracle at the
beginning of each iteration t (line 3). Note that at the very beginning, the number of minimal violated
sets is N − 1 (i.e. all i ∈ V − {r}). The algorithm selects the most cost-effective pair (i, k) (line 4);
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here, cki denotes the cost assigned to the node i that transmits at the power level k and ci represents
the cost induced by any previous selection of the node i into the set C. Thus, we allow a node to be
selected more than one time in the final solution, which does not mean that the node actually transmits
two times or more. This uniqueness is ensured by the delete step (lines 8 and 9). The set S(t) ⊆ V(t)
is defined as follows S(t) = {S ∈ V(t) : δ−(S) is hit by (i, k)t}. Informally, S(t) comprises the
minimal violated sets that are newly hit at the iteration t. The sets S ∈ S(t) are then assigned the
price (line 7), which will be used in the proof of Theorem 4.
In the rest of this section we evaluate the performance guarantee of the algorithm. Let At denote the
event that a new minimal violated set is induced in iteration t. We first prove the following lemma:

Lemma 1

|V(t+ 1)| =

{

|V(t)| − |S(t)|+ 1, if At

|V(t)| − |S(t)|, otherwise.

Proof: Let us consider the iteration t with |V(t)| minimal violated sets. Let (i, k)t be selected into
the set C at this iteration, that is, (i, k)t hits at least one minimal violated set S ∈ V(t). Then we
have the following two possibilities: either by this transmission i produces no new minimal violated
set (strongly connected component) or it produces one or more. Clearly, in the first case we have
|V(t+ 1)| = |V(t)| − |S(t)|.
In the second case, the node i is included in any strongly connected component (minimal violated set)
that it has newly produced. Consequently, there must exist a directed path from every node of such
components to the node i, and vice versa, from the node i to any node of these components. This in
turn means that these components belong to the same strongly connected component (i.e. the same
minimal violated set). Therefore, i induces, at most, one new minimal violated set, in which case
|V(t+ 1)| = |V(t)| − |S(t)|+ 1. ¤

Let us introduce the following indicator variable:

I(t) =

{

1, if in t a new violated set is induced
0, otherwise.

Let m denote the total number of iterations of our algorithm, and l the total number of mini-
mal violated sets during the course of the algorithm. Then by using Lemma 1 and observing that
|V(1)| = N − 1 and |V(m+ 1)| = 0, we obtain: l =

∑m
t=1 |S(t)| =

∑m
t=1 I(t) +N − 1.

We next evaluate the bound on the total number of newly generated minimal violated sets.

Lemma 2
m
∑

t=1

I(t) ≤ N − 2

Proof: By Definition 1, every newly created minimal violated set is a strongly connected component.
Therefore,

∑m
t=1 I(t) is, at most, the number of newly generated strongly connected components.

At the very beginning, the number of eligible nodes (components) for the creation of newly strongly
connected components is N − 1. Since each time a new strongly connected component is created at
least two eligible components are merged, the number of eligible components is decreased by at least
1. Therefore, the total number of newly created strongly connected components is at most N − 2,
which concludes the proof. ¤

By applying Lemma 2 to the expression for the total number of minimal violated sets l, we obtain:
l =

∑m
t=1 |S(t)| ≤ 2N − 3. We can use this inequality to obtain the upper bound on the total number
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of iterations m. Having |S(t)| = 1 in every iteration t, we obtain: m ≤ 2N − 3. Since the violation
oracle can be implemented to run in polynomial time2, our algorithm is polynomial in the total number
of nodes N .
Let OPT denote the total cost of the optimal solution. We next prove the following lemma, which is
similar to Lemma 2.3 in [27]:

Lemma 3 For each (i, k)t selected into C, c
k
i (t)−ci(t)
|S(t)| ≤ OPT

|V(t)| .

Proof: In any iteration t, transmitters from the optimal solution can cover the sets from V(t)
at a cost of at most OPT . Consequently, the cost-effectiveness of any of these transmitters is at
most OPT

|V(t)| . Therefore, by selecting the most cost-effective (i, k)t at the iteration t (i.e. (i, k)t =

argmin(i,k)
cki (t)−ci(t)
|S(t)| ), we must have cki (t)−ci(t)

|S(t)| ≤ OPT
|V(t)| . ¤

Finally, we prove the following theorem on the performance guarantee of our approximation algo-
rithm.

Theorem 4 Algorithm 1 delivers a feasible solution of cost not larger than c logN · OPT , where

c = 2·
(

1
log e +

2
logN

)

< 18 for any N ≥ 2. That is, Algorithm 1 is an O(logN)-approximation

algorithm 3.

Proof: Since the cost of each pair (i, k)t of the output C is evenly distributed among the newly hit

minimal violated sets S(t), cost(C) =
∑l

j=1 price(Sj) =
∑m

t=1

∑|S(t)|
j=1 price(Sj). Now we have:

cost(C) =
m
∑

t=1

|S(t)|
∑

j=1

cki (t)− ci(t)

|S(t)|
(2)

≤
m
∑

t=1

|S(t)|
∑

j=1

OPT

|V(t)|
(3)

= 2 ·OPT
m
∑

t=1

|S(t)|
∑

j=1

1

2|V(t)|
(4)

≤ 2 ·OPT
m
∑

t=1

|S(t)|
∑

j=1

1

2|V(t)| − j + 1
(5)

< 2 ·OPT

2(N−1)
∑

i=1

1

i
(6)

≤ 2 · [ln(N − 1) + ln 2 + 1] ·OPT (7)

< 2 ·
( 1

log e
+

2

logN

)

· logN ·OPT (8)

where (3) follows from Lemma 3; (6) follows from Lemma 1,
∑m

t=1 |S(t)| < 2(N − 1) and |V(1)| =
N − 1; and (7) follows from the inequality

∑n
j=1

1
j
≤ lnn+ 1. ¤

In this subsection we developed the approximation algorithm for the general graph version (MBC).
In the following two subsections, we first elaborate on a centralized heuristic algorithm deliberately

2For example STRONGLY CONNECTED COMPONENT ALGORITHM given in [29] runs in O(N +|E|), where |E| < N
2

(Theorem 2.19).
3log designates base 10 logarithm.
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designed for the geometric version (GMBC). Then, we explain how it can be converted to a distributed
algorithm.

5.2 A heuristic based approach

Let us first present an informal description of the heuristic we propose. We first construct a feasible
solution (an initial feasible broadcast tree). Then we improve this solution by exchanging some ex-
isting branches in the initial tree for new branches so that the total energy necessary to maintain the
broadcast tree is reduced; and in doing this the feasibility of the obtained solution remains intact. We
call the difference in the total energies of the trees before and after the branch exchange a gain. In
our heuristic, the notion of gain is used as the criterion for the selection of transmitting nodes in the
broadcast tree.
We use the link-based minimum spanning tree (MST) as the initial feasible solution. The main reason
we choose MST is that it performs quite well, even as a final solution to our problem (which can be
seen from the simulation results in Section 6).
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Figure 2: Example of the EWMA algorithm: (a) the initial MST (eMST = 23) and (b) the broadcast
tree obtained by EWMA (eEWMA = 17)

We will now describe in detail our algorithm, which we call Embedded Wireless Multicast Advantage
(EWMA). An example is provided in Figure 2. Let us first introduce some notations. Let C denote
the set of covered nodes, F the set of transmitting nodes of the final broadcast tree, and E the set of
excluded nodes. Node i is said to be an excluded node if is transmitting node in the initial solution
but not in the final solution (i.e. i /∈ F ). Notice that the contents of the above sets change throughout
the execution of the EWMA and that the sets do not hold any information about the MST. Initially,
C = {r}, where r is the source node (node 10 in our example), and sets F and E are empty.
In this example, we assume a propagation loss exponent α = 2. After the MST has been built in
the initialization phase, we know which nodes in the MST are transmitting nodes and their respective
transmission energies. In our example, the transmitting nodes are 10, 9, 6, 1, 8, and their transmission
energies are 2, 8, 5, 4, and 4, respectively. The total energy of the MST is eMST = 23. Notice here
that we take into consideration the wireless multicast advantage in the evaluation of the cost of the
MST. Notice also that C = {10}, and F = E = {∅}. In the second phase, EWMA builds a broadcast
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tree from nodes in the set (C − F ) − E by determining their respective gains. The gain of a node v
is defined as the decrease in the total energy of the broadcast tree obtained by excluding some of the
nodes from the set of transmitting nodes in MST, in exchange for the increase in node v’s transmission
energy. Notice that this increase of node v’s transmission energy has to be sufficient for it to reach all
the nodes that were previously covered by the nodes that were excluded. Consequently, the feasibility
of the solution is preserved. At this stage of the algorithm, the set (C − F ) − E contains only the
source node 10. Thus for example, in order to exclude node 8, the source node 10 has to increase its
transmission energy by (see Figure 2):

4e810 = max
i∈{2,5}

{e10,i} − e10 = 13− 2 = 11

The gain (g810) obtained in this case is:

g810 = e6 + e8 + e9 −4e810 = 5 + 4 + 8− 11 = 6

where ei, i = {6, 8, 9}, is the energy at which node i transmits in MST. Notice that, in addition to
node 8, the nodes 6 and 9 can also be excluded.
Likewise, g110 = 5, g

6
10 = −2, and g910 = 6. Having the gains for all nodes from (C − F ) − E, our

algorithm selects the node with the highest positive gain in the set F . Our algorithm then adds all the
nodes that this node excludes to the set E. Thus the source node 10 is selected in the set F to transmit
with energy that maximizes its gain, that is:

e
′

10 = e10 + argmax
4ei

10

{gi10}, gi10 ≥ 0

The source node 10 transmits with energy e
′

10 = e10 + 4 e810 = 2 + 11 = 13 at which it can cover
nodes 6, 8, 9 and all their child nodes in MST. Node j is said to be a child node of node i if node j is
included in the broadcast tree by node i. Hence, at this stage we have C = {1, 2, 4, 5, 6, 7, 8, 9, 10},
E = {6, 8, 9} and F = {10}. If none of the nodes from (C − F ) − E has a positive gain, EWMA
selects among them the node that includes its child nodes in the MST at minimum cost (energy).
The above procedure is repeated until all nodes in the network are covered. In our example, there is
still one node to be covered, namely node 3. Again, EWMA scans the set (C−F )−E = {1, 2, 4, 5, 7}
and at last selects node 1 to be the next forwarding node. When node 1 transmits with energy e1 = 4,
all nodes are covered (C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) and the algorithm terminates. At the final
stage we have E = {6, 8, 9} and F = {1, 10}. The resulting tree, shown in Figure 2b, has a cost
eEWMA = 17. Notice that our algorithm always results in a broadcast tree with a total energy
≤ eMST , which is, in the case of Euclidean MST, at most 12eopt [30].
In the next subsection we explain how to convert our centralized heuristic algorithm to a distributed
algorithm.

5.3 Distributed implementation of EWMA

One of the major research challenges, with respect to the broadcasting problem, is the development
of a distributed algorithm [31, 30]. In the following we describe our solution.
Let us first introduce the notations we will be using. Let node i transmit at power level p ∈ P . We
denote the set of nodes that are covered by this transmission with V p

i . Let node j be a neighbor of i,
that is, j ∈ Vi. We denote with Op

ij the set of nodes belonging to V p
i ∩ Vj and call it the overlapping

set. We assume that each node knows its two-hop neighborhood. So, once node j receives a message
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from node i, it can learn which of the nodes from its neighbor set Vj have also received the message by
calculating the overlapping set Op

ij . The neighbors of node j that have not yet received the message are
said to be uncovered, and we denote this set with Uj where Uj = Vj −Op

ij . If node j is a forwarding
node in the MST, then the set of yet uncovered children nodes of node j in the MST is denoted with
Umst
j where Umst

j = V mst
j −Op

ij . Here, V mst
j is the set comprising all the children nodes of j in the

MST. Finally, we denote with emstj the energy with which node j transmits in the MST.
Our distributed algorithm is divided into two phases. In the first phase, all nodes run a distributed
algorithm proposed by Gallager et al. [7] to construct a minimum-weight spanning tree. The total
number of messages required for a graph of |V | nodes and |E| edges is at most 5|V | log2 |V |+ 2|E|,
and the time until completion is O(|V | log |V |) [7]. Notice that Gallager et al. considered the link-
based model, whereas we use the node-based multicast model, which captures the wireless multicast
advantage property [31]. As a result, the total number of messages required in our model may be
considerably lower. We require that at the end of the first phase, each node has information about the
cost of its two-hop neighbors related to the MST built.

max
T

probT
corrT actT

i j k lj k l

j

aT
j

rTi

rT

nround 1+nround 2+nround

Figure 3: Synchronization of the second phase of distributed EWMA

In the second phase, the final broadcast tree is built up. The main difficulty in this distributed setting
is the unavailability of information about which nodes have been covered, up to a certain moment.
In order to cope with this problem, we apply two techniques. First, we organize this second phase in
rounds. Second, we require that the identities of the nodes on the transmission chain from the source
to a given node, along with their respective transmission powers are propagated along that chain to
the node in question (source routing technique).
Each round of the second phase is Tmax long. Rounds are additionally divided into three time periods,
namely, a probation period (Tprob), a correction period (Tcorr), and an active period (Tact), which
are all known by network nodes (Figure 3). Let node i transmit at T i

r time from the beginning of the
active period of round n. Node j receives this message and begins the following update procedure. It
calculates the overlapping set for the sender i and for other transmitters on this chain of transmitting
nodes for which node j has neighbors in common (recall that this information is propagated along the
chain). If node j is a forwarding node in the MST and it finds that the set of uncovered nodes Umst

j

is empty for the received message, it will not re-broadcast the message. Otherwise, (i.e. if Umst
j is

non-empty or j was a leaf node in the MST), it calculates the gains it can achieve by covering yet
uncovered nodes (based on locally available information), and selects the maximum gain gjmax. In
the case gjmax > 0, node j can contribute to the decrease of the total cost of the broadcast tree and
its transmission energy increases as follows: ej = ej + argmax4el

j
{glj}, otherwise (gjmax ≤ 0) its

transmission energy remains unchanged.
At this stage, node j waits for some time period T j

a before possibly re-broadcasting the message. The
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waiting period is given as follows:

T ja = Tmax + T jr − T ir

where T jr =
∆1

gj max
if gjmax > 0, and T jr = ∆2 · ej if gjmax ≤ 0 and ej > 0. In the first case the

waiting period T ja is reciprocal to the gain, in order to give priority to nodes with higher positive gains
over nodes with lower positive gains. In the second case, the waiting period T j

a is proportional to the
transmission energy in order to give priority to nodes with lower transmission energies over nodes
with higher transmission energies. Additionally, the nodes with positive gains are given priority to the
nodes with low transmission energies (i.e. ∆1

gj max
¿ ∆2 ·ej). This property is ensured by appropriately

setting the constants∆1 and ∆2.
Since node j calculates the gains based on only locally available information, in the calculation of the
gains, node j can try to exclude already excluded nodes. In order to prevent this, node j transmits a
probe message during the probation period Tprob of round n + 1. Note that by knowing Tact and T ir
(which j received from i) node j actually knows when round n+ 1 starts. The probe message carries
the addresses of all the nodes by exclusion of which node j attains gjmax > 0, and it carries the
starting time of the correction period. If some of these nodes have already been excluded, they will
respond back to node j during the correction period. Node j will accordingly update its gain and the
waiting period T ja by taking into account the already elapsed time of the waiting period. The duration
of the probation and correction periods should be such that any potential forwarding node is given the
chance to test its prospect of actually being the forwarding node.
Finally, node j enters into the active period. Again, based on the knowledge of Tprob and Tcorr, node
j knows when the active period of round n + 1 starts. If during that period and before expiration
of the waiting period T ja node j receives a duplicate message, it repeats the update procedure above,
otherwise, upon expiration of T j

a , it re-broadcasts the message with energy ej , stores this value and
marks itself as the forwarding node. In our example shown in Figure 3, node j decides to be the
forwarding node and broadcasts a message at power ej . By doing so, it initiates the update procedure
at nodes k and l that repeat the whole process.
Next we show under which conditions the waiting period T j

a expires solely during the active period of
round n+ 1. From Figure 3 we can see that this happens if T j

a conforms to the following conditions:

T ja ≥ Tmax − T ir

T ja ≤ Tmax + Tact − T ir

From the first inequality and the definition of T j
a we obtain that T jr ≥ 0, which is always satisfied.

Along the same lines, from the second inequality we obtain that T j
r ≤ Tact. Consequently, we define

the active period as follows:

Tact = max
j∈F
{T jr }

= max
j∈F
{∆2 · ej}

where the second equality follows from the fact that ∆1

gj max
¿ ∆2 · ej . Now, since we already have

decided on ∆1 and ∆2, we only have to find the cost of the most expensive edge in the MST. Note
that this information can be obtained from the first phase of the algorithm. This, in addition to the
appropriate selection of the periods Tprob and Tcorr, ensures a synchronous execution of the second
phase of the distributed algorithm.
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The duration of the second phase is bounded by |F | · Tmax, where F is the set of the forwarding nodes
at the end of the second phase. Thus, at the end of the second phase, the broadcast tree is built (i.e. we
have a set of forwarding nodes F and their respective transmission energies for a given source node).
Any subsequent broadcast message originating from the source node can be disseminated along the
tree in an asynchronous way (i.e. forwarding nodes may re-broadcast a message immediately upon
receiving it).

6 Performance evaluation

We performed a simulation study to evaluate our centralized algorithm (EWMA) and its distributed
version.
We compared the centralized version of our algorithm (EWMA) with BIP and MST algorithms. We
performed simulations using networks of four different sizes: 10, 30, 50 and 100 nodes. The nodes
in the networks are distributed according to a spatial Poisson distribution over the same deployment
region. Thus, the higher the number of nodes, the higher the network density. The source node for
each simulation is chosen randomly from the overall set of nodes. The maximum transmission range is
chosen such that each node can reach all other nodes in the network. The transmission power used by
a node in transmission (dα) depends on the reached distance d, where the propagation loss exponent
α is varied. Similarly to Wieselthier et al. in [31], we ran 100 simulations for each simulation setup
consisting of a network of a specified size, a propagation loss exponent α, and an algorithm.
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Figure 4: Normalized tree power comparison: (a) α = 2 and (b) α = 4

The performance metric used is the total power of the broadcast tree. Here we use the idea of the
normalized tree power [31]. Let pi(m) denote the total power of the broadcast tree for a network
instance m, generated by algorithm i = {EWMA,BIP,MST}. Let p0 be the power of the lowest-
power broadcast tree among the set of algorithms performed and all network instances (100 in our
case). Then the normalized tree power associated with algorithm i and network instance m is defined
as follows: p

′

i(m) =
pi(m)
p0

.
Let us first consider the performance of the algorithms shown in Figure 4. We can see the average
normalized tree power (shown on the vertical axis) achieved by the algorithms on networks of different
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Figure 5: Normalized tree power as a function of the propagation loss exponent α

sizes (the horizontal axis) for (a) α = 2, (b) α = 4. To estimate the average power, we used an interval
estimate with a confidence interval of 95%. The figure shows that the solutions for the broadcast tree
obtained by EWMA have, on the average, lower costs than the solutions of BIP and MST. (This is
also true for α = 3, which is not shown in the figure). However, we notice that for the propagation
loss exponent of α = 4, the confidence intervals of the algorithms overlap for certain cases, which
means that the solutions obtained by the algorithms are not significantly different. Thus the figure also
reveals that the difference in performance decreases as the propagation loss exponent increases. This
is better seen in Figure 5, where the difference in the average normalized tree powers between EWMA
(BIP) and MST algorithms (∆AV G(j) = AV G(p

′

MST (m))−AV G(p
′

j(m)), j = {BIP,EWMA})
is shown for different values of the propagation loss exponent (the horizontal axis). Notice here that
the larger the difference ∆AV G(j), the lower the cost of the broadcast tree. The main reason for such
behaviour is that by increasing the propagation loss exponent, the cost of using longer links increases
as well. Consequently, EWMA and BIP select their transmitting nodes to transmit using lower power
levels, which is typical for the transmitting nodes of MST. Hence, in a sense, EWMA and BIP’s
broadcast trees converge to the MST tree when α increases. This indicates that in scenarios where α
takes higher values, MST performs quite well.
We also conducted a simulation study of the distributed algorithm presented in Section 5.3. The
performance metric used here is the same as in the case of the centralized algorithm and is based
again on the normalized tree power. However, here we do not consider the cost of building a broadcast
tree, but only the cost of the final tree produced by the distributed algorithm. The performance of the
distributed algorithm is compared to that of the centralized algorithms, and is shown in Figure 6. We
can see that broadcast trees produced by distributed EWMA have, on the average, lower costs than
those obtained by the centralized BIP and MST. Also, we can see that distributed EWMA performs
almost as well as its centralized counterpart. Note that the results for the centralized algorithms differ
between Figure 4(a) and Figure 6. This is because here we run another set of simulations for all the
algorithms, and for each network the source node is chosen at random.
Based on our simulation results, we conclude that EWMA utilizes the wireless multicast advantage
property at least as well as BIP. The main problem with BIP is that it is not easy to distribute. On the
other hand, we showed here that EWMA can be easily distributed.
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Figure 6: Normalized tree power comparison (distributed EWMA; α = 2)

7 Conclusion

We provide novel contributions to several relevant aspects of power-efficient broadcasting in all-
wireless networks. First, we studied the complexity of the problem: we discussed two configurations,
represented each by a specific graph - a general graph and a graph in Euclidean space (geometric
case). For both, we showed that the problem is NP-complete. Furthermore, we showed that the
general version cannot be approximate better than O(logN).
Second, we elaborated an approximation algorithm for the general version that achieves approxima-
tion ratio of 18 logN . Then we elaborated a new algorithm called Embedded Wireless Multicast
Advantage (EWMA) that compares well with the existing proposals. Finally, we explained how cen-
tralized EWMA can be converted to a distributed algorithm, which is almost as energy-efficient as its
centralized counterpart.
In future work we intend to study how to cope with the mobility of the nodes and study the minimum-
energy multicast problem.
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