Energy-Efficient Caching Strategies in
Ad Hoc Wireless Networks”

Pavan Nuggehalli
ECE Department
University of California at
San Diego
La Jolla, CA

pavan@cwec.ucsd.edu

ABSTRACT

In this paper, we address the problem of energy-conscious
cache placement in wireless ad hoc networks. We consider a
network comprising a server with an interface to the wired
network, and some nodes requiring access to the informa-
tion stored at the server. In order to reduce access latency
in such a communication environment, an effective strategy
is caching the server information at some nodes distributed
across the network. Caching, however, can considerably im-
pact the system energy expenditure; for instance, dissemi-
nating information incurs additional energy burden. Since
wireless devices have limited amounts of available energy,
we need to design caching strategies that optimally trade-off
between energy consumption and access latency. We pose
our problem as an integer linear program. We show that
this problem is the same as a special case of the connected
facility location problem, which is known to be NP-hard.
We devise a polynomial time algorithm which provides a
sub-optimal solution. The proposed algorithm applies to
any arbitrary network topology and can be implemented in
a distributed and asynchronous manner. In the case of a
tree topology, our algorithm gives the optimal solution. In
the case of an arbitrary topology, it finds a feasible solution
with an objective function value within a factor of 6 of the
optimal value. This performance is very close to the best
approximate solution known today, which is obtained in a
centralized manner. We compare the performance of our al-
gorithm against three candidate caching schemes, and show
via extensive simulation that our algorithm consistently out-
performs these alternative schemes.

*This work was partially funded by the Center for Wireless
Communications, San Diego and CERCOM, Politecnico di
Torino, Torino, Italy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

MobiHoc’' 03, June 1-3, 2003, Annapolis, Maryland, USA.

Copyright 2003 ACM 1-58113-684-6/03/0006 ...$5.00.

Vikram Srinivasan
ECE Department
University of California at
San Diego
La Jolla, CA

vikram@cwec.ucsd.edu

25

Carla-Fabiana
Chiasserini
CERCOM-Dip. di Elettronica
Politecnico di Torino
Torino, Italy

chiasserini@polito.it

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design|: Wireless
communication

General Terms

Algorithms, Performance

Keywords

Ad hoc networks, caching

1. INTRODUCTION

In the last few years, there has been an explosive growth of
interest in mobile computing, as well as in delivering World
Wide Web content and streaming traffic to radio devices.
There is a huge potential market for providing palmtops,
laptops, and personal communication systems with access
to airline schedules, weather forecasts, or location depen-
dent information, just to name a few. Wireless ad hoc
networks can be used to provide radio devices with such
services, anywhere and anytime. Ad hoc networks enable
users to spontaneously form a dynamic communication sys-
tem. They allow users to access the services offered by the
fixed network through multi-hop communications, without
requiring infrastructure in the user proximity. However, in
order to offer high quality and low cost services to ad hoc
network nodes, several technical challenges still need to be
addressed. First, wireless networks are plagued by scarcity
of communication bandwidth, therefore a key issue is to sat-
isfy user requests with minimum service delay. Second, since
network nodes have limited energy resources, the energy ex-
pended for transferring information across the network has
to be minimized.

In this work, we focus on caching as an attractive tech-
nique to efficiently meet these challenges. Two straightfor-
ward caching approaches are as follows. The first technique
employs a centralized server to deliver information to the
network nodes as and when they require it. The drawback
is that the access latency experienced by the users, i.e., the
time elapsed from the moment a user requests a data item
until that item is received, may be considerable due to the
multi-hop nature of information transfer. Moreover, both
the server load and the network traffic increase with the
increase in the number of requests. The second solution
consists in placing a copy of the server content onto all net-



work nodes. The advantage of such an approach is that it
minimizes access latency, besides decreasing the radio chan-
nel contention and the network traffic load [16, 4]. The
drawback is that distributing the server content to all nodes
implies a high energy cost for the nodes that transmit and
receive such information. It is easy to see that, whenever
access latency and energy cost of data transfer are high,
the best approach is to cache the requested information at
a limited number of nodes distributed across the network.
Caching, in fact, allows us to optimally trade-off between
access latency and system energy expenditure.

In our study, we address the problem of cache placement.
We consider a wireless ad hoc network with V' stationary
nodes and assume that the network comprises a server where
all the information needed by the users is originally stored.
Such information changes every T' units of time and needs
to be updated. By anticipating that the user nodes will
demand this information, the server has to determine at
which network nodes caches have to be placed, in order to
optimize system performance. The assumption of users be-
ing stationary is justified, at least in the context of wireless
LANSs, by large scale experiments such as [8]. To find an
efficient caching strategy, we formulate the problem as fol-
lows. Distributing information to the network nodes implies
a certain energy expenditure, which increases with the num-
ber of cached nodes. Every node is associated with a service
demand, which must be served by a cache. A node receiving
service from a cache incurs a cost that depends on its dis-
tance from the cache and on the node’s demand. Such a cost
takes into account both the access latency and the energy
expenditure for the node to access the cache. The objec-
tive is to find the optimal cache placement which minimizes
the total cost. As we will show later, the problem we have
posed is equivalent to a special case of the connected facility
location problem [10, 14], which is known to be NP-hard.

We propose a greedy algorithm, called POware Aware
Caching Heuristic (POACH), which provides a sub-optimal
solution to the cache placement problem. POACH has the
following desirable properties: (i) it is a polynomial time
algorithm, (ii) it applies to any arbitrary network topology,
and (iii) it can be implemented in a distributed and asyn-
chronous fashion. The algorithm finds the optimal solution
in the case of tree topologies, while it provides an approx-
imate solution for an arbitrary topology. To evaluate the
performance of the proposed algorithm, we derive a bound
on its performance. We show that POACH always provides
a solution that is within a factor of 6 of the optimal solu-
tion. This bound is very close to the best approximation of
5 known today, which requires a centralized implementation
[14]. Then, we compare the behavior of POACH against
three simple caching strategies, namely, no-caching, depth
caching, and flooding. Numerical results obtained through
extensive simulations show that POACH significantly out-
performs these three alternative schemes.

The rest of the paper is organized as follows. Section
2 reviews previous work on caching strategies for wired as
well as wireless networks. In Section 3, we present the net-
work model considered in this study and formulate the cache
placement problem as a linear programming problem. In
Section 4, we describe our distributed greedy algorithm, the
so-called POACH. Through examples, we compare POACH
to the optimal solution in Section 5, and derive a bound on
its performance in Section 6. Section 7 discusses the features

26

of the proposed scheme, while Section 8 describes our sim-
ulation setup and presents some numerical results. Finally,
Section 9 concludes the paper and points to some aspects
that will be the subject of future research.

2. RELATED WORK

The problem of data replication and caching has been
widely studied in the context of wired networks. In [9], the
authors address the problem of proxies placement and em-
ploy dynamic programming to determine the optimal place-
ment. They consider, however, the case of networks with a
tree topology only. A similar approach is used in [3]. This
work describes a distributed algorithm which solves the al-
location of electronic content over a distribution tree, when
storage cost is considered. A solution to the placement prob-
lem, which minimizes the data transfer cost for tree topolo-
gies, is also proposed in [19]. More general network topolo-
gies are considered in [12], where algorithms for Web servers
placement are presented. The problem addressed there is,
however, significantly different from ours. The goal of [12]
is to minimize the cost for clients to access copies of the
server information, thus it neglects the cost of distributing
cache copies to the network nodes. Moreover, the maximum
number of copies that can be created is restricted to a fixed
value.

In the context of wireless networks, a cooperative cache
management scheme for a cellular environment is proposed
in [18]. The authors present a simulation study of the prob-
lem of cache replication at the base stations, for the case
of streaming services. An ad hoc network scenario is con-
sidered in [13]. The focus there is on a distributed appli-
cation software, which implements cooperative Web caching
among mobile terminals. Strategies for cache management
are also studied with the objective of minimizing energy con-
sumption and network load. [7] analyzes the performance of
various data allocation methods, by focusing on the commu-
nication cost between a mobile computer and a stationary
computer storing all data.

The work closest to ours is presented in [14], which pro-
poses a centralized approximation algorithm to solve the
connected facilities location problem. This can be seen as a
more general formulation of our cache placement problem.
Our work differs from [14] in specifically modeling an ad hoc
wireless network, and, even more importantly, in proposing
a distributed algorithm.

3. SYSTEM MODEL

Let G = (V, £) be a connected graph representing a multi-
hop ad hoc network with V' (V' = |V|) nodes connected by
E (E = |€|) links. Assume that the network has a static
topology and one of the nodes is the network server with an
interface to the wired network. Then, suppose that there
is some information (I) which is changing every T units of
time. The server node can disseminate I to the other nodes
via multi-hop routes. During a 7' unit interval, a node k
desires I with probability px, 1 < k < V. In order to reduce
user access latency, at the beginning of a T" unit interval, the
server caches I at a few nodes in the network. We call this
the dissemination phase. We define a caching strategy by
the vector Z = (21, 22,... ,2E), where z. = 1 if a copy of [ is
transmitted on edge e € £ during the dissemination phase,
and z. = 0 otherwise. At the end of the dissemination phase,



nodes desiring I access the cache location corresponding to
the minimum access cost. We call this the access phase.

3.1 Modd Assumptions

1. Links are bidirectional.
2. The server always possesses a cached copy of I.

3. The energy required to transmit and receive I along
any link is constant and is equal to 1.

4. We model the access latency cost for a node k (k =
1,...V) by the minimum number of hops required to
reach a cached copy of I.

5. We assume that storage costs are insignificant.

Assumption 3 is motivated as follows. Our assumption of
stationary users implies that fast fading phenomena due to
mobility can be ignored. This in turn allows us to assume
that the wireless channel is time-invariant. Moreover, in ex-
isting ad hoc wireless systems such as IEEE 802.11b WLAN
and IEEE 802.15 (Bluetooth) WPAN, there is no provision
for dynamic power control [2, 1]. In other words, power lev-
els cannot be changed on the fly. Also, once a transmitter
gains access to the channel, the CSMA/CA MAC protocol
in IEEE 802.11b ensures that there is almost no interfer-
ence. Assumption 5 implies that nodes transmitting a copy
of I during the dissemination phase retain I in their buffers.
Thus, the terminal nodes of any edge e over which [ is trans-
ferred (i.e., with z. = 1) posses a copy of I. It follows that
the subgraph induced by Z is a connected subgraph contain-
ing the server. Assumption 5 is motivated by the low cost
of memory.

3.2 Calculation of Costs

Let C denote the set of cached nodes and di,k=1,...V,
be the minimum distance in hops from any node k to C.
Since the energy required to transfer I over each link is
the same, the energy cost incurred during the dissemina-
tion phase is given by Kgiss—energy = Zees Ze. The cost
incurred during the access phase includes: (i) the energy
cost for the user nodes to retrieve I from a cache, and (ii)
the access latency that the user experiences. For a strat-
egy Z, the expected access energy cost, Kacc—energy, as well
as the expected access latency cost, Kigtency, are given by
> kv Prdi. Therefore, the average energy expended and
the average access latency experienced by the network sys-
tem are given by

Kenergy = Kdiss—energy + Kaccfene'rgy =
> et Y 0
ecé kevy

Klatency = Z pkdk (2)
kevy

As an example, assume that in the dissemination phase the
server caches I at all the nodes in the network. Then, during
the access phase, each node will experience zero access la-
tency and zero energy consumption. However, the network
ends up wasting valuable energy in relaying I to those nodes
who do not desire I in the access phase of a particular inter-
val. On the other hand, if, in the dissemination phase, the
server decides not to cache I in any of the other nodes in the

27

network, access latency and energy costs will be substantial
in the access phase.
We define the total cost as

Kiot = Kenergy + )\Klatency = Z Ze + (1 + A) Zpkdka
ecé key
()

with A indicating the relative importance of access latency
and energy consumption. Notice that, by varying A\, we
can model different network scenarios and quality of service
requirements.

Our objective is to find a strategy Z which minimizes the
total cost, thus providing the optimal trade-off between the
average energy expenditure and the average access latency.

3.3 Problem Formulation

Here, we provide an integer linear programming (LP) for-
mulation for the problem described above. Let ck. be the
minimum distance in hops from a node k to an edge e. In
other words, cke is the minimum of the shortest path dis-
tance between node k£ and the terminal nodes of edge e.
Observe that ck. also represents the access latency cost for
node k to access I from the nearest terminal node of edge e.
For ease of formulation, we augment graph G by attaching
a virtual node v to the server via an edge e,, and, without
loss of generality, we refer to the server node as node 1. By
virtue of Assumption 2, we have: z., = 1, for any strategy
Z.

Consider the following LP formulation.

P: Minimize Y Y prchetre + M Y ze

keVecé ee&

s.t. kae >1 VkeV
ecé

Ze —The >0 VkEV,e€ &
S ze=> ke 20 VSCEe gS,VEEV

ecs(S) €S
Tke,ze € {0,1} VkeV,e€ & (8)

where: M =1/(A+1); {xk} is a set of assignment variables
such that zxe. = 1 if node k accesses information I from the
nearest terminal node of edge e, else zx. = 0; z. = 1 if
I is disseminated along edge e. From (3), it is easy to see
that solving (4) is equivalent to minimizing Kyo¢. Constraint
(5) ensures that each node is assigned to at least one cache
location from which it can access I. Constraint (6) ensures
that each node is assigned to an edge whose terminal nodes
possess I. Constraint (7) is a connectivity constraint on
the subgraph induced by strategy Z. In particular, 6(S)
represents the cut-set of S (set of edges adjacent to edges
in S but not belonging to S). If 3 .. xr. = 1 for any
k € V, then each node is assigned to exactly one edge, and
constraint (7) ensures connectivity of the subgraph induced
by Z. If, however, a node is assigned to multiple edges, then
constraint (7) ensures that each of these edges has an edge
disjoint path to e, on the subgraph induced by Z. Note that
in the optimal solution, each node k will be assigned to only
one edge e; otherwise, the objective function in (4) could be
further optimized.

As already mentioned in Section 1, our optimization prob-
lem is a special case of the connected facility location prob-
lem, called the rent-or-buy problem, whose formulation is as
follows [14]. An existing facility is given, along with a set



of locations at which further facilities can be built. Every
location k is associated with a service demand, denoted by
Pk, which must be served by one facility. The cost of serving
k by using facility j is equal to prck;, where cg; is the cost
of connecting k to j. The connection cost of a location host-
ing a facility is zero. Besides selecting the sites to build the
facilities, we also want to connect them by a Steiner Tree
[17]. Connecting the facilities incurs a cost which is propor-
tional to the weight of the Steiner Tree. The objective is to
find a solution (i.e., to select the locations to build facilities
and connect them by a Steiner Tree) which minimizes the
total cost. It is easy to see that, in our setting, the facility
that is already available represents the server node, new fa-
cilities correspond to caches, while locations correspond to
the network nodes at which caches (i.e., facilities) can be
created.

The rent-or-buy problem is NP-hard [14], however several
approximation algorithms have been developed. A p- ap-
proximation algorithm is defined as a polynomial time algo-
rithm that always finds a feasible solution with an objective
function value within a factor of p of the optimal cost. The
best approximation algorithm known today for the rent-or-
buy problem was developed by Swamy et al. [14], who gave
a 5-approximation algorithm. The solution in [14] requires
a centralized implementation, therefore it is not suitable for
an ad hoc wireless environment. In the following, we design
a polynomial-time algorithm, that approximates the opti-
mal solution for any arbitrary graph within a factor of 6.
Our algorithm allows for a distributed and asynchronous
implementation.

4. A GREEDY SOLUTION
We propose a greedy algorithm, called POACH, which

provides an approximate solution to problem P in (4). POACH

decides which nodes should cache I during the dissemina-
tion phase, and is such that it can be implemented in a
distributed and asynchronous manner. To motivate our
scheme, we first consider the special case of tree topolo-
gies, then we describe the algorithm for the general case of
connected graphs.

4.1 A Special Case: Tree

For a node k, let f(k) be the number of progeny of k (i.e.,
all descendent nodes of k) given by s1,s2,...,57%). Let so
be the node k itself. Clearly f(1) = V —1, since node 1 is the
server. Suppose node k’s parent node (say my) is a cached
node. If my disseminates I to k, it will incur an additional
energy cost of 1 unit (see Assumption 3). However k and
its progeny will experience a decrease in access latency and
energy cost given by (1 + \) Z;L’B) ps;- Therefore, my, will
disseminate [ to k if

f(k)
j=0

9)

1)
s, = M. (10)
j=0

This dissemination strategy can be implemented in poly-
nomial time and, in the special case of a tree topology, it

can be easily shown by construction to be optimal. In gen-
eral, however, the optimal solution is not unique. When
Zfi%) ps; = M, the cost of the solution remains the same,
irrespective of my’s decision.

Assume that [ is cached at node k. Let c1,c2,...c; be the
children of node k. Since the graph is a tree, the progeny of
ci, 1 <14 <[ are disjoint sets. Thus, the decision to cache
at node ¢; can be made independently of the decision with
respect to node ¢;, ¢ # j. The disjointedness of progeny is
a desirable property, since it lends itself to an asynchronous
and distributed implementation of our algorithm; however,
this property does not hold for a general graph. In the next
section, we extend the algorithm described here for a tree
topology to the case of networks with a generic topology, in
such a way that the progeny sets are disjoint.

4.2 TheGeneral Case

We now describe the dissemination algorithm in the case
of a network with a generic topology.

For ease of description, we divide the algorithm into stages.
We say that an edge is open if its terminal nodes are chosen
as caches. Initially, all edges are closed, except for e,. An
edge e is said to be a neighbor of an edge [ (denoted by
e L 1) if e and [ share a common node. Let O be the set of
opened edges. Let N. be the set of neighbor edges of edge
e. At any stage n, let Be be the set of neighbor edges of e,
which have not been opened yet (B. C N.).

We associate a variable ay, with each node. At each stage
n, ak can be viewed as the price that node k is willing to pay
to any available cache to access I. We say that node k is tight
with an edge e if ax > ckepr. When a node goes tight with
a cache, it implies that the price the node pays compensates
for the cost incurred by the cache in disseminating I to the
node. A node can be in two states: frozen and unfrozen.
We say that a node k is frozen when we stop increasing the
associated variable aj. When a node is frozen, it cannot
become tight with any new edge.

For each edge e, we define R. as the set of nodes, who
belong to the progeny of the terminal nodes of edge e, and
receive their copy of I either through e or one of its descen-
dent edges. Note that Re,=V\{1}. Let F, be the set of
edges opened at stage n. Let 7. be the set of nodes tight
with edge e. Then the demand, D., for edge e is given by

ZkETe Dk-
The algorithm is as follows.

Step 1. [Initialize all variables: Set n = 0; O={e}; Be, =N, ;

ar =0,Vk € V; Re, =V\{1}; F_1 = {ev}.

The algorithm begins by opening edge e,, and initializ-
ing Be, to the set of neighbor edges of the server node,
i.e., the set of edges along which I can be disseminated.

Step 2. Fn, =0, ar =0,Vk € V.
For any e € F,—1,

Step 2.a. During this step, we shall tentatively
open some edges belonging to Be, and freeze all
progeny of edge e.

While all nodes in Re, e € Fp—1, are not frozen
1. Freeze node k € R. if it is tight with edge
e or with a tentatively open edge [ € B..
2. For any edge l € B., if D; > M, then de-
clare [ to be tentatively open.
An edge, which is not already open and has



at least M wunits of demand, is tentatively
opened. This is because, as highlighted in (10),
if I is disseminated along this tentatively open
edge, then the decrease in access cost out-
weighs the increase in dissemination cost.

3. Define R. = {k : k € Re,k not frozen}
Increase ay, for all nodes in R by

mln{ke’lée,leBeu{e}} CklPr — Q.

Variables ay ’s are raised by the minimum amount

which is sufficient to let some node k € Re
become tight with some edge | € BeU{e}. No-
tice that many nodes may become tight at the
same time.

End While

Step 2.b. Let L. be the set of tentatively open
edges in Be.
IfLe=0
Stop dissemination beyond edge e.
Else
Let Hi,l € L be the set of nodes tight with
tentatively open edge I.
Let H be the collection of sets {H; : l € L.}.
At this step, a further optimization is achieved
as follows. Suppose l1 and lz are two tentatively
open edges originating from the same parent edge.
Suppose that edge 11 has mi1 nodes tight with it
and node l2 has na < ni1 nodes tight with it. Also
let the number of nodes which are tight with both
l1 and la be n.. If we disseminate to edge I,
then the number of additional nodes which edge
l2 can serve is n2 —nc. If, the demand created by
these na — ne nodes is less than M, then dissem-
inating to edge ly is sub-optimal. The operations
described in the following avoid such redundant
edges from being opened.
While H # 0
l* = argmaXiec, ZkeHl Pk
Qi = Hyx
For each H; € H
Hi = Hi\Hix
If ZkeH; pr < M
H = H\H,
End If
End For
End While Let A={l:1l€ L., Zkte Pr >
M}y O=0UA, Fn =FUA, Ri = Q..
End If

End For

For any e € Fp,, Be = {l: 1 € Ne,l LU VI € O\{e}}
Be is updated with all neighbor edges of e which are
not already opened and are not neighbors of any open
edge, other than e.

Step 3. If F, #0,n=n+1 and go to Step 2.
Otherwise, terminate algorithm.

We observe that the above algorithm allows us to create
disjoint progeny sets. In fact, at the end of each stage n, we
have that: Re(Rer =0, Ve, €' € F.

29

5. COMPARING THE PERFORMANCE OF
POACH WITH THE OPTIMAL SOLU-
TION

Here, we would like to compare the performance of the
proposed algorithm with the optimal solution. Since the
optimization problem we have posed is NP-hard, we com-
pute the optimal solution by using the following brute force
approach. We list all spanning trees of the graph, and, for
each spanning tree, we derive the optimal cache placement
using (10). Finally, we choose the spanning tree with the
least cost. Clearly, we need to consider simple topologies
so that the computation of the optimal solution does not
become exceedingly cumbersome. In the following, two ex-
amples are reported.

Ezxample 1. Consider the topology in Fig. 1, with A = 1,
pr = 0.25, Vk € V, resulting in M = 0.5. At the beginning
of stage 0, only the virtual edge, e; is open (only the server
has information I), as shown by the left most diagram in
Fig. 1. The progeny list for the server includes all the nodes
in the network. Edges ez, es and e4 are the edges belonging
to Be, (i-e., nodes 2, 3 and 4 are potential cache locations).
Also, initially we have that all a, =0, for k =1,...7. Node
1 becomes frozen with o1 = 0 since it is tight with edge
e1. Since all access probabilities are the same and equal to
0.25, ay’s are increased by 0.25 (see Step 2.a.3). When oy,
becomes equal to 0.25, for Kk = 2,...7, nodes 2, 3 and 4
get frozen with edge e1, node 5 becomes tight with edge es,
node 6 becomes tight with edge e3, and node 7 becomes tight
with edge es4. Since all the edges that could be opened have
demand less than M = 0.5, none of them are tentatively
opened. In the next step, ax = 0.5, for k = {5,6,7}. As a
result, nodes 5 and 6 become tight with edge ez, nodes 5, 6
and 7 become tight with edge e3 and nodes 6 and 7 become
tight with edge e4. Since all the edges that could be opened
have demand of at least M = 0.5, they are all tentatively
opened and all nodes in the network get frozen. It is easy
to see that only edge e3 will be opened in Step 2.b.

At the beginning of stage 1, edges e; and es are open, as
shown in the middle diagram in Fig. 1. The progeny list for
edge e3 are nodes 5, 6 and 7. The edges that can be opened
are es, eg and eg. It is easy to see that of these edges only
edge eg will be opened. The algorithm then terminates with
the cache locations as shown by the right most diagram in
Fig. 1.

In this example, it turned out that this cache placement
is also the optimal one. However, if A = 0, POACH results
in the cache location shown in the middle diagram in Fig. 1,
while the optimal strategy would be not to cache at all.

Ezample 2. Here we aim at showing the computational
savings gained by using our algorithm. We consider the
topology shown in Fig. 2. As before, we assume A = 1,
pr = 0.25, Vk € V, thus resulting in M = 0.5. In this case, it
can be seen that POACH achieves the optimal cache place-
ment with a computation effort that is polynomial in the
size of the graph. While, to compute the optimal solution
for the same topology, we need to consider 135 spanning
trees. Clearly, for larger networks, the number of spanning
trees becomes astronomically large.

6. ANALYSIS

In this section, we provide a bound on performance for



(o
N

e \

G/
€10

N

e \

Figure 1: Topology for network 1. The thick lines
indicate open edges. (a) Stage 1: In the beginning
only the virtual edge is open. (b) Stage 2: Edges e;
and ez are open. (b) Stage 3: Edges e1, es and eg are
open.

the POACH algorithm. In Section 4.1, we noticed that
the POACH algorithm achieves the optimal value for trees.
Now, we show that, for an arbitrary topology, our algorithm
approximates the optimal solution within a factor of 6.

Recall from Section 3.3 that we obtain a caching strategy
Z by setting z. = 1 for all the open edges. We can prove
the following property.

LEMMA 1. The graph induced by the strategy Z, obtained
from the POACH algorithm, is a tree.

PrROOF. By induction. At any stage n of the algorithm,
consider the set of edges which are opened at the end of the
stage. The only way a cycle can be formed is if a tentatively
opened edge forms a cycle with already opened edges, or two
tentatively opened edges which are neighbors are opened
simultaneously. The former can never happen since Step
2 ensures so. The latter also is infeasible since the sets of
progeny are disjoint. []

We have the following theorem.

30

Figure 2: Topology for network 2. The thick lines
indicate open edges.

THEOREM 1. Let OPT be the optimum value of the pri-
mal integer problem P in (4). The solution obtained by the
algorithm is at most 6 x OPT.

PROOF. See the Appendix. []

This bound is very close to the best bound in the literature
[14] for the optimization problem that we have posed. [14]
gives a b-approximation by using a centralized approach,
while our algorithm can be implemented in a distributed
and asynchronous fashion.

7. IMPLEMENTATION OF POACH

In order to implement POACH, each node needs to main-
tain some progeny and distance information. This kind of
information is readily available from current routing mech-
anisms [11]. We show in this section that the POACH al-
gorithm can be implemented for a network with arbitrary
topology in a distributed and asynchronous manner.

Consider the set of open edges at the end of stage n.
For simplicity, let e; and e2 be the only two edges which
were opened in stage n. Let G1 and G2 be the subgraph of
G induced by the progeny sets Re, and R.,, respectively.
In subsequent stages, caches are opened on edges belong-
ing to G1 and G2. Opened edges in G1 (G2) will inherit
progeny which are subsets of Re; (Re,). From the algo-
rithm description, we know that the progeny of e; and es
are disjoint. This implies that, caching decisions in the sub-
graphs, G1 and G2, are independent. The disjointedness of
progeny therefore allows for a distributed implementation
of POACH. This argument easily extends to the case when
multiple edges are opened in a particular stage.

We now show that the POACH algorithm can be imple-
mented without the need for any synchronization. Consider
the situation when a cached node k£ has to decide to which
of its neighbor nodes should I be disseminated. If each of
k’s progeny communicates its « value during every stage of
the dissemination algorithm, then the number of messages
exchanged becomes very large resulting in a large overhead.
Moreover, if nodes update their «’s asynchronously, then
some errors may occur. For example, it could happen that
a node still increases its « after being frozen with an edge.
In this case, some edges would be erroneously opened. To
avoid such problems, we propose the following scheme. We



know that any cached node k£ has knowledge of its imme-
diate neighbors, as well as the progeny set that it serves.
Node k£ multicasts to its progeny the set of potential cache
locations. The progeny, in turn, respond with the shortest
path distance to each of the potential cache locations that
can be opened, as well as their access probabilities. Node k
can then locally run the algorithm to determine which of the
possible cache locations should be opened. This avoids all
timing issues and obviates the need for synchronization in
the network. We stress that by distributed we refer to the
fact that each node takes independent decisions to propa-
gate the cache. POACH does need global topological infor-
mation and disseminating such information in a bandwidth
and energy efficient manner is a challenging problem. How-
ever, efficient means of route discovery have been devised
[11] which are beyond the scope of our work. Also, this
routing burden is imposed only when the topology changes,
not every time the information is updated.

8. NUMERICAL RESULTS

In this section, we present some results showing the sensi-
tivity of the placement algorithm to the system parameters
introduced in the previous sections. The performance of the
proposed algorithm is compared with the results obtained
using three simple schemes, namely no-caching (NC), depth
caching (DC), and flooding (FLD). In the NC scheme, I is
stored at the server only. The DC scheme corresponds to
disseminating I to all nodes that are up to h hops away from
the server. Parameter h is chosen heuristically as a function
of the access probabilities and A: as A increases, so does
h. Finally, in the FLD scheme, I is disseminated to all the
nodes in the network.

We construct random topologies by choosing V' = 30 ran-
dom points in a square of unit area. Each node is assumed
to have a communication range of Dy,a., which is taken as
a varying parameter of the system. Given the set of random
points and Dpaz, one can construct the graph G = (V, &),
where two nodes are connected by an edge if their distance
is less than Diuq.. We ensure that the resulting graph G is
connected. If not, we generate another topology until we get
a connected graph. One of the nodes is arbitrarily identified
as the server. We consider two scenarios: one with uniform
access probabilities (pg’s), the other with non-uniform ac-
cess probabilities.

We first compare the performance of POACH versus NC,
FLD and DC by fixing A at 1, Dmaee at 0.3, and the value
of the access probabilities. The comparison is obtained by
averaging the results over 30 different topologies. The per-
formance is derived in terms of average energy expenditure,
access latency, and total cost, as defined in (1)-(3). Table 1
shows the results for the case where all access probabilities
are the same and equal to 1/6, while Table 2 presents the
results when we have non-uniform access probabilities. Non-
uniform access probabilities are set as follows; we divide the
30 nodes into three groups of equal size, and assign to each
of them a different value of access probability (namely, 1/4,
1/6, and 1/9).

As expected, the results presented in the two tables show
that the highest energy expenditure is obtained with the
FLD scheme, while the highest access latency is given by
the NC scheme. However, it is interesting to notice that
the FLD and the NC scheme have almost the same total
cost in both the scenarios. Also, observe that the energy

31

Table 1: Comparison of caching strategies averaged
over 30 runs, for V=30, D;,,,=0.3, uniform access
probabilities equal to 1/6, and A=1.

Energy expenditure | Access latency | Total cost
NC 13.5667 13.5667 27.1333
FLD 29 0 29
DC 20.2833 6.9167 27
POACH 11.9889 5.3222 17.311

Table 2: Comparison of caching strategies averaged
over 30 runs, for V=30, D,,..,=0.3, access probabil-
ities equal to: 1/4, 1/6, 1/9, and A=1.

Energy expenditure | Access latency | Total cost
NC 14.0741 14.0741 28.1482
FLD 29 0 29
DC 25.7787 5.8120 31.5907
POACH 12.2787 5.6787 17.9574

expenditure for the NC scheme is greater than zero, since
we have to take into account the energy cost for the nodes
to access I from the server. The DC algorithm has access
latency performance close to POACH, but it implies a much
higher energy consumption. Finally, compared to the other
three schemes, POACH allows for a reduction in the total
cost ranging between 36% to 43%.

Next, we investigate the impact of A on performance,
when Dinq. is equal to 0.3 and the access probabilities are
all the same and equal to 1/6. Fig.s 3, 4 and 5 show
the values of access latency, energy expenditure and total
cost as A varies, for a fixed network topology. Looking at
the plots, we see that POACH consistently outperforms the
other three caching strategies. (The only exception is for
the FLD scheme, which always gives zero access latency as
shown in Fig. 3.) For instance, for A = 1, POACH gives a
reduction in the total cost of 38% with respect to DC and of
50% relative to NC. Also, it is interesting to notice that the
access latency and energy plots behave like step functions
for POACH and DC. This is because, for both the schemes,
the caching strategy changes only at certain break points.

Finally, we investigate the cost as Dy,q. changes. We con-
sider a fixed topology and assume that the output transmit
power increases as D},,., where v is a path loss exponent
between 2 and 4. We highlight that, as before, power con-
trol is not considered: for a fixed value of D4z, all nodes
use the same power level, proportional to D}, ... AS Dmax
increases, the graph becomes more connected, decreasing
access latency but increasing the dissemination energy and
access energy costs. The results are shown in Fig. 6. As
we can see, the optimal operational point (i.e., optimal value
of output transmit power) lies somewhere between the mini-
mum power to ensure connectivity and the maximum power.
Notice that the curve is not a smooth function. This is be-
cause the caching strategy changes only at certain discrete
power points. In between these points, the caching strategy
remains the same, but since the power is increasing, the en-
ergy cost increases while the access latency cost remains the
same, thereby increasing the total cost.



20 T T T T T T T T T
o o o o o o o o o o o o o o o o o o o
18- q

NC
FLD ]

16

* + O

F*O* ok ok ¥

14 — POACH 1

12r q
* ¥ k¥ X

Latency
5
;
.

"02 04 06 08 1 12 14 16 18

Figure 3: Access latency vs. )\, for a fixed topol-
ogy, V=30, Dp4,:=0.3, and uniform access probabil-
ity equal to 1/6.

9. CONCLUSIONSAND DISCUSSION

We addressed the problem of optimal cache placement in
ad hoc wireless networks. We considered energy consump-
tion and access latency as performance indices. In partic-
ular, we defined the system energy consumption to include
both the energy expenditure in distributing information to
various nodes across the network, and the energy expendi-
ture for nodes to access the desired information from the
nearest cache. To minimize the weighted sum of energy cost
and access latency, we formulated an integer linear program-
ming problem. This turned out to be an NP-hard problem.
Thus, we proposed a polynomial time algorithm, which de-
termines at which nodes to place caches so that performance
is maximized. Our algorithm has the desirable property that
it can be implemented in a distributed and asynchronous
fashion, and it applies to any arbitrary network topology.
It provides an optimal solution in the case of tree topolo-
gies, and an approximate solution in the case of an arbitrary
topology. Nevertheless, the bound that we derived on the
algorithm performance shows that we always obtain a solu-
tion within a factor of 6 of the optimal solution. This is very
close to the best approximation known today for the cache
placement problem, which can be achieved by employing a
centralized approach. Numerical results show that, when
compared against three candidate caching schemes, our al-
gorithm significantly outperforms these alternative caching
strategies.

We would also like to stress that our problem formula-
tion is general enough to include various notions of cost.
The cost of each link could account for both for energy cost
and bandwidth cost. In our work we focused on a stationary
wireless network, however future research work shall explore
the impact of user mobility on caching strategies and per-
formance. In [6], Grossglauser and Tse found that mobility
leads to significant improvements in the performance of ad
hoc networks, when packet delivery delays of a few min-
utes to hours are acceptable. This result however does not
directly apply to our system scenario, and a careful study

30 T T T T T T T T T
e S S S S S S
28 q

26 q

2ar — POACH ]

22 b

Energy
S

oo & & & & & E & EEEEEEES

18 % % *  * i

16 q

12r-

10 T I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 4: Energy expenditure vs. )\, for a fixed
topology, V=30, D;.,;=0.3, and uniform access
probability equal to 1/6.

is needed to explore the possible benefits of mobility. The
effect of mobility is a function of both the update interval
T and the user mobility pattern. If the mobility pattern is
predictable, then caching may be useful. Clearly, if topology
changes occur at a much slower rate compared to T, then
mobility will be of little use. On the other hand, if user
mobility is unpredictable, it is not clear how caching will
impact performance.

In our paper, we have assumed that the delay is linear
in the number of hops. Research [5] has shown that delay
increases exponentially with hop length. We have assumed
a linear relationship as a first approximation. Incorporating
more realistic models of delay is a subject of future research.
Another angle to pursue would be to compare reactive dis-
semination schemes with the pro-active caching scheme that
we have proposed.

10. ADDITIONAL AUTHORS

Additional authors: Ramesh R. Rao (ECE Department,
U.C. San Diego, email: rao@cwc.ucsd.edu).

11. REFERENCES

[1] Bluetooth core specification.
http://www.bluetooth.com/dev /specifications.asp.

[2] Local and metropolitan area networks: Wireless LAN.
ANSI/IEEE Standard 802.11, 1999.

[3] L. Cidon, S. Kutten, and R. Soffer. Optimal allocation
of electronic content. In IEEE INFOCOM 2001, April
2001.

[4] B. D. Davison. A web caching primer. IEEE Internet
Computing, 4(4):38-45, July-August 2001.

[5] M. Gerla, R. Bagrodia, L. Zhang, K. Tang, and
L. Wang. Tcp over wireless multihop protocols:
Simulation and experiments. In IEEE ICC 1999, June
1999.

[6] M. Grossglauser and D. N. C. Tse. Mobility increases
the capacity of ad-hoc wireless networks. In I[EEE
INFOCOM 2001, pages 1360-1369, 2001.



60

55l © NC o A
+ FLD o
o
sol * DC o i
—— POACH o
45t o B
o
o
L 4o o R
< °r o . ¥ * 1
IS ° *
=

30

+0
+%*
*

Figure 5: Total cost vs. )\, for a fixed topology,
V=30, and uniform access probability equal to 1/6.

[7] Y. Huang, P. Sistla, and O. Wolfson. Data replication
for mobile computers. In International Conference on
Management of Data, ACM SIGMOD, pages 13-24,
1994.

[8] D. Kotz and K. Essien. Analysis of a campus-wide
wireless network. In ACM MOBICOM 2002,
September 2002.

[9] B. Li, M. J. Golin, G. F. Ialiano, and X. Deng. On the

optimal placement of web proxies in the internet. In

IEEE INFOCOM 1999, March 1999.

P. Mirchandani and R. Francis. Discrete location

theory. John Wiley and Sons, New York City, NY,

1990.

C. E. Perkins and E. M. Royer. Ad hoc on demand

distance vector (aodv) routing. pages 90-100,

February 1999.

L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On

the placement of web server replicas. In I[EEE

INFOCOM 2001, pages 15871596, 2001.

F. Sailhan and V. Issarny. Energy-aware web caching

for mobile terminals. In 22nd International Conference

on Distributed Computing Systems Vienna University

of Technology (ICDCS 2002), 2002.

(10]

33

195F 4 o B

Total Cost

0.3 032

0.34 0.36

Dmax

0.38 0.4

Figure 6: Total cost vs. the nodes radio range
(Dmaz), for a fixed topology, V=30, uniform access
probability equal to 1/6, and A=1.

[14] C. Swamy and A. Kumar. Primal-dual algorithms for
connected facility location problems. In 5th
International Workshop on Approzimation Algorithms
for Combinatorial Optimization (APPROX 2002),
2002.

V. V. Vazirani. Approximation Algorithms. Springer,
2001.

J. Wang. A survey of web caching schemes for the
internet. ACM SIGCOMM Computer
Communications Review, 29(5):35-46, October 1999.
P. Winter. Steiner problem in networks: A survey.
ACM Networks, 17(2):129-167, 1987.

7. Xiang, Z. Zhong, and Y. Zhong. A cache
cooperation management for wireless multimedia
streaming. In IEEE International Conferences on
Info-tech and Info-net ICII 2001, pages 328-333, 2001.
J. Xu, B. Li, and D. L. Lee. Placement problems for
transparent data replication proxy services. IEFEE
Journal on Selected Areas in Communications,
20(7):1383-98, September 2002.

(15]

(16]

(17]

(18]

(19]



APPENDIX

THEOREM 2. Let OPT be the optimum value of the pri-
mal integer problem P in (4). The solution obtained by the
algorithm is at most 6 x OPT.

We obtain a caching and access strategy by setting z. = 1
for all the open edges, and zx. = 1 for the open edge nearest
to k such that k € R.. This ensure that constraints (5) and
(6) are met. By using Lemma 1, constraint (7) is also satis-
fied. An edge e is given by the set {re,t.}, where nodes r.
and t. are the terminal nodes of edge e. In order to provide
a bound, we will construct a dual feasible solution for our
primal problem (4). By introducing the dual variables 8 and
0, we obtain the following formulation for the dual problem.

Maximize Z ay (11)

key

s.t. ax — Ore — Z

SCE,ecS,evES

Zﬁm-&-Z Z

kev kEV SCE:e€8(S),e0 €S

L, Pre, Os,x > 0. (14)

PROOF. We first assume that all access probabilities (pi’s)
are equal. Consider the last stage of POACH in which no
new cache locations are opened and the algorithm termi-
nates. At this point, for any node k, ar = Zees ChkePkTke-
Note that a = 0 at the end of POACH for all nodes lying
on open edges. For all k with ax = 0, set ap = M. As a

result, we have
Z prkexke < Z Qg (15)

keEV eeE key
M Z ze < Z Qg (16)
eckE key

The inequality in (16) follows from the fact that each node
k, which lies on an open edge, has oy = M.

Set all other dual variables, 5 and 6, to zero. For an edge
e, define Sc = £\{e}. For a node k, define s, as follows.

o M kee
Oscr = { 0  otherwise. (17)

Consider an edge e € £ and a node k such that k ¢ e.
Suppose k € [. Clearly, at least one such [ exists. Then,

Oskx > Os.k
SC&,ecS,evES

= M (18)

The last equality follows from (17). Consider now a node
k € e. If there exists an edge | # e such that k& € [, then
Yosceces.enzs sk > M. This follows from the same logic
as in (18). For a node k, which only lies on edge e and
no other edge, define By = M. Since, o, < M,Vk € V
(otherwise the algorithm would not have terminated), the
first set of dual feasibility constraints in (12) is satisfied for
the assigned values of 3 and 6.

Consider the second set of feasibility constraints in (13).
For any edge e,we have

Z ﬁke S M. (19)

keVv

Osk < crepr. Yk €V,e € £(12)

Osx <M Vee&(13)

This follows directly from the values assigned to the dual
variables. For any node k, 3 sce.ccs(s)epgs 05k = Ose.k-
Therefore,

Z Z Osk = 0Os.r.+0s..

kEV SCE:e€5(S),ev &S
= 2M. (20)

Adding equations (19) and (20), we have

Z@ke-&-z Z

Y kEV SCE:e€5(S),e0 &S

Os,x < 3M. (21)

From above, it is clear that we can obtain a dual feasible
solution by dividing all dual variables (a, 8, 6) by 3. Denote

these dual feasible variables by (&, 3,6). From (15) and (16),

we have
E E PkCkeTke

IA
(]
g

keV ecE kevy
= 3x ) di (22)
key
MY 2z < > o
eckE key
= 3x ) dk (23)
kevy

Adding equations (22) and (23), we have

S ckewre + MY ze < 6x > dik.  (24)

keV eck ecé& key

By the theory of duality [15] and (24), we have

Zo?k < OPT

key
< ZZCkexke —I—MZze
kevecé e
< 6xOPT. (25)

The proof can be extended to the general case when access
probabilities are not uniform, by arguments similar to [14].

O



