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Abstract: In wireless sensor networks (WSN), most sensor nodes are powered by batteries with
limited power, meaning the quality of the network may deteriorate at any time. Therefore, to reduce
the energy consumption of sensor nodes and extend the lifetime of the network, this study proposes
a novel energy-efficient clustering mechanism of a routing protocol. First, a novel metaheuristic
algorithm is proposed, based on differential equations of bamboo growth and the Gaussian mixture
model, called the bamboo growth optimizer (BFGO). Second, based on the BFGO algorithm, a
clustering mechanism of a routing protocol (BFGO-C) is proposed, in which the encoding method and
fitness function are redesigned. It can maximize the energy efficiency and minimize the transmission
distance. In addition, heterogeneous nodes are added to the WSN to distinguish tasks among nodes
and extend the lifetime of the network. Finally, this paper compares the proposed BFGO-C with
three classic clustering protocols. The results show that the protocol based on the BFGO-C can be
successfully applied to the clustering routing protocol and can effectively reduce energy consumption
and enhance network performance.

Keywords: wireless sensor networks; energy-efficient clustering mechanism; bamboo forest growth
optimizer

1. Introduction

Guided by the development trend of the “sensor city”, wireless sensor networks
(WSN) have been widely used in the field of information, from the field of military and
national defense to the fields of medical care, industry and agriculture, urban management,
environmental monitoring [1], and smart homes [2] that are closely related to people.
The WSN is an ad hoc network composed of randomly distributed sensor nodes [3].
The nodes perceive the environment to enable data collection, processing and transmission.
However, the sensor nodes in WSN use limited energy (such as batteries), and in some
complex working environments, it is difficult to supply power in time, which will lead to
the unreliable lifetime and quality of the network. In addition, for scenarios with high real-
time requirements, such as disaster monitoring, military supervision, medical inspection,
etc., it is even more necessary to consider how to balance the energy consumption of
nodes [4]. Therefore, how to balance the energy consumption and extend the lifetime of
network is the research focus in WSN.

The selection of cluster head (CH) nodes in routing protocols is a key to efficient
communication in WSN. The CH nodes undertake the tasks of information collection,
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data fusion and data transmission in the cluster, and their energy consumption is faster
than other nodes. By designing an effective clustering protocol, each sensor node can use
the limited energy more reasonably. The clustering routing protocol is divided into four
processes: cluster head election, cluster formation, data fusion, and data transmission.
It divides the entire network into multiple clusters. In each cluster, select one node as the
cluster head (CH) node and the other nodes as the cluster member (CM) nodes. The CM
nodes communicate with the CH node in each cluster and forward the data to the CH
node. The CH nodes integrate the data and send it to the sink node, and then the sink
node transmits the data to the network for communication management between users [5],
as shown in Figure 1. In addition, the performance of routing clustering protocols in
homogeneous networks is not good in heterogeneous networks, so the research based on
clustering routing protocols is one of the research hotspots in heterogeneous networks
at present.

Figure 1. Clustered routing structure of WSN.

Using the metaheuristic algorithm to design the cluster routing protocol has always
been a popular direction of industry research [6]. The metaheuristic algorithm is a powerful
tool to solve complex optimization problems [7]. It can obtain the best approximate solution
for more complex NP-hard problems in polynomial time [8]. As the research on bionics
becomes more and more mature, metaheuristic algorithms are proposed one after another;
for example, the particle swarm optimization algorithm (PSO) [9,10], genetic algorithm
(GA) [11,12], bat algorithm (BA) [13], seagull optimization algorithm (SOA) [14], and
the grey wolf optimizer (GWO) [15], etc. The formulas for individual movements of
many metaheuristic algorithms are based on operations such as addition, subtraction,
multiplication, and division. The mathematical model of the algorithm is not closely related
to the essence of things, and there is no specific scientific theory support. In order to come
up with a metaheuristic algorithm with good performance and a close connection between
the mathematical model and the essence of things, we searched for formula derivation
about the growth principle of bamboo forest in biology. Based on the differential model
of the bamboo growth and the Gaussian mixture models [16], this study proposes a new
metaheuristic optimization algorithm named the bamboo forest growth optimizer (BFGO)
and demonstrates the effectiveness of the algorithm’s optimization ability is proved on the
CEC test sets and engineering optimization problems.

In addition, for the problem of energy consumption in WSN, based on the BFGO
algorithm, this paper proposes an energy-efficient clustering mechanism of protocol (BFGO-
C) for two-level heterogeneous WSN is proposed. The following are the characteristics of
this study:

• A small number of heterogeneous nodes in WSN can usually be used to improve
network life and stability, and different types of nodes have different initial energy
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and consumption rates. In the two-level heterogeneous WSN studied, only energy
heterogeneity is considered, and the sensor nodes are divided into advanced nodes
and normal nodes;

• The encoding method of the BFGO algorithm is redesigned in this paper. Each indi-
vidual in the algorithm represents a set of cluster heads;

• The fitness function is improved for BFGO-C, which first considers the relationship
between remaining energy and node energy, and also considers the separation of
inter-cluster and the compactness of intra-cluster. The purpose of both is to reduce
energy consumption and shorten the transmission distance of node communication;

• In experimental, using the four indicators of the lifetime of network, the lifetime of
network until the first node dies, remaining energy, and data transmission volume to
analysis, and it uses the entropy weight method [17] to conduct a comprehensive analysis.

The remaining structure of the paper is as follows. Section 2 reviews related work.
Section 3 presents the BFGO algorithm. Section 4 analyzes the proposed network clustering
mechanism of routing protocol (BFGO-C). Section 5 tests the performance of the BFGO al-
gorithm. Section 6 simulates and analyzes the protocol in heterogeneous WSN. In Section 7,
the conclusions are given.

2. Related Work

As the key to the clustering mechanism of routing protocol in WSN, many clustering
techniques are applied to the clustering mechanism of WSN. The clustering schemes
are divided into three categories: hierarchical clustering algorithm, heuristic clustering
algorithm, and grid-based clustering algorithm. The related clustering protocol for WSN is
shown in Figure 2.

Figure 2. Related clustering protocols for WSN.

2.1. Hierarchical Clustering Algorithm

Low energy adaptive clustering architecture (LEACH) [18], as the earliest network
clustering routing protocol, randomly selects CH nodes in the cycle process and distributes
the energy load evenly, effectively reducing network power consumption. Still, due to the
randomness of cluster head selection, low-energy nodes can easily be selected as CH nodes
and die, shortening the life of the network. Later, there were many improved versions
of the LEACH protocol, such as mobile-LEACH [19], LEACH-balanced, LEACH-C [20],
and other protocols. The stable election protocol (SEP) [21] is also improved based on the
LEACH protocol, giving more energy to advanced nodes, effectively using heterogeneous
networks. The cluster head selection of a hybrid, energy-efficient, distributed clustering
approach (HEED) [22] focuses on the remaining energy and the energy consumed in the
cluster, which improves energy utilization. Nodes in intelligent hierarchical cluster-based
routing (HCR) [23] are self-organized into clusters, also improved using an agent-based
architecture, resulting in energy-efficient hierarchical clusters. The distributed energy-
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efficient clustering algorithm (DEEC) [24] provides a different algorithm for estimating
network lifetime and retains the distributed nature of the HEED protocol. As the most
popular clustering algorithm, the LEACH protocol has been improved and applied by
many subsequent algorithms.

2.2. Heuristic Clustering Algorithm

The heuristic clustering algorithm is a combination of a clustering algorithm and
an intelligent algorithm based on biological principles. Due to the complexity of the
problem and the high computational costs, people pay more attention to adding heuristic
optimization algorithms to clustering algorithms to achieve more efficient results. PSO-
clustering (PSO-C) is the earliest research that applies intelligent optimization algorithms
to cluster routing protocols. It selects CH nodes by minimizing the distance between
CHS and other nodes in the cluster [25]. In 2011, the adaptive probabilistic prediction
clustering protocol, called LEACH-GA, was introduced, effectively extending the lifetime
of the LEACH protocol [26]. In 2012, an artificial bee colony algorithm was used to cluster
nodes in WSN, and energy was used as an indicator to design the fitness function [27].
In 2012, an evolutionary algorithm is used in routing clustering protocol (ERP), and a
fitness function based on separation degree and cohesion degree is proposed [28]. In 2016,
the PSO-HSA was improved based on PSO-C, and CH nodes were selected by combining
the harmony search algorithm and PSO algorithm, which balanced the local constraints of
the two algorithms and extended the life of the network [29]. In 2016, the biogeography
optimization-based energy-efficient clustering protocol (BEECP) used the binary version
of the biogeography optimization algorithm for clustering and optimized it with discrete
coding, making the routing protocol more efficient to extend the life cycle [30]. In 2018,
a protocol merged the GA algorithm with the K-means clustering algorithm (KGA) for
cluster head selection in network [31]. In 2022, parallel fish migration optimization with
compact technology based on the memory principle (PCMFO-Memory) proposed the idea
of memory reduction, saving the best set of CH nodes in each round and applying it to the
next round, which improved the efficiency of the clustering algorithm [32].

2.3. Grid-Based Clustering Method

Grid-based clustering method includes power-efficient gathering algorithm (PEGA-
SIS) [33] and GROUP [34] protocols. Unlike the multi-cluster structure of the LEACH
protocol, PEGASIS uses signal strength to measure the distance between nodes. It assumes
that every node can communicate with the sink node. It is twice as fast as the LEACH
protocol to improve the lifetime of the network. The cluster network established by the
GROUP protocol is dynamically random. The grid seed is selected first, then the grid seeds
along the radius identify the CH nodes in the grid. Its selection operation is based on the
remaining energy in the node.

3. Proposed Bamboo Forest Growth Optimization Algorithm
3.1. Inspiration from the Growth Principle of Bamboo Forest

Bamboo is an herbaceous plant that grows explosively to the height of a tree. This rapid
growth occurs during its shoot stage. As the “bamboo law” says, bamboo grows only
3 cm in four years and then grows at a rate of 30 cm per day from the fifth year onwards,
reaching 15 m in just six weeks [35]. The bamboo extends its roots hundreds of square
meters in the soil, and a short period of rapid growth occurs during the bamboo shoot.
Therefore, the growth of bamboo forest can be divided into two stages: (a) the underground
expansion of the bamboo whip; (b) the shoot growth of the bamboo.

In addition, a bamboo forest is composed of multiple bamboo whips, and the bamboos
belonging to one bamboo whip are a group. The bamboo whip undergoes cell division and
differentiation by absorbing nutrients from the soil to store energy. Some shoots emanating
from the bamboo whip become vigorous bamboo shoots that burst from the ground, while
others grow laterally and develop into new bamboo whips.
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The two stages of bamboo forest growth can respectively correspond to the global
exploration and local exploitation when the metaheuristic algorithm searches for solutions.
So combined with the differential equation of bamboo forest growth, a bamboo forest
growth optimizer (BFGO) algorithm can be constructed.

3.2. Mathematical Model
3.2.1. Underground Extension of the Bamboo Whip

Based on the characteristics of the bamboo whip, the idea of grouping is added to
the algorithm, and individuals are dynamically grouped in the optimization process of
the algorithm. Dynamic grouping is the dynamic scheduling of uniform grouping and
disrupted grouping, and the fitness of individuals is used as the criterion for grouping.
Among them, ’fitness’ refers to the performance of an individual to survive in the popula-
tion. The description of the idea of dynamic grouping is shown in Figure 3.

Figure 3. The idea of dynamic grouping.

The direction of the underground bamboo whip expansion depends on three factors:
the directives for the group cognitive items, bamboo whip memory, and bamboo forest
center, which means that the global optimum, the intra-group optimum, and the location
of the central solution simultaneously affect the solution search direction. The formula for
the direction of expansion is shown in Equations (1)–(3).

cosα =
~Xt · ~XG

|~Xt| × | ~XG|
(1)

cosβ =
~Xt · ~XP(k)

|~Xt| × | ~XP(k)|
(2)

cosγ =
~Xt · ~C(k)

|~Xt| × | ~C(k)|
, (3)

where ~Xt is the position of the current solution, and ~XG is the position of the globally
optimal individual. ~XP(k) and ~C(k) are the intra-group optimal solution and the central
solution on the k-th bamboo whip, respectively. α, β and γ represent the extension direction
of the current individual on ~XG, ~XP(k) and ~C(k), respectively.

The formula for updating the solution at this stage is shown in Equation (4).

Xt+1 =


XG + Q× (c1 × XG − Xt)× cosα, i f R = P1(t)
XP(k) + Q× (c1 × XP(k) − Xt)× cosβ, i f R = P2(t)
C(k) + Q× (c1 × C(k)− Xt)× cosγ, i f R = P3(t)

(4)

Q = 2− t
T

, (5)
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where Q is a decreasing parameter, which decreases from 2 to 1 with the iteration of the
algorithm, and can influence the development process of the algorithm to a certain extent;
c1 is a random number between 0 and 2. t represents the current iteration number, and T is
the maximum iteration number; where R represents the probability of the moving direction
of the individual and always takes the maximum probability of the three directions. P1(t),
P2(t), and P3(t) are the probabilities of the moving trend of the solution simulated by the
Gaussian mixture model, as shown in Figure 4. The dotted line parts represent the values
of the three orientation probabilities, respectively, and the solid line parts represent the
value of R.

Figure 4. Gaussian mixture models for individual trend probabilities.

The Gaussian mixture model moves individuals to a globally optimal solution in
the early iteration process. As the number of iterations increases, the algorithm is more
likely to fall into local optimization. To avoid the algorithm getting stuck in local optima,
increase the probability of individuals tending towards a central solution. In this way, the
distribution of solutions in the iterative process is more diverse, and the capacity of the
algorithm to find the optimal solution is enhanced.

3.2.2. Shoot Growth of the Bamboo

Combined with the stochastic process of the growth model proposed by Sloboda [36],
different growth environments and random factors lead to different cumulative growth
of each bamboo at time t. The cumulative growth of the shooting stage is shown in
Equation (6).

q(t) = XG × ed × e
b

ψ×tψ . (6)

The shape of the bamboo population incremental growth model is shown in Figure 5,
including two stages: slow growth and explosive growth [37], where XG represents the
maximum height of bamboo under a particular growth environment, b and ψ are the shape
parameters of the model.

Given the bamboo accumulation at a specific time t, the change over time can be
calculated, as shown in Equation (7).

4 H =
q(t)− q(t− 1)
XG − C(k) + 1

, (7)

where 4H represents the change in the cumulative amount of two iterations per unit
distance, the denominator represents the distance from the optimal individual of the
population to the center position, and q(t) represents the total cumulative amount of
bamboo growth within the t-th generation.
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Figure 5. Growth trend of bamboo shoots.

The renewal of individuals in this phase is shown in Equations (8) and (9).

Xtemp =

{
Xt + XD ×4H, rand < 0.5
Xt − XD ×4H, else

(8)

XD = 1− | Xt − C(k)
XG − C(k) + 1

, | (9)

where XD represents the ratio of the distance from the current individual to the optimal
individual and the distance from the current individual to the central individual. Increases
with the number of iterations, and the cumulative amount shows a trend of rapid growth
in the early stage and slow growth in the late stage or even unchanged. Therefore, these
two parameters will affect the breadth of algorithm exploration. In the stage of rapid
accumulation growth, the algorithm is explored more widely, while in the stage of slow
growth, the algorithm gradually reaches the convergence state.

In Equation (8), ’+’ represents being away from the current individual, ’−’ represents
being close to the current individual. The smaller the value of XD, the smaller the difference
between the current individual and the optimal individual, and then search near the
current individual. On the contrary, it is far away from the current individual to find a
better solution.

4. Proposed Energy-Efficient Clustering Mechanism of Routing Protocol Based on
BFGO Algorithm (BFGO-C)

This study presents an energy-efficient clustering mechanism protocol based on the
BFGO algorithm. The goal of this work is to rationalize node distribution and minimize
the energy consumption of the network. Then, the optimal set of cluster heads is selected
to undertake the tasks of data collection, fusion, and transmitting in WSN. The protocol
of the BFGO-C consists of a system model, an energy consumption model, and a cluster
head election model. The system model introduces the assumptions for the HWSN simu-
lation [30]. The energy consumption model calculates the energy consumption of sensor
nodes. The cluster head election model describes the detailed processing of the cluster
head selection by the BFGO-C. The working process of the protocol based on BFGO-C is
shown in Figure 6. The pseudo-code Algorithm 1 of BFGO-C implemented in the routing
protocol is as follows.
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Algorithm 1 BFGO-C Implemented in Routing Protocol.

1: //Initialization
Initialize node information, the energy of nodes in HWSN, the deployment of the
nodes in WSN, and parameters in BFGO-C. Initialize the maximum number of running
rounds (Rm), the current number of running rounds (Rc), the set of cluster heads (CHs),
the numbers of nodes (N), the number of dead advanced nodes (Na), the number of
dead normal nodes (Nn), and survival state of the network (Ns)

2: while (Rc ≤ Rm) do
3: if Ns==false then
4: end the network
5: end if
6: for j = 1; j ≤ N ; j + + do
7: if energy ≤ 0 then
8: Na++;
9: Nn++;

10: end if
11: end for
12: //Phase 1: Cluster head election

Initialize the nummber of current iteration (t), the nummber of max iteration (T),
the individual (Xt) and calculate the individual objective function value ( ft) by
Equations (15) and (16)

13: while (t ≤ T) do
14: update Xt using Equations (1)–(5), sort and update XG,XP(k), and C(k)
15: update Xt using Equations (6)–(9), sort and update XG,XP(k), and C(k)
16: for j = 1; j ≤ k; j + + do
17: if XP(k) not updated then
18: count++;
19: end if
20: end for
21: if count==k then
22: Do dynamic updates
23: end if
24: CHs=XG;
25: end while
26: //Phase 2: Elected cluster head for data transmission
27: Calculate the number of cluster heads (Nch)
28: for i = 1; j ≤ N ; j + + do
29: if Node(i)==cluster head; then
30: Data transmission
31: Calculate consumed energy, remaining energy, and transfer volume using

Equations (11)–(16)
32: else Send data to cluster head
33: end if
34: end for
35: end while
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Figure 6. The working process of the protocol based on BFGO-C in HWSN.

4.1. System Model

The Heterogeneous network is a two-level network [38], and the nodes include ad-
vanced nodes and normal nodes. It is assumed that n is the number of nodes, m is the
proportion of advanced to all nodes, and its energy is α times higher than that of normal
nodes. Let the initial energy of normal nodes be E0, then the initial energy of advanced
nodes is E0 × (1 + α). Then the total node energy of the entire HWSN is:

Etotal = n× (1−m)× E0 + n×m× (1 + α)× E0 = n× E0 × (1 + α×m). (10)

There is a WSN randomly and uniformly deployed by N nodes to collect data [39]. The fol-
lowing assumptions are made within this simulation environment:

(a) Nodes are static. The base station node is unique and Located centrally in the area of
the network;

(b) All nodes have unique identification numbers;
(c) The CH node is responsible for data fusion and transmits the fused data to the

base station;
(d) The energy of sensor nodes is limited. Once they die, they can no longer participate in

the network;
(e) Nodes can calculate and store data, and obtain their residual energy and distance from

other nodes;
(f) The sink node uses a fixed power supply and does not die;
(g) Only the energy heterogeneity of nodes is considered, and other heterogeneity charac-

teristics are not considered.

4.2. Energy Consumption Model

The energy consumption of the network mainly comes from the wireless communica-
tion between nodes. According to the first-order radio model, this study uses the energy
loss formula to calculate the energy consumption of nodes. The model diagram is shown
in Figure 7, The sensor node consists of a transmitter and a receiver [40]. The left module
is the transmitter of the sensor node, and the right module is the receiver. l is the length
(in bits) of the information received or transmitted by the sensor node. d is the distance
between the transmitter and the receiver.
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Figure 7. Energy consumption model.

As shown in Figure 7, the data are transmitted from the transmitting electronics to the
amplifier. IThey are transmitted to the receive electronics at a distance of d meters through
wireless communication [41]. When sending data, the energy consumption produced by
the node is the sum of the energy consumption produced by the transmitting electrons and
the amplifier circuit [42]. The calculation of transmitting volume of routing protocol based
on BFGO-C is shown in Equation (11).

Etx(l, d) =

{
Eelec × l + ε f s × l × d2, d < d0

Eelec × l + εmp × l × d4, else
(11)

where Eelec represents the power used by the transmitter and receiver, and ε f s and εmp
are the power amplifier coefficients under the free space and multipath fading models,
respectively. d0 represents the distance threshold from the transmitter to the receiver, as
shown in Equation (12).

d0 = 2

√
ε f s

εmp
. (12)

If d > d0, it is a multipath fading model; conversely, it is a free space model. The re-
ceived data energy consumption Erx is shown in Equation (13).

Erx(l) = Eelec × l. (13)

The energy consumption of data fusion is shown in Equation (14).

Em(l) = EDA × l × (1 + n), (14)

where EDA is the unit energy consumption of data fusion.

4.3. Cluster Head Election Model
4.3.1. Encoding Method

The correspondence between the concepts of the clustering mechanism and the BFGO
algorithm is shown in the Table 1. As shown in the first row of Table 1, a set of CH nodes
in the clustering mechanism is equivalent to a bamboo individual in the BFGO algorithm.
In the second row, the number of CH nodes is equivalent to the dimension of the individual,
and so on.

Table 1. The correspondence between the concepts of the clustering mechanism and the BFGO algorithm.

Clustering Mechanism BFGO Algorithm

a set of CH nodes a bamboo individual
the number of cluster heads the dimensions of individual

the effectiveness of a set of CH nodes the fitness of a bamboo individual
the optimal set of CH nodes the global optimal individual
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4.3.2. Fitness Function

From the description of the coding method, It can be known that the fitness function
determines the quality of the set of CH nodes by evaluating the individual [43]. The fitness
function in this paper is designed according to three factors: the compactness within the
cluster, the separation between the clusters, and the relationship between the initial energy
and the remaining energy. Among them, the relationship between the initial energy and
the remaining energy is an essential factor, because the difference between HWSN and
WSN lies in the setting of the initial energy of the sensor node. In advanced nodes, the
energy factor accounts for a more significant proportion [44], So that the high-energy nodes
as the CH nodes can effectively extend the lifetime of the network. At the same time,
the low-energy CH nodes lead to a faster node death rate. The fitness function is shown
in Equation (15).

Fitness =
CHs

∑
C=1

E0

(Er)p +
CHs

∑
i=1

Ni

∑
j=1

dis(Sj, CHi) +
CHs

∑
i=1

CHs

∑
j=1

dis(CHi, CHj) (15)

dis(X, Y) = 2

√
n

∑
i=1

(xi − yi)2, (16)

where E0 is the initial energy of the node, Er is the current remaining energy of node i, and
p is the weight coefficient. The ratio of the residual energy of the node to the initial energy
can reflect the current residual energy of the CH node. Ni represents the number of nodes
in the i-th cluster, and Sj is the non-cluster head node in the j-th cluster, dis(CHi, CHj)
represents the distance between any two cluster heads. The Euclidean distance is used to
calculate both compactness and separation, as shown in Equation (16).

5. Performance Test of BFGO Algorithm

The CEC test suite is a set of functions commonly used for testing and evaluating
the performance of the metaheuristic algorithm, including unimodal functions, simple
multimodal functions, hybrid functions, and composite functions. The tests of multi-type
functions can show the performance of the algorithm more comprehensively. To test the
optimization performance of the BFGO algorithm, tests and analysis are conducted in the
CEC2013 benchmark function set [45], CEC2017 benchmark function set [46], and three
engineering optimization problems [47]. Table 2 summarizes the relevant parameters, ’own’
represents the parameters set by the algorithm itself, and ’unified’ is the public parameter
in the experiment.

Table 2. Parameters of the relevant algorithm.

Algorithm Parameter (Own) Parameter (Unified)

BA [13]
Ai = 0.6, r = 0.7, A f = 0.9,

R f = 0.9, Qmin = 0, Qmax = 1 Runs = 30, Population = 100,
iterations = 500, lb = −100,

ub = 100, dimension = 10D/50D

PSO [9] c1 = 2, c2 = 2
GWO [15] none
SOA [14] none

BFGO bamboowhips = 5, sita = 2

5.1. Test of CEC2013 Benchmark Function

The experimental results of this part are shown in the Appendix A, Figure 8 shows
the number of functions the BFGO algorithm outperforms in other algorithms in 10-
dimensional (10D) and 50-dimensional (50D) spaces.

From Table A1, among the 28 functions of the CEC2013 test set, the BFGO algorithm is
superior to the BA algorithm, PSO algorithm, GWO algorithm, and SOA algorithm in 23,
18, 16, and 26 functions. It can be seen from Table A2 that the BFGO algorithm is superior
to the BA algorithm, PSO algorithm, GWO algorithm, and SOA algorithm in 20, 21, 13,
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and 25 functions, respectively. It can be seen that the BFGO algorithm has advantages over
other algorithms in both low and high dimensions, especially in low dimensional space,
showing strong competitiveness.

Figure 8. Comparison of BFGO algorithm getting better times in CEC2013 test.

The scalability of the algorithm in CEC2013 can be analyzed in Figure 8. The perfor-
mance of the BFGO algorithm decreases with the increase of dimension. However, it is still
better than the other algorithms in most functions.

5.2. Test of CEC2017 Benchmark Function

The experimental results of this part are shown in the Appendix A, Figure 9 shows
the number of functions the BFGO algorithm outperforms in other algorithms in 10D and
50D space.

Figure 9. Comparison of BFGO algorithm getting better times in CEC2017 test.

It can be seen from Table A3 that for the 30 functions of CEC2017, the overall perfor-
mance of BFGO is better than other algorithms on 10D. The BFGO algorithm is superior
to the BA algorithm, PSO algorithm, GWO algorithm, and SOA algorithm in 24, 20, 16,
and 24 functions. It can be seen from Table A4 that the BFGO algorithm also has good
performance on 50-D. The BFGO algorithm is superior to the BA algorithm, PSO algorithm,
GWO algorithm, and SOA algorithm in 21, 26, 14, and 27 functions.
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The scalability of the algorithm in CEC2017 can be analyzed in Figure 9. The perfor-
mance of the BFGO algorithm decreases slightly with the increase of dimension. However, it
is still better than the other algorithms in most functions.

According to the test results of five algorithms in the CEC2013 and CEC2017, the
BFGO algorithm is significantly better than the BA, PSO, and SOA algorithms in both
low-dimensional and high-dimensional space, and its performance is similar to the GWO
algorithm, only slightly lower than the GWO algorithm in high-dimensional space. To sum
up, the BFGO algorithm has good optimization performance and strong competitiveness.

5.3. Test of Engineering Optimization

Three classical engineering optimization problems are used to test the performance of
the BFGO algorithm in finding appropriate parameters to optimize the solution of practical
problems, including compression spring design, welded beam design, and speed reducer
design [48,49]. The three issues are optimized with parameters 3, 4, and 7 to minimize
cost dissipation.

Tables 3–5 compare the results of the BFGO algorithm with the BA, GWO, PSO, and
SOA algorithms tested on the three engineering design problems 30 times, respectively.
The table shows the optimal parameters, the mean (Mean), the standard deviation (Std),
and the minimum (Min) values for the 30 tests. Where underline represents the same
optimum and bold represents the optimum.

Table 3. Comparison of BFGO algorithm and other algorithms in optimizing compression spring design.

Algorithm Optimize Variable Mean Std Mind D N

BA 0.050000 0.282000 2.000000 0.002824 3.3397× 10−6 0.002820
PSO 0.052700 0.277500 4.136000 13,186.75 7.2227× 104 0.004731

GWO 0.050000 0.282000 2.000000 0.002820 1.5421× 10−8 0.002820
SOA 0.050000 0.282000 2.000000 0.002820 1.1723× 10−7 0.002820

BFGO 0.050000 0.282000 2.000000 0.002820 4.6049× 10−8 0.002820

Table 4. Comparison of BFGO algorithm and other algorithms in optimizing welded beam design.

Algorithm Optimize Variable Mean Std MinTs Th R L

BA 0.196600 0.101700 10.193600 67.907400 3074.41 7.7449× 103 119.658
PSO 1.584700 20.84740 10.100800 104.54950 103,174.1 9.9926× 104 6158.07

GWO 0.192900 0.095300 10.000000 64.124600 108.910 5.688× 10−3 108.902
SOA 0.192900 0.095200 10.000000 64.197300 5617.420 1.3710× 104 109.001

BFGO 0.192800 0.095400 10.000000 64.270600 112.824 4.5868 109.097

Table 5. Comparison of BFGO algorithm and other algorithms in optimizing speed reducer design.

Algorithm Optimize Variables Mean Std Minx1 x2 x3 x4 x5 x6 x7

BA 3.600000 0.800000 28.000000 7.300000 7.800000 3.900000 5.283700 201,614.63 1.592047 201,613.20
PSO 3.492600 0.792700 25.847700 7.691400 8.274700 3.841700 5.315900 540,799.84 108,075.4 369,151.63

GWO 3.600000 0.800000 28.000000 7.300000 7.800000 3.900000 5.284700 201,613.24 0.101490 201,613.19
SOA 3.600000 0.800000 28.000000 7.300000 7.800000 3.900000 5.284900 201,616.66 4.204730 201,613.20

BFGO 3.600000 0.800000 28.000000 7.300000 7.800000 3.900000 5.284700 201,613.19 0.181397 201,613.19

In the test of compression spring design, the BGFO algorithm obtains the same optimal
value as the GWO and SOA algorithms in the mean and minimum values. The standard
deviation is slight, indicating that the algorithm is stable. In the test of welded beam design,
the mean value of 30 tests obtained by the BFGO algorithm ranks second, second only to the
GWO algorithm, and other algorithms are still far behind the BFGO algorithm. Similarly,
in the speed reducer design problem, the mean value of the BFGO algorithm in the 30 tests
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is the first, the minimum value is tied for the first best with the GWO algorithm, and the
standard deviation is still tiny, indicating that the algorithm is relatively stable.

Therefore, compared with other algorithms, the BFGO algorithm also has powerful
optimization ability for engineering optimization problems.

6. Simulation and Analysis of Protocol Based on BFGO-C in HWSN

This study simulates the protocol based on the BFGO-C and compares the results
with the SEP, HCR, and ERP clustering protocols. Table 6 describes the parameters in the
simulation experiments. In this paper, four indicators are used as measures to analyze the
experimental results: the life of the network, the life of the network until the first node dies,
energy consumption, and the data transmission volume. Figure 10 shows the assignment of
initial CH nodes in the 100 × 100 area, where the red dot in the middle is the sink node, the
blue dot is the normal node, the purple dot is the advanced node, and the green pentagram
is the initial CH node [50]. Figure 11 is the initial node interaction diagram. The black
arrows indicate that the CH nodes transmit data to the sink node, and the orange arrows
indicate that the nodes in the cluster transmit data to the CH nodes [51].

Figure 10. Initial node distribution in the simulation environment.

Figure 11. Initial node interaction in the simulation environment.
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Table 6. Simulation parameters of protocol based on BFGO-C in HWSN.

Simulation Parameters Value

Network area 100 × 100 m2

Number of nodes (N) 100
Base station position (50,50)

Packet size (l) 4000 bits
Initial energy of node (E0) 0.5 J
Advanced node scale (m) 0.1 or 0.2

Transmitter/Receiver electronics (Eelec) 50 n J/bit
Transmit amplifier (free space) ε f s 10 nJ/bit/m2

Transmit amplifier (multipath) εmp 0.0013 nJ/bit/m4

Data aggregation energy cost EDA 5 nJ/ bit
Number of optimized individuals 20

Number of iterations 20
The weight of the fitness function 4

6.1. Comparison of the Lifetime of Network

The number of rounds in which the last node dies represents the life of the network.
Figure 12 shows the changes in the surviving nodes of the SEP protocol, the HCR protocol,
the ERP protocol, and the protocol based on BFGO-C with the number of rounds.

Figure 12. Variation of the number of live nodes with the number of rounds.

The survival trend of the four clustering protocols SEP, HCR, ERP, and the protocol
based on BFGO-C in Figure 12. As the network runs, the consume energy of nodes for data
transmission and forwarding. After several operation rounds, some nodes run out of energy
and become dead nodes. The graph shows that the nodes of the protocol based on BFGO-C
die a little slower, and the network lives a little longer than all three other protocols.

There are also application scenarios that pay more attention to the comprehensiveness
of the node information. Once the first node in the network dies, the data are missing by
default. Hence the paper records the number of rounds when the first node dies, half of the
nodes die, and the last node dies, as shown in Figure 13.

In Figure 13, the growth cycles of the four cluster protocols SEP, HCR, ERP, and the
protocol based on BFGO-C are 2602, 1771, 1763, and 3909 rounds, respectively. The protocol
based on BFGO-C has the longest lifetime of the network. In SEP protocol, the network ran
999 rounds when the first node died and 1385 rounds when half of the nodes died. The first
node of the HCR and ERP protocol died in rounds 919 and 1078, and half of the nodes died
in rounds 1771 and 1763. The number of rounds when the first node of the protocol based
on BFGO-C died was 1134, and the number of rounds when the intermediate node died
was 1570.
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Figure 13. Number of surviving nodes for rounds when the first node dies, half of the nodes die, and
the last node dies.

It can be shown that the protocol based on BFGO-C has a higher number of rounds at
the death of the first node and a higher number of rounds at the end of half of the nodes
than the other three protocols.

6.2. Comparison of Remaining Energy

The energy consumption during network operation reflects the performance of the
network. More remaining energy indicates less energy consumption and better network
performance. The variation of remaining energy with the number of rounds for the proto-
cols SEP, HCR, ERP, and the protocol based on BFGO-C running in the network is shown
in Figure 14, and the remaining energy for the rounds when the first node dies and half of
the nodes die is shown in Figure 15.

The trend in energy consumption from Figure 14 shows that the protocol based on
BFGO-C has more remaining energy than SEP, HCR, and ERP protocols. At the death of
the first node in the network, the HCR protocol has the most residual energy and consumes
the least, and the protocol based on BFGO-C is second. At the death of half of the nodes,
the protocol based on BFGO-C and HCR protocol have similar residual energy, and both
consume less energy than the SEP and ERP protocols. At the death of all nodes, the protocol
based on BFGO-C consumes the least total energy than SEP, HCR, and ERP protocols.
Protocol based on BFGO-C reduces network energy consumption to a certain extent.

Figure 14. Variation of remaining energy with the number of rounds.
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Figure 15. Remaining energy for key rounds.

6.3. Comparison of the Data Transmission Volume

The surviving nodes in the network transmit a data packet to the CH nodes every
round, and then the CH nodes transmit it to the base station, and the base station counts
the number of data packets collected. The data transmission volume represents the total
number of packets sent, it reflects the throughput of the network. The data transmission
volume of the four protocols is shown in Figure 16, and Figure 17 also shows the data
transmission volume when the first node dies, half of the nodes die and the last node dies.

Figure 16. Variation of the volume of transmission with the number of rounds.

Figure 17. The volume of transmission for key rounds.

The trend of the data transmission volume shows that the protocol based on BFGO-C
has the fastest and highest transmission volume. With all the nodes dead, the number of
packets stopped growing, and the SEP protocol, HCR protocol, ERP protocol, and protocol
based on BFGO-C had 14,725, 35,699, 628,07, and 122,068 data transmissions, respectively,
with a protocol based on BFGO-C eventually transmitting the most data. The protocol
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based on BFGO-C was consistently ahead of the other protocols regarding the number of
packets transmitted in the early and middle stages of the network.

The protocol based on BFGO-C has achieved good performance in HWSN network
clustering. Compared with the SEP, HCR and ERC protocols, it extends network life to a certain
extent, reduces network energy consumption, and effectively improves network performance.

6.4. Comprehensive Evaluation Based on Entropy Weight Method

Information entropy can measure the discreteness of indicators, and the larger the
discreteness, the more significant the impact of the index on a comprehensive evaluation.
The entropy weight method determines the index’s weight in the comprehensive evaluation
according to the variability of the information entropy reaction of the index.

From the simulation results and analysis of the protocol based on BFGO-C in Section 5,
the entropy weight method is used to comprehensively evaluate the four protocols in
combination with four metrics: the lifetime of the network, the death time of the first node,
remaining energy, and the volume of transmission. The radar chart of the comprehensive
analysis is shown in Figure 18.

Figure 18. The radar chart of the comprehensive performance.

As can be seen from Figure 18, the comprehensive performance of the protocol based
on BFGO-C covers the most extensive range, and it has outstanding performance in the
two indicators of network life and volume of transmission, although it is slightly worse
in the indicator of the remaining energy of the first node death. Compared with the HCR
protocol, the energy of the protocol based on BFGO-C lasts longer in the network. It can be
seen from the comprehensive evaluation that the protocol based on BFGO-C can effectively
extend the network lifetime by saving energy.

7. Conclusions

This paper proposes an energy-efficient clustering mechanism of routing protocol
for heterogeneous WSN based on the BFGO algorithm. Its core concept is to use the
optimization ability of the BFGO algorithm to conduct cluster head selection, find the
optimal set of CH nodes, guarantee the rationality of the cluster allocation, and maximize
the network performance. First, based on the growth characteristics of a bamboo forest,
a bionic intelligent optimization algorithm is proposed for the optimization problem.
The algorithm has been shown to be highly competitive in both low-dimensional and high-
dimensional spaces for CEC2013 and CEC2017 test functions and engineering optimization
problems. The fitness function is redesigned when the BFGO algorithm is applied to the
clustering mechanism of the routing protocol in heterogeneous WSN. Not only are the
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intra-cluster compactness and inter-cluster separation of the clusters considered, but the
ratio of the initial to remaining energy is also taken as an important measure.

This study compared the protocol based on BFGO-C with the SEP, HCR, and ERP
protocols using four indicators in simulation experiments. The experimental results show
that the algorithm can reduce the network energy consumption, extend the network life,
and significantly improve the data transmission volume. Finally, to evaluate the clustering
performance of these protocols comprehensively, the study used the entropy weight method
to give weights and comprehensive analysis, and the results prove that the comprehensive
performance of the protocol based on BFGO-C is greater than the other protocols.

This paper does not consider other types of node performance heterogeneity, such as com-
putational or link heterogeneity. In the future, we will continue to investigate how to improve
and optimize the cluster routing protocols in heterogeneous and complex environments.
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Appendix A. Test Results on CEC Test Set

Table A1. Comparison of BFGO algorithm and other algorithms on CEC2013 benchmark function under 10D.

fx
BA PSO GWO SOA BFGO

Mean Std Mean Std Mean Std Mean Std Mean Std

f1 −1.399 × 103 1.1848 × 10−1 −1.339 × 103 2.3095 × 102 −1.385 × 103 4.7240 × 101 −1.068 × 103 1.9838 × 102 −1.400 × 103 3.1599 × 102

f2 1.7685 × 105 1.3611 × 105 6.5680 × 105 1.7462 × 106 1.0902 × 106 9.4889 × 105 2.1364 × 106 1.7465 × 106 2.9837 × 105 2.4558 × 105

f3 2.1322 × 107 3.9879 × 107 7.7272 × 108 1.2511 × 109 4.3836 × 107 9.7444 × 107 6.4612 × 108 6.1898 × 108 2.7794 × 108 4.4521 × 108

f4 1.5171 × 104 7.0814 × 103 7.9318 × 102 7.9543 × 103 7.1724 × 103 3.8745 × 103 6.1317 × 103 2.2208 × 103 2.1336 × 103 1.7939 × 103

f5 −9.996 × 102 6.7815 × 10−2 −9.759 × 102 4.5922 × 101 −9.778 × 102 1.4966 × 101 −8.781 × 102 1.6622 × 102 −9.999 × 102 4.8037 × 10−2

f6 −8.916 × 102 1.9843 × 101 −8.783 × 102 2.6334 × 101 −8.748 × 102 2.5992 × 101 −8.372 × 102 4.0619 × 101 −8.837 × 102 2.7752 × 101

f7 −6.442 × 102 1.0048 × 102 −7.591 × 102 2.4188 × 101 −7.898 × 102 8.1917 −7.655 × 102 1.1585 × 101 −7.592 × 102 3.3546 × 101

f8 −6.795 × 102 9.6019 × 10−2 −6.796 × 102 9.4408 × 10−2 −6.796 × 102 7.8637 × 10−2 −6.797 × 102 7.8866 × 10−2 −6.797 × 102 9.3192 × 10−2

f9 −5.914 × 102 1.7614 × 10 −5.946 × 102 1.3188 −5.963 × 102 1.3082 −5.934 × 102 1.2878 −5.938 × 102 1.3414
f10 −4.990 × 102 1.0014 × 10−1 −4.638 × 102 3.9716 × 101 −4.896 × 102 1.0867 × 101 −4.447 × 102 3.4506 × 101 −4.987 × 102 7.5568 × 10−1

f11 −3.194 × 102 3.4114 × 101 −3.801 × 102 1.0161 × 101 −3.890 × 102 7.2581 −3.643 × 102 1.2287 × 101 −3.793 × 102 1.1004 × 101

f12 −2.072 × 102 3.8047 × 101 −2.743 × 102 1.0737 × 101 −2.835 × 102 8.9362 −2.609 × 102 1.3191 × 101 −2.748 × 102 9.4686
f13 −9.033 × 101 2.9759 × 101 −1.571 × 102 1.3060 × 101 −1.749 × 102 1.2035 × 101 −1.560 × 102 1.0963 × 101 −1.654 × 102 1.4522 × 101

f14 1.2313 × 103 2.8635 × 102 4.7548 × 102 1.9886 × 102 3.5539 × 102 2.2408 × 102 8.4257 × 102 3.0412 × 102 2.1266 × 102 1.6465 × 102

f15 1.3584 × 103 3.7638 × 102 9.9741 × 102 2.9524 × 102 6.8236 × 102 3.2280 × 102 1.2930 × 103 2.8935 × 102 1.0151 × 103 3.0688 × 102

f16 2.0108 × 102 1.6404 × 10−1 2.0067 × 102 3.0234 × 10−1 2.0132 × 102 2.8742 × 10−1 2.0130 × 102 3.1604 × 10−1 2.0074 × 102 2.9147 × 10−1

f17 4.5492 × 102 3.7348 × 101 3.3114 × 102 1.0234 × 101 3.2727 × 102 6.0447 3.5076 × 102 9.0782 3.2181 × 102 5.0804
f18 5.5529 × 102 5.2666 × 101 4.3184 × 102 1.3605 × 101 4.3805 × 102 7.5082 4.5445 × 102 1.1120 × 101 4.2980 × 102 6.6620
f19 5.0812 × 102 3.3968 5.0157 × 102 7.9477 × 10−1 5.0156 × 102 6.9150 × 10−1 5.0377 × 102 1.0163 5.0115 × 102 4.5671 × 10−1

f20 6.0421 × 102 3.1416 × 10−1 6.0333 × 102 5.4633 × 10−1 6.0285 × 102 5.0574 × 10−1 6.0363 × 102 2.7957 × 10−1 6.0334 × 102 5.2710 × 10−1

f21 1.0551 × 103 9.4839 × 101 1.0702 × 103 7.0293 × 101 1.1006 × 103 3.7800 × 10−1 1.1033 × 103 4.1465 × 101 1.0836 × 103 5.2855 × 101

f22 2.4726 × 103 3.7527 × 102 1.6389 × 103 3.0005 × 102 1.4895 × 103 3.4980 × 102 1.9743 × 103 3.5885 × 102 1.4281 × 103 2.2944 × 102

f23 2.5074 × 103 3.3179 × 102 2.0434 × 103 3.4324 × 102 1.7044 × 103 4.4608 × 102 2.1163 × 103 3.5285 × 102 2.0472 × 103 3.6717 × 102

f24 1.2288 × 103 5.0275 1.2160 × 103 1.9146 × 101 1.2115 × 103 6.2685 1.2202 × 103 3.6276 1.2178 × 103 5.0555
f25 1.3231 × 103 4.9373 1.3211 × 103 5.0100 1.3107 × 103 5.1177 1.3214 × 103 2.7814 1.3092 × 103 2.4628 × 101

f26 1.4041 × 103 3.8663 × 101 1.4307 × 103 6.7151 × 101 1.3919 × 103 7.3556 × 101 1.4005 × 103 5.5332 × 10−1 1.3861 × 103 4.8071 × 101

f27 1.9462 × 103 9.9494 × 101 1.8572 × 103 6.9135 × 101 1.7129 × 103 8.7656 × 101 1.8730 × 103 3.5100 × 101 1.7836 × 103 3.9799 × 101

f28 2.3872 × 103 1.3042 × 102 1.8734 × 103 2.0762 × 102 1.7500 × 103 1.1019 × 102 1.9724 × 103 1.7008 × 102 1.9112 × 103 2.4722 × 102

</=/> 23/0/5 18/0/10 16/0/12 26/1/1 −
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Table A2. Comparison of BFGO algorithm and other algorithms on CEC2013 benchmark function under 50D.

fx
BA PSO GWO SOA BFGO

Mean Std Mean Std Mean Std Mean Std Mean Std

f1 −1.383 × 103 1.8103 6.6163 × 102 1.9507 × 103 1.7472 × 103 1.8465 × 103 2.0374 × 104 5.9767 × 103 −1.096 × 103 3.2342 × 102

f2 1.0290 × 107 2.6234 × 106 6.9639 × 107 3.3532 × 107 5.5385 × 107 1.6617 × 107 1.3813 × 108 4.7348 × 107 3.9416 × 107 1.3015 × 107

f3 1.4509 × 109 1.2689 × 109 9.6740 × 1010 5.0501 × 1010 1.9432 × 1010 5.8728 × 109 4.9613 × 1010 8.9406 × 109 1.9021 × 1010 8.0204 × 109

f4 1.0877 × 105 2.8748 × 104 5.2031 × 104 1.5635 × 104 5.6337 × 104 9.5518 × 103 6.7888 × 104 8.4160 × 103 5.6341 × 104 7.4857 × 103

f5 −9.952 × 102 3.9260 × 10−1 1.2258 × 103 1.9889 × 103 −8.676 3.3203 × 102 2.4606 × 103 1.4971 × 103 −7.340 × 102 5.6941 × 101

f6 −8.238 × 102 3.8683 × 101 −5.831 × 102 1.3695 × 102 −6.070 × 102 7.5124 × 101 2.5303 × 102 3.1369 × 102 −7.070 × 102 5.2098 × 101

f7 5.9940 × 103 1.1640 × 104 −5.661 × 102 9.8719 × 101 −7.248 × 102 1.4614 × 101 -6.668 × 102 1.6613 × 101 −6.711 × 102 2.3436 × 101

f8 −6.787 × 102 4.6004 × 10−2 −6.788 × 102 3.2081 × 10−2 −6.787 × 102 3.9574 × 10−2 -6.788 × 102 3.9434 × 10−2 −6.788 × 102 4.6423 × 10−2

f9 −5.325 × 102 5.0558 −5.386 × 102 4.5053 −5.584 × 102 3.5605 -5.364 × 102 5.2949 −5.384 × 102 4.7204
f10 −4.931 × 102 1.3669 5.8897 × 102 5.6839 × 102 2.3073 × 102 2.7002 × 102 1.8301 × 103 5.3997 × 102 −3.022 × 102 4.9227 × 101

f11 7.0216 × 102 1.6976 × 102 2.4000 × 102 7.7858 × 101 −1.741 × 102 3.3734 × 101 2.0925 × 102 6.7253 × 101 8.7185 × 101 1.0942 × 102

f12 8.5553 × 102 1.8454 × 102 3.6411 × 102 1.1549 × 102 −2.296 × 101 7.7324 × 101 3.1815 × 102 7.8326 × 101 2.4418 × 102 1.4352 × 102

f13 1.1097 × 103 1.5346 × 102 5.3618 × 102 1.0069 × 102 2.1441 × 102 9.1499 × 101 4.9592 × 102 5.3566 × 101 3.6570 × 102 1.3450 × 102

f14 8.6727 × 103 6.1909 × 102 8.9854 × 103 1.0823 × 103 6.2244 × 103 1.4656 × 103 1.1741 × 104 9.0535 × 102 6.6351 × 103 1.1034 × 103

f15 9.3666 × 103 1.0530 × 103 9.9386 × 103 1.2284 × 103 1.0322 × 104 3.5891 × 103 1.3357 × 104 9.4375 × 102 1.0179 × 104 1.0865 × 103

f16 2.0365 × 102 2.7577 × 10−1 2.0272 × 102 6.7189 × 10−1 2.0388 × 102 3.6358 × 10−1 2.0401 × 102 5.6717 × 10−1 2.0262 × 102 5.5048 × 10−1

f17 2.6983 × 103 3.5116 × 102 1.1792 × 103 1.6710 × 102 6.7354 × 102 8.5138 × 101 1.2198 × 103 8.1104 × 101 8.2842 × 102 7.8580 × 101

f18 2.7289 × 103 3.2267 × 102 1.2596 × 103 1.7365 × 102 9.3555 × 102 5.0618 × 101 1.3605 × 103 1.0343 × 102 9.1815 × 102 7.0886 × 101

f19 5.7588 × 102 8.0687 2.6246 × 104 5.5941 × 104 1.3409 × 103 1.1356 × 103 3.5449 × 104 4.9445 × 104 5.5108 × 102 1.8663 × 101

f20 6.2489 × 102 2.1231 × 10−1 6.2361 × 102 8.2959 × 10−1 6.2204 × 102 9.0362 × 10−1 6.2342 × 102 7.3848 × 10−1 6.2380 × 102 6.6203 × 10−1

f21 1.6182 × 103 2.9018 × 102 1.8543 × 103 3.8333 × 102 2.9124 × 103 6.1084 × 102 4.4888 × 103 1.7404 × 102 1.8462 × 103 2.6452 × 102

f22 1.2914 × 104 1.1921 × 103 1.1209 × 104 1.0923 × 103 8.0121 × 103 1.1179 × 103 1.3705 × 104 1.0819 × 103 9.1425 × 103 1.4366 × 103

f23 1.2468 × 104 1.0566 × 103 1.2326 × 104 1.3194 × 103 1.0486 × 104 2.9243 × 103 1.4278 × 104 9.0028 × 102 1.2177 × 104 1.7124 × 103

f24 1.4731 × 103 3.9179 × 101 1.3883 × 103 1.4005 × 101 1.3106 × 103 1.2248 × 101 1.3817 × 103 1.3103 × 101 1.3708 × 103 1.3201 × 101

f25 1.4754 × 103 9.6601 1.5060 × 103 1.5542 × 101 1.4574 × 103 1.1841 × 101 1.5020 × 103 1.4279 × 101 1.4651 × 103 1.3123 × 101

f26 1.6909 × 103 1.5062 × 101 1.6429 × 103 6.4205 × 101 1.6000 × 103 3.8194 × 101 1.6669 × 103 1.1536 × 101 1.6590 × 103 1.1516 × 101

f27 3.8321 × 103 2.0766 × 102 3.2727 × 103 1.0808 × 102 2.6967 × 103 1.2526 × 102 3.3107 × 103 1.4174 × 102 3.3245 × 103 1.3656 × 102

f28 1.0205 × 104 1.0577 × 103 5.2892 × 103 2.1351 × 103 2.9264 × 103 1.1033 × 103 5.9023 × 103 9.7219 × 102 4.3700 × 103 2.3070 × 103

</=/> 20/0/8 21/1/6 13/0/17 25/1/2 −
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Table A3. Comparison of BFGO algorithm and other algorithms on CEC2017 benchmark function under 10D.

fx
BA PSO GWO SOA BFGO

Mean Std Mean Std Mean Std Mean Std Mean Std

f1 4.2293 × 105 8.5118 × 104 1.1585 × 108 3.4578 × 108 1.9774 × 106 7.0625 × 106 3.4701 × 108 2.3867 × 108 2.5290 × 104 1.9533 × 104

f2 2.0057 × 102 2.1880 1.5486 × 107 8.4716 × 107 6.4564 × 106 1.4605 × 107 4.0476 × 107 1.0966 × 108 4.8763 × 103 8.9014 × 103

f3 3.0101 × 102 3.0580 × 10−1 3.0000 × 102 5.4499 × 109 1.2754 × 103 1.2935 × 103 1.6546 × 103 1.9474 × 103 3.0115 × 102 1.1444
f4 4.0219 × 102 9.6308 × 10−1 4.1182 × 102 2.2868 × 101 4.0839 × 102 4.3872 4.4300 × 102 2.7242 × 101 4.0915 × 102 1.5054 × 101

f5 5.6011 × 102 1.7863 × 101 5.2498 × 102 1.1711 × 101 5.1177 × 102 7.4132 5.2212 × 102 7.0485 5.2665 × 102 1.1387 × 101

f6 6.3898 × 102 8.4694 6.0747 × 102 5.0815 6.0035 × 102 4.3927 × 10−1 6.0995 × 102 4.8354 6.0593 × 102 4.7531
f7 8.3113 × 102 3.3091 × 101 7.3166 × 102 1.1849 × 101 7.2683 × 102 1.0954 × 101 7.5549 × 102 1.3435 × 101 7.2469 × 102 6.4241
f8 8.4906 × 102 1.4585 × 101 8.2121 × 102 7.4713 8.1326 × 102 4.4746 8.2367 × 102 7.2746 8.1852 × 102 8.1085
f9 1.5951 × 103 3.9579 × 102 9.2195 × 102 3.4230 × 101 9.0607 × 102 1.7239 × 101 1.0042 × 103 6.7349 × 101 9.0717 × 102 1.1684 × 101

f10 2.1547 × 103 3.9922 × 102 1.7283 × 103 3.4155 × 102 1.5018 × 103 3.3580 × 102 1.7834 × 103 2.7596 × 102 1.9155 × 103 3.1717 × 102

f11 1.2084 × 103 7.4265 × 101 1.1459 × 103 2.9616 × 101 1.1213 × 103 1.1663 × 101 1.2571 × 103 7.2155 × 101 1.1571 × 103 4.8062 × 101

f12 8.3494 × 105 6.5698 × 105 1.0832 × 106 4.5495 × 106 7.4796 × 105 8.3136 × 105 3.7491 × 106 4.1740 × 106 1.3268 × 105 5.3167 × 105

f13 1.5430 × 104 1.2175 × 104 4.2316 × 103 7.9373 × 103 1.0964 × 104 7.0922 × 103 2.1674 × 104 2.1984 × 104 1.5318 × 104 1.1571 × 104

f14 3.7182 × 103 3.1837 × 103 1.4759 × 103 4.3835 × 101 2.3807 × 103 1.5995 × 103 1.6212 × 103 2.2511 × 102 1.4725 × 103 3.3370 × 101

f15 1.1571 × 104 9.4442 × 103 1.6048 × 103 8.6485 × 101 4.1679 × 103 4.0458 × 103 2.8544 × 103 1.4257 × 103 1.7594 × 103 3.0605 × 102

f16 2.0112 × 103 1.8594 × 102 1.7337 × 103 1.2692 × 102 1.6868 × 103 9.7140 × 101 1.7691 × 103 1.0430 × 102 1.7687 × 103 1.0646 × 102

f17 1.8141 × 103 6.5555 × 101 1.7714 × 103 3.8969 × 101 1.7621 × 103 3.6485 × 101 1.7770 × 103 3.7898 × 101 1.7522 × 103 3.2698 × 101

f18 1.4378 × 104 1.1066 × 104 2.2198 × 104 1.6268 × 104 2.3569 × 104 1.5890 × 104 4.1488 × 104 1.5111 × 104 2.0561 × 104 1.4616 × 104

f19 5.2659 × 103 3.0924 × 103 1.9590 × 103 5.8781 × 101 7.6128 × 103 5.9054 × 103 1.0028 × 104 7.8380 × 103 1.9604 × 103 1.1959 × 102

f20 2.1436 × 103 7.3136 × 101 2.0889 × 103 6.1595 × 101 2.0752 × 103 5.9730 × 101 2.0969 × 103 5.7679 × 101 2.0824 × 103 5.4668 × 101

f21 2.2988 × 103 7.1270 × 101 2.3170 × 103 4.0461 × 101 2.3018 × 103 3.4492 × 101 2.2033 × 103 1.6705 2.2551 × 103 6.1269 × 101

f22 2.3110 × 103 1.4069 × 101 2.3106 × 103 1.9266 × 101 2.3072 × 103 6.5405 2.8108 × 103 5.8824 × 102 2.3044 × 103 1.1164 × 101

f23 2.6821 × 103 3.0873 × 101 2.6371 × 103 1.2561 × 101 2.6155 × 103 8.3301 2.6296 × 103 1.1686 × 101 2.6364 × 103 1.8128 × 101

f24 2.7916 × 103 1.0332 × 102 2.7578 × 103 6.1950 × 101 2.7430 × 103 1.1482 × 101 2.7569 × 103 1.0514 × 101 2.7378 × 103 8.1547 × 101

f25 2.9181 × 103 6.5990 × 101 2.9385 × 103 3.5059 × 101 2.9338 × 103 1.6730 × 101 2.9349 × 103 1.4572 × 101 2.9445 × 103 3.3154 × 101

f26 3.4224 × 103 3.9858 × 102 3.0388 × 103 1.3173 × 102 2.9442 × 103 1.9990 × 102 3.2888 × 103 4.8915 × 102 3.0242 × 103 2.0469 × 102

f27 3.1578 × 103 3.9004 × 101 3.1101 × 103 2.2392 × 101 3.0979 × 103 9.0433 3.0940 × 103 2.5020 3.0910 × 103 3.3723 × 101

f28 3.2206 × 103 7.9718 × 101 3.3422 × 103 1.3226 × 102 3.3913 × 103 5.1933 × 101 3.2515 × 103 1.0093 × 102 3.2425 × 103 5.8119 × 101

f29 3.3214 × 103 1.2027 × 102 3.2174 × 103 4.7685 × 101 3.1853 × 103 4.5780 × 101 3.1903 × 103 3.2599 × 101 3.2467 × 103 6.0966 × 101

f30 4.4106 × 104 5.0891 × 104 1.4518 × 106 1.7254 × 106 5.1162 × 105 6.5062 × 105 1.2757 × 105 1.7577 × 105 1.8622 × 104 5.3608 × 104

</=/> 24/0/6 20/0/10 16/0/14 24/0/3 −
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Table A4. Comparison of BFGO algorithm and other algorithms on CEC2017 benchmark function under 50D.

fx
BA PSO GWO SOA BFGO

Mean Std Mean Std Mean Std Mean Std Mean Std

f1 2.5996 × 107 2.9346 × 106 5.2824 × 109 5.7281 × 109 5.5419 × 109 2.9747 × 109 3.3474 × 1010 8.0725 × 109 7.4546 × 108 6.4551 × 108

f2 2.0360 × 1018 4.4725 × 1018 5.6044 × 1071 3.0696 × 1072 1.1665 × 1051 4.4867 × 1051 8.9101 × 1062 3.2693 × 1063 4.0636 × 1051 2.2239 × 1052

f3 1.4364 × 105 4.8168 × 104 8.6954 × 104 3.4116 × 104 1.1160 × 105 1.8904 × 104 1.2009 × 105 1.7223 × 104 9.5425 × 104 1.7171 × 104

f4 5.5308 × 102 5.9032 × 101 1.4340 × 103 8.0630 × 102 9.3657 × 102 2.2268 × 102 3.4781 × 103 1.2856 × 103 7.7404 × 102 1.0894 × 102

f5 1.1093 × 103 1.2335 × 102 8.8483 × 102 4.7980 × 101 7.1229 × 102 4.9750 × 101 9.1724 × 102 5.2095 × 101 8.3948 × 102 5.5701 × 101

f6 6.9040 × 102 8.7596 6.5982 × 102 6.6482 6.1370 × 102 3.5955 6.6170 × 102 7.0973 6.5589 × 102 9.3846
f7 2.8054 × 103 2.4397 × 102 1.5680 × 103 1.3551 × 102 1.0441 × 103 7.5877 × 101 1.5758 × 103 9.8844 × 101 1.1553 × 103 8.6659 × 101

f8 1.4327 × 103 9.8047 × 101 1.1784 × 103 5.9460 × 101 1.0033 × 103 3.1279 × 101 1.2231 × 103 3.5670 × 101 1.1470 × 103 5.7759 × 101

f9 3.6998 × 104 8.4008 × 103 1.3080 × 104 2.7610 × 103 5.4608 × 103 2.4573 × 103 2.1399 × 104 4.4859 × 103 1.2223 × 104 3.5224 × 103

f10 9.1541 × 103 9.9009 × 102 9.6018 × 103 1.0159 × 103 7.9802 × 103 2.5234 × 103 1.2672 × 104 1.3785 × 103 8.9844 × 103 1.2649 × 103

f11 1.4787 × 103 8.7459 × 101 1.8884 × 103 4.9847 × 102 3.7474 × 103 1.5741 × 103 6.5202 × 103 2.1345 × 103 1.8712 × 103 2.3450 × 102

f12 7.0553 × 107 3.5334 × 107 2.3810 × 109 2.6378 × 109 7.3794 × 108 9.1607 × 108 5.3287 × 109 2.1329 × 109 2.2972 × 108 2.7394 × 108

f13 2.4616 × 106 4.9332 × 105 1.3173 × 109 2.3459 × 109 1.2681 × 108 1.3877 × 108 1.2046 × 109 1.3709 × 109 5.1631 × 105 3.7632 × 105

f14 1.4477 × 105 7.5507 × 104 1.1591 × 106 2.0245 × 106 6.5289 × 105 5.0739 × 105 1.4236 × 106 9.6042 × 105 5.6328 × 105 5.0871 × 105

f15 8.3509 × 105 1.9403 × 105 7.4841 × 107 3.2644 × 108 1.2036 × 107 1.4955 × 107 6.3604 × 107 5.1677 × 107 1.0734 × 105 1.1059 × 105

f16 4.8433 × 103 6.2042 × 102 3.9830 × 103 4.8984 × 102 3.1431 × 103 3.9416 × 102 4.2678 × 103 4.8146 × 102 4.0669 × 103 5.1607 × 102

f17 4.0175 × 103 4.6202 × 102 3.8427 × 103 3.7463 × 102 2.9043 × 103 4.2594 × 102 3.6441 × 103 3.6229 × 102 3.5526 × 103 3.8962 × 102

f18 1.7657 × 106 1.0588 × 106 7.3006 × 106 1.3247 × 107 5.2799 × 106 4.1014 × 106 7.5737 × 106 6.1990 × 106 3.0399 × 106 2.2408 × 106

f19 5.0522 × 106 2.5594 × 106 3.4389 × 107 1.5369 × 108 3.1693 × 106 6.9178 × 106 6.1074 × 107 1.8552 × 108 6.3622 × 105 9.1839 × 105

f20 3.8384 × 103 4.0362 × 102 3.3310 × 103 3.3364 × 102 2.9993 × 103 3.2801 × 102 3.5795 × 103 3.7528 × 102 3.5222 × 103 3.0390 × 102

f21 3.0118 × 103 1.0722 × 102 2.7035 × 103 6.8215 × 101 2.5003 × 103 2.2103 × 101 2.7309 × 103 4.5679 × 101 2.7083 × 103 7.6226 × 101

f22 1.1129 × 104 9.9276 × 102 1.1279 × 104 1.1399 × 103 9.9172 × 103 2.0693 × 103 1.4385 × 104 1.0818 × 103 1.0522 × 104 7.8315 × 102

f23 4.0802 × 103 1.7815 × 102 3.4727 × 103 1.1112 × 102 2.9834 × 103 9.8832 × 101 3.2475 × 103 6.7624 × 101 3.4397 × 103 2.5472 × 102

f24 4.2572 × 103 1.2529 × 102 3.7247 × 103 1.6005 × 102 3.1374 × 103 9.8964 × 101 3.3203 × 103 4.5576 × 101 3.7152 × 103 1.6440 × 102

f25 2.9957 × 103 4.4782 × 101 3.5564 × 103 6.4807 × 102 3.4140 × 103 1.5436 × 102 5.2906 × 103 8.1324 × 102 3.2062 × 103 8.0942 × 101

f26 1.5330 × 104 2.7522 × 103 1.0359 × 104 1.5911 × 103 6.3828 × 103 1.0589 × 103 8.5240 × 103 5.4931 × 102 8.7267 × 103 3.0592 × 103

f27 4.0892 × 103 1.0635 × 103 4.0757 × 103 2.7373 × 102 3.5532 × 103 8.1559 × 101 3.8512 × 103 1.8150 × 102 3.2213 × 103 5.3457 × 101

f28 3.3000 × 103 5.7224 × 10−5 5.1795 × 103 2.2277 × 103 3.9701 × 103 3.4515 × 102 9.0966 × 103 1.3974 × 103 3.5687 × 103 1.8689 × 102

f29 6.2416 × 103 7.1671 × 102 6.2585 × 103 7.2500 × 102 4.4561 × 103 3.2569 × 102 6.5129 × 103 7.1693 × 102 6.0243 × 103 7.8572 × 102

f30 5.4560 × 107 7.6516 × 106 5.6907 × 107 1.1099 × 108 1.2225 × 108 4.0766 × 107 2.2969 × 108 1.1178 × 108 1.1685 × 107 1.3323 × 107

</=/> 21/0/9 26/0/2 14/0/16 27/0/3 −
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