
1

Energy Efficient Cooperative Computing in
Mobile Wireless Sensor Networks

Zhengguo Sheng, Member, IEEE, Chinmaya Mahapatra, Student Member, IEEE,

Victor C.M. Leung, Fellow, IEEE, Min Chen, Senior Member, IEEE, Pratap Kumar Sahu, Member, IEEE,

✦

Abstract—Advances in future computing to support emerging sensor

applications are becoming more important as the need to better utilize

computation and communication resources and make them energy

efficient. As a result, it is predicted that intelligent devices and networks,

including mobile wireless sensor networks (MWSN), will become the

new interfaces to support future applications. In this paper, we pro-

pose a novel approach to minimize energy consumption of processing

an application in MWSN while satisfying a certain completion time

requirement. Specifically, by introducing the concept of cooperation,

the logics and related computation tasks can be optimally partitioned,

offloaded and executed with the help of peer sensor nodes, thus the

proposed solution can be treated as a joint optimization of computing

and networking resources. Moreover, for a network with multiple mobile

wireless sensor nodes, we propose energy efficient cooperation node

selection strategies to offer a tradeoff between fairness and energy

consumption. Our performance analysis is supplemented by simulation

results to show the significant energy saving of the proposed solution.

Index Terms—Edge and cloud computing, mobile wireless sensor

networks, Cooperation

1 INTRODUCTION

C LOUD computing [1]–[3] has been proposed as an effi-

cient and cost effective way of providing highly scalable

and reliable infrastructures and services. The key idea of

cloud computing is to create a pool of shared, visualized,

dynamically configurable and manageable resources across

computing devices, networks, servers and data centers, which

can deliver on demand services to users over the Internet

[4]. However, existing cloud computing models are designed

for traditional web applications, rather than future Internet

applications running on various mobile and sensor nodes.

Particularly as we go to the era of Internet of Things (IoT)

with one trillion endpoints worldwide, that creates not only

• This work was supported by the Start-Up Fund from the University of

Sussex, UK, and in part by the Canadian Natural Sciences and Engineering

Research (NSERC), the NSERC DIVA Strategic Research Network.

• Z. Sheng is with School of Engineering and Informatics, University of

Sussex, UK. E-mail: z.sheng@sussex.ac.uk

• C. Mahapatra and V. Leung are with the Department of Electrical and

Computer Engineering, University of British Columbia, Canada.

E-mail: {chinmaya,vleung}@ece.ubc.ca

• M. Chen is with Huazhong University of Science and Technology.

E-mail: minchen2012@hust.edu.cn

• P. Sahu is with Department of Computer Science and Operation Research,

University of Montreal. E-mail: sahupk@iro.umontreal.ca

a real scalability problem but the challenge of dealing with

complex clusters of endpoints, rather than dealing with in-

dividual endpoints. Moreover, public clouds, as they exist in

practice today, are far from the idealized utility computing

model, since it makes their network distance too far from

many users to support highly latency-sensitive applications.

This is particularly true for applications that are developed for

a particular provider’s platform and running in data centers

that exist at singular points in space.

In contrast to the cloud, edge computing [5], which runs

generic application logic on resources throughout networks,

including routers and dedicated computing nodes, has attracted

a lot of attention and been considered as a complementary

of cloud computing to distribute intelligence in networks, and

allows its resources to perform low-latency processing near the

edge while latency-tolerant, large-scope aggregation can still

be efficiently performed on powerful resources in the core of

the cloud.

In a simple, topological sense, edge computing works in

conjunction with cloud computing, optimizing the use of

their resource. Users can subscribe services via the cloud

computing platform which can offer diverse storage and com-

putation capabilities from both central server and distributed

nodes, respectively. Today, with the development of wireless

technologies and embedded processor, the edge computing

capability can be largely extended to a broad range of wireless

devices, such as smartphone and wireless sensor nodes, to

support flexible services.

Particularly, wireless sensor nodes, which are commonly

with a radio transceiver and a microcontroller powered by a

battery, as well as diverse novel sensors, are in the creation

of imaginative pervasive computing applications. We have

already witnessed that smartphones, such as iPhone and An-

droid, can replace a normal desktop or a server running a dual

core processor for computation [6], [7]. Moreover, the recent

advancement of small size and low cost sensor platforms such

as WRTnode1 and Arduino [8], which can offer CPU clock

speeds of up to 600 MHz and low power IEEE 802.11/15.4

radios, are capable of connecting external sensors (e.g., camera

sensor, thermal sensor, heartbeat sensor, air pollution sensor,

etc.) to support attractive lightweight sensing applications

1. WRTnode is an open source development board with a wireless controller
based on OpenWrt. It is suitable for speech/video recognition, Open CV and
Machine Learning, etc. http://wrtnode.com/.

2

Enterprise cloud (distributed servers, data centers, etc.)

Mobile computing (smart phones, tablets, etc.)

Sensor computing (WSN, etc.)

erp cloud (distributed servers, dat

ssmart ssmart

prrriiiiiissssseeeee cloud (distributed servers

Mobile Mobile computing computing (s(s

Mobile wireless sensor networks

Response

Wi-Fi

Ethernet

Fig. 1. Evolution from cloud computing to edge computing

in various domains, such as environmental monitoring [9],

social networking [10], healthcare [11] and transportation

[12], etc. In addition to the development of efficient software

[13] and communication protocols, e.g., Constrained Applica-

tion Protocol (CoAP) [14], [15], the formed wireless sensor

networks can truly enable the newly emerging Sensor-as-a-

Service (SaaS) paradigm. Another motivation to leverage the

sensor-based computing infrastructure is that IoT applications

are rapidly developed in a number of areas, ranging from

personal devices to industrial automations. The existing cloud

infrastructure can benefit from significant energy savings by

offloading tasks to powerful sensor nodes. We believe that

such an emerging dissemination of wireless sensor networks

and cloud computing can bring new opportunities of sensor

and cloud integration, which will facilitate clients to not

only monitor and collect data from the environment, but

also execute and output sensor applications using their own

processing capabilities. Fig. 1 gives our prediction of cloud

computing evolution to a large scale and distributed Sensor-

as-a-Service (SaaS) infrastructure.

There have been a number of technical challenges to build

such a sensor-based computing infrastructure. In particular,

the biggest hurdle to harness sensor nodes for computing

is the battery life. In this paper, we investigate fundamental

characteristics of MWSN computing in terms of energy effi-

ciency and propose a novel approach to optimize total energy

consumption of processing an application, while satisfying

a certain completion deadline requirement. Specifically, we

firstly introduce the concept of cooperative computing which

encourages single nodes to share their resources cooperatively

such that a virtual resource pool can be constructed. Fig. 1

also shows an example of the cooperative computing serving

client service requests from outside world. Moreover, by

assuming the application profile with a limited size of input

data and a completion deadline, the proposed solution can

jointly consider computation and communication costs as a

whole, and optimally partition, offload and execute workload

between sensor nodes to boost energy efficiency of the edge

computing. Based on these analytical results, we further

propose energy efficient cooperation strategies for resource

allocation in networks with multiple sensor nodes.

The following summarizes our contributions and key results:

• We introduce mathematical models to characterize appli-

cation profile, computation and communication energy.

Especially, the derived closed-form solution of energy

consumption is highly related to the input data size and

completion deadline. Moreover, by considering the mo-

bility nature of MWSN, the proposed solution can ensure

the energy performance with minimum transmission time.

• We propose an optimal partition to minimize the total

energy consumption required by local and remote sensor

nodes in cooperative computing under static channel

model to satisfy a given deadline requirement. Further-

more, an offloading decision rule is defined to indicate

the best computing strategy. Moreover, under the optimal

partition, our analysis shows that the required energy

consumption of a remote node (helper) is always smaller

than that of a local node, a result which lays a foundation

to encourage the cooperative behaviors which means that

the helping part only needs to spend relatively small

amount of energy than the one seeking help from others.

• By utilizing the optimal results, we propose energy ef-

ficient cooperation node selection strategies to achieve

fairness and maximal energy saving in a multi-node

environment, and analyze node’s “willingness” to co-

operate when selfish and unselfish natures are imposed

to individuals. Simulation results are supplemented to

illustrate the significant energy savings of the proposed

strategies in providing reliable services.

This paper is organized as follows. The literature review

of related work is given in Section 2. The system model and

problem formulation are introduced and derived in Section

3. The optimal cooperative computing scheme is presented

and analyzed in Section 4. The energy efficient cooperation

node selection strategies are proposed in Section 5. Simulation

results are provided in Section 6. Finally, concluding remarks

3

are given in Section 7.

2 RELATED WORK

Cloud computing has been intensively investigated based

on off-the-shelf cloud infrastructures, such as resources/traffic

optimization of backhaul networks [16], services admission

control [17] and scheduling [18], and pricing strategies of

using commerce cloud services [19], [20], etc. However, exist-

ing cloud computing models are designed for traditional web

applications, rather than future Internet applications running

on various mobile and sensor nodes.

Due to the emerging development of mobile Internet, more

recent works show great interests in dealing with mobile

applications in the context of cloud computing. Some state-

of-art literature [3], [21] in mobile cloud computing (MCC)

reveal that the energy issue is one of the major challenges. The

issue of energy efficiency in future computing has also been

extended to the sensor cloud computing. Alamri et al. in [22]

provide a comprehensive survey of sensor cloud architecture,

approaches and applications. Perera et al. in [23] propose

a middleware design for IoT and balance the computation

and communication energy between sensor nodes and cloud

servers. Yuriyama et al. in [24] propose the concept of virtual

sensors by collecting different vertical application data into

a single horizontal platform which can behave as a sensor

node to reduce extra communication between networks. There

are also sensor cloud applications in body sensor networks

[25] and truck monitoring [26], etc. Although various sensor

cloud schemes have been developed to increase bandwidth

efficiency, the sensor nodes are usually assumed as data

collecting points and there is lack of understanding of their

processing capability and the potential benefits of being a

computing node.

As a contrary, edge computing [27], [28] has been consid-

ered to provide computing, storage, and networking services

between end devices and traditional Cloud Computing data

centers, typically, but not exclusively located at the edge of

network. A comparable concept has also been proposed by

Cisco with the name of fog computing [29]. Since mobile

sensor nodes now rival many PCs in terms of computational

power [6], they have the opportunity to talk directly to

one another when possible and handle much of their own

computational tasks. Moreover, an emerging wave of sensor

applications, requires mobility support and geo-distribution

in addition to location awareness and low latency. In our

preliminary study [30], we have already developed a prototype

to connect an On-board diagnostics (OBD) sensor device to

the cloud via smart phone, where the data analysis engine can

be deployed in either smart phone or cloud, depending on the

size of the processing data and service requirements. A similar

concept of crowd computing [31] has also been proposed to

bring together the strengths of crowdsourcing, automation and

machine learning.

In this paper, our contribution is to further leverage the

computation capability of sensor nodes into computing and

consider a joint optimization of both computation and commu-

nication energy across mobile wireless sensor nodes to transfer

and process sensor data and disseminate results to appropriate

parties. To the best of our knowledge, this is the first work that

considers sensor node as a service and realizes cooperative

computing in MWSN.

3 SYSTEM MODEL AND ENERGY FORMULA-
TION

In this section, we introduce the application model, its exe-

cution on sensor node and transmission over wireless channel.

Specifically, the energy consumption of both computation and

communication are formulated.

3.1 Application Model

We consider the cooperative computing in which each

sensor node can execute lightweight applications with the help

of peer sensor nodes. In order to characterize an application,

a canonical model [32] that captures the essentials of a

typical application is considered and can be abstracted into

the following two parameters:

• Input data size L: the total number of data bits as the input

of an application. Such input data can be partitioned and

offloaded to a peer sensor node for remote processing and

execution [33].

• Application completion deadline T : the maximum num-

ber of time slots that an application must be completed.

t is the discrete time index ranging from t = 1 to t = T .

It is worth noting that an application is a program that

performs a computation on an input file, such as calculating the

number of violate data from a period of history record. Similar

to the model applied in MapReduce [34], we consider that an

application can be breakable into tasks which do not exhibit

dependencies across partitions of its input. We assume that

all sensor nodes are capable of executing a same application

without need to transfer executable files for operation, thus

only the input partitions are transmitted to other sensor nodes

for parallel executions. Although there are cases that some

tasks cannot be broken into smaller pieces and can only be

executed on a single node due to the dependencies in its input,

there are still concurrency benefits when many such tasks are

executed in batches.

The energy consumption of an application is highly related

to these two parameters. For example, with a large size of input

data and stringent completion deadline, a sensor node may

consume extensive energy. In the following, we denote such

an application as A(L, T) and use it to characterize the energy

consumption of computation and communication, respectively.

3.2 Computation Energy Consumption

The energy consumption of computation is directly deter-

mined by the CPU workload of an application. According

to [35], the workload can be measured by the number of

required CPU cycles, which is related to the input data size

and computation complexity, and is defined as

W = LX , (1)

4

where W is the total number of required CPU cycles, L is

the input data size and X is the computation algorithm. It is

noted that with a same size of input data, the required cycle

demands often vary greatly, which depend on the nature of

applications [36], e.g., applying an input data to calculate the

average and factorial show distinct computation complexities.

In the existing literature [36]–[38], X has been shown as a

random variable and can be modeled by a Gamma distribution

which is commonly used to model service times [39], and has

been shown to work well in characterizing the distribution of

CPU cycle demands [32], [37].

Although a number of factors consume CPU power, such

as short circuit power and dynamic power, etc., the energy

consumption is dominated by dynamic power which can be

minimized by configuring the clock frequency of the chip via

the Dynamic Voltage Scaling (DVS) technology2 [40]. As a

result, the total energy consumption of computation is given

by

Ec =

W∑

w=1

ǫc(w) =

W∑

w=1

κf2
w , (2)

where ǫc is the computation energy per operation cycle, κ
is the effective switched capacity determined by the chip

architecture and fw is the clock-frequency which is scheduled

in the next CPU cycle given the number of w CPU cycles

have been completed.

A careful reader may notice that the CPU can reduce its

energy consumption by scheduling low clock frequency. How-

ever, as a practical implementation, the application has to meet

a completion deadline. Without deadlines, there is no particular

reason to complete any given task by a certain time. We use

the soft deadline to characterize probabilistic performance, that

is, the statistical CPU scheduling model [32] which assumes

the application completion needs to meet its deadline with the

probability p by allocating Wp CPU cycles. The parameter p is

the application completing probability (ACP). In other words,

the probability of an application requires no more than the

allocated Wp should satisfy FW (Wp) = Pr[W ≤ Wp] ≥ p.

This soft real-time scheduling integrated with DVS has been

shown its effectiveness in saving energy without substantially

affecting application performance [36].

According to (1), since W is a linear function of X , we

can obtain Wp = LF−1
X (p), where F−1

X (p) is the inverse

cumulative distribution function of X . Therefore, the total

energy consumption can be derived as

Ec = κ

Wp∑

w=1

F c
W (w)f2

w , (3)

where F c
W (w) is the complementary cumulative distribution

function (CCDF) that the application has not completed after

w CPU cycles. Since the Gamma distribution is exponentially

tailed, the CCDF can be assumed as F c
W (w) ∼ µe−νw for

2. DVS is commonly used to save CPU energy by adjusting the speed
based on required cycle demands. It exploits an important characteristic
of Complementary Metal Oxide Semiconductor (CMOS)-based processors:
When operation is at low voltage, the clock frequency scales as a linear
function of the voltage supply. The energy consumed per cycle is proportional
to the square of the voltage.

some constants µ > 0 and ν > 0. It is noted that with w → ∞,

the probability goes to 0, which means it is unlikely that an

application cannot be completed with a large number of CPU

cycles.

Theorem 3.1 [32]: For the optimal clock-frequency schedul-

ing in each CPU cycle (fw) and the deadline requirement

(
∑Wp

w=1 1/fw ≤ T), the minimum computation energy can

be derived as

E∗
c =

κ

T 2
{

Wp∑

w=1

[F c
W (w)]1/3}3, and also has E∗

c ∼ L3.

Simplifying the above result, we have the optimal computation

energy as

Ec =
KL3

T 2
. (4)

where K is a constant factor determined by κ and p. The result

tells that allocating a smaller size of input data or relaxing the

deadline can achieve better computational energy efficiency,

which means that a sensor node can prefer to execute delay

tolerant applications or offload more tasks to peer node, in

order to save its own computation energy.

3.3 Communication Energy Consumption

When a sensor node considers to offload its tasks to a peer

node, the energy consumption is determined by the number of

bits being transmitted over wireless channel.

The energy consumption of communication is determined

by the current draw of the electrical circuits that implements

the physical communication layer. In practice, it includes idle,

transmit and receive modes. According to the specifications

of IEEE 802.11n [41] or IEEE 802.15.4 [42], [43], the energy

consumption of a wireless sensor node is dominated by the

transmit or receive modes, and has their costs are approxi-

mately the same. So we consider the communication energy

including both transmission and reception of processing tasks,

and do not consider the small output results3 from the node.

The communication cost is characterized by the empirical

transmission energy model [45], and the required energy Et to

transmit L bits is governed by a convex monomial function4

Et = ρ
Ln

g
. (5)

where ρ denotes the energy coefficient, g denotes channel state

and n denotes the order of monomial with value 1 ≤ n ≤ 5.

According to [45], the choice of n depends on the bit scheduler

policy. With an increasing value of n, the scheduler more

prefers to transmit equal number of bits at every time slot

regardless of the channel state. However, in this paper, we

consider the optimal case of n = 1 which is called one-shot

policy [47], in which the transmission only depends on the

channel state and is completed in one time slot. There are

3. This is a reasonable assumption for sensor computing where most of
sensor based applications come with simple results of warning or image
detection indication [44], etc.

4. Although the monomial cost does not hold for operation at capacity in
AWGN channel, there is a practical modulation scheme to well approximate
by a monomial [46].

5

several reasons for applying this scenario: First, for energy

constrained sensor node, it may not be desirable to split

a single data across multiple time slots because of extra

energy consumed by a large overhead associated with each

slot. Second, since we impose a deadline to complete an

application, the transmission time should be relatively small

compared to T , such that the time offset between local and

remote executions can be negligible. Third, in MWSN, the

transmission time over the air should be minimized to avoid

channel fluctuation caused by node mobility. In order to ensure

the optimal performance of the policy, the scheduler should

be opportunistic, that is, to offload tasks to a peer node with

good channel quality. The scheduling policy has been proved

its effectiveness in combating channel fading [6].

4 ENERGY OPTIMIZATION FOR COOPERATIVE

COMPUTING

Our interest is to find an optimal partition to minimize

the total energy consumption of processing an application

given that a target completion deadline T is satisfied by using

cooperative computing, and can be formulated as

min
ll,lr

El
c(ll, t) + Et(lr, gl,r)

︸ ︷︷ ︸

local energy cost

+Er(lr, gr,l) + Er
c (lr, t)

︸ ︷︷ ︸

remote energy cost

s.t. ll + lr = L

t ≤ T . (6)

• El
c and Er

c denote the local and remote computation

energy consumption, and Et and Er denote transmission and

reception energy consumption, respectively.

• ll and lr are partitioned input data size for local and

remote processing. A symmetric channel is assumed between

local and remote sensor nodes and has channel gain gl,r = gr,l.
A completion deadline T is considered to ensure Quality-as-

Service.

Theorem 4.1: The optimal input data partition to minimize

the total energy consumption of processing an application

A(L, T) in MWSN, is given by

l∗l =
L

2
+

β

6αL
, l∗r =

L

2
− β

6αL
, (7)

The corresponding minimum total energy consumption is

Etotal(l
∗
l , l

∗
r) =

αL3

4
+

βL

2
− β2

12αL
. (8)

where α = K
T 2 , β = 2ρ

gl,r
, K denotes the computation

coefficient, ρ denotes communication coefficient of wireless

channel and gl,r is the channel gain.

Proof : See Appendix A. �

In general, we find that the minimum total energy consump-

tion can be achieved by optimally partitioning, offloading and

executing the input data via cooperative computing, which can

be determined by the application profile, hardware configura-

tions of sensor nodes and wireless channel conditions. In the

following, we further investigate the individual behaviors of

the optimal partition and analyze how the system parameters

affect the overall performance.

Proposition 4.2: The size difference of the optimal input

data between local and remote executions is

diff(L, T,K, ρ, gl,r) =
2ρT 2

3gl,rKL
. (9)

Proof : The result follows (7) and has diff = β
3αL . Using

α = K
T 2 and β = 2ρ

gl,r
into the result leads to (9). �

In essence, we can observe that the optimal partition highly

depends on system parameters. Specifically, the local execution

is preferable when (9) tends to increase (i.e., small data size

L, long completion deadline T , high transmission cost ρ, low

computation cost K or high channel loss gl,r). Otherwise, the

remote execution is preferable.

Result 4.3: By defining the application processing speed

as υ = L
T , we have the equivalent energy optimal computing

rules

Local computing, if 0 < υ ≤
√

2ρ
3Kgl,r

Cooperative computing, if
√

2ρ
3Kgl,r

< υ ≤
√

2ρ√
3Kgl,r

Cloud computing, if
√

2ρ√
3Kgl,r

< υ

(10)

Proof : According to (7), since L
2 ≤ l∗l ≤ L, we should

have 0 ≤ β
6αL < L

2 for data offload. Thus, the lower bound

of application processing speed can be achieved as

L

T
>

√

2ρ

3Kgl,r
. (11)

when β
6αL ≥ L

2 , only the local computing is applied. Fur-

thermore, considering the cloud computing case where sensor

nodes only collect and transmit input data to an enterprise

cloud server via gateway for execution, we obtain the upper

bound condition of using cooperative computing from (5) and

(8) as

Etotal(l
∗
l , l

∗
r) ≤ Et ⇒

αL3

4
≤ β2

12αL
⇒ L

T
≤

√

2ρ√
3Kgl,r

.

(12)

�

We observe that when the application prefers cooperative

computing, it can always achieve better energy efficiency than

the local computing case. Moreover, the cloud computing is

only applied when high processing speed is required.

Proposition 4.4: For cooperative computing, the bound

performance of computation to communication energy ratio

of local and remote nodes are

El
c

Et
≥ Kgl,r

4ρ
υ2 ≥ Er

c

Er
. (13)

Proof : See Appendix B. �

The result tells that the proposed optimal solution can best

achieve the local computation energy and have the minimal

energy ratio. Assuming the application processing speed can

be closed to its lower bound in (11), the local computation

energy can be achieved as close as 1/6 of transmission energy,

which is promising to show the advantage of using cooperative

computing in MWSN. Such ratio can be higher, depends on

the preference of application processing strategy and system

6

1 1.5 2 2.5
67

67.5

68

68.5

69

69.5

Density of nodes (λ)

E
x
p

e
c
te

d
 t

o
ta

l
e

n
e

rg
y
 c

o
m

s
u

p
ti
o

n
 (

E
to

ta
l)

(µ
J
)

Simulation result

Numerical analysis

path−loss a=4

path−loss a=3

path−loss a=2

Fig. 2. Comparison of optimal energy consumption be-

tween simulation and numerical analysis: L = 1024bits,

T = 20ms, ρ = 0.006 and K = 10−10

parameters. Moreover, the cooperative computing can also

help reduce the remote computation energy. Especially, with

fewer offloading bits, the remote computation energy decreases

at a faster pace than the communication energy. The upper

bounded is govern by the system parameters and maximum

number of bits can be offloaded. The result is useful when

selfish nature is imposed to individuals, because reducing the

energy consumption for helping nodes can largely improve

their willingness of cooperation.

In addition to the individual performance, we also provide

an analytical result to characterize the average performance

of the optimal solution. We assume that sensor candidates are

randomly located in space according to a Poisson point process

with density λ. An application initial node (IN) will choose

the best cooperation node (CN) to achieve the minimum total

energy among all available candidates. A network with a

higher density of sensor nodes can have better choices to select

CN.

We consider a simple channel model where gi,j between

the nodes i and j is modelled as gi,j = 1/dai,j , where di,j
is the distance between the nodes i and j, a is the path-

loss exponent and usually characterized as an integer value

a ≥ 2. Given the identical system parameters (i.e., K and

ρ), the selected CN distance to achieve the minimum Etotal

will be as close as possible to the IN. We let r∗ be a random

variable of the selected CN distance to the IN, and r denote the

distance between the closest CN and the IN. The probability

distribution function of r is given by

Pr[r∗ < r] = 1− Pr[r∗ ≥ r]

= 1− Pr[Nr = 0] = 1− e−λπr2 , (14)

where Nr is the number of CN within distance r from the

IN. The probability density function (pdf) of the selected CN

distance is

f(r) = 2λπre−λπr2 , r ≥ 0 (15)

According to (8) and (15), the expected value of the optimal

energy consumption is

E [Etotal] = 2λπ

∫ ∞

0

(
αL3

4
+ ρLra − ρ2r2a

3αL

)

re−λπr2dr

=2λπ[

∫ ∞

0

αL3

4
re−λπr2dr +

∫ ∞

0

ρLra+1e−λπr2dr

−
∫ ∞

0

ρ2r2a+1

3αL
e−λπr2dr]

=

αL3

4 + ρLa!!

2
a+1
2 (λπ)

a−1
2

√
1
λ − ρ2a!

3αL(λπ)a , if a is odd

αL3

4 +
ρL(a

2
)!

(λπ)
a
2
− ρ2a!

3αL(λπ)a , if a is even

(16)

where !! is the double factorial and have a!! =
∏(a+1)/2

i=1 (2i−
1). Fig. 2 illustrates the optimal energy comparison of the

simulation result and numerical analysis (16) under different

path-loss exponents. We can learn from the result is that with

an increasing value of λ, there is a better chance to select a

well positioned sensor node to improve the energy efficiency

of the proposed solution. Moreover, with a higher loss of

the channel, the optimal solution tends to local computing,

which increases the energy consumption. In the following, we

focus on a multi-node scenario and design energy efficient CN

selection strategies.

5 ENERGY EFFICIENT COOPERATION NODE

SELECTION STRATEGIES IN MWSN

In this section, we consider a more general network setting

where multiple nodes co-exist and cooperate with each other

by acting as CN in cooperative computing.

We are interested in finding a strategy that each application

initial node (IN) determines which node to select as the CN

for the maximal energy efficiency in the multi-node environ-

ment. It is noted that CN selections affect the overall energy

consumption, since the optimal energy cost depends upon the

application requirement, sensor hardware configuration and

channel condition of the selected CN. In the following, we

summarize the system parameters and assumptions for the

multi-node environment.

• The network consists of a set of nodes N = {1, ..., n},

where each node i ∈ N processes a number of application

tasks over time. For simplicity, we assume all tasks have

the same application profile A(L, T), though it is straight-

forward to derive CN selection rules in a more general

setup. We also assume that time is divided into discrete

time slots.

• One sensor node can only execute one application task

at a given time slot and we do not consider multi-tasking

scenarios.

• We denote by EIN
i,j(t) the energy cost of a node i given

that the node j is chosen as the CN at time t for

cooperative computing. Meanwhile, the energy cost of

the CN j is denoted as ECN
i,j (t). We assume that the node

i and j follow the optimal partition given by (7) for each

7

executions, and both computation and communication

energy can be estimated by (4) and (5), respectively.

• When node i uses local computing at time t, we denote

its energy cost as EL
i (t).

• Energy consumption of a node Ei(t1 : t2) during a time

interval [t1 : t2] is the sum of node i’s execution energy

either as IN or CN, and communication energy either

transmission or reception over all t ∈ [t1, t2] (we assume

a node consumes zero-energy at t if it is neither an IN

or a CN at t).
• We denote Ri(t) as the set of the nodes (except node i)

which can achieve energy saving compared to the local

computing, for processing node i’s application at time t,
i.e., Ri(t) = {j ∈ N − {i}|EIN

i,j(t) + ECN
i,j (t) < EL

i (t)}.

5.1 Minimum total energy CN selection

Our first CN-selection strategy makes use of the result in

previous section in a straightforward manner:

Min-Total-Energy-Strategy: A CN is selected for node i at

time t such that

CNi(t) = arg min
j∈Ri(t)

{EIN
i,j(t) + ECN

i,j (t)}.

In other words, for each processing task from node i, a CN

j is selected, which minimizes EIN
i,j(t)+ECN

i,j (t) among those

in Ri(t). If Ri(t) = ∅, CNi(t) = null.
Result 5.1: For a given time interval of [t1, t2], the total energy

consumption of MWSN
∑

i∈N Ei[t1, t2] is minimized if each

i is assigned a CN at each time by the Min-Total-Energy-

Strategy, i.e., CNi(t) = argminj∈Ri(t) E
IN
i,j(t) + ECN

i,j (t).
Proof : Since we only consider the total energy consumption,

the whole cooperative computing process can be scheduled

into several rounds and each node can only process no more

than one application task in each round. Since any assignment

CNi is injective in each round, for any two nodes i and k,

Si ∩ Sk = ∅, and ∪i∈NSi ⊆ N , where Si is a set of IN

whose CN is i. Therefore, the total energy consumption in

each round
∑

i∈N Ei =
∑

i∈N (EIN
i,j+

∑

j∈Si
ECN

j,i) can be re-

written as
∑

i∈N EIN
i,j+

∑

i∈N

∑

j∈Si
ECN

j,i =
∑

i∈N EIN
i,CNi

+
∑

j∈N ECN
j,CNj

=
∑

i∈N (EIN
i,CNi

+ ECN
i,CNi

), which is mini-

mized if each individual term is minimum. �

It is worth noting that this result is straightforward and

obtainable from the optimal partition in (7), since the CN

selection is based only on the energy consumption of itself

and other potential CN nodes for the upcoming task at each

t, but not on the past energy consumptions of itself or other

nodes. However, it is clear that, though simple, the Min-Total-

Energy-Strategy is optimal in the sense that it minimizes the

total energy consumption of MWSN.

However, from the individual’s perspective, we may argue

that the CN selection can lead to the situation that some nodes

end up with higher energy consumption than the case when

all nodes employ local computing. This is especially true if

some unfortunate nodes are heavily selected as CN and hence

consume more energy in cooperation than that saved from its

own processing as an IN. In the following, we consider how

to handle such unfairness in cooperative computing.

5.2 Fairness CN selection

Our strategy is to let each node act as a CN only when it

has saved more energy than that it has lost from cooperative

computing in the past. Thus, we define the following functions

to indicate the availability of each node.

5.2.1 Utility function

To represent how much energy saving of cooperative com-

puting can yield in comparison to local computing, we intro-

duce the concept of “utility” of nodes.

The utility function, ui(t), of node i at time t is defined as:

ui(t) =

EL
i (t)− EIN

i,j(t) if ∃j s.t., j = CNi(t)

−ECN
j,i (t) if i = CNj(t) for some IN j

0 otherwise.
(17)

The above function represents how much energy a node i
locally saves (or loses) compared to local computing at time

t, where EL
i (t) − EIN

i,j(t) denotes the energy saved from i’s
cooperative computing using a CN j at time t, and −ECN

j,i (t)
denotes the energy cost by node i as a CN for some other node

j at time t. In all other cases (if i is not active either as an IN or

a CN, or if i uses local computing), the utility is 0. The initial

ui(t) can be any arbitrary value, but for simplicity, we assume

ui(t) = 0 for all i ∈ N . Then the cumulative utility over a

time interval [t1 : t2] is defined as ui(t1 : t2) =
∑t2

τ=t1
ui(τ),

which is the overall energy savings of a node during the time

interval.

5.2.2 Cooperation index

Ci(t) =

{

1 if ui(0 : t− 1) ≥ 0

0 if ui(0 : t− 1) < 0.
(18)

This value5 is used to decide whether node i can act as a CN

for other nodes (when Ci(t) = 1, i.e., in “cooperation” mode)

or i should not be selected as a CN for any other node (when

Ci(t) = 0). It is maintained for each node i and updated at

each time t.

Adaptive-Positive-Utility-Strategy: A CN is selected for

node i at time t such that

CNi(t) = arg min
j∈Ri(t),Cj(t)=1

{EIN
i,j(t) + ECN

i,j (t)} . (19)

In other words, a CN j is selected for the i’s cooperative

computing at time t that minimizes EIN
i,j(t)+ECN

i,j (t) among the

nodes whose cumulative utilities are positive or zero. Thus, a

node whose cumulative utility is negative will cease to act

as a CN, and will be potentially available as a CN when

its utility becomes positive. Note that the Min-Total-Energy-

Strategy can be seen as a special case of the Adaptive-Positive-

Utility-Strategy with Ci(t) = 1 for all i and for all t.
Giving that some nodes may benefit more from better

cooperation opportunities (i.e. larger utilities) than the others

5. We set Ci(0) = 1 in order to enable the initial cooperation condition
when all nodes’s utilities are zero. If Ci(0) = 0 for all i, no node would
cooperate to other nodes.

8

due to difference in the amount of tasks and to potentially

unfair channel conditions, we can generalize the strategy to

bring the balance (or “fairness”) of the amount of utilities that

individual nodes collect.

5.2.3 Fairness factor

How much importance will be given to the fairness term,

reflecting the utility and how much to the energy consumption

term, depends on how fast the function w(u) decays as the

utility value u increases. Motivated by [48] that the well-

established power-law method can measure the fairness and

inequality of network performance, we employ a power-law

function

w(u) = u−k (20)

where parameter k is a positive constant and can be used

to tradeoff fairness in energy consumption. In our simulation

study, we find that w(u) = u−5 strikes a good balance. The

principal implication of this power-law relationship is that the

CN selection is far from random, i.e., a node with a larger

utility (smaller weight) will have a higher chance to be selected

as a CN, so the w(u) obtained from the utility function can

help us improve the energy performance of the system.

Considering all above strategies, we propose a Weighted-

Fairness-Strategy to bring the fairness of the amount of utilities

that individual nodes collect.

Weighted-Fairness-Strategy: A CN is selected for node i at

time t such that

CNi(t) = arg min
j∈Ri(t),
Cj(t)=1

{w(uj(0 : t− 1))(EIN
i,j(t) + ECN

i,j (t))} .

(21)

where w(u) = u−5 is a non-increasing function of the utility

value u. The constraint Cj(t) = 1 ensures that a node whose

cumulative utility is negative will cease to act as a CN,

and will be potentially available as a CN when its payoff

becomes positive. Here, along with the energy consumption

factor (EIN
i,j(t)+ECN

i,j (t))), the weight function w(uj(0 : t−1))
is introduced in the CN selection strategy, such that the

nodes with larger utilities (i.e., smaller weight) will have a

higher chance to be selected as a CN for each task execution.

Additionally, among CNs which have the same total energy

consumption, preference will be given to the ones with higher

cumulative utilities.

6 SIMULATION RESULTS

In this section, we evaluate performance of the proposed

optimal solution via numerical and simulation results obtained

using MATLAB. To be consistent with the real energy mea-

surements [35], we set the computation coefficient in the order

of 10−11, the communication coefficient in the order of 10−2,

a time slot t = 2ms and channel gain 0 < g < 1.

6.1 Performance of the optimal cooperative comput-
ing

Fig. 3 shows the local data size partitioned by the pro-

posed optimal solution. The input data size is assumed as

0

0.02

0.04

0.06

2

4

6

8

10

x 10
−11

500

600

700

800

900

1000

1100

O
p

ti
m

a
l
d

a
ta

 s
iz

e
 o

f
lo

c
a

l
e

x
e

c
u

ti
o

n
 (

b
it
s
)

Computation
coefficient K

Communication

coefficient ρ

T=15ms

T=10ms

T=20ms

Fig. 3. The relations between the optimal data size of

local execution and system coefficients K and ρ

0.03 0.035 0.04 0.045 0.05 0.055 0.06
3

4

5

6

7

8

9

10

11

12
x 10

−11

C
o

m
p

u
ta

ti
o

n
 c

o
e

ff
ic

ie
n

t
K

Communication coefficient ρ

Cloud computing

Cooperative computing

Local computing

Fig. 4. An illustration of energy optimal computing rules

L = 1024 bits and channel gain is gl,r = 0.5. It is clear that

the optimal partition is significantly affected by the system

coefficients. With better computation efficiency (smaller K)

and higher communication cost (larger ρ), the optimal partition

tends to allocate more processing task locally. Moreover, with

a relaxed completion deadline (large T), the local execution is

more preferable to save energy by reducing processing speed.

Fig. 4 gives an illustration of the energy optimal computing

rules for L = 1024 bits, T = 30ms and gl,r = 0.5. With

the application profile and system coefficients, we can quickly

decide the best strategy to process an application.

Fig. 5 shows the total energy consumption of the optimal so-

lution and compare it with that of local computing. By setting

K = 10−10, ρ = 0.006 and T = 20ms, we observe that under

the same communication coefficient, the energy performance

improves with better channel quality. Even with severe channel

quality and high communication cost (gl,r = 0.1, ρ = 0.01),

the performance of the proposed solution is closed to the local

computing when the application requirement is not stringent

9

500 1000 1500
10

1

10
2

10
3

Data size L (bits)

T
o

ta
l
e

n
e

rg
y
 c

o
m

s
u

p
ti
o

n
 (
µJ

)

Local computing

Cooperative computing g=0.1,ρ=0.006

Cooperative computing g=0.3,ρ=0.006

Cooperative computing g=0.9,ρ=0.006

Cooperative computing g=0.1,ρ=0.01

Fig. 5. Total energy consumption vs. input data size

12 14 16 18 20 12 14 16 18 20
10

20

30

40

50

60

70

80

90

100

110

120

Completion deadline (ms)

T
o

ta
l
e

n
e

rg
y
 c

o
m

s
u

p
ti
o

n
 (
µJ

)

Local computing

Cloud computing g=0.1

Cooperative computing g=0.1

Cooperative computing g=0.3

Cooperative computing g=0.9

Fig. 6. Total energy consumption vs. completion deadline

(small L, large T). As the input data size increases, the

cooperative computing can ensure optimal with better energy

efficiency than the local computing. Given the worst channel

scenario with gl,r = 0.1, an average of 63% of energy can

still be saved by using the proposed cooperative computing.

Fig. 6 shows the energy comparisons in terms of completion

deadline. We set K = 10−10, ρ = 0.01 and L = 512 bits.

With a longer completion time, the optimal solution can

reduce energy consumption by adjusting the process speed at

a lower pace. Even for the worst channel scenario, the optimal

solution can still achieve better performance and close to the

local computing when the delay tolerance is high. Moreover,

consider the cloud computing where sensor nodes only collect

and transmit data to the enterprise cloud server, the proposed

cooperative computing can still achieve energy efficiency on

handling non-emergent applications.

10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

7000

Number of nodes (n)

A
v
e

ra
g

e
 t

o
ta

l
e

n
e

rg
y
 c

o
m

s
u

p
ti
o

n
 p

e
r

n
o

d
e

 (
µJ

)

Local computing

Cloud computing

Random CN selection
Min−Total−Energy

Adaptive−Positive−Utility

Weighted−Fairness

Fig. 7. Average total energy consumption per node for

L = 1024bits

6.2 Performance of the CN selections for coopera-

tive computing

We consider the size of MWSN is N (varied between 10 and

50 sensor nodes). Throughout the simulation, we set the input

data size L = 1024 bits and completion deadline T = 40ms.

The channel gain between two nodes is randomly selected

between 0 < g < 1 and will be changed over the time, but

kept constant during one offloading process. A total of 1000

application tasks are executed within the the network, and at

each time t, an application is executed by a random IN and

a selected CN. The initial utility value of every node ui(0) is

set 0.

Fig. 7 shows the average energy consumption per node.

The proposed CN selection strategies outperform the local

computing and cloud computing. However, since the Min-

Total-Energy strategy is the optimal solution in this case,

the weighted-farness strategy performs a bit worse (this is

compensated by fairness results). Furthermore, as the number

of nodes increases, the average energy consumption of the

proposed CN strategies decreases, this is because it is easier

to find a CN with better channel quality and thus save more

energy. As a comparison, Fig. 8 shows the average perfor-

mance for L = 512 bits with the same deadline T = 40ms.

It is clear that with less stringent application requirement,

it is preferable to employ the proposed solutions. The cloud

computing strategy which is commonly used in today’s sensor

cloud solution is not always optimal in dealing with non-

emergent applications.

Fig. 9 shows the fairness in terms of how much energy is

saved for individual nodes using the proposed CN selection

strategies, where the y-axis represents Jain’s fairness index

of nodes’ cumulative utilities.6 It is clear that the weighted-

fairness strategy achieves the best fairness compared with

other strategies. Moreover, the index curve shows a non-

6. Jain’s fairness index is defined by (
∑

Ui)
2/(N

∑
U2

i
). The result

ranges from 1

N
(worst case) to 1 (best case). The larger the index is, the

better fairness that we can achieve.

10

10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

Number of nodes (n)

A
v
e

ra
g

e
 t

o
ta

l
e

n
e

rg
y
 c

o
m

s
u

p
ti
o

n
 p

e
r

n
o

d
e

 (
µJ

)

Local computing

Cloud computing

Random CN selection
Min−Total−Energy

Adaptive−Positive−Utility

Weighted−Fairness

Fig. 8. Average total energy consumption per node for

L = 512bits

10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nodes (n)

F
a

ir
n

e
s
s
 i
n

d
e

x

Weighted−Fairness

Adaptive−Positive−Utility

Min−Total−Energy

Fig. 9. Jains fairness on utility function

decreasing tendency toward increased total number of nodes,

which is contradictory to the Min-Total-Energy strategy where

an increasing number of good quality nodes could be exten-

sively used for cooperation. As another example to highlight

the fairness, we show in Fig. 10 the energy consumption saving

of individual nodes at the end of simulation in 5-node network.

It is clear that the weighted-fairness strategy achieves the

best fairness, whereas the Min-Total-Energy results in negative

utility for a node.

We provide additional measurement of the impact of each

node’s “willingness” to cooperate when its utility is zero

when the weighted-fairness strategy is used. We therefore

change the rule (18) for a subset of nodes, and divide the

nodes into two groups: U = {i | Ci(t) = 1 if ui(t) = 0}
(‘Unselfish node’), and S = {i | Ci(t) = 0 if ui(t) = 0}
(‘Selfish node’); the rule remains the same as (5.2) for both

group when ui(t) 6= 0. In Fig. 11, we show the proportion

of the nodes with positive utility in the y-axis as the time

progresses in x-axis. The unselfish cooperation represents

1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Indices of nodes

N
o

rm
a

liz
e

d
 u

ti
lit

y
 f

u
n

c
ti
o

n

Min−Total−Energy

Adaptive−Positive−Utility

Weighted−Fairness

Fig. 10. Normalized utility function per node

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of tasks executed

P
ro

p
o

rt
io

n
 o

f
n

o
d

e
s
 w

it
h

 p
o

s
it
iv

e
 u

ti
lit

ie
s

L=1024 bits, unselfish cooperation

L=1024 bits, selfish cooperation

L=512 bits, unselfish cooperation

L=512 bits, selfish cooperation

Fig. 11. Proportion of nodes with positive utility

a total number of 100 unselfish nodes, whereas the selfish

cooperation represents only one node cooperates initially to

others out of 99. The result tells that the proposed fairness

strategy can ensure the proportion of nodes with positive

utility converges to 1, even for the extreme selfish scenario.

Moreover, convergence speed is faster with a larger processing

task, which indicates the proposed method is robust to cope

with different application requirements and thus can ensure

energy efficiency on individual nodes.

7 CONCLUSION AND FUTURE WORK

We have shown that it is advantageous to employ coop-

erative computing to process application tasks, which can

significantly reduce the total energy consumption while main-

taining a given level of completion requirement. Specifically,

we proposed a joint optimization problem of computation

and communication costs as a whole, to optimally partition,

offload and execute tasks between sensor nodes to boost the

energy efficiency of edge computing. By implementing the

11

proposed optimal solution into a network with multiple mobile

wireless sensor nodes, the proposed cooperation node selection

strategies can serve as an effective tool to achieve a desirable

tradeoff between fairness and energy consumption at each

node. The resulting ideas have the potential to have a broad

impact across a range of areas, including Internet-of-Things,

Machine-to-Machine and mobile cloud computing, etc.

In the future work, the following research issues will

be considered: 1) Cross-layer optimization of sensor cloud

networks: we will further incorporate characteristic of sensor

networks into considerations, such as multi-hop transmission

and resource constrains. Specifically, we will consider a prac-

tical application scenario where the routing protocol for low

power and lossy network (RPL) [44] is used for smart grid

application, and obtain an optimal cooperative solution to

maximize the network lifetime. 2) Multi-node cooperation: So

far we have focused on the single IN-CN pair case. It would

be also interesting to consider the multi-CN case where more

than one cooperation nodes can be selected for sensor cloud

computing. The challenges will be the new characteristic of

communication energy model, since multiple subtasks need to

be distributed independently to a number of CN along multiple

time slots. Moreover, the trade-off between the overall energy

performance and number of CN should be justified.

APPENDIX A
PROOF OF THEOREM 4.1

We use the Lagrange multiplier method to solve the opti-

mization problem. According to (4) and (5), the optimization

problem in (6) can be written as

min
ll,lr

Kl3l
t2

+ ρ
lnr
gl,r

+ ρ
lnr
gr,l

+
Kl3r
t2

, s.t. ll + lr = L, t ≤ T .

(22)

In order to simplify the notation, we use gl,r to denote gr,l
because of the symmetric channel assumption, and n = 1.

According to the Kuhn-Tucker condition (p.244: KKT condi-

tions for convex problems [49]), the inequality constraint in

(22) can be converted to the equality constraint and have the

convex function

ℓ(ll, lr, λ) =
K

T 2
l3l + ρ

lr
gl,r

+ ρ
lr
gl,r

+
K

T 2
l3r + λ(ll + lr − L) ,

(23)

Let α = K
T 2 and β = 2ρ

gl,r
, we can derive the optimal partition

which must satisfy the following conditions

∂ℓ(ll, lr, λ)

∂ll
= 3αl2l + λ (24)

∂ℓ(ll, lr, λ)

∂lr
= 3αl2r + β + λ , (25)

Then we obtain

l2l =
−λ

3α
, l2r =

−λ− β

3α
, (26)

Since ll + lr = L, we have

λ = −3αL2

4
− β2

12αL2
− β

2
. (27)

Substituting (27) into (26), we obtain the unique optimal

solution.

The optimal result (8) can thus be directly obtained by

summing (4) and (5) for both local and remote executions

with optimal partition (26).

APPENDIX B
PROOF OF PROPOSITION 4.5

1) For local execution: According to (4) and (5), we obtain
El

c

Et
=

Kl3l
T 2 · gl,r

ρlr
. Since lr ≤ ll, we have

El
c

Et
≥ Kl3l

T 2
· gl,r
ρll

⇒ El
c

Et
≥ Kgl,r

ρ
·
(
ll
T

)2

, (28)

Because L
2 ≤ l∗l ≤ L, we can obtain the lower bound

performance of local execution as

El
c

Et
≥ Kgl,r

ρ
·
(

L

2T

)2

. (29)

2) For remote execution: similarly we have
Er

c

Er
=

Kgl,r
ρ ·

(
lr
T

)2
. Since 0 ≤ l∗r ≤ L

2 , we can obtain the upper bound

performance of remote execution.

Er
c

Er
≤ Kgl,r

ρ
·
(

L

2T

)2

. (30)

REFERENCES

[1] M. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali, “Cloud
Computing: Distributed Internet Computing for IT and Scientific Re-
search,” IEEE Internet Comput., vol. 13, no. 5, pp. 10–13, Sept 2009.

[2] M. Chen, H. Jin, Y. Wen, and V. Leung, “Enabling technologies for
future data center networking: a primer,” IEEE Network, vol. 27, no. 4,
pp. 8–15, July 2013.

[3] Y. Xu and S. Mao, “A survey of mobile cloud computing for rich media
applications,” IEEE Wireless Commun., vol. 20, no. 3, pp. 46–53, June
2013.

[4] B. Furht and A. Escalante, Handbook of Cloud Computing. Springer,
2010.

[5] Edge computing, Available at: http://en.wikipedia.org/wiki/Edge computing.

[6] M. Y. Arslan, I. Singh, S. Singh, H. V. Madhyastha, K. Sundaresan,
and S. V. Krishnamurthy, “Computing while charging: Building a
distributed computing infrastructure using smartphones,” in Proc. of the

8th International Conference on Emerging Networking Experiments and

Technologies (CoNEXT), 2012, pp. 193–204.

[7] “NVIDIA says Tegra 3 is a PC-class CPU,” Available at:

http://engt.co/srvibU.

[8] A. Chandra, Y. Lee, B. M. Kim, S. Y. Maeng, S. H. Park, and S. R. Lee,
“Review on sensor cloud and its integration with arduino based sensor
network,” in Proc. of International Conference on IT Convergence and

Security (ICITCS), Dec 2013, pp. 1–4.

[9] S. Gu, Y. Yue, C. Maple, C. Wu, and B. Liu, “Challenges in mobile
localisation in wireless sensor networks for disaster scenarios,” in Proc.

of 19th International Conference on Automation and Computing (ICAC),
Sept 2013, pp. 1–6.

[10] T. Yamanoue, K. Oda, and K. Shimozono, “A m2m system using
arduino, android and wiki software,” in Proc. of IIAI International

Conference on Advanced Applied Informatics (IIAIAAI), Sept 2012, pp.
123–128.

[11] Y. Zhang, L. Sun, H. Song, and X. Cao, “Ubiquitous wsn for healthcare:
Recent advances and future prospects,” IEEE Internet of Things Journal,
vol. PP, no. 99, pp. 1–1, 2014.

[12] E. Hossain, G. Chow, V. C. Leung, R. D. McLeod, J. Mis̆ić, V. W.
Wong, and O. Yang, “Vehicular telematics over heterogeneous wireless
networks: A survey,” Computer Communications, vol. 33, no. 7, pp. 775
– 793, 2010.

12

[13] G. Strazdins, A. Elsts, K. Nesenbergs, and L. Selavo, “Wireless sensor
network operating system design rules based on real-world deployment
survey,” Journal of Sensor and Actuator Networks, vol. 2, no. 3, pp.
509–556, 2013.

[14] Z. Sheng, H. Wang, C. Yin, X. Hu, S. Yang, and V. Leung, “Lightweight
management of resource constrained sensor devices in internet-of-
things,” IEEE Internet of Things Journal, vol. PP, no. 99, pp. 1–1, 2015.

[15] Z. Sheng, C. Mahapatra, C. Zhu, and V. Leung, “Recent advances in
industrial wireless sensor networks toward efficient management in iot,”
IEEE Access, vol. 3, pp. 622–637, 2015.

[16] C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-
Pastor, and A. Monje, “On the optimal allocation of virtual resources in
cloud computing networks,” IEEE Trans. Comput., vol. 62, no. 6, pp.
1060–1071, June 2013.

[17] H. Xu and B. Li, “A general and practical datacenter selection framework
for cloud services,” in Proc. IEEE CLOUD, 2012.

[18] T. He, S. Chen, H. Kim, L. Tong, and K.-W. Lee, “Scheduling parallel
tasks onto opportunistically available cloud resources,” in Proc. IEEE

CLOUD, June 2012, pp. 180–187.

[19] H. Xu and B. Li, “Dynamic cloud pricing for revenue maximization,”
IEEE Trans. on Cloud Computing, vol. 1, no. 2, pp. 158–171, July 2013.

[20] V. Di Valerio, V. Cardellini, and F. Lo Presti, “Optimal pricing and
service provisioning strategies in cloud systems: A stackelberg game
approach,” in Proc. IEEE CLOUD, June 2013, pp. 115–122.

[21] C.-A. Chen, M. Won, R. Stoleru, and G. Xie, “Energy-efficient fault-
tolerant data storage amp; processing in mobile cloud,” IEEE Trans. on

Cloud Computing, vol. PP, no. 99, pp. 1–1, 2014.

[22] A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain, A. Alelaiwi, and
M. A. Hossain, “A Survey on Sensor-Cloud: Architecture, Applications,
and Approaches,” in Int’l J. of Distributed Sensor Networks, 2013, p. 18.

[23] C. Perera, P. P. Jayaraman, A. B. Zaslavsky, P. Christen, and D. Geor-
gakopoulos, “MOSDEN: An Internet of Things Middleware for Re-
source Constrained Mobile Devices,” Proc. Hawaii Int’l Conf. on System

Sciences (HICSS), 2013.

[24] M. Yuriyama and T. Kushida, “Sensor-Cloud Infrastructure - Physical
Sensor Management with Virtualized Sensors on Cloud Computing,” in
Proc. Int’l Conf. on Network-Based Information Systems (NBiS), Sept
2010, pp. 1–8.

[25] G. Fortino, M. Pathan, and G. Di Fatta, “BodyCloud: Integration of
Cloud Computing and body sensor networks,” in Proc. IEEE CloudCom,
Dec 2012, pp. 851–856.

[26] N. Zingirian and C. Valenti, “Sensor clouds for Intelligent Truck
Monitoring,” in Proc. IEEE Intelligent Vehicles Symposium (IV), June
2012, pp. 999–1004.

[27] G. Lewis, S. Echeverria, S. Simanta, B. Bradshaw, and J. Root, “Tactical
cloudlets: Moving cloud computing to the edge,” in Proc. of IEEE

Military Communications Conference (MILCOM), Oct 2014, pp. 1440–
1446.

[28] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proc. of the first edition of MCC

Workshop on Mobile Cloud Computing, ser. MCC ’12, 2012, pp. 13–16.

[29] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Kolde-
hofe, “Mobile fog: A programming model for large-scale applications on
the internet of things,” in Proc. of the Second ACM SIGCOMM Workshop

on Mobile Cloud Computing, ser. MCC ’13, 2013, pp. 15–20.

[30] X. Hu, L. Wang, Z. Sheng, P. TalebiFard, L. Zhou, J. Liu, and V. C.
Leung, “Towards a service centric contextualized vehicular cloud,” in
Proc. of the Fourth ACM International Symposium on Development

and Analysis of Intelligent Vehicular Networks and Applications, ser.
DIVANet ’14, 2014, pp. 73–80.

[31] T. Ali, M. Gheith, and E. Nasr, “Socially intelligent computing- a
survey of an emerging field for empowering crowd,” in Proc. of 9th

International Conference on Informatics and Systems (INFOS), Dec
2014, pp. PDC–102–PDC–108.

[32] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Trans. on Wireless Commu., vol. 12, no. 9, pp. 4569–4581,
September 2013.

[33] C. Mei, D. Taylor, C. Wang, A. Chandra, and J. Weissman, “Sharing-
aware cloud-based mobile outsourcing,” in Proc. IEEE CLOUD, June
2012, pp. 408–415.

[34] B. Heintz, A. Chandra, R. Sitaraman, and J. Weissman, “End-to-end
optimization for geo-distributed mapreduce,” IEEE Trans. on Cloud

Computing, vol. PP, no. 99, pp. 1–1, 2014.

[35] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proc. of the 2nd USENIX Conf. on Hot Topics

in Cloud Computing, ser. HotCloud’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 4–4.

[36] W. Yuan and K. Nahrstedt, “Energy-efficient CPU scheduling for mul-
timedia applications,” ACM Trans. Comput. Syst., vol. 24, no. 3, pp.
292–331, 2006.

[37] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling
algorithms with pace,” in Proc. of ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS ’01, 2001, pp. 50–61.

[38] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time cpu schedul-
ing for mobile multimedia systems,” in Proc. of the Nineteenth ACM

Symposium on Operating Systems Principles, ser. SOSP ’03, 2003, pp.
149–163.

[39] R. Jain, The Art of Computer Systems Performance Analysis: Techniques

for Experimental Design, Measurement, Simulation, and Modeling.
John Wiley & Sons, Inc., 1991.

[40] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated

Circuits (2nd Edition). Prentice Hall, 2002.
[41] D. Halperin, B. Greenstein, A. Sheth, and D. Wetherall, “Demystifying

802.11n power consumption,” in Proc. of International Conference on

Power Aware Computing and Systems, ser. HotPower’10, 2010.
[42] J.-P. Vasseur and A. Dunkels, “Interconnecting Smart Objects with IP:

The Next Internet,” Morgan Kaufmann, 2010.
[43] M. A. Razzaque and S. Dobson, “Energy-efficient sensing in wireless

sensor networks using compressed sensing,” Sensors, vol. 14, no. 2, pp.
2822–2859, 2014.

[44] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. Mccann, and K. Leung, “A
survey on the IETF protocol suite for the Internet of Things: standards,
challenges, and opportunities,” IEEE Wireless Commun. Mag., vol. 20,
no. 6, pp. 91–98, December 2013.

[45] J. Lee and N. Jindal, “Delay constrained scheduling over fading chan-
nels: Optimal policies for monomial energy-cost functions,” in Proc.

IEEE Int’l Conf. on Commu. (ICC)., June 2009, pp. 1–5.
[46] M. Zafer and E. Modiano, “Delay-constrained energy efficient data

transmission over a wireless fading channel,” in Proc. of Inf. Theory

and Applications Workshop, Jan 2007, pp. 289–298.
[47] J. Lee and N. Jindal, “Asymptotically optimal policies for hard-deadline

scheduling over fading channels,” IEEE Trans. Inform. Theory, vol. 59,
no. 4, pp. 2482–2500, April 2013.

[48] A. Mahanti, N. Carlsson, A. Mahanti, M. Arlitt, and C. Williamson, “A
tale of the tails: Power-laws in internet measurements,” IEEE Network,
vol. 27, no. 1, pp. 59–64, January 2013.

[49] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2003.

Zhengguo Sheng is a lecturer at School of
Engineering and Informatics, the University of
Sussex, UK. He is also the visiting faculty of
University of British Columbia (UBC). Previously,
he was with UBC as a research associate, and
with France Telecom Orange Labs as the senior
researcher and project manager in M2M/IoT. He
also worked as a research intern with IBM T. J.
Watson Research Center, USA, and U.S. Army
Research Labs. Before joining Orange Labs,
he received his Ph.D. and M.S. with distinction

at Imperial College London in 2011 and 2007, respectively, and his
B.Sc. from the University of Electronic Science and Technology of
China (UESTC) in 2006. He has published more than 40 International
conference and journal papers. He is also the recipients of Auto21 Test-
DRIVE Competition Award 2014 and Orange Outstanding Researcher
Award 2012. His current research interests cover IoT/M2M, cloud/edge
computing, vehicular communications, and power line communication
(PLC).

13

Chinmaya Mahapatra received the B.Tech. de-
gree in electronics and communication engi-
neering from the National Institute of Technol-
ogy, Rourkela, India, in 2009, and the M.A.Sc.
degree in electrical and computer engineering
from The University of British Columbia (UBC),
in 2013, where he is currently pursuing the Ph.D.
degree with the Department of Electrical and
Computer Engineering. Prior to joining UBC, he
was a Scientist with the Indian Defense Re-
search Laboratory, and a Systems Engineer with

the Ciena Research and Development Center, Ottawa, Canada. His
current interests include the Internet of Things, embedded systems, sen-
sor cloud, smartphone energy optimization, E-health, LTE and Green
communications.

Victor C. M. Leung is a Professor of Electrical
and Computer Engineering and holder of the
TELUS Mobility Research Chair at the Univer-
sity of British Columbia (UBC). His research
is in the areas of wireless networks and mo-
bile systems, where he has co-authored more
than 700 technical papers in archival journals
and refereed conference proceedings, several of
which had won best-paper awards. Dr. Leung is
a Fellow of IEEE, the Royal Society of Canada,
the Canadian Academy of Engineering and the

Engineering Institute of Canada. He is serving/has served on the
editorial boards of IEEE JSAC, Transactions on Computers, Wireless
Communications and Vehicular Technology, Wireless Communications
Letters, and several other journals. He has provided leadership to
the technical committees and organizing committees of numerous in-
ternational conferences. Dr. Leung was the recipient of an APEBC
Gold Medal, NSERC Postgraduate Scholarships, a 2012 UBC Killam
Research Prize, and an IEEE Vancouver Section Centennial Award.

Min Chen is a professor in School of Computer
Science and Technology at Huazhong Univer-
sity of Science and Technology (HUST). He is
Chair of IEEE Computer Society (CS) Special
Technical Communities (STC) on Big Data. He
was an assistant professor in School of Com-
puter Science and Engineering at Seoul National
University (SNU) from Sep. 2009 to Feb. 2012.
He was R&D director at Confederal Network
Inc. from 2008 to 2009. He worked as a Post-
Doctoral Fellow in Department of Electrical and

Computer Engineering at University of British Columbia (UBC) for three
years. Before joining UBC, he was a Post-Doctoral Fellow at SNU for
one and half years. He received Best Paper Award from IEEE ICC
2012, and Best Paper Runner-up Award from QShine 2008. He has
more than 180 paper publications. His research focuses on Internet
of Things, Machine to Machine Communications, Body Area Networks,
Body Sensor Networks, E-healthcare, Mobile Cloud Computing, Cloud-
Assisted Mobile Computing, Ubiquitous Network and Services, Mobile
Agent, and Multimedia Transmission over Wireless Network, etc. He is
an IEEE Senior Member since 2009.

Pratap Kumar Sahu is currently working as a
Post-Doctoral Researcher at the Network Re-
search Lab in the Department of Computer
Science and Operation Research, University of
Montreal. He got his PhD degree from National
Central University, Taiwan. His research interest
includes network coding, sensor networks and
vehicular ad hoc networks. Mostly, he works
on various aspects of Intelligent Transportation
Systems. He has many publications in various
journals like IEEE Transactions on Intelligent

Transportation Systems, IEEE Sensors, Springer Telecommunication
Systems and conferences like IEEE Globecom, IEEE ICC, and IEEE
ICCCN etc.

