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SUMMARY

Structural health monitoring using wireless sensor networks has drawn considerable attention in recent years. The ease of
deployment of tiny wireless devices that are coupled with sensors and actuators enhances the data collection process and makes
prognostic and preventive maintenance of an infrastructure much easier. In this paper, the deployment problem is considered for
finding node locations to reliably diagnose the health of a structure while consuming minimum energy during data collection. A
simple shear structure is considered and modal analysis is performed. The example verifies the expectation that placing nodes
further apart from each other reduces the mode shape errors but increases the energy consumption during data collection. A min-
max, energy-balanced routing tree and optimal grid separation formulation is proposed that minimizes the energy consumption as
well as provide fine grain measurements.
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1. INTRODUCTION

The goal of a wireless Structural Health Monitoring (SHM) system [10, 21, 33, 35, 38] is to assess structural integrity

using wireless sensor networks (WSNs). Reliable wireless SHM systems that can help predict failures in structures

through non-destructive diagnosis procedures can have substantial social and economic benefits. The Columbia space

shuttle tragedy and the I-35W Mississippi river bridge collapse have underlined the importance and necessity of

reliable monitoring systems in analyzing structural damage and deterioration processes. Typical structural safety

assessment depends on visual inspection, which is manual, expensive, and time consuming. Moreover, damage can be

hidden inside structural elements. Using sensors, SHM systems can examine the structural integrity in an automatic

and efficient manner. However, installation of wired sensors is expensive, especially in existing buildings, whereas

wireless sensors are inexpensive and easily deployable. By measuring and processing structural responses using

damage identification techniques, a wireless SHM system can collaboratively and accurately diagnose the structural

health.

Although use of a WSN reduces wiring costs, it comes with two major limitations in terms of energy and bandwidth.

Unlike wired networks, wireless sensor nodes are energy constrained as they rely on on-board batteries. Additionally,

wireless channels typically have lower bandwidth compared to wired channels because of the lack of a reliable and

dedicated medium. Thus, energy efficiency in the data collection process is an important concern for a wireless SHM

system.

Node deployment in a WSN is a crucial problem that depends on two related factors: the number of sensors and

their locations. Since the sensor readings need to be exchanged and fused for further processing, all sensor nodes

should form a connected network. In this paper, wireless SHM is applied to a simple n-story shear structure where

each floor is equipped with an equal number of sensors to measure structural responses. While many sensors (when

appropriately deployed) give accurate measurements and result in higher fidelity estimation, they also incur a high
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communication cost to exchange a large amount of data. On the other hand, fewer sensors imply a low communication

cost, but estimates of structural characteristics could be inaccurate. To understand this relationship between WSNs

and SHM in terms of sensor placement, this paper considers two most natural deployment strategies, random and

grid placements, and presents simulation results from modal analysis based on the Eigensystem Realization Algorithm

(ERA) and network energy consumption. Using ERA, modal characteristics of a structure are estimated from its

responses and then used for damage identification. An energy-balanced routing tree is also constructed for the WSN

to realistically estimate the energy consumption.

The rest of the paper is organized as follows. Section 2 discusses related works while Section 3 presents the

structural, network, and energy models. Section 4 provides a summary of the ERA algorithm and Section 5 presents

simulation results. In Section 6, an energy-balanced routing tree construction algorithm is proposed, and optimal

determination of inter-node separation is found that minimizes both mode shape error and energy consumption. Finally,

Section 7 summarizes the results and gives directions for future research.

2. RELATED WORK

Recent studies [19, 21] and deployments [15, 18, 25, 34] of wireless SHM have demonstrated the feasibility of

autonomous and continuous structural data collection using a WSN, which is inexpensive and more efficient compared

to its wired counterpart [35]. However, in addition to determining the optimal locations of sensor nodes for reliable

measurements, the bandwidth and energy constraints on these wireless devices have also underlined the need for

addressing energy efficiency in the data collection process.

One of the important factors that affects data collection in wireless SHM is the underlying routing mechanism.

The notion of energy-balanced (or, more generally, load-balanced) routing in the networking community is a well

researched problem and is proven to be NP -hard [20]. Huang et al. [14] presented two energy-aware, load-balanced

routing schemes: the maximum capacity path (MCP) and MCP combined with path switching, where a layered network

is constructed and every node selects a shortest path with maximum capacity to the sink, sometimes switching paths

to its sibling neighbors in order to share traffic. It is shown that both schemes can achieve improved load-sharing and,

thereby, increase in-network lifetime. Gao et al. [9] presented distributed routing algorithms for wireless networks

when all the nodes are located in a narrow strip to minimize latency and achieve a good load balance in terms

of energy usage; Spencer and collaeagues et al. [24, 32] expanded on this work, developing algorithms to employ

decentralized approaches in a software framework. Shah et al. [30] argued that always using the lowest energy paths

may not be optimal from the point of view of network lifetime and long-term connectivity, and proposed a technique

to occasionally use sub-optimal routing paths to provide substantial gains. A node-centric load balancing scheme is

presented by Dai and Han [8] considering the Chebyshev sum metric to evaluate the quality of the routing algorithm.

Chatterjee et al. [4] presented a distributed scheme in the context of data gathering, where nodes are organized into

layers and each node selects a parent from its one-hop neighborhood such that the maximum load stays below a certain

threshold. The work presented in this paper differs from the above in the sense that load balancing is formulated in

terms of min-max fairness with respect to energy consumption by the nodes coupled with the accuracy of structural

characteristics estimated by the nodes.

In addition to energy-balanced routing, reliable routing is another major concern for wireless SHM systems [2, 23,

28]. However, communication reliability is outside the scope of this paper; reliable data transmission is assumed in

this study and the authors analyze the reliability of the system related to SHM purposes only. Additionally, researchers

have developed software frameworks (e.g., [29]) for facilitating SHM via wireless sensors; this paper develops a

methodology that such a framework could use to incorporate limitations of the sensor hardware, and the resulting

trade offs with accuracy and other performance metrics that inevitably arise.

A number of studies examined optimal node placement for identification and control of dynamic structures. Udwadia

et al. [39, 40] proposed a scheme to optimally locate sensors by maximizing the trace or determinant of the Fisher

information matrix, which is expressed as a function of selected parameters corresponding to the objective function.

Heredia-Zavoni et al. [13] extended this approach to capture uncertainty in model updating by minimizing the expected

Bayesian loss function with the Fisher information matrix. Kammer [17] evaluated the sensor locations by their

contribution to the linear independence of the identified model. Hemez et al. [12] extended this independence method

in terms of strain energy contribution of the structure. Papadimitriou et al. [27] used information entropy as a unique

measure to model parameter uncertainty, and a Bayesian statistical methodology to find optimum sensor placements.

Recently, genetic algorithms have also been used for finding optimum sensor placements (e.g., [1,11,27]). Early studies

had mostly been concerned with observability and controllability of dynamic structures, while recent ones have started

to tie sensor placements with the quality of damage detection. Cobb et al. [7] studied the relationship between sensor

placement, measured modes, and the extent of damage localization on flexible structures using modal analysis. Shi
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et al. [31] proposed a scheme to optimize sensor placement according to damage detection based on the eigenvector

sensitivity method.

These previous studies focused on placing sensors optimally for structural analysis, however, the sensor network was

left out. The typical objective in these works was to determine where to place m sensors in an n degree-of-freedom

(DOF) system, where usually m ≥ n, and at least one sensor is located at each DOF. This paper assumes that there

are multiple sensors on each floor of a building structure, since wireless sensors are designed for large-scale systems,

and considers the deployment problem in terms of both quality of damage detection and energy efficiency in the data

collection process.

3. PRELIMINARIES

A structural health monitoring system using a wireless sensor network consists of various components: (1) the structure

itself, (2) a carefully deployed set of wireless nodes equipped with sensors (such as accelerometers) that could measure

the structural response and relay it over multi-hop wireless communication channels to a sink node, and (3) a set of

algorithms that take as inputs the measured responses and calculate one or more metrics that indicate the health of the

structure.

3.1. Structural Model

A simple civil structure, an n-story rectangular shear structure of length l, width w and story height h, is considered, as

illustrated in Figure 1. It is assumed that all floors are uniform, in that the optimal locations of the nodes on a particular

floor can be repeated on each floor so long as there is at least one communication link between nodes located on two

adjacent floors. This will enable measurements to be communicated across all the floors of the structure in multiple

hops and, finally, to a global sink that can aggregate the information and make reliable diagnosis about the health of

the structure. For the simulations herein, the dimension of the structure is taken as length l = 30.48 cm (12 in) by

width w = 20.32 cm (8 in) by story height h = 15.24 cm (6 in), which is similar to the scaled building model (see

Figure 2) considered by Chintalapudi et al. [5]. The equations of motion can be expressed

Mẍ+Cẋ+Kx = u (1)

with block diagonal mass matrix M = diag(M1,M2, ...,Mn) and stiffness matrix

K =
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, (2)

where Mi is the mass matrix of the ith floor, Ki is the stiffness matrix of the ith story, x = [x1, y1, θ1, ..., xn, yn, θn]
T

is the displacement/rotation vector relative to the ground, and u is the external force/moment vector. Damping

matrix C is chosen such that the damping ratio of every mode is ζ (i.e., C = MΦ(2ζΛ1/2)Φ−1 where Λ and Φ
are the diagonal matrix of eigenvalues and corresponding matrix of eigenvectors found from KΦ = MΦΛ). The

structure in the numerical example herein is symmetric with Mi = diag[m,m,mθ] and Ki = diag[kx, ky, kθ]
where mθ = m(w2 + l2)/12 and kθ = (kxw

2 + kyl
2)/4, with floor mass m = 4.90 kg (10.8 lb), story stiffnesses

kx = 438 kN/m (25000 lbs/in) and ky = 219 kN/m (12500 lbs/in), and damping ratio ζ = 5% in every mode.

3.2. Effect of Sensor Placement on Measurements

Let sij denote the jth sensor (j = 1, 2, . . . ,m) on the ith floor (i = 1, 2, . . . , n), and let xij and yij be the

measurements recorded by sensor sij in the x and y directions, respectively. In Figure 1(c), dxij and dyij are

the distances from the center of the ith floor to sensor sij . The relationship between (xij , yij) and the ith floor’s

movements (xi, yi, θi) is given by:

[

xij

yij

]

=

[

1 0 −dyij
0 1 dxij

]





xi

yi
θi



 , (3)
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Figure 1. (a) Shear structure (showing one direction only). (b) An n-story structure with sensors placed randomly
or in a grid on each floor. (c) Floor diagram with distances dxij and dyij from the center of the floor to sensor sij .

assuming θi is small and, thus, θi ≈ sin(θi). Here xi and yi are the displacements in the x and y directions, and θi is

the rotation of the ith floor, all relative to the ground. For m sensors, (3) can be expanded as:

[xi1 yi1 xi2 yi2 . . . xim yim]T =





1 0 1 0 . . . 1 0
0 1 0 1 . . . 0 1

−dyi1 dxi1 −dyi2 dxi2 . . . −dyim dxim





T 



xi

yi
θi



 , (4)

or, in matrix notation, by:

Xsi = QXi. (5)

With pseudo-inverse Q+ = (QTQ)−1QT , the floor movement can be estimated from the sensor measurements as:

Xi = Q+Xsi. (6)

This is a least square estimate of floor movements, where the lateral movements xi and yi are affected by the accuracy

of measurements, and the rotation θi additionally affected by the sensor locations (dxij , dyij). Large dxij’s and dyij’s

are expected to improve the accuracy of the rotation estimates because sensors further away from the rotating axis

(center of the floor) can better record the effects of rotations. This is because the movements due to θi are larger with

large dxij’s and dyij’s as compared to that due to the same θi with small dxij’s and dyij’s. Since there is noise in

sensor measurements, Equation (6) is more realistically represented as:

X̂i = Q+(Xsi +W), (7)

where W is a vector of measurement noise, which is assumed to be independent and normally distributed with zero-

mean and variance pij , or N(0, pij).

3.3. Network Model

In the network model, it is assumed that the nodes can adjust their power levels up to a maximum power level Pmax

giving a maximum transmission range Rmax. Two nodes are able to communicate with each other if the Euclidean

distance between them is less than or equal to the minimum of their transmission ranges. This model, commonly

known as the disk graph model, is idealistic and does not capture interference and the anisotropic nature of radio

propagation [6]. The center of each floor also has a high powered node, called the local sink, that connects nodes in

adjacent floors to exchange measurements. Thus, all nodes in a floor only send their measurements to their local sink.

In the simulations, Rmax is taken as 91.44 cm (36 in), chosen so that, at maximum power, all nodes can talk directly

to each other.

3.4. Energy Model

A wireless SHM system once deployed is expected to be functional for months or even years depending on how

often a diagnosis is performed. Since battery-powered nodes are limited in energy, a crucial aspect of designing
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Figure 2. Four-story building model used in Chintalapudi et al. [5].

wireless SHM systems is to minimize the energy consumption. Although such systems usually have a very high

sampling rate and resolution and may require intense CPU usage, the power consumption by the radio module is

orders of magnitude higher than sampling and computation [22, 36]. For example, the Tmote Sky platform, which

uses a Chipcon CC2420 radio operating at 2.4 GHz using a IEEE 802.15.4 MAC/PHY layer, the currents drawn for

transmission and reception are 17.4 mA and 19.7 mA, respectively. As these nodes use two AA batteries, supplying

about 3.6 V, the resulting transmit and receive powers are 62 mW and 70 mW, respectively. For the sampling

module, Tmote Sky uses an ultra-low power 8 MHz Texas Instrument MSP430 processor, which draws 1.8 mA

when ON, 0.054 mA when IDLE, and 0.0051 mA when in standby; the corresponding power consumptions are

6.4 mW, 0.19 mW, and 0.018 mW, respectively. Clearly, there are a number of factors that affect the durations of

sampling and radio transmission/reception; in the studies herein, the durations were of comparable magnitude, making

transmission/reception more costly than sampling.

While various radios have different characteristics, a common feature is that the sleep mode generally consumes

three orders of magnitude less power than transmission, reception, or idle modes. Thus, to cut down on the energy

costs, it is best to keep the radio in the sleep mode for as long as possible, and to transmit packets at a high data rate

so as to minimize the transmission time. In this paper, the following energy model is considered where the energy

expenditure per bit for communication over a link of length d is:

e(d) = α+ β(d/w)
η
, (8)

where the distance-independent term α represents the energy cost of transmitter and receiver electronics with a typical

value between 70 and 100 mW for 2.4 GHz radios; β/wη is the transmit amplifier constant, which is normalized by

the width w of the structure; and η is the path-loss exponent with typical values between 2 and 6 depending on the

environment. Here, dη captures the amplification required to ensure constant power reception at the receiver. In the

simulations herein, α = 70 mW, β = 6144 mW, and η = 4.

4. SYSTEM IDENTIFICATION USING EIGENSYSTEM REALIZATION ALGORITHM

Using measurements from the sensors, the structural characteristics can be identified by first estimating the modal

parameters such as frequencies and mode shapes with the Eigensystem Realization Algorithm (ERA). The ERA was

originally developed by Juang and Pappa [16], and is a well-known scheme for estimating state-space realizations of
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a system from impulse responses. It uses a singular value decomposition of the following Hankel matrix:

H(k − 1) =











Y(k) Y(k + 1) . . . Y(k + p)
Y(k + 1) Y(k + 2) . . . Y(k + p+ 1)

...
...

. . .
...

Y(k + r) Y(k + r + 1) . . . Y(k + p+ r)











, (9)

where Y(k) is the m× b pulse matrix such that Yij(k) is the impulse response at the kth time instant collected at the

ith location due to an impulsive excitation at the jth location in the structure. The singular value decomposition of

H(0) is given by:

H(0) = PDQT , (10)

where P and QT are unitary matrices formed by left and right singular vectors, respectively, and D is the diagonal

matrix formed by the singular values. Singular vectors corresponding to small singular values are attributed to noise,

and the reduced order matrices Pn, Qn and Dn are generated by using only the singular vectors corresponding to the

large singular values. The linear system parameters corresponding to the reduced order system can now be estimated

using the equations:

A = D−1/2
n PT

nH(1)QnD
−1/2
n (11)

B = D−1/2
n QT

nEb (12)

C = ET
mPnD

−1/2
n (13)

where ET
i = [Ii 0] with Ii being the identity matrix of order i. The mode shapes of the structure correspond to the

columns in the matrix V = C Φ, where Φ contains the eigenvectors of A; the modal frequencies of the structure

correspond to the magnitude of the eigenvalues of A.

To check the accuracy of the system identification using various sensor placements, comparisons are made between

mode shapes estimated using the ERA from measured responses with and without noises. The noise-free estimated

mode shapes are used as the baseline case with which other estimated mode shapes (with different noise levels)

are compared. Since mode shapes, similar to eigenvectors, are scalable vectors for specific frequencies, the Modal

Amplitude Coherence (MAC) is used to differentiate between different sets of mode shapes [16]. The MAC between

two vectors a and b is defined as:

MAC(a,b) =
|a∗ · b|

√

(a∗ · a)(b∗ · b)
(14)

with values ranging from 0 to 1, where a∗ denotes complex conjugate of a. When two vectors are parallel, their

MAC value is 1, whereas two orthogonal vectors have a MAC value of 0. Thus, by finding the MAC values of the

mode shapes from the base case and from cases with different sensor placements and noise levels, accuracy can be

measured. For square matrices A = [a1,a2, . . . ,ak] and B = [b1,b2, . . . ,bk], the MAC is defined as:

MAC(A,B) =











MAC(a1,b1) MAC(a1,b2) . . . MAC(a1,bk)
MAC(a2,b1) MAC(a2,b2) . . . MAC(a2,bk)

...
...

. . .
...

MAC(ak,b1) MAC(ak,b2) . . . MAC(ak,bk)











, (15)

Error is measured as the Frobenius norm of
(

MAC(Φ̂,Φ)− I
)

or

error =

√

trace

(

[

MAC(Φ̂,Φ)− I
]T [

MAC(Φ̂,Φ)− I
]

)

, (16)

where Φ̂ is the estimated mode shape from the measured responses of the structure and I is the identity matrix. When

Φ̂ = Φ, MAC(Φ̂,Φ) = I and error = 0.

5. MODE SHAPE ERRORS FROM SIMULATIONS

Two types of node deployments are studied: random and grid. In random deployment, nodes are placed randomly on

each floor with uniform distributions in both x and y directions. The number of sensors per floor m, and the noise

level p are varied to study their effects on the mode shape error. For a given floor, 1000 realizations of random sensor

placement are simulated and analyzed for different noise levels. In grid deployment, nodes are placed on all floors with
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Mode 1 2 3 4 5 6 7 8 9 10 11 12

Frequency (Hz) 2.51 3.55 4.97 7.22 10.21 11.06 13.57 14.30 15.64 19.19 21.91 26.87

Table I. Total of 12 modes out of which only 5 are reliable (shown in bold).
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Figure 3. Mode shape errors of 1000 realizations with different numbers of sensors and noise levels. The errors in
some cases converge into a single band and in other cases into two bands.

different inter-node separations. As before, the number of sensors per floor and the noise levels are varied to study their

effects.

Using a structural model with four floors described in Figure 2, there are 12 modes (4 floors each with 3 degrees of

freedom x, y and θ) in this structure. Model parameters are estimated using ERA with the structure being simulated

with impulses (i.e., 24 singular values or 12 modes are found with ERA analysis). However, not all 12 real modes

can be successfully identified. There are usually a few unidentifiable modes because of noise in the data, which have

unpredictable effect on the mode shape error. To deal with the noise modes, the authors choose to include only 5 modes

for the rest of the study (shown in the Table 5), which are always identified from all the simulation cases. The authors

acknowledge that relying only on the 5 modes can sometimes favor sensor placements with poor performance. For

example, a placement that can successfully identify 8 modes should be viewed more superior than another placement

that only identifies 5 modes. In other words, the number of successfully identified modes should also be factored in

measuring the SHM performance. However, for simplicity only these 5 reliable modes are considered.

5.1. Random Deployment

In random deployment, the sensors are uniformly distributed on each floor. In other words, dxij and dyij have uniform

and independent distributions of U(−l/2, l/2) and U(−w/2, w/2), respectively. A random deployment might not be

the best placement strategy with respect to the accuracy of measurements and network connectivity, but it facilitates

looking at a wide range of different deployment configurations. Figure 3 shows the mode shape errors of 1000
realizations simulated for different combinations of the number of sensors per floor (m = 2, 3, . . . , 10) and noise

levels (p = 2%, 4%, . . . , 10%) relative to the maximum response. Clearly, as p increases, so do the errors. Meanwhile,

increasing m lowers the overall errors since more sensors can improve measurements averaging out the assumed

white sensor noise. Typically, the mode shape errors converge to a single band as m increases, but for some noise

levels (p = 8%, 10%) the errors converge into two bands.

To understand the relationship between sensor deployment and mode shape errors, the realizations with the best

Copyright c© 2012 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2012; 00:1–14
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Figure 4. (a) 19 different configurations in grid deployment. (b) Effect of the number of sensors and distances on
mode shape error with 4% noise level.

and worst errors are further examined. For m = 3 sensors and p = 8% noise level, comparing five different cases

with highest and lowest errors, it is observed that the sensors in the low error cases are less clustered than those in

the high error cases. This observation falls in line with the mathematical interpretation that the accuracy of rotation

estimate increases as the distance between the sensors increases. For realizations with a larger number of sensors per

floor (m = 7) and the same noise level (p = 8%), there is no significant difference in clustering between the high and

low error cases; as a result, no conclusive inference could be drawn from the observations for these cases.

5.2. Grid Deployment

In grid deployment, for a given number m of sensors per floor, m = m1 ×m2 grids are formed with different inter-

node separations, and one sensor is placed at each grid point. To maintain connectivity on each floor, the maximum

inter-node separation is assumed to be smaller than the communication range of a node. The objective here is to study

the relationship among the number of sensors deployed, their inter-node separations and the mode shape error for a

given floor dimension.

Figure 4(b) illustrates the corresponding mode shape error for each of the configurations shown in Figure 4(a),

which decreases sharply as the nodes are placed further apart from each other. However, after a certain point, when

the separation reaches around 0.15w (where w is the width of the floor), the rate of decrease flattens out. A similar

trend is observed when the number of sensors per floor is increased keeping the noise level fixed at 4%. These results

indicate the expected observation that a large number of sensors when placed further apart reduces the mode shape

errors, although, with diminishing returns.

6. ACCURACY AND ENERGY EFFICIENCY

The results presented in the previous section show that the mode shape error decreases with increasing inter-node

separation and the number of sensors per floor, although with diminishing returns. However, as the separation

increases, a node must transmit at a higher power level to reach its neighbors, which requires more energy. Similarly,

a large number of sensors also results in high energy consumption. The goal in this section is to study this trade-off

and find an optimal grid separation and number of sensors per floor to balance minimizing the amount of energy

consumed in communicating the measurements with minimal error in mode shape estimation. Based on the network

model described in Section 3.3, an energy efficient routing tree is first constructed assuming that all the nodes on a

given floor can send their measurements to a local sink located at the center of that floor. Then, from the energy model

described in Section 3.4, the total energy spent for gathering all the measurements over the routing tree to the local

sink is estimated for a given inter-node separation. Finally, simulations show the trends in energy consumption with

varying inter-node separation and the number of nodes.

Copyright c© 2012 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2012; 00:1–14
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Figure 5. Min-max fair, energy-balanced routing trees on grid deployment: (a) Numbers indicate levels; arrows
correspond to routing paths from nodes at different levels; sink is on a grid point. (b) Four level one nodes with

the sink at the center of a grid cell. (c) Two level one nodes with the sink at the center of a grid line.

6.1. Energy-Balanced Routing Tree

Consider the scenario in which data measured by a set of m nodes on each floor must be delivered to the local sink

located at the center of that floor. According to the energy model herein, the energy dissipation at a sensor node is

proportional to the total number of bits the node receives and transmits. To increase the longevity of the network, a fair

utilization of energy resources is needed so that no node suffers from an early energy depletion. Thus, it is important

to construct an energy-balanced routing tree that will ensure uniform energy dissipation among all nodes. Assuming

there is no data aggregation en route to the sink, the number of bits received by a node, and hence the energy required

to transmit them, is proportional to the size of its subtree.

Let e(T, i) be the energy spent by node i to send its measurements to the local sink over a routing tree T that is

rooted at the sink. Assume that each node generates k bits of data. The goal is to construct an energy-balanced routing

tree such that the following condition holds: (i) total energy spent by all the m nodes is minimized, (ii) maximum

energy spent by any node is minimized.

It is assumed that the nodes can organize themselves into levels based on their hop distance from the sink, with

lower levels corresponding to nodes that are closer to the sink, as illustrated through an example in Figure 5(a). For

a distance dependent energy model, the first condition corresponds to a shortest path routing tree in terms of hop

distance, where each node other than the sink selects one of its nearest neighbors from the previous level as its parent.

Note that in a grid deployment, all nodes except those at the first level have two choices as their nearest neighbors

from their previous levels. The best choice is made in such a way that the resulting sizes of the subtrees rooted at the

nearest neighbors are as close to each other as possible. This will ensure that the size of a subtree rooted at a lower

level node is at least equal to or greater than that at a higher level node. At each level, this parent assignment strategy

could be achieved either in a centralized or distributed way by exchanging messages between the neighboring nodes.

Note this particular parent assignment strategy may not always guarantee a min-max fair, energy-balanced routing

tree on an arbitrary deployment of nodes where each node generates possibly a different amount of data (e.g., if one

node has a single accelerometer and another has a triaxial accelerometer). However, for a grid deployment where each

node generates the same amount of data (k bits), choosing the best nearest neighbor from the previous level will result

in a min-max fair, energy-balanced tree. This is because choosing a neighbor from the previous level that is not one

of the nearest ones will require more energy and, therefore, violate the first condition. Moreover, this will not help in

better energy balancing because the amount of data generated by all the nodes is the same and the sink is located at

the center of the floor.

It should be noted that instead of constructing a tree in which every node has a single parent, one could employ a

non-tree based or graph-based routing strategy, wherein a single node can have more than one parent. In such cases,

for example, the uppermost node on the right at level 4 in Figure 5(a) can use both of the nodes at level 3, one to its

left and one below, for sending its data in order to load balance energy consumption. However, typically in a sensor

network, the nodes are organized as a tree, which makes routing simpler and easier to maintain; this assumption is

made herein.

Copyright c© 2012 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2012; 00:1–14
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6.2. Energy Consumption Per Floor

Having constructed a min-max fair, energy-balanced routing tree for a grid deployment, an expression is derived in

this section for the total amount of energy required to route all data on a floor to a local sink, located at the center of

the floor, as a function of grid separation.

As before, the grid deployment for each floor has m1 × m2 sensors with grid separation d. The routing tree

constructed on such a configuration is symmetric around the sink node, i.e., the subtrees rooted at the level one

nodes are identical. The number γ of level one nodes depends on the values of m1 and m2. For m1 and m2 both

odd (Figure 5(a)) or both even (Figure 5(b)), there are four level one nodes (i.e., γ = 4), and the sink is located either

on a grid point or at the center of a grid cell. When one of m1 and m2 is odd and the other is even, there are only two

level one nodes (γ = 2), and the sink is located at the center of a grid line (Figure 5(c)). Since the subtrees rooted

at the level one nodes are identical, their energy consumption to route all data to their respective level one nodes are

the same. In the following, expressions are derived for the total energy consumption per floor to deliver all the bits

generated by the sensors to the local sink located at the center of the floor.

Without loss of generality, consider the subtree rooted at the level one node just above the sink, as shown in dotted

ellipse in Figure 5(a). The number of rows and columns in this subtree is ⌊m1/2⌋ and ⌈m2/2⌉, respectively, where ⌊·⌋
and ⌈·⌉ denote the floor and the ceiling integer of their argument. Since a node transmits its own data along with all

data received from its own subtree, the total number of bits transmitted over a one hop distance by all nodes in a given

row to reach the leftmost node is:

N1 = k





⌈m2/2⌉−1
∑

i=1

i



 =
k

2
⌈m2/2⌉ (⌈m2/2⌉ − 1) . (17)

By symmetry, all rows transmit the same amount of data to reach their respective leftmost nodes. Therefore, the

total number of bits transmitted over one hop to the leftmost nodes is N1⌊m1/2⌋. Finally, all data from the leftmost

nodes at each row are transmitted to the level one node. Thus, total bits transmitted by these leftmost nodes over a one

hop distance is:

N2 = k⌈m2/2⌉





⌊m1/2⌋−1
∑

i=1

i



 =
k

2
⌊m1/2⌋⌈m2/2⌉ (⌊m1/2⌋ − 1) . (18)

Finally, the level one node transmits all these data to the sink. Therefore, the total energy spent by all the nodes to get

their data to the sink is given by:

E(d) = γ (N1⌊m1/2⌋+N2 + ⌊m1/2⌋⌈m2/2⌉k) e(d). (19)

Substituting (17) and (18) into (19) and simplifying yields,

E(d) =
γk

2
⌊m1/2⌋⌈m2/2⌉ (⌊m1/2⌋+ ⌈m2/2⌉) e(d), γ = 4. (20)

Following a similar procedure, the total energy spent to deliver all of the bits to the local sink when m1 and m2 are

both even is:

E(d) =
γk

2
⌊m1/2⌋⌈m2/2⌉

(

⌊m1/2⌋+ ⌈m2/2⌉+
√
2− 2

)

e(d), γ = 4, (21)

and, when m1 is odd and m2 is even, is:

E(d) =
γk

2
⌈m2/2⌉

(

m1⌈m2/2⌉+ 2⌊m1/2⌋2 + 2⌊m1/2⌋
)

e(d), γ = 2. (22)

Note that when m1 is even and m2 is odd, one can always rotate the view point and take m1 as odd and m2 as even,

and (22) will apply.

6.3. Location and Number of Sensors

The simulation results presented so far indicate that the mode shape error decreases with increasing inter-node

separation and the number of nodes. However, an increase in the number of nodes leads to the generation of more

data, and an increase in inter-node separation requires higher transmission power. The combination of these two

effects, consequently, results in an increase in energy consumption. Thus, these two opposing factors lead to a joint

optimization problem of finding the right grid separation and the number of nodes that will optimally balance the mode

shape errors with energy consumption. For ease of presentation and understanding, the optimization is first illustrated

Copyright c© 2012 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2012; 00:1–14
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Figure 6. Comparison of mode shape error and energy consumption for different grid separations.

through an example with fixed number of nodes for finding the optimal grid separation and energy consumption, and

then extended to incorporate optimality on the number of nodes.

In Figure 6(a), the mode shape errors and the energy consumption per floor with increasing grid separations are

plotted for 16-node configurations. The mode shape errors are high at small grid separations whereas the energy

consumption is high at large grid separations. Denoting the mode shape error by M(d) and the energy consumption

per floor by E(d) at separation d, the optimal separation d∗ can be found by minimizing the following objective

function:

J = αMM(d) + αEE(d), dmin ≤ d ≤ dmax (23)

where αM and αE are weighting constants. The choice of αM and αE heavily depends on the relative cost of the

mode shape error and the energy consumption. The optimal d∗ is bounded by the minimum and maximum allowable

separations, dmin and dmax, respectively, which are influenced by the sensor configurations. Figure 6(b) illustrates the

objective function of (23) using the following values for αM and αE :

αM = 1/min
d

M(d) and αE = 1/min
d

E(d). (24)

Here, although mind M(d) and mind E(d) are the minimum values over d ∈ [dmin, dmax], they approximate the

absolute minimum values without constraining d since the range [dmin, dmax] is sufficiently wide. For the 16-node

configuration, M(d) and E(d) asymptotically approach their absolute minimum values. The numerical solution for

d∗, as shown in Figure 6(b), is approximately 0.1265w. The constants αM and αE in (24) are used to normalize M(d)
and E(d) such that they are equally weighted in optimizing d.

Extending to jointly optimize the grid separation and the number of nodes, the cost (23) becomes

J = αMM(d,m) + αEE(d,m). (25)

where M(d,m) and E(d,m) are the mode shape error and energy consumption, respectively, for m sensors per floor

at grid separation d. As before, the weighting constants can be expressed as:

αM = 1/min
d,m

M(d,m) and αE = 1/min
d,m

E(d,m). (26)

Minimizing (25) over d and m gives d∗ and m∗ such that moving away from (d∗,m∗) will result in no improvement

in the mode shape error or energy consumption that will not be outweighed by the decrease in the other measure.

Figure 7(a) and 7(b) show how M(d,m) and E(d,m) change with respect to both the grid separation and the

number of sensors per floor (among the set of 9 possible grid deployments given in Figure 4(b)), respectively.

Figure 7(c) illustrates the objective function (25) with αM and αE from (26). The optimal pair of values are

(d∗ = 0.1025w,m∗ = 4) in this particular example.

The weights in (23) and (25) are used to accommodate with different units and scales of the mode shape error

and the energy consumption. The relative importance of the mode shape error and the energy consumption can be

varied by adjusting the weights αM and αE , which in turn will affect the optimal solutions for d∗ and/or m∗, favoring

Copyright c© 2012 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2012; 00:1–14
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Figure 7. (a) Normalized mode shape error αMM , (b) normalized energy consumption αEE, and (c) objective
function J = αMM + αEE, all as functions of the number of sensors and grid separation.
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either the accuracy in mode shape estimation or the energy efficiency. For example, decreasing αM while keeping αE

unchanged will lessen the weight on the mode shape estimation relative to the energy efficiency in the optimization,

and vice versa.

Figure 8 demonstrates the effect of different values of αM and αE on the optimal solutions for d∗ in minimizing

(23). In Figure 8(a) and 8(b), instead of using (24), αM and αE are set to different values such that more weight

is given to energy efficiency. The optimal grid separation d∗ is now 0.1198w instead of 0.1265w. The decreased d∗

improves energy usage by reducing the radio transmission range. In contrast, more weight is given to the mode shape

estimation in Figure 8(c) and 8(d); the optimal separation increases to 0.1299w. Depending on the relative cost of the

mode shape estimation and the energy consumption, different values of αM and αE should be given to the objective

functions in (23) and (25).

The results shown herein are, of course, based on a shear structure with simple rectangular floor layouts, and a

particular method for estimating mode shapes. Different floors layouts and types of structures (e.g., bridges, trusses)

may lead to different preferred placements of sensors and sinks (data receivers). For example, bridges may have the

largest displacement in the middle of spans but may have sinks at the ends of the bridges or at tower locations. This is

quite a different topology than the problem studied herein. However, the tradeoffs between energy efficiency and SHM

accuracy are similar, and the proposed methodology could be easily applied to other types of structures. Similarly,

the ERA for mode shape estimation could be replaced with other identification approaches in the time or frequency

domains. The particular results may change, such as the exact optimal separation distances, but there will always

remain a trade off between accuracy and energy consumption; sensors located where the effective signal-to-noise ratio

Copyright c© 2012 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2012; 00:1–14
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is strong are often not the locations for minimal power.

7. CONCLUSIONS AND FUTURE WORK

Wireless SHM systems are promising due to their ease of installation, inexpensive costs, and scalability. However a

WSN comes with its power and bandwidth constraints. This paper provides a study on optimizing sensors placements

for SHM in terms of the quality of system identification and energy cost. These two opposing metrics prefer a tight

placement of a few sensors to decrease the energy cost and a separated placement of many sensors to increase the

accuracy in estimating structural modal parameters. A compromise is suggested by defining an objective function with

weighting factors on energy needs and estimation accuracy. The number of sensors and the distances between them are

analyzed using the multivariate objective function and an optimal sensor separation is found. The effect of an optimal

placement due to different weights is also analyzed. Future work will involve optimal deployment for more complex

structures in terms of floor layouts, non-shear structures, sensor failures, realistic wireless interference models, data

transfer time efficiency, etc. Experiments in a laboratory setting are needed to further validate the result of this study.

Furthermore, an existing building is suitable for future investigation where practical difficulties in deploying sensors,

real world noise, movements in the building and factors affecting the quality of system identification cannot be foreseen

in simulation.
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