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Abstract—This work aims to maximize the energy efficiency of
a downlink cloud radio access network (C-RAN), where data is
transferred from a baseband unit in the core network to several
remote radio heads via a set of edge routers over capacity-limited
fronthaul links. The remote radio heads then send the received
signals to their users via radio access links. We formulate a new
mixed-integer nonlinear problem in which the ratio of network
throughput and total power consumption is maximized. This
challenging problem formulation includes practical constraints
on routing, predefined minimum data rates, fronthaul capacity
and maximum RRH transmit power. By employing the successive
convex quadratic programming framework, an iterative algorithm
is proposed with guaranteed convergence to a Fritz John solution
of the formulated problem. Significantly, each iteration of the pro-
posed algorithm solves only one simple convex program. Numerical
examples with practical parameters confirm that the proposed
joint optimization design markedly improves the C-RAN’s energy
efficiency compared to benchmark schemes.

Index Terms—C-RAN, energy efficiency, limited-capacity fron-
thaul, precoding design, user association

I. INTRODUCTION

Cloud radio access networks (C-RANs) are considered as a
promising solution for the fifth generation of mobile communi-
cation systems [1]. In a C-RAN, low-cost low-power remote
radio heads (RRHs) replace traditional high-cost high-power
base stations, resulting in lower energy consumption for a dense
network implementation [2]. A central base band unit (BBU)
in the core network is connected to the RRHs via wireline
fronthaul links, whereas the RRHs are connected to users via
radio access links. The most important advantage of C-RANs
is that large-scale allocation of radio and computing resources
across all the RRHs can be centrally processed at the same BBU
pools, which enable significant spectral and energy efficiency
gains over the single-cell processing [3]. However, C-RANs
require a tremendous amount of data sharing on the fronthaul
links due to fully joint processing, making the finite-capacity
fronthaul link a main bottleneck of practical C-RANs [4].

To improve energy efficiency of the downlink C-RANs, one
may opt to (i) increase data rate, (ii) decrease RRH transmit
power, (iii) turn off RRHs, (iv) reduce the fronthaul rate for
power saving, and (v) implement any combination thereof.
The authors in [5] fix user rates and transforms the energy
efficiency maximization problem into a power minimization
problem. However, fronthaul capacity constraint is not taken
into account. The work of [6] addresses a different power
minimization problem for downlink C-RANs, where users are
put into several multicast groups. Applying random matrix
theory, [7] proposes heuristic user association (UA) schemes
that maximize the equivalent energy efficiency. These works
show that the UA and RRH activation play important roles in
energy efficiency enhancement.

It is worth noting that the aforementioned solutions focus on
single-hop fronthaul networks only, while a practical BBU is

typically connected to RRHs via a number of edge routers over
a multi-hop fronthaul network [8]. Very recently, [8] attempts
to maximize the network throughput of a downlink multi-
hop C-RAN, where network coding is shown to be necessary
for a better utilization of the finite-capacity fronthaul links
in the multi-hop fronthaul case. However, to the best of our
knowledge, energy efficiency maximization has not yet been
addressed for this practical network scenario.

Paper Contribution: This paper considers the general down-
link of a C-RAN with multi-hop and capacity-limited fronthaul.
The aim is to maximize the network energy efficiency by
jointly optimizing user association (UA), RRH activation, data
rate allocation and signal precoding. Since these optimization
variables are strongly interrelated, it is not straightforward
to even formulate this problem in a suitable form, let alone
solving them effectively and optimally. We formulate a new
problem of energy efficiency maximization, subject to routing
constraints, limited fronthaul capacities, predefined minimum
rates and maximum transmit power at each RRH. Practically,
the total power consumption resulting from data transmission,
RRH and fronthaul operations is included in the formulations.

We propose a new iterative algorithm to solve the challeng-
ing mixed-integer nonlinear problem formulation, where each
iteration involves solving only one simple convex program.
Specifically, the original problem is first transformed into an
epigraph form. To deal with the binary nature of UA and RRH
activation decisions, it is further recast to an equivalent problem
that includes continuous variables only. This problem is finally
solved by the successive convex quadratic programming. We
prove theoretically and verify by numerical examples that the
proposed algorithm converges to a solution that satisfies the
Fritz John conditions1 of the formulated problem once initial-
ized from a feasible point. Simulation results with practical
parameter settings show that our joint optimization approach
significantly improves the energy efficiency over existing meth-
ods in both single-hop and multi-hop cases.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 illustrates the downlink of a general C-RAN model,
where the baseband unit (BBU) in the core network connects to
a set of RRHs KR , {1, . . . ,KR} via a fronthaul network of M
routers and N noiseless fronthaul links [5], [8], where M > 0,
N > KR for a multi-hop C-RAN and M = 0, N = KR for
a single-hop C-RAN. Denote by M , {1, . . . ,M} and N ,
{1, . . . , N} the sets of routers and fronthaul links, respectively.
Assume that a fronthaul link n ∈ N has a limited capacity of
Cn > 0 (in bits per second). The RRHs then serve a set of
users KU , {1, . . . ,KU} via radio access links, where a user

1The Fritz John conditions are necessary conditions for a solution in nonlinear
programming to be optimal [9].



Fig. 1. A general C-RAN with multi-hop fronthaul links.

is allowed to connect to multiple RRHs. Each user k ∈ KU
is equipped with Nu antennas while each eRRH i ∈ KR is
equipped with Nr antennas.

At the BBU, a message Mk intended for the user k is
uniformly distributed in the set {1, . . . , 2uRk}, where u is the
block length and Rk (in bits per second) is the data rate
of message Mk [10]. The message Mk is then encoded into
symbol sssk ∈ Cd×1, where sssk is taken from a Gaussian channel
codebook CCH

k so that sssk ∼ CN (000, III) and d , min(Nu, Nr) is
the number of data streams. The network throughput is defined
as the following sum rate:

Rsum ,
∑
k∈KU

Rk. (1)

Each user’s intended message symbol is routed through
the fronthaul and delivered to a set of RRHs. At the radio
access links, the RRH-user associations and RRH activation
respectively are expressed by the following binary variables

ak,i ,

{
1, if eRRH i serves user k,
0, otherwise, (2)

bi ,

{
0, if eRRH i serves no user,
1, otherwise. (3)

Denote the set of RRHs that serves user k as Dk , {i|ak,i =
1, i ∈ KR}. Then the BBU sends sssk to Dk over the multi-hop
fronthaul network at the rate Rk.

Following [8], this paper employs a network coding scheme
that consists of a flow routing scheme and a code assignment to
determine the rate and content of each data flow being delivered
across the fronthaul network. The study of [11] shows that
intersession coding only provides marginal throughput gain over
independent coding while making the routing problem an NP-
hard one. Therefore, this paper assumes that each multicast
session is routed and coded independently but not jointly.

In our model, there are KU multicast sessions for KU users’
messages. Denote by rk,n the routing variable that detemines
the flow rate on a link n for a multicast session k. If rk,n = 0,
the multicast session k is not routed on the link n. The network
coding theorem in [12] shows that if the rate Rk is achievable
at each destination in Dk independently, it is also achievable
for the entire multicast session k. Hence, the multicast flow
on the link n to an RRH i ∈ Dk can be viewed as including
the independent conceptual flows fk,i,n ≤ rk,n,∀k ∈ KU , i ∈
KR,m ∈ M [8]. The routing constraints for the multi-hop

fronthaul network can be formulated as follows [8]

fk,i,n ≤ rk,n,∀k ∈ KU , i ∈ KR, n ∈ N (4)

rk,n ≤ ak,iCn,∀k ∈ KU , n ∈ IKRi (5)

ak,iRk ≤
∑

n∈IKRi

fk,i,n,∀k ∈ KU , i ∈ KR (6)

∑
n∈OM

m

fk,i,n =
∑
n∈IMm

fk,i,n,∀k ∈ KU , i ∈ KR,m ∈M (7)

∑
k∈KU

rk,n ≤ Cn,∀n ∈ N (8)

Rk ≥ RQoS, rk,n ≥ 0, fk,i,n ≥ 0,∀k ∈ KU , i ∈ KR, n ∈M,
(9)

where IKRi denotes the set of incoming links at an RRH i
while IMm and OMm are the sets of incoming and outgoing
links at a router m, respectively. Constraint (4) shows that
the actual flow rate on link n for multicast session k is a
MAX operation, i.e., rk,n = maxi∈Dk fk,i,n, instead of a SUM
operation, i.e., rk,n =

∑
i∈Dk fk,i,n, of the conceptual flows.

This is the benefit of network coding in which the amount of
information conveyed on a fixed-capacity link is increased by
splitting each multicast session into subsessions and sending
only an XOR version of the subsessions on this link. Constraint
(5) makes sure there is no data transmission to the unassigned
or inactive RRHs. Constraint (6) guarantees that each RRH
i ∈ Dk can receive the information flow at rate Rk when
ak,i = 1. Constraint (7) follows the law of flow conservation for
conceptual flows at a router m. Constraint (8) ensures that the
information flow for all K multicast sessions does not exceed
each link capacity. Constraint (9) guarantees a quality-of-service
(QoS) rate RQoS ≥ 0 for each user as well as nonnegative flow
rates on all links for all the multicast sessions. For any given
flow rates that satisfy the routing constraints (4)-(9), a code
assignment scheme can be found to design the content of each
flow [8], [13].

Signal Model: After receiving the message symbols from all
K multicast sessions via the multi-hop fronthaul network, RRH
i generates the transmitted baseband signal xxxi ∈ CNr×1 as

xxxi =
∑
k∈KU

FFF k,i sssk, (10)

where FFF k,i ∈ CNr×d is the precoding matrix for sssk at RRH i.
Each RRH i is assumed to be subjected to the average transmit
power constraint expressed as

E
{
‖xxxi ‖2

}
≤ Pi. (11)

Denote by HHHk,i ∈ CNu×Nr the flat-fading channel matrix
from RRH i to user k and by HHHk , [HHHk,1, ...,HHHk,KR ] ∈
CNu×NR the channel matrix from all RRHs to user k, where
NR , KRNr. Assume that channel states HHHk,i, k ∈ KU , i ∈
KR remain unchanged during the transmission interval and are
available at the BBU and RRHs [8]. Upon defining F̄FF k ,[
(FFF k,1)H , (FFF k,2)H , . . . (FFF k,KR)H

]H ∈ CNR×d, the received
signal yyyk ∈ CNu×1 at user k can thus be written as

yyyk = HHHk F̄FF k sssk +
∑

`∈KU \{k}

HHH` F̄FF ` sss`︸ ︷︷ ︸
interference

+nnnk, (12)

where nnnk ∈ CNu×1 is the additive noise term with nnnk ∼
CN (000,ΣΣΣk). By treating the interference in (12) as additive
Gaussian noise, the rate Rk of message symbol sssk is always



achievable in the Shannon sense as follows

Rk ≤ gk(F̄FF ) ,W log2

∣∣∣IIINu + ΠΠΠkΠΠΠH
k ΞΞΞ−1

k

∣∣∣ , (13)

where W is the total available bandwidth, F̄FF , {F̄FF k}k∈KU ,
ΠΠΠk ,HHHk F̄FF k, and

ΞΞΞk ,
∑

`∈KU \{k}

HHHk F̄FF `F̄FF
H
` HHH

H
k +ΣΣΣk . (14)

Define aaa , {ak,i}k∈KU ,i∈KR and bbb , {bi}i∈KR . The
interdependence among aaa, bbb and F̄FF is modeled as

ak,i =

{
0, if 〈ĒEEHi F̄FF kF̄FF

H
k ĒEEi〉 = 0,

1, otherwise,
∀k ∈ KU , i ∈ KR (15)

bi =

{
0, if ak,i = 0,∀k ∈ KU ,
1, otherwise, ∀i ∈ KR, (16)

where (15) and (16) are indeed (2) and (3) in the sense that RRH
i is assigned to serve user k if and only if the corresponding
procoder of message symbol sssk is not a zero matrix, i.e., FFF k,i =

ĒEE
H
i F̄FF k 6= 000. Following (15) and (16), the relationship between

aaa and bbb implies that

ak,i ≤ bi ≤
∑
k∈KU

ak,i,∀k ∈ KU , i ∈ KR, (17)

which guarantees no user being assigned to an inactive RRH.
Power Model: This paper adopts a practical power consump-

tion model that is applicable to different types of BSs [5]. The
power consumed by RRH i ∈ KR in the given transmission
interval is expressed as

PRRH
i ,

{
βiP

Tx
i + Pi,a, if 0 < P Tx

i ≤ Pi,
Pi,s, if P Tx

i = 0,
(18)

where constant βi > 0, i ∈ KR reflects the power amplifier
efficiency, feeder loss and other loss factors due to power supply
and cooling for RRH i [5]; P Tx

i is the transmit power required to
deliver all requested files from RRH i; Pi,a is the power required
to support RRH i in the active mode; Pi,s < Pi,a is the power
consumption in the sleep mode; and Pi is the maximum transmit
power at RRH i. The transmit power at RRH i is computed as

P Tx
i = bi

∑
k∈KU

ak,i〈ĒEE
H
i F̄FF kF̄FF

H
k ĒEEi〉

= bi
∑
k∈KU

〈ĒEEHi F̄FF kF̄FF
H
k ĒEEi〉 =

∑
k∈KU

〈ĒEEHi F̄FF kF̄FF
H
k ĒEEi〉. (19)

On the other hand, fronthaul link n ∈ N is modeled as a set
of communication channels with a total capacity Cn and total
power dissipation PFHn,max. Its power consumption is given by
[5]

P FH
n ,

∑
k∈KU rk,n

Cn
P FH
n,max = αn

∑
k∈KU

rk,n, (20)

where αn , PFHn,max/Cn, rk,n is defined above as the actual
flow rate on link n for multicast session k. From (18)-(20), the
total network power consumption is computed as follows

Ptotal(F̄FF ,rrr, bbb) ,
∑
i∈KR

PRRH
i +

∑
n∈N

P FH
n

=
∑
i∈KR

(
βiP

Tx
i + biPi,∆

)
+
∑
n∈N

αn
∑
k∈KU

rk,n + Ps, (21)

where F̄FF , {F̄FF k,i}k∈KU ,i∈KR ; P Tx,DS
i is defined in (19); Pi,∆ ,

Pi,a − Pi,s; Ps ,
∑
i∈KR Pi,s; and rrr , {rk,n}k∈KU ,n∈N .

Problem Formulation: The energy efficiency in wireless

network can be measured by the area power consumption
metric (watts/unit area) or the economical energy efficiency
metric (effective bits/Joule) [14]. Here, we aim to maximize a
more widely adopted metric, i.e., the network energy efficiency
defined as the ratio of the achievable sum rate and the total
power consumption (bits/Joule) [5]. The optimization problem
for the multi-hop C-RAN is formulated as follows

max
aaa,bbb,RRR,F̄FF ,fff,rrr

P1 ,
Rsum

Ptotal
(22a)

s.t. (4)− (9), (13), (15), (16) (22b)∑
k∈KU

〈ĒEEHi F̄FF kF̄FF
H
k ĒEEi〉 ≤ Pi,∀i ∈ KR (22c)∑

i∈KR

ak,i ≥ 1,∀k ∈ KU (22d)

where RRR , {Rk}k∈KU ; fff , {fk,i,n}k∈KU ,i∈KR,n∈N ; Rsum and
PDS

total are defined in (1) and (21), respectively; constraint (22c) is
the per-RRH power constraint (11) via (10) and (19); constraint
(22d) guarantees that each user is served by at least one active
RRH.

In the case of single-hop C-RANs which does not require the
network coding, the formulation in (22) does not cover this case.
Instead, (22) has to be modified by replacing the constraints (4)-
(9) with the following constraints:

0 ≤ rk,i ≤ ak,iCi,∀k ∈ KU , i ∈ KR (23)
ak,iRk ≤ rk,i,∀k ∈ KU , i ∈ KR (24)∑
k∈KU

rk,i ≤ Ci,∀i ∈ KR (25)

Rk ≥ RQoS, rk,i ≥ 0,∀k ∈ KU , i ∈ KR . (26)

It is noteworthy that the mathematical structure of constraints
(23)-(26) are similar to that of (4)-(9). Therefore, the algorithm
devised in the next section for (22) can be straightforwardly
adapted to solve this corresponding single-hop problem too.

III. PROPOSED ALGORITHM

First, we rewrite problem (22) in an epigraph form [15] as

max
t,ppp,fff,rrr,aaa

t (27a)

s.t. (4)− (9), (13), (17), (22d) (27b)

tz ≤
∑
k∈KU

Rk (27c)

z ≥
∑
i∈KR

(
βi
∑
k∈KU

〈ĒEEHi F̄FF kF̄FF
H
k ĒEEi〉+ biPi,∆

)
+
∑
n∈N

αn
∑
k∈KU

rk,n + Ps (27d)

〈ĒEEHi F̄FF kF̄FF
H
k ĒEEi〉 ≤ uk,i,∀k ∈ KU , i ∈ KR (27e)

uk,i ≤ ak,iPi,∀k ∈ KU , i ∈ KR (27f)
ak,i ∈ {0, 1}, bi ∈ {0, 1},∀k ∈ KU , i ∈ KR (27g)∑
k∈KU

uk,i ≤ Pi,∀i ∈ KR (27h)

where ppp , (RRR,F̄FF , z,uuu); uuu , {uk,i}k∈KU ,i∈KR ; (17) and (27e)-
(27g) follow from (15) and (16), which guarantees no power
is consumed if ak,i = 0; (27h) is indeed (22c) via (27e). Still,
problem (27) is challenging due to the nonconvex constraints
(6), (13), (27c), (27d) and (27g).

To deal with the binary nature of constraint (27g), we note
that ∀ak,i, bi ∈ {0, 1} then

∑
i∈KR

∑
k∈KU (ak,i − a2

k,i) +



∑
i∈KR(bi − b2i ) = 0. In contrast, for all ak,i, bi ∈ [0, 1],∑
i∈KR

∑
k∈KU (ak,i−a2

k,i) +
∑
i∈KR(bi− b2i ) ≥ 0. Therefore,

(27g) can be rewritten as∑
i∈KR

∑
k∈KU

(ak,i − a2
k,i) +

∑
i∈KR

(bi − b2i ) ≤ 0 (28)

0 ≤ ak,i ≤ 1, 0 ≤ bi ≤ 1,∀k ∈ KU , i ∈ KR . (29)

With (28) and (29), (27d) also becomes a convex constraint.
Problem (27) is now transformed to the following problem with
continuous variables ak,i, bi ∈ [0, 1],∀k ∈ KU , i ∈ KR

min
(t,ppp,fff,rrr,aaa,bbb)∈H

− t (30)

where H , {(t,ppp,fff,rrr,aaa,bbb)|(4)− (9), (13), (17), (22d), (27c)−
(27f), (27h), (28), (29)}.

Without including the nonconvex constraint (28), let
Ĥ , {(t,ppp,fff,rrr,aaa,bbb)|(4) − (9), (13), (17), (22d), (27c) −
(27f), (27h), (29)} be the compact, feasible set of problem (30).
The Lagrangian of (30) is given as

L(t,aaa,bbb, λ) , −t+λ

(∑
i∈KR

∑
k∈KU

(ak,i − a2
k,i) +

∑
i∈KR

(bi − b2i )

)
,

(31)
where λ ≥ 0 is the Lagrangian multiplier to handle the
nonconvex constraint (28). Problem (30) can then be expressed
as min

(t,ppp,fff,rrr,aaa,bbb)∈Ĥ(κ)
max
λ≥0
L(t,aaa,bbb, λ) and its dual problem as

max
λ≥0

min
(t,ppp,fff,rrr,aaa,bbb)∈Ĥ(κ)

L(t,aaa,bbb, λ). The property of (30) is stated

in the following result.

Proposition 1. Strong Lagrangian duality holds for problem
(30), i.e.,

min
(t,ppp,fff,rrr,aaa,bbb)∈Ĥ

max
λ≥0
L(t,aaa,bbb, λ)

= max
λ≥0

min
(t,ppp,fff,rrr,aaa,bbb)∈Ĥ

L(t,aaa,bbb, λ). (32)

Problem (30) is thus equivalent to the following problem

min
(t,ppp,fff,rrr,aaa,bbb)∈Ĥ

L(t,aaa,bbb, λ)

= −t+ λ

(∑
i∈KR

∑
k∈KU

(ak,i − a2
k,i) +

∑
i∈KR

(bi − b2i )

)
(33)

at the optimal λ∗ ∈ [0,+∞) of the max-min problem in (32).

The proof of Proposition 1 is similar to [16] and, hence,
omitted. Proposition 1 implies that the optimal solution of
problem (30) can be found by solving problem (33) for an
appropriately chosen value of λ.

To deal with constraints (6) and (27c), we rewrite them
respectively as

(Rk + ak,i)
2 − (Rk − ak,i)2 − 4

∑
n∈IKRi

fk,i,n ≤ 0,

∀k ∈ KU , i ∈ KR (34)

(t+ z)2 − (t− z)2 − 4
∑
k∈KU

Rk ≤ 0. (35)

Note that a function f1(x, y) , (x − y)2 is jointly convex in
(x, y). Upon applying the first-order Taylor series expansion at
a given point (x(κ), y(κ)), its convex lower bound is given as
2(x(κ) − y(κ))(x− y)− (x(κ) − y(κ))2 ≤ (x− y)2. Therefore,
constraints (34) and (35) can be approximated at a given point

(t(κ), ppp(κ), aaa(κ)) by the following convex constraints:

(Rk + ak,i)
2 − 2(R

(κ)
k − a

(κ)
k,i )(Rk − ak,i) + (R

(κ)
k − a

(κ)
k,i )

2

− 4
∑

n∈IKRi

fk,i,n ≤ 0,∀k ∈ KU , i ∈ KR (36)

(t+ z)2 − 2(t(κ) − z(κ))(t− z) + (t(κ) − z(κ))2

− 4
∑
k∈KU

Rk ≤ 0 (37)

in the sense that every point (t,ppp,aaa) that satisfies constraints
(36) and (37) would also satisfy constraints (34) and (35).

To deal with constraint (13), it is observed that the nonconvex
part gk(F̄FF ) of (13) has a concave lower bound Γ

(κ)
k (F̄FF ) at

a specific point F̄FF (κ) as (38) (see the top of the next page)
where ΦΦΦk , ΠΠΠkΠΠΠH

k +ΞΞΞk. The derivation of Γ
(κ)
k (F̄FF ) in (38)

and the proof of its concavity follow from the results of [17]
and thus are omitted for brevity. Constraint (13) can then be
approximated at a given point F̄FF (κ) by the following convex
constraint

Rk ≤ Γ
(κ)
k (F̄FF ),∀k ∈ KU . (39)

As such, for a given point (t(κ), ppp(κ), fff (κ), rrr(κ), aaa(κ), bbb(κ)),
problem (33) can be approximated as

min
(t,ppp,fff,rrr,aaa,bbb)∈Ĥ(κ)

L(t,aaa,bbb, λ) (40)

where Ĥ
(κ)

, {(t,ppp,fff,rrr,aaa,bbb)|(4), (5), (7)− (9), (17), (22d),
(27d) − (27f), (27h), (29), (36), (37), (39)} is a convex feasible
set.

Upon applying a2
k,i ≥ 2a

(κ)
k,i ak,i−(a

(κ)
k,i )

2 and b2i ≥ 2b
(κ)
i bi−

(b
(κ)
i )2, problem (33) can be further approximated at a given

point (t(κ), ppp(κ), fff (κ), rrr(κ), aaa(κ), bbb(κ)) by the convex problem
(41)(see the top of the next page) in the sense of minimizing
the upper bound L̃(t,aaa,bbb, λ) of L(t,aaa,bbb, λ).

Now, we are ready to outline the steps to find the solution
of problem (33) in Algorithm 1. For an empirically chosen
λ and starting from a feasible initial point, we solve problem
(41) to obtain the optimal solution (t∗, ppp∗, fff∗, rrr∗, aaa∗, bbb∗). This
solution is then used as an initial point for the next iteration.
The loop terminates when there is no improvement in the
objective function L̃ of problem (41). With the above analysis,
Algorithm 1 is guaranteed to converge to a solution that satisfies
the Fritz John conditions of problem (33). The proof of this fact
follows from [9] and [18], and hence is omitted here for brevity.

The initial point (t(0), ppp(0), fff (0), rrr(0), aaa(0), bbb(0)) ∈ Ĥ
(κ)

of
Algorithm 1 can be found by random methods. Here, to further
improve the performance of the solution, we propose Subrou-
tine 1 that aims to solve problem (30) without constraint (28),
which can be approximated by the following convex problem

min
(t,ppp,fff,rrr,aaa,bbb)∈H̃(κ)

− t. (42)

Starting from a random feasible point
(t(0), ppp(0), fff (0), rrr(0), aaa(0), bbb(0)) ∈ Ĥ, the initial point obtained
by Subroutine 1 is located close to a solution of problem (30).
Since (30) and (33) are equivalent, the initial point obtained
by Subroutine 1 will improve the solution obtained by solving
(41) which is the approximation of (33) via (40).

IV. NUMERICAL EXAMPLES

We consider a C-RAN with a multi-hop fronthaul in Fig. 2(a)
and a single-hop fronthaul Fig. 2(b). The radio access part of
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Algorithm 1 Energy efficiency maximization for the downlink
C-RANs

1: Initialization: Set κ := 1. Set a value of λ and choose an
initial point (t(0), ppp(0), fff (0), rrr(0), aaa(0), bbb(0)) by Subroutine 1.

2: repeat
3: Update κ := κ+ 1
4: Find the optimal solution (t∗, ppp∗, fff∗, rrr∗, aaa∗, bbb∗) by solv-

ing convex problem (41)
5: Update (t(κ), ppp(κ), fff (κ), rrr(κ), aaa(κ), bbb(κ)) :=

(t∗, ppp∗, fff∗, rrr∗, aaa∗, bbb∗)
6: until convergence

Subroutine 1 Finding a initial point for Algorithm 1
1: Initialization: Set κ := 1 and randomly select a point

(t(0), ppp(0), fff (0), rrr(0), aaa(0), bbb(0)) ∈ Ĥ
2: repeat
3: Update κ := κ+ 1
4: Find the optimal solution (t∗, ppp∗, fff∗, rrr∗, aaa∗, bbb∗) by solv-

ing convex problem (42)
5: Update (t(κ), ppp(κ), fff (κ), rrr(κ), aaa(κ), bbb(κ)) :=

(t∗, ppp∗, fff∗, rrr∗, aaa∗, bbb∗)
6: until convergence

the considered C-RAN is illustrated in Fig. 3. The locations
of the KR = 7 RRHs are fixed, while the KU = 5 users are
uniformly and independently placed within the RRHs’ coverage
area, excluding the circular area of 50 m around each RRH
[6]. The LTE parameters used in our numerical examples are
listed in Table I. Each RRH is assumed to be equipped with
Nr = 2 antennas and each user with Nu = 1 antennas. The
active mode and the sleep mode at each eRRH consume 84W
and 56W of power, respectively. The slope of transmit power
is set as βi = β = 2.8 and αi = α = 5 for all i ∈ KR [5]. We
take d = 1, Pi = P , and ΣΣΣk = σ2III for all k ∈ KU . Here, we
set RQoS = 0.1Mbps for the feasibility of the problem (27). All
the presented results have been averaged over 100 simulation
trials with λ = 100.

To verify the effectiveness of the proposed algorithm in the
multi-hop C-RANs (referred to as Alg. 1-MH in the figures)
and in the single-hop C-RANs (referred to as Alg. 1-SH in the
figures), we consider the following benchmark schemes:
• HUA-SH: This scheme applies a heuristic UA scheme [8]

in the single-hop C-RAN. Here, each user is heuristically
assigned to Nc RRHs that have the largest channel gains,
where Nc is empirically chosen for the best performance.

• HUA-MH: The HUA scheme of [8] is used in the multi-
hop C-RAN.

(a) Multi-hop fronthaul networks with M = 10 routers and L = 25
fronthaul links

(b) Single-hop fronthaul networks

Fig. 2. Multi-hop and single-hop fronthaul network simulation scenarios with
KR = 7 RRHs. Note that the total capacity of the information flow to each
RRH is C in both cases.
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Fig. 3. Wireless network simulation scenario with KR = 7 fixed RHHs and
KU = 5 randomly positioned users.

For existing HUA solutions [8], the energy efficiency achieved
by these HUA schemes above can be found by only jointly
optimizing data rate allocation and signal precoding with the
similar manners discussed in Section III.



TABLE I
LTE PARAMETERS USED IN NUMERICAL EXAMPLES [19]

Parameters Values
Distance between adjacent eRRHs 0.3 km

Total bandwidth 10 MHz
Standard deviation of log-normal shadowing 10 dB

Path loss at distance d (km) 140.7 + 36.7 log10(d) dB
Noise variance −174 dBm/Hz

Maximum RRH transmit power 24 dBm
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Fig. 4. Convergence process of the proposed Algorithm 1.
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Fig. 5. Performance of the proposed algorithm in comparison with the
benchmark schemes.

Fig. 4 plots the convergence process of the proposed algo-
rithm under both single-hop and multi-hop fronthaul cases. In
the considered example, they converge quickly in fewer than
15 iterations. It should be emphasized that each iteration of
the algorithm corresponds to solving only one simple convex
program (41), which results in a low computational cost.

Fig. 5 shows that the proposed algorithm outperforms the
benchmark schemes in terms of the average energy efficiency
in all cases. From Fig. 5, the improvements by Algorithm 1
are 15% and 23% in the single-hop and the multi-hop fronthaul
scenarios, respectively. Such enhancement is brought about by
the extra dimension of UA optimization in the proposed joint
optimization algorithm compared to the benchmark schemes.

V. CONCLUSION

This paper has jointly designed UA, RRH activation, data
rate and signal precoding to maximize the energy efficiency

of a downlink C-RAN. The formulated mixed-integer opti-
mization problem takes into account routing constraints at
the fronthaul links, minimum data rate requirements, limited
fronthaul capacity and maximum RRH transmit power. Using
optimization techniques, we propose a new iterative algorithm
with guaranteed convergence to a Fritz John solution of the
formulated problem. Numerical results confirm the significant
performance advantage of the developed solution over baseline
schemes.

ACKNOWLEDGMENT

This work is supported in part by an ECR-HDR scholarship
from The University of Newcastle, in part by the Australian
Research Council Discovery Project grants DP170100939 and
DP160101537, in part by Vietnam National Foundation for
Science and Technology Development under grant number
101.02-2016.11 and in part by a startup fund from San Diego
State University.

REFERENCES

[1] M. Peng, Y. Sun, X. Li, Z. Mao, and C. Wang, “Recent advances in
cloud radio access networks: System architectures, key techniques, and
open issues,” IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 2282–
2308, 2016.

[2] B. Hu, C. Hua, J. Zhang, C. Chen, and X. Guan, “Joint fronthaul multicast
beamforming and user-centric clustering in downlink C-RANs,” IEEE
Trans. Wireless Commun., vol. 16, no. 8, pp. 5395–5409, Aug. 2017.

[3] T. Quek, M. Peng, O. Simeone, and W. Yu, Cloud
Radio Access Networks: Principles, Technologies, and Applica-
tions. Cambridge University Press, 2017. [Online]. Available:
https://books.google.com.au/books?id=ABHqDQAAQBAJ

[4] D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. K. Wong, R. Schober, and
L. Hanzo, “User association in 5G networks: A survey and an outlook,”
IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 1018–1044, 2016.

[5] B. Dai and W. Yu, “Energy efficiency of downlink transmission strategies
for cloud radio access networks,” IEEE J. Sel. Area. Commun., vol. 34,
no. 4, pp. 1037–1050, Apr. 2016.

[6] M. Tao, E. Chen, H. Zhou, and W. Yu, “Content-centric sparse multi-
cast beamforming for cache-enabled cloud RAN,” IEEE Trans. Wireless
Commun., vol. 15, no. 9, pp. 6118–6131, Sep. 2016.

[7] J. Zuo, J. Zhang, C. Yuen, W. Jiang, and W. Luo, “Energy efficient user
association for cloud radio access networks,” IEEE Access, vol. 4, pp.
2429–2438, 2016.

[8] L. Liu and W. Yu, “Cross-layer design for downlink multihop cloud
radio access networks with network coding,” IEEE Trans. Signal Process.,
vol. 65, no. 7, pp. 1728–1740, Apr. 2017.

[9] O. Mangasarian, Nonlinear Programming. Society for Industrial and
Applied Mathematics, 1994.

[10] S. H. Park, O. Simeone, O. Sahin, and S. Shamai, “Joint precoding and
multivariate backhaul compression for the downlink of cloud radio access
networks,” IEEE Trans. Signal Process., vol. 61, no. 22, pp. 5646–5658,
Nov. 2013.

[11] Z. Li, B. Li, D. Jiang, and L. C. Lau, “On achieving optimal throughput
with network coding,” in Proc. IEEE INFOCOM, vol. 3, Mar. 2005, pp.
2184–2194 vol. 3.

[12] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[13] J. Yuan, Z. Li, W. Yu, and B. Li, “A cross-layer optimization framework
for multihop multicast in wireless mesh networks,” IEEE J. Sel. Areas
Commun., vol. 24, no. 11, pp. 2092–2103, Nov. 2006.

[14] Z. Yan, M. Peng, and C. Wang, “Economical energy efficiency: An
advanced performance metric for 5G systems,” IEEE Wireless Commun.,
vol. 24, no. 1, pp. 32–37, Feb. 2017.

[15] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY:
Cambridge University Press, 2004.

[16] E. Che, H. D. Tuan, and H. H. Nguyen, “Joint optimization of cooperative
beamforming and relay assignment in multi-user wireless relay networks,”
IEEE Trans. Wireless Commun, vol. 13, no. 10, pp. 5481–5495, Oct. 2014.

[17] H. H. M. Tam, H. D. Tuan, and D. T. Ngo, “Successive convex
quadratic programming for quality-of-service management in full-duplex
MU-MIMO multicell networks,” IEEE Trans. Commun., vol. 64, no. 6,
pp. 2340–2353, Jun. 2016.

[18] B. R. Marks and G. P. Wright, “A general inner approximation algorithm
for nonconvex mathematical programs,” Operations Research, vol. 26,
no. 4, pp. 681–683, 1978.

[19] 3GPP TS 36.814 V9.0.0, “3GPP technical specification group radio access
network, evolved universal terrestrial radio access (E-UTRA): Further
advancements for E-UTRA physical layer aspects (release 9),” 2010.


