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The projected rise in wireless communication traffic has necessitated the advancement of energy-efficient (EE) techniques for the
design of wireless communication systems, given the high operating costs of conventional wireless cellular networks, and the
scarcity of energy resources in low-power applications. The objective of this paper is to examine the paradigm shifts in EE
approaches in recent times by reviewing traditional approaches to EE, analyzing recent trends, and identifying future challenges
and opportunities. Considering the current energy concerns, nodes in emerging wireless networks range from limited-energy
nodes (LENs) to high-energy nodes (HENs) with entirely different constraints in either case. In view of these extremes, this
paper examines the principles behind energy-efficient wireless communication network design. We then present a broad
taxonomy that tracks the areas of impact of these techniques in the network. We specifically discuss the preponderance of
prediction-based energy-efficient techniques and their limits, and then discuss the trends in renewable energy supply systems for
future networks. Finally, we recommend more context-specific energy-efficient research efforts and cross-vendor collaborations
to push the frontiers of energy efficiency in the design of wireless communication networks.

1. Introduction

Wireless communication networks (WCNs) afford much
flexibility and ease of deployment, and thus are predominant
in mobile and pervasive applications. WCNs are crucial in
the realization of all-pervasive network concepts such as the
Internet of things (IoT) [1] and a more inclusive Internet of
Everything (IoE) [2]. Going by the concept of IoE and the
IoT, it is evident that objects to the tune of everything in
our world and people would be connected through appropri-
ate processes [2], and a massive amount of data—big data—-
would be generated by this interconnection. Networks that
would drive the IoE are required to be ubiquitous in cover-
age, with the capacity to support a tremendous number

and a heterogeneous variety of network devices, data, and
protocols for people-to-people (P2P), machine-to-machine
(M2M), and people-to-machine (P2M) communication [3].
Emerging wireless networks are already treading this path
and are expected to grow in the coming years [4, 5].

In the wake of the observed upscaling trend, research into
innovative ways to mitigate energy usage has become crucial
due to two principal reasons. First, in several pervasively
growing applications, energy replenishment is severely lim-
ited, constricting the allowable amount of energy loss due
to inefficiency: the more the energy is lost to inefficiency,
the less it is available for network activities. Secondly, con-
ventional wireless mobile networks, which subsume technol-
ogies for future ubiquitous wireless coverage, are designed to

Hindawi
Wireless Communications and Mobile Computing
Volume 2020, Article ID 7235362, 19 pages
https://doi.org/10.1155/2020/7235362

https://orcid.org/0000-0001-8921-8353
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/7235362


scale in power consumption to match scaling traffic [6]. This
implies that operating costs could be enormously impractica-
ble as the network scales. These concerns have pushed
energy-efficient (EE) design techniques to the center of future
wireless systems design.

Several EE surveys for wireless networks which exist in
recent literature focus on either one or more aspects of wire-
less networks, on specific applications, or specific energy-
efficient techniques. Cao et al. [7], for example, give a survey
focused on big-data-based energy-efficient technologies in
both high- and low-rate networks, and Anastasi et al. [8]
focus on wireless sensor networks (WSNs) EE. Recently
Khan et al. [9] and Buzzi et al. [10] present surveys on EE
in WSNs and 5G, respectively. In the same way, reviews on
trade-off mechanisms [11], efficient routing processes [12],
and prediction-based data reduction [13] have been reported
in recent times. In this paper, we seek to examine broad
energy-efficient techniques in a top-down design approach
and discuss the trends in EE designs.

Emerging wireless systems vary widely in application
[14], with more and more application cases envisaged to
emerge in the future. This sheer diversity makes typical EE
approaches difficult. It could be observed, however, that the
constraints in limited-energy nodes and high-energy nodes,
apparent in the open literature, create energy-defined
extremes such that EE approaches in these cases would sub-
sume efficient techniques in other applications as shown in
Table 1. We examine these application cases and examine
the emerging design principles for EE. A systematic and
holistic approach to EE that subsumes these scenarios would
give a broad view of the options and opportunities for EE in
an increasingly heterogeneous network that is expected to
accommodate new networks in emerging WCN designs.

Limited-energy nodes (henceforth referred to as LENs)
are designed for applications in environments where some
form of energy replenishment is severely limited [9]. Such
nodes are powered by energy harvesting (EH) [15], which
are generally intermittent, batteries which are capacity lim-
ited, or both. Since network nodes are typically intended to
last long, EE becomes a crucial factor in the development of
such nodes. A low network efficiency shortens the network
life for battery-powered applications and throttles the power
available for energy-harvested systems. TheWSN technology
presents a classic paradigm of this classification and is
expected to continue its pervasive growth pattern to drive
the IoT space in future [1]. Base stations (BS), on the other
hand, have been identified to be the largest energy consumer
in higher-energy systems (denoted as high-energy nodes,

HENs in this paper) [16] and are envisaged to grow in num-
ber to provide ubiquitous wireless coverage [3, 4]. They are
typically high-traffic nodes that are always on and hence,
coupled with adequate cooling. In future networks, these
two rather contrasting extremes have attracted much atten-
tion for EE in the open literature.

In this paper, we note two ways to approach energy-
efficient techniques—at the component level and at the sys-
tem level [11]. At the component level, every element of the
wireless network is optimized, while system-level techniques
focus on the optimization of the communication processes
between the nodes. Data management, as an EE approach,
is further gaining attention due to increasing data volume,
variety, velocity, and value. In the next section, we survey
optimization frameworks in literature and present a taxon-
omy on the underlying principles for energy efficiency. An
outline of the paper is given in Figure 1. We further evaluate
an essential aspect of emerging networks of the future—their
dependence on some sort of predictive approach—a definite
trend in emerging communication networks that is expected
to continue in the foreseeable future. These approaches are
typically data intensive and thus computationally expensive,
threatening the limits of efficient operation. We develop a
framework to evaluate their implementation in existing net-
works. This framework can also be adapted for the evaluation
of their cloud-based counterpart techniques, which require
much transmit power. We conclude identifying opportuni-
ties and future directions in EE for wireless systems.

2. Background and Recent Trends in Energy
Efficiency: A Taxonomy

First, we survey energy-efficient techniques in the network
with an aim to circumspectly trace the areas of impact of
these techniques in the design and operation of the network.
To do this, we divide energy-efficient techniques into three:
energy-efficient node design and operations (component
level), efficient node-to-node interaction, and efficient node
data management (system level). These approaches are con-
sidered in the following subsections.

2.1. Efficient Node Design and Operation. Nodes typically
consist of a power supply module, transceiver module, and
processing module [14, 17] that may or may not require
human intervention to communicate. They may further
include other components, depending on their application
[14]. Each component is crucial as individual component
inefficiencies accumulate up to overall node inefficiency,

Table 1: Node classification.

Energy-imposed
classification

Typical examples
Power sourcing

options
Constraints Energy-related concerns

Limited-energy
applications

Sensor nodes Battery power and EH Severely limited form factor
Limited network life, intermittent

harvestable energy

Low-to-high-energy
applications

Mobile phones, laptops,
small-cell BS

Battery power, grid
power, EH

Limited form factor Node battery life, energy costs

High-energy nodes Macrobase stations Grid power, EH Operating temperature Energy costs, carbon emissions
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and by extension, total network inefficiency. Sometimes,
inefficient low-quality hardware components may require
compensations to correct performance variations, which
would further incur processing power [18]. Hence, a compo-
nent design optimization approach is a primary step to
improving EE.

More so, in node operation, variations in data traffic
and node position relative to a source or destination make
the demand for network activities time varying and position
specific. Superfluous network activities—when and to where
there is no need for signals—use power in excess than nec-
essary and account for substantial energy losses in a con-

ventional node operation. We discuss an efficient node
design, as illustrated in Figure 2, in the next subsection
and a smart node operation, illustrated in Figure 3, in the
following subsection.

2.1.1. Efficient Component Design. The primary components
of a node include the processing module and the transceiver
module. Logic devices for computation are generally comple-
mentary metal-oxide-semiconductor- (CMOS-) based due to
lower static power consumption. The processors handle all
associated computing tasks dictated through programs, typi-
cally stored on a memory device. A node could house more
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than one processor for different tasks, which may include
modulation, analog-to-digital conversion, filtering, and other
specific tasks.

The power dissipated on a CMOS chip is generally cate-
gorized as static power or dynamic power. Static power is
due to short circuit, bias, and leakage currents [19], which
is increasingly becoming significant as more transistors are
integrated on a chip. Dynamic power per unit time, P by a
chip is a function of the capacitance being charged or dis-
charged, C; the voltage swing, V ; the activity weighting, A,
which is the corresponding probability that a transition
occurs; and the switching frequency, f ; as given in Equation
(1) [20].

P = A · C · f · V2
: ð1Þ

Logic devices further heat up during switching and may
require cooling to check temperature-induced short-term
inefficiencies and long-term defects, thus further increasing
operating power. The goal of an efficient processor design is
to reduce the energy used up for computation, and hence
for cooling. The concerns for high-rate processors are slightly
different from those for low-rate processors.

Generally, many processing devices are synchronous
logic systems which employ clocks for chip-wide synchroni-
zation. Typically, the clock signal is routed to different parts
of the chip using buffers, requiring significant energy in
large chips. Clock-related power is thus a considerable com-
ponent of dynamic power consumption: more than a quar-
ter of the power dissipated in a typical high-performance
processor is for synchronization [21]. Most conventional
energy reduction techniques seek to achieve efficient designs
that minimize clock activity, maximize clock performance,
or eliminate clock power.

Generally, methods for EE in logic design transcends the
system level, register-transfer level, logic level, and the circuit
level to decrease f , A,C, V , or static power. These technolo-
gies are listed in Table 2. It is crucial to note that power con-
sumption and performance are conflicting objectives in
processor design. Reducing power consumption only saves
energy if the time required to accomplish the task does not
compensate for saved power. Performance per watt is an
important EE metric for logic devices.

In LENs, processors are deliberately underclocked to use
less power at the expense of performance. Also, in EH appli-
cations, volatile processors are undesired, as they would be
inefficient in application cases where the primary energy
supply is uncontrollable. The intermittency of such power

supply would necessitate backup/reinitialization schemes
for computational accuracy, which could be so recurrent as
to impact forward progress and incur significant energy
overhead [41]. Approximation-based computing in applica-
tions that are amenable to approximation [42], nonvolatile
Ferroelectric random-access memory [43], resistive random-
access memory [44], magnetic random-access memory [45],
negative capacitance field-effect transistors [46], and ferro-
electric field-effect transistors [47] – based processing are
alternatives currently being explored for LENs applications.
Emerging technologies are further exploring nonvolatile
spintronic-based processors that use an electron spin state
rather than capacitive switching [48]. An interesting report
on a nonvolatile design for energy-harvested applications is
given in [49].

There is a vital association between hardware architec-
ture, operating system, and applications and between differ-
ent components within a node, which can be exploited to
improve EE. Energy-efficient techniques could be either flex-
ibly or strictly implemented in either software or hardware
level. We refer the interested reader to [50] for detailed
hardware-level energy-efficient techniques and to [51] for
approaches to EE at the software level.

Transceivers serve to transmit and receive data over a
wireless medium. Wireless links could use radiowaves,
microwaves, infrared, or visible light for communication.
Radio frequency (RF) transceivers are common in wireless
systems, with non-RF transceivers expected to increase in
specific deployment scenarios as in indoor applications in
5G deployment and beyond [4]. RF transceivers typically
contain an uplink converter and power amplifier for trans-
mission and a low-noise amplifier and a downlink converter
for reception. They are coupled to antennas using bandpass
filters and to a baseband modem which comprises chipsets
for several analog or digital modulation and analog to digital
or digital to analog conversion.

The transceiver is the most important energy-consuming
component of wireless nodes [17]. A key metric for measur-
ing the energy efficiency of wireless transceivers is energy per
bit, which represents the average amount of energy required
to transmit or receive a single bit of data [52]. Recent trends
have focused on efficient modulation techniques [53–55] and
beam forming using an antenna array for directing radiation
and improving directional antenna gain [56, 57]. Directional
antennas are critical to power management as they allow
radiation to be directed to where it is needed.

For power supply, energy harvesting (EH) and batteries
are an essential component in LENs. A report on the EE of
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Figure 3: Efficient node operation.
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far-field wireless power transfer is presented in [58]. Batteries
are critical in battery-based LENs as they determine node and
network life, even when energy harvesting techniques are
integrated [59]. Batteries have been found to live less than
their predicted lifetime because predictions do not take dis-
charge current, temperature, application duty cycle, and
other factors into account. Inefficient networks are character-
ized by high discharge current and higher discharge-recharge
cycle rates when energy harvesting techniques are integrated,
which can impair battery function. Models for batteries in
LENs achieved to practical accuracy would give insights that
would be assimilated into the network design for optimal
node function. All other components in the node must, in
the same way, be designed with EE in mind to consolidate
EE in the node.

2.1.2. Efficient Operation. Network components cannot
afford to be always on, because they are always not required
to be in use, except in uninterruptedmonitoring applications.
Efficient operations at node level and component level, illus-
trated in Figure 3, are discussed in the following subsections.
It is necessary to state that some network-dictated adaptive

processes that depend on network-wide traffic information
are discussed under efficient node-to-node interaction (Sec-
tion 2.3) and are excluded from this classification. Here, we
consider how the node manages its power based on traffic
demand peculiar to it.

(1) Node Sleep. Whole nodes going to sleep when they are
inactive have been shown to reduce inefficiencies [60]. They
are either awaken using a passive wake up receiver [61] or
are scheduled to come alive at some time. In scheduled
MAC-based systems, nodes are given a specific time slot for
communication, after which they are allowed to sleep, to fur-
ther become active at their time slot [62, 63]. To save energy,
wake up receivers can run on a low-duty-cycle mode, where it
is scheduled between on and off states. The radio then wakes
up the node only when communication is necessary.
Scheduled-based MAC protocols and passive wake up radio
are presented in [63].

(2) Adaptive Component Operation. While nodes are awake,
they can efficiently manage their activities to conserve
energy. Dynamic power management (DPM) and dynamic

Table 2: Common power reduction techniques in hardware logic and memory design.

Energy-efficient techniques Principle Remarks

Asynchronous design [22] Voids clock synchronization in design
Could achieve less power than its synchronous

equivalent [22]

Gate sizing Reducing the gate size reduces its capacitance May introduce delay

Adiabatic switching [23, 24] Recovers clocking energy
Uses significantly less power than a conventional
CMOS circuit [24]; relies on slow transition times

Transistor stacking [25]
Off-state transistors connected in series cause
significantly less leakage than a single device.

Works in both active and standby mode

Subthreshold logic [26–28] Utilizes subthreshold leakage current
Requires high-quality factor clocking and generally
higher area; suffers degraded performance; suitable

for low-activity application

Low-swing clocking [29, 30] Reduces clock swing
Requires upsized clock buffers to maintain

driving performance

Parallel computing [31–33]
Processors in parallel optimize energy.
Pipelining exploits inherent parallelism

in instructions to save power

Has been widely used to increase computational
speed without increasing frequency, which increases
dynamic power [34]. Pipelining, however, requires

complex circuitry.

Logic in-memory
architecture [35, 36]

In-memory logic for big-data applications
Mitigates the bottleneck in data exchange

between logic and memory

Dual edge clocking [37]
Reduces the clock frequency to half of
the single edge-triggered flip-flops

Could achieve the same performance with less
power as single edge-triggered flip-flops at the

cost of a larger area

Multithreshold voltage
circuits [38]

Low threshold MOSFETs are used in critical
paths, and high threshold MOSFETs are used

in noncritical paths
Reduces leakage power

Power gating [39]
Chips are designed so that current to some
blocks of the circuit that are in standby or

sleep modes can be shut off
Reduces standby or leakage power

Adaptive body biasing
Adaptively switches the body-bias from a

forward-bias to a reverse-bias condition when
high performance is not needed

Reduces leakage power

Clock gating [40] Adds logic to the circuit to prune the clock tree
Works to disable portions of the circuitry,

saving switching power
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voltage and frequency scaling (DVFS) are popular approaches
to logic device optimization [64]. DPM puts the processor in
sleep mode to save power when there is no need for compu-
tation while DVFS is employed to find optimal voltage and
frequency from some discrete frequency and voltage settings
based on load requirements. Other techniques include race-
to-dark (RTD) for logic with high leakage currents to execute
tasks as fast as possible so that the processor can be put into a
sleep mode, minimizing leakage current [65]; adaptive volt-
age scaling (AVS) that adapts the supply voltage for a proces-
sor allowing it to operate at the minimum possible voltage for
a given performance; and power gating. These techniques
build on efficient techniques incorporated at the design stage.

At the transceiver, traffic variations are exploited for con-
trolling antenna power. A foremost scheme is the transmit
power control, which reduces the power of a radio transmit-
ter to the lowest required to maintain the link given a
required QoS. Discontinuous transmission (DTX) and dis-
continuous reception (DRX) have been proposed to save
energy in cellular networks [66]. Dissimilarities in traffic
requirements are also used to exploit the different energy
consumption of different radio access technologies (RATs)
to reduce energy by efficiently balancing traffic among access
technologies without compromising quality [67].

For other components, traffic variation is monitored to
switch a component between the on and off states to man-
age power efficiently: for example, adaptive sensing can
limit high-power sensor operation in event-triggered appli-
cations only when necessary, delegating continuous event-
listening tasks to lower-power sensors. Intermittent on and
off schemes might introduce latencies in operation, and the
on-and-off cycle could be so recurrent as to impact network
operation. In such cases, a prediction-based data analytic
approach is favored.

2.2. Efficient Data Management. Communication networks
are typically designed to convey data from one node to
another. The volume of data is envisaged to keep rising, so
is its variety. Generally, this rise would cause a significant
increase in energy for preprocessing and transmitting.
Redundant data generation, processing, and transmission
would degrade network efficiency. More so, ingenious man-
agement of data is necessary to optimize the data-enforced
energy increase. Generally, data reduction techniques are
based on increasing data processing in order to limit data
communication to only when necessary. A typical classifica-

tion of efficient data management techniques is presented in
Figure 4.

2.2.1. Data Reduction. The goal of data reduction techniques
is to shrink the amount of data without adversely affecting
application goals. In-network processing techniques are con-
ventionally employed to reduce the amount of data that
needs to be transmitted. One way to reduce data volume is
through aggregation. Using these schemes, gathered data that
render similar information are collectively represented by the
information they imply. This is valuable in applications
where data generated across the nodes is consistent, such as
in event-driven and high node density applications [68]. An
aggregator node intermediates between the source nodes
and the sink node and aggregates similar data, to avoid
redundant transmission. Network coding can be viewed as
one of such aggregating schemes, involving the intermediate
node generating new packets from several received packets to
be decoded at the receiver, allowing algebraic algorithms to
be applied to the data destined for a node to accumulate
transmissions [69].

The source coding technique, also called data compres-
sion by some authors, is likewise employed to encode infor-
mation using fewer bits. By reducing data sizes, maximizing
transmit energy can be reduced [70, 71]. Source coding can
be lossless—eliminating only statistical redundancy—or los-
sy—further discarding less critical information. Lossy coding
techniques present a trade-off between bit rate and reproduc-
tion fidelity and are typical in severely constrained applica-
tions. Given a maximum allowed delay and complexity, the
goal would be to achieve an optimal trade-off between bit rate
and distortion [72].

2.2.2. Data Prediction. Predictive techniques have recently
been proposed as data inferring and recovery techniques to
further limit data transfer [53]. Predictive techniques create
a model at either or both source and sink nodes to predict
data streams, based on previously observed values. Provi-
sions are made for the transmission of the difference between
predicted and sensed values. Prediction can either be applied
to infer node data from among a set of nodes—spatial—or
estimate future values based on the historical data—temporal
[73]. In [13], a systematic classification of predictive models
for wireless sensor applications and a discourse on scheme
selection based on WSNs’ constraints and monitored data
is presented.

E�cient nodes' data management

Data reduction 

Data aggregation Source coding

E�cient data
storage

Local caching 

Data prediction

Single and dual 
predictive schemes; 

spatial/temporal 
based prediction

Network Intelligence 
for energy 

management

Figure 4: Efficient nodes’ data management.
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Data from the network can also be used to detect some
regularity in network operation, predict their occurrence,
and efficiently adapt network operation to cater for these
events. Most energy-efficient techniques are leveraging net-
work intelligence to achieve a more efficient result. With a
lot of cognitive network-based EE applications proposed in
literature, artificial intelligence is expected to play a crucial
role in EE for future networks [74], including for efficient
adaptive resource allocation, discontinuous reception [75],
channel learning for power management [76, 77], traffic off-
loading for energy efficiency in small cells [78], node device
authentication for security [79], and intermittent energy
management for energy-harvested applications [80, 81]. We
present a list of prediction-based techniques for WCNs in
Table 3. Predictive approaches are particularly heavy on pro-
cessors, inciting the question of how much processing can a
network tolerate? In application, the amount of computa-
tional power that might be introduced with these predictive
approaches could be a limiting factor.

2.2.3. Efficient Storage. Local caching optimizes content
delivery networks by storing frequently accessed data locally
and avoids routing such data every time it is requested. Stor-
age points could be efficiently distributed across the network
to manage high-demand content appropriately. Energy saved
could be immense for high-demand content of significant
volume. In [7], a comprehensive survey of data management
techniques, including local caching, is given. This technique
is only applicable to networks with uniquely identifiable con-
tent in high demand.

2.3. Efficient Node-to-Node Interactions. Internodal interac-
tion denotes how nodes are arranged to communicate, and
the methods through which communication occurs. The
mode of interaction in a network mirrors its energy usage pat-
tern at participant nodes. Therefore, optimizing internodal
communication is vital to reduce node energy consumption.
Efficient internodal interaction methods range from the
architecture design and dynamic architecture control to
energy-efficient routing and the use of an adaptable proxi-
mate medium. These techniques are shown in Figure 5 and
are briefly discussed in the next subsection.

2.3.1. Efficient and Adaptive Architecture. The need to struc-
ture the network in a way that optimizes energy has made
contemporary research focus on the hierarchical structure,
which has the potentials to optimize energy as it brings the
node closer to a gateway, saving transmission energy [112].
The structure establishes cluster heads whose responsibilities
of coordination and forwarding data mean that they would
consume more energy. In HENs (e.g., cellular networks),
the individual nodes have less energy constraints so that a
hierarchical approach can be liberally exploited. An increase
in the number of lightly loaded small cells, however, degrades
EE [112]. The decisive deployment of relay nodes could
further optimize network energy in LENs (e.g., sensor net-
works), where network connectivity depends largely on the
proximate distribution of nodes.

A hierarchical architecture implements several levels of
network coverage that can be separately and judiciously
controlled for efficiency: with an overbearing macrocell for
coverage, smaller cells can be efficiently zoomed out or in
[113], putting neighboring cells to sleep or limiting radiation
energy to a small area for network service, respectively.
Device-to-device communication can be implemented, off-
loading traffic from the BS [114, 115]. In applications where
both coverage and connectivity is dependent on nodes in
proximity, as in LENs, nodes can be selectively put to sleep
without significantly impacting connectivity and coverage, a
scheme known as topology control [116–118]. Other offload-
ing techniques in LENs include cluster head selection [119,
120], which balances energy by switching the cluster head
responsibility among participant nodes, and mobile gateways
and relay nodes proposed to balance energy by reducing
transmission energy through its mobility. This traffic offload-
ing to neighboring cells is done in a fashion that conforms to
optimal energy policy.

The sleep techniques discussed in this section differ from
our discussion in Node Sleep under Section 2.1.2. In that sec-
tion, we discussed efficient node operation due to traffic
information available to each node and due to a scheduled
process. Here, we understand that sleep can be directed by
the network, based on network-wide traffic knowledge. This
informs most EE routing protocol design.

Routing energy may cause concerns in LENs as it
depends on individual nodes for coverage and connectivity.
EE node interactions, in addition to maximizing node power,
require energy balancing techniques among participant
nodes [121, 122].

2.3.2. Transmission Routing Optimization and an Alternative
Medium. Energy can further be optimized by specifying effi-
cient routing techniques for node-to-node interaction. Multi-
hop techniques place and use neighboring nodes as a
medium to reach a farther node, improving EE, and have
been widely proposed for LENs. Multipath routing allows
for multiple routes across available nodes, reducing energy
drain along a route [123, 124]; energy-efficient routing, based
on the network topology and performance constraint,
ensures that data routing is not insensitive to the energy con-
sumption they compel [125]. Further reports on efficient
routing are given in [12, 126, 127].

The use of a proximate alternative medium for data
transmission could prove to be a ground-breaking tech-
nique to improve EE in future networks. Some examples
include transmission over powerline in smart grid networks,
instead of through traditional wireless links [128], and
electro-quasistatic human body communication [129], which
uses the human body as a medium for body sensor networks,
significantly limiting cybersecurity concerns, as well as
energy requirements.

Cybersecurity is a crucial internodal energy-efficient
technique for EE in LENs. Energy is as precious in these
applications as the data they convey. Using compromised
nodes, malicious network users may attack wireless systems
primarily to drain system energy [13, 130] or with some other
motive, leaving an energy-sapped network in the aftermath.
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Hence, secure network techniques such as node identifica-
tion and data security and privacy are essential energy-
efficient techniques from this standpoint.

In summary, energy-efficient networks of the future are
expected to harness a combination of all these techniques
across the three levels—design and operation, data manage-
ment, and architecture and routing—in a fashion as to ful-
fill their design objective. Networks deployed in high-
accuracy applications, for example, in [131], would employ
a different flavor of energy-efficient techniques from those
deployed in noncritical applications. The same goes for all
other applications.

3. Challenges and Opportunities

3.1. Prediction-Based Energy Efficiency Approach:
Computation vs. Radiation Power Trade-Off. There is a pre-
ponderance of AI techniques in literature, which indicates a
move towards cognitive communication. Processing would
increase to leverage big data for a smarter, and more impor-
tantly, a more efficient operation. With predictive techniques
especially heavy on processors, how much processing can a
learning-oriented network allow?

For a network with n nodes, we denote the following
components: power due to transmission as Pt and power
used up in computation as Pc. In evaluating the power pat-
tern mirrored at each node due to a specific technique, we
assign the circuit and transmit power consumption at the
ith node before the technique is applied as pci and pti,
respectively. Prediction-based techniques tend to cause an
increased Pc with an objective to compel a decrease in Pt .
We thus further define αi to be the transmission power
coefficient and βi as the computation power coefficient at
each node after optimization, where αi, βi > 1 for power
increase and 0 < αi, βi < 1 for power decrease. Before opti-
mization, neglecting power consumption due to other com-
ponents, the sum of the node power is pci + pti, and the
network power before optimization is Pc + Pt , where Pc =
∑n

i=1pci and Pt =∑n
i=1pti.

After optimization, the power at each node changes to
αi pti + βi pci, and the network power would be the sum across

all the nodes, given as αNPt + βNPc, where αNPc =∑n
i=1αipci

and βNPt =∑n
i=1βipti. We introduce αN and βN to be the

transmission power coefficient and computation power coef-
ficient for the entire network, respectively.

Energy efficiency is a measure of both the energy con-
sumed and some network performance index of interest.

Denoting the network performance as Np, we could write

network efficiency before optimization and network effi-
ciency after optimization as given in Equations (2) and (3),
respectively,

Network efficiency before optimization =
Np

Pt + Pc

ð2Þ

Network efficiency after optimization =
εNp

αNPt + βNPc

ð3Þ

where Np (network performance) is assumed to change by a

factor ε after optimization. Network performance here could
denote the achievable capacity, throughput, or outage capac-
ity [10]. In general, efficiency before optimization must be
less than after optimization as shown in Equation (4):

εNp

αNPt + βNPc

>
Np

Pt + Pc

ð4Þ

From Equation (4), it can be shown that for network opti-
mization,

Pt

Pc

>
βN − εð Þ

ε − αNð Þ
ð5Þ

where Pc increases (βN > 1), Pt should be decreased (αN < 1)
to remain within efficient for a given achieved Np gain (ε).

The nearer the LHS of Equation (5) is to its RHS, the weaker
the efficiency. To minimize the RHS of Equation (5), βN

should be slightly above ε such that βN ≈ ε and αN should
be minimized (ε≫ αN). In summary, the ratio of circuit
and transmission power, together with the expected measure
of energy saved in transmission due to the application of a
technique as well as possible network performance change
limit how much processing power can be introduced.

Figures 6–8 show the limits of computation power coeffi-
cient (βN) vis-à-vis the changes in network performance (ε)
and transmission power (αN) if there is to be an improve-
ment in network efficiency. The ideal case for maximum effi-
ciency is at a minimum βN and αN (near zero) and maximum
network performance. A rearrangement of Equation (5) gives
the limit of βN as given in Equation (6).

βN <
Pt

Pc

ε − αNð Þ + ε ð6Þ

E�cient node-to-node interaction
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relay, sink nodes mobility
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Method: 
multihop EE routing, multipath
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Medium:
alternative
medium

Security:
cybersecure
techniques 

Figure 5: Node-to-node interactions.
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If Pt is much higher than Pc , as Figure 6 illustrates,
increasing the computation power coefficient (βN) must
cause an increased network performance coefficient (ε) to
improve system efficiency. Figures 7 and 8 illustrate what
happens when Pc is equal to, or much higher in relation to
Pt . An increase in αN (transmission power coefficient) due
to optimization must be compensated by some rise in ε (net-
work performance coefficient) to accommodate any rise in
computation power (βN). Increasing the transmission power
coefficient (αN) also throttles the allowable increase in com-
putation (βN) that can be accommodated—βN decreases
considerably as αN increases. This trend, though present in
cases where Pt ≪ Pc, as shown in Figure 8, is negligible.
Furthermore, for the same change in transmission power,
αN and network performance, ε, there is a higher allowance
for computation power increase, βN—about four times for
Pt = Pc (Figure 7) and over twenty times for Pt ≫ Pc

(Figure 6) at ε = 2 and at αN ≈ 0. Hence, while networks with
Pt ≪ Pc can accommodate more computation, and hence
circuit power is over a broader range of change in ε and αN ,

those with Pt ≫ Pc can allow higher degrees of computation
power increase over a narrower range. It is further necessary
to comment that other network trade-offs abound in employ-
ing energy-efficient techniques [10] and authors in [11, 132]
have provided useful reports on these trade-offs.

3.2. Energy Supply

3.2.1. Limited-Energy Nodes (LENs). EH techniques are typi-
cally intermittent and uncontrollable, limiting their applica-
tion to noncritical cases. Radio signals used to carry energy
over the air presents a controllable energy replenishing
opportunity, making the concept of simultaneous wireless
information and power transfer (SWIPT) a trend [133–
135]. The ratio of device output power to the input power
gives the harvesting efficiency. Hence, it would be more effi-
cient if a higher percentage of ambient energy is converted
for node use. Due to limitations in ambient EH, energy bal-
ancing techniques have been developed to balance the energy
equally among all nodes so that all nodes are either equally
alive or not [121]. However, we note that with the recent
advancements in EH techniques, there are possibilities that
energy balancing might no longer be required for applica-
tions where ambient energy conversion rate exceeds or bal-
ances energy depletion rates. Shaikh and Zeadally [15]
discuss a comprehensive catalog of EH techniques in LENs.

3.2.2. Base Stations. Base stations are generally expected to
remain an essential part of a ubiquitous wireless system in
the future. With traditional BS as principal energy consumers
in cellular networks at almost 60% [16], energy supply for
future base station is of particular interest. A multiple-tier
network structure is anticipated in the imminent 5G-
coverage tiers, which operate at lower frequencies than
6GHz majorly to penetrate barriers and provide wide cover-
age (macrocells), and hotspot tiers, which are primarily
deployed to places with increased user density and could save
power loss in wall penetration [136] when deployed with an
outdoor relay.
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A power model has been developed for these future base
stations, and their energy usage estimated [17, 137]. The net-
work structure in 5G can be expected to be consistent with
subsequent cellular technologies, which are already in devel-
opment [4, 5], changing only slightly, if at all. The power
industry is also undergoing a gradual change from carbon-
intensive to renewable energy sources at a faster rate than
historical transitions might suggest [138]. It is anticipated
that with the impending change, more renewable energy
sources would be integrated into the distribution network
with solar panels envisaged to be the most relevant option
for energy supply globally, due to its reducing costs [139].
Hence, colocated energy harvesting, especially for macrocells,
can present new opportunities for cellular network operators.

4. Future Directions

Two broad areas of future research are suggested based on
this survey. These directions—energy-efficient machine
learning methods and context-specific designs—are outlined
in Table 4. A major drawback with the adoption of a super-
vised learning approach, such as those presented in [84, 85,
93, 94, 97], is the requirement of training data which, for
some applications, might be cumbersome. Furthermore, the
performance of machine learning methods, though excellent,
is not error free. This casts doubts in their application in
error-sensitive tasks, such as in device authentication, pre-
sented in [79, 84, 105]. The apparent alternative would be
to augment these techniques to improve their performance,
but the aggregated increase in energy usage might be signifi-
cantly above efficient limits. Prediction-based techniques, in
application to error-sensitive contexts in WCNs, must be
evaluated for guaranteed performance and energy efficiency,
as with other techniques, such as in [140].

Multiple mobile vendor collaboration could play a crucial
role in realizing strategies for a cooperative EE scheme, such
as those presented in [141]. Practically, barriers to mobile
operator cooperation could limit the potentials of these
schemes. Cross-vendor interaction in traffic offloading, as
well as in energy distribution, would significantly improve
network EE. A shared network infrastructure, for example,
where the energy contributions by each operator are quanti-
fied for appropriate billing, presents an ideal case for vendor

cooperation. Competition among vendors is detached from
the infrastructure management level, making it boundlessly
amenable to cooperative energy-efficient techniques.

Overall, the trends in energy-efficient techniques suggest
that application-specific standards hold much promise for
EE improvement. In [128, 129], for example, the energy-
efficient technique presented in each case is tied to the spe-
cific context. Each one setting presents unique constraints
and opportunities for which general purpose approaches
may not be thoroughly efficient. For instance, Min and Chan-
drakasan [142], noting the uniqueness of specific applica-
tions, propose context-specific protocols to extend the
frontiers of EE. Extending this pattern to all aspects of net-
work design is crucial to EE, and we, therefore, recommend
a top-down design approach for specific applications right
from nodes’ design, node operation mode, data management
techniques, network architecture, and protocol designs to
achieve greater efficiency.

5. Conclusions

Energy inefficiency in conventional networks may be cost pro-
hibitive in high-energy nodes and network-life-threatening
in limited-energy nodes. However, the drive towards energy
efficiency is a combined multidisciplinary research, spanning
efficient hardware design and smart operation, efficient data
communication, and low-energy processing techniques. A
system built with EE as a performance metric must embody
optimization at all levels and should harness the profits of
cooperation as well as the unique opportunities in its applica-
tion scenario.

Nomenclature

LENs: Limited energy nodes
HENs: High-energy nodes
WCNs: Wireless communication networks
WSNs: Wireless sensor networks
EE: Energy efficiency
EH: Energy harvesting
pti: Transmission power at each node in the network
αi: Transmission power change at each node due to

optimization

Table 4: Future directions.

Key areas for future research Energy efficiency-related concerns Possible research focus

Machine learning-based
energy-efficient techniques

Traditional machine learning techniques require
high computational power requirements and may
compromise on accuracy if delimited. Predictive
approaches are however candidate technologies

for future control systems

Development of disruptive low-energy predictive
models that accurately perform their tasks, with

entirely novel approaches.

Context-specific system design

Sweeping generalizations across application
domains in wireless network designs prohibit

energy efficiency opportunities that are
application specific.

More context-specific energy-efficient designs
from protocols and software to hardware design

and management.
Design of robust and cost-effective networks to

interact with their immediate (most times, peculiar)
application environment in a way that improves

energy efficiency.
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pci: Computation power in the overall network
βi: Computation power change at each node due to

optimization
Pt : Transmission power in the overall network
αN : Transmission power coefficient in the overall

network after optimization
Pc: Computation power at each node in the network
βN : Computation power coefficient in the overall

network after optimization
Np: Some measure of network performance

ε: Change in network performance after optimization.

Additional Points

Statement of Public Interest. Wireless communication net-
works are at the heart of smartly controlled systems and the
idea of a globally connected world. Generally, wireless com-
munication systems are designed to convey data from a
source to a destination. As wireless systems continue to grow
and evolve to accommodate upward scaling traffic require-
ments, energy efficiency increasingly becomes a concern. In
light of prevailing environmental concerns and increasing
energy demand, energy efficiency is becoming a trend in
the design of myriads of energy-consuming systems across
several domains, as in consumer household appliances, elec-
tric grid systems, motor vehicles, industrial processes, and
machines among others. Nearly all these systems also employ
wireless communication networks to either increase their
performance or save energy. Therefore, the efficiency in the
operation and performance of wireless communication net-
works is of particular interest. This paper provides a back-
ground of methods for efficient design and operation of
wireless communication networks and further examines
some recent energy-efficient design trends. Notably, in the
case of data-intensive techniques such as data mining and
artificial intelligence, which are candidate approaches to
smart wireless networks of the future, we evaluate the limits
of the adoption of such approaches in extant systems. We
also discuss the energy supply options given the impending
disruptive changes in the energy sector, which again is partly
driven by environmental concerns and communication
network-based smart control. We conclude highlighting the
potentials of cross-vendor collaboration and a context-
specific approach to wireless system design for energy effi-
ciency of WCNs.
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