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Abstract—Unmanned Aerial Vehicles (UAVs) have been in-
creasingly used in environmental sensing and surveying applica-
tions. Coverage path planning to survey an area while following a
set of waypoints is required to complete a task. Due to the battery
capacity, the UAV flight time is often limited. In this paper, we
formulate the UAV path planning problem as a traveling salesman
problem in order to optimize UAV energy. We propose a genetic
algorithm to solve the optimization problem i.e. to minimize the
energy consumption for the UAV to complete a task. We also
consider reducing the number of turns to allow the UAV to
optimize the flight path and to minimize its energy consumption.
We compare the energy consumption of the proposed genetic
algorithm to the greedy algorithm with different number of
waypoints. Results show that our proposed algorithm consumes
2-5 times less energy than that of the greedy algorithm by
reducing the number of turns while covering all the waypoints.

Index Terms—Unmanned Aerial Vehicles, Energy model, Path
planning, traveling salesman problem, Optimization, Genetic
algorithm

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are widely used for sur-
veying, inspection of power plants, search and rescue (SAR)
operations, precision agriculture and various other applications
[1]. These applications require specific sensors, such as video
cameras, temperature sensors, proximity sensors, ground sen-
sors and etc. to collect information. Wireless sensor networks
(WSNs) have been adopted for real-time data collection that
can be executed through a swarm of UAVs [2].

Coverage path planning is the determination of the path
that a UAV must follow in order to visit every set point
in a given area. Many researches have been conducted on
UAV path planning while avoiding obstacles such as those
inspecting buildings and transmission lines. As UAVs have
limited battery power, their flight time is often limited by the
battery capacity. The objective of this paper is to minimize
the energy consumption of a UAV to cover a surveying area.
This problem can be formulated as a Traveling Salesman
Problem (TSP), which is an NP-Hard problem. While most
of the research has focused on finding the shortest distance
coverage, they often do not consider the energy consumption
of a drone which depends on the speed, distance, acceleration,
deceleration and the number of turns it takes. In this paper,
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we provide a more accurate model that considers energy
consumption during acceleration, deceleration and turning to
find the optimized energy-efficient path. We use UAV and
drone interchangeably in the remainder of this paper.

Many researches have focused on finding the optimized
drone path planning to carry out the tasks. Nascimento [3]
studied the best drone tour for data collection in WSN which
considered drone flight time and the time required for data
collection from WSN nodes. The author proposed brute force
algorithms with two heuristics which gave a near optimal
solution in small WSN with an improved performance in large
WSN area when compared to other local search approaches.
Galceron and Carrerras [4] introduced various methods such
as cellular, grid-based, and graph-based approaches for drone
coverage path planning. These methods segment the images
of a given coverage area to find sub-optimal coverage path for
a drone to follow. Carmelo Di Franco [5] proposed energy-
aware coverage path planning of UAVs. The authors carried
out a set of experiments at different operating conditions like
acceleration, constant speed and deceleration to derive an
energy model for a single UAV. Maza et al. [6] presented
an algorithm to ensure the full coverage of a desired area.
It divides a given area into grids and is designed to have
UAVs to fly through the center of each grid. Each UAV has to
follow a zig-zag pattern using sweep direction that helped in
minimizing the number of turns, however, the algorithm does
not consider obstacle avoidance.

Gupta [7] used genetic algorithms to solve the TSP. This
approach can be used for various applications like vehicle
routing problems, task scheduling, etc. Kiraly [8] presented
a multi-chromosome genetic algorithm to find the optimized
route plan with minimal route cost for each salesmen. The
author considered constraints like maximum tour length per
salesmen and the time window of truck loading time to
solve multiple traveling salesman problem. Feo [9] gave a
brief literature review of Greedy Randomized Adaptive Search
Procedure (GRASP) which consists of a construction phase in
which a solution was found via adaptive greedy function and
a local search phase for a more efficient solution. However,
the rendered results were local optimal.

For multiple drone networks, Modares et al. [1] proposed
an energy-efficient coverage path planning approach, where a
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task is allocated to each drone based on their battery capacity
to minimize energy consumption for each drone. Bellingham
[10] studied the co-ordination of a swarm of drones in which
each UAV has to perform tasks such as visiting a set of
waypoints while avoiding no fly zones and collision avoidance
between UAVs. Li [11] proposed path planning of multiple
UAVs to inspect an area where topography of plateaus and
mountains fluctuates. The algorithm was divided into two
phases. The first phase finds the global optimum route with
the minimum number of turns using a single drone. The
second phase divides the search area according to UAVs initial
position and assigns tasks to the set of UAVs. The considered
constraints include drone angle restriction, terrain restrictions,
flight altitude limits, and battery life. Ant colony optimization
(ACO) algorithm has also been explored to solve the multiple
traveling salesman problem in [12], where a Max-min ant
system was developed to minimize the path length for each
salesman.

The contribution of this paper includes: we formulated the
drone path planning problem as a traveling salesman problem
with an objective to optimize the drone energy consumption
while completing a task of traversing all required waypoints
and return to its initial position. We considered minimizing en-
ergy consumption by reducing the number of turns which will
be a key factor of this project. We proposed a genetic algorithm
to solve the optimization problem, implemented the solvers in
MATLAB and compared the results with greedy algorithm.
We showed the proposed algorithm can significantly reduce
the energy consumption than that of the greedy algorithm,
especially for an area with a large number of waypoints.

The remainder of the paper is organized as follows. Section
I introduces the energy consumption model of a UAV. Section
IIT presents the optimization problem formulation of UAV
energy consumption with path planning. Section IV presents
the proposed genetic algorithm and its implementation. Section
V compares the performance of the proposed genetic algorithm
with greedy algorithm. Section VI concludes the paper.

II. ENERGY CONSUMPTION MODEL

In this section, we present the drone energy-consumption
model for a UAV that needs to traverse a set of waypoints
in a surveyed area to perform data collection tasks. The UAV
is a quadrotor with quad-core 64-bit, 2.56 GHz processor and
3300 mAH Li-Po battery. We used the energy model proposed
by Lige Ding [13] to formulate the energy consumption
problem. As the energy consumption of a drone depends on the
drone speed, the energy consumption model needs to consider
the different flight stages including acceleration, deceleration,
hovering, and turning. The consumed power is calculated
by multiplying the supply voltage and the current, which is
measured by an energy measurement module. The experiments
conducted by Lige Ding provided a better understanding of the
energy performance of a drone [13].

A. Effect of velocity

The UAV was commanded to fly in a straight line at
different constant speeds. The power consumption measured
at 2 m/s, 4 m/s, 6 m/s and 8 m/s were 242W, 245W, 246W
and 268W, respectively [13].

B. Effect of acceleration and deceleration

Power consumption during acceleration and deceleration
was recorded and can be used to calculate energy consumption
when UAV accelerates and decelerates. Similar readings of
power consumption were observed during the acceleration
and deceleration phases as observed in effect of velocity.
As velocity increases, power consumption during acceleration
increases and vice versa.

C. Energy consumption model for turning phase

In this experiment, the power consumption of the UAV was
recorded when it rotated at four different angles 45°, 90°,
135°, 180°. It was assumed that an angular speed of wiy,p
(2.07 rad/sec) would require Py, (260 W) for the turn [13].
The energy consumption at turning angle A# can be calculated
by

Ad
Eturn = Pturn (1)
Wturn
where FEy,,, denotes Energy consumption during turn,
Py yrn denotes Power consumption during turn, Af denotes
turning angle, wy,,, denotes angular velocity during turn.

D. Energy consumption model for flying straight

When a UAV flies from a starting point to a target point,
it goes through three phases: acceleration phase, uniform
speed phase and deceleration phase. We can calculate energy
consumption at different speeds and distance E(v,d).

t1 to t3
E(v,d) = / Pocodt + / P(v)dt + / Ppcdt  (2)
0

t] t?

Where Pacc denotes power consumption during accelera-
tion, Pdec denotes Power consumption during deceleration,
P(v) denotes Power consumption at uniform velocity v, v
denotes velocity, d denotes distance traveled, and ¢;, t2 and
ts denote the time duration of the acceleration phase, constant
speed flight phase, and deceleration phase, respectively.

When a UAV travels for a short distance, it is not able
to achieve a uniform speed because it directly goes from
accelerating phase to decelerating phase. Eq. 2 can be used
to evaluate the optimal drone speed. When the distance is
too short, drone will take its whole time on accelerating and
decelerating and when the distance between two way points is
large enough, drones can go through all flight phases and reach
an optimal speed. Once the path length is ideal, the drone can
remain at the optimal speed.
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III. ENERGY-EFFICIENT PATH PLANNING PROBLEM
FORMULATION

We define the energy-efficient path planning problem in
this section. Let 1V denote the set of waypoints a UAV
needs to visit. The UAV is required to return to their initial
waypoint after completion of a task. We consider a graph
G(V,E), where V denotes the set of n waypoints and E
denotes the set of edges. Let ¢;; be the energy consumption
between waypoint ¢ and j which can be calculated from Eq.
2. Binary decision variable x;;¢{0,1} is used to denote that
path between waypoint ¢ and j is selected or not.

1, if drone travels from ¢ to j,
Lij = 0
9,

Consider (a;,5;) are the coordinates of waypoint i and
(o, B;) are the coordinates of waypoint j. Let d;; be the
distance between waypoint ¢ and j. The distance between two
waypoints is calculated as follows:

3)

the edge is not selected.

dij = \/(ai —a;)? + (B — B;)? 4)

We formulate the energy-efficient path planning problem as
follows:

min i ‘ i leijxij (5)

i=1j=1,j#i
n n
s.t Z 15 = Zajﬂ =1 (6)
i=1,i#j j=2
> omy=1 Vjev (7)
i=1,i£j
pi —pj+tpri; <p—1 V2=i#Fj<n (®)

Eq. 6 represents the constraint that the drone will depart
from an initial waypoint and return to the initial waypoint. Eq.
7 indicates the constraint that each waypoint is preceded by
and precedes exactly one another waypoint except the initial
waypoint. Eq. 8 ensures that subtours are eliminated. It is
called the Miller-Tucker-Zemlin (MTZ) subtour elimination
constraint. p; is the order in which waypoint ¢ is visited and
f4; is the order in which waypoint j is visited. p denotes the
maximum number of waypoints that can be visited by any
drone.

Our problem formulation is a Traveling Salesman Problem,
which is similar to Vehicle Routing Problem and is considered
NP-Hard. Our goal is to minimize the energy consumption
while reducing the number of turns. To solve our optimization
problem, we used genetic algorithm which is introduced in the
next section.

IV. GENETIC ALGORITHM

Genetic algorithm (GA) is a heuristic algorithm which is
based on genetic and random selection. It was introduced
by John Holland in 1960 to find the optimum solution for
NP-hard problem depending on bio-inspired operators like
mutation and crossover [7].

The following terms are used in describing the genetic
algorithm:

A. Initial Population

Population is the number of possible solutions for a given
problem. The term population is similar to human being
population, in our case we consider all possible traveling
routes for the drone as population. Chromosome is another
term which represents single solution for our problem. Gene
is the one element position for a chromosome. The size of the
population should be large enough to optimize our solution,
which was found after multiple trials. The initial population
is created by a random function in MATLAB.

B. Fitness value

Fitness value is defined as the optimized solution for our
problem. It takes the value of the better fitted chromosome
among all the chromosomes compared at each iteration. For
each iteration, new chromosome is created and the fitness
value for this chromosome, f, is calculated based on the
energy consumed along this path, where

n n
f = min E E el-jxl-j

i=1 j=1,ji
C. Selection

Different types of selection mechanisms can be adopted in
the selection of a parent. For Roulette wheel selection, the
probability of selecting an individual parent depends on the
fitness value. In tournament selection, k-random individual so-
lutions from population are considered where the best solution
out of these k solutions is selected. This will be considered
as parent 1 and the same procedure is followed to select other
parent [7]. In this paper, we used tournament selection with
k = 5. From 5 random solutions, we chose the best solution
to be the parent. Since our objective is to minimize energy
consumption, selection of chromosomes depends on whether
it presents a smaller fitness value, which means a more energy-
efficient path.

D. Crossover

Crossover is the term that represents the production of the
next generation which may have better fitness solution. We
used two-point crossover in which two points are randomly
selected and applied to a pair of chromosomes where genes
are exchanged with each other to generate a new chromosome.
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E. Mutation

Mutation is the term used to represent the new possible
solution derived from crossover solution by flipping bit or
swapping the order of genes. In flipping mutation, the order
of 2 or more random genes will be reversed. In this paper, we
used swapping mutation where two or more random genes are
selected from a chromosome and then swapped [7].

FE. Termination and result

Once all the iterations are completed, the process will be
terminated and the solution for our problem is generated.

Table I shows the list of variables used in the algorithms
and their descriptions. Here, «,8 denotes = and y co-ordinates
of the waypoint. n denotes the number of waypoints. pop
denotes the population which is the set of all possible paths a
drone can follow. popSize denotes the population size which
is the number of all possible paths. emat is the energy matrix
which is calculated based on the energy model in Section
II. It includes the values of energy consumption by drone
while travelling in straight line, accelerating, decelerating and
during turn. dmat is the distance matrix that records distances
from one waypoint to all other waypoints. minEnergy is the
minimum energy consumed by the drone while traveling all the
waypoints. globalMin is the global minimum value which is
used to store the minimum energy after each iteration. tmpPop
is used for storing temporary solution. newPop represents
variable used for saving new generated solution after crossover
and mutation.

Energy matrix, * and y co-ordinates of waypoints and
population size are inputs for GA. First we calculate distance
matrix given the x and y co-ordinates of all waypoints. The
results are stored in dmat. Then the total energy consumption
and total distance traveled are calculated for each iteration. In
this step, all possible solutions, e.g. the distance and energy
from waypoint 1 to n is calculated. The minimum total energy
is stored in minEnergy. If the calculated min Energy is less
than global Min, globalMin will be updated with this value
and the process will be terminated. If it is not the optimum re-
sult, it will use crossover and mutation methods. The selection
of parents is based on tournaments selection method where the
best solution is selected from k = 5 random solutions. A pair
of solutions obtained from the tournament selection method
is selected and the two points will be randomly selected for
crossover. The new solution is generated after exchanging the
genes and stored in tmpPop. To apply mutation, we swap the
order of genes in the solution. The newly generated solution
will be stored in newPop. After this, pop is updated with
new solutions. Again the energy consumption during those
solutions (paths) is calculated. If it is less than globalMin,
this solution will be the the global minimum and the process
will be terminated. The pseudo code for genetic algorithm is
shown in Algorithm 1.

Greedy algorithm is a heuristic algorithm which finds local
optimum solution at every iteration. It does not always reach
a global optimal solution but gives locally optimal solution in
less time. For greedy algorithm, it follows the same process

Algorithm 1 Genetic Algorithm

1: Input: Energy matrix,  and y co-ordinates, Population
size
:fori=1:ndo
for j =1:n do
dij = /(@i — ;) + (8, = B;)?

2
3
4:
5:  end for
6
7
8
9

: end for

: Initialize Population

: for iteration = 1 : numliter do
for p =1: popSize do

10: d = dmat(pop(p,n), pop(p,1));

11 e = emat(pop(p, n), pop(p, 1));

12: for k=2:ndo

13: d = d + dmat(pop(p, k — 1), pop(p, k));
14: e = e + emat(pop(p, k — 1), pop(p, k));
15: end for

16: totalDist(p) = d;

17: totalEnergy(p) = e;

18:  end for
19:  if minEnergy < globalMin then

20: result = minEnergy;

21:  else

22: calculate total energy again using crossover and mu-
tation

23:  end if

24:  for p=>5:5: popsize do

25: Use Tournament selection to find parents

26: Apply crossover to find new solution

27: save it in tmpPop

28: for k =1: size(tmpPop) do

29: select previously generated solution from tmpPop

30: apply swapping mutation

31: if solution is feasible then

32: save it in variable newPop

33: end if

34: end for

35: update the solution in pop

36:  end for

37: end for

to calculate the minimum energy consumption as genetic
algorithm but the main difference is that greedy algorithm
does not use crossover and mutation process so it does not
always reach the optimum results. The pseudo code for greedy
algorithm is shown in Algorithm 2.

V. RESULTS AND ANALYSIS

We compared the genetic algorithm and the greedy algo-
rithm in solving a network of N waypoints a drone has to tra-
verse, where N = {10, 25, 50,100}. We tested the network in
MATLAB under the following three scenarios: 1) using genetic
algorithm by optimizing the energy consumption, 2) using
genetic algorithm by optimizing only the distance traveled,
and 3) greedy algorithm by optimizing energy consumption.
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Fig. 1: Path trajectory of UAV with 10 waypoints using a) Genetic algorithm with energy optimization, b) Genetic algorithm
with distance optimization, and c¢) Greedy algorithm with energy optimization.

TABLE I: Terminology

Variable Description
a,f x and y co-ordinates
n Number of waypoints
pop Population
popSize Population Size
emat Energy Matrix
dmat Distance Matrix
minEnergy Minimum Energy
globalmin Global minimum
tmpPop Temporary population
newPop New population

TABLE II: Average energy consumption with genetic algo-
rithms and greedy algorithm for 10 waypoints.

Algorithm GA (Energy | GA (Distance | Greedy (Energy
optimization) | optimization) optimization)
Energy consumption (kJ) 1.8766 2.2019 2.076
Distance traveled (m) 19.1231 15.7388 20.3983
Computation time (sec) 13 14 4

Algorithm 2 Greedy Algorithm

1: Input: Energy matrix, x and y co-ordinates, Population
size

2: fori=1:ndo

33 forj=1:ndo

4 dij = /(i — ;) + (B — B;)?

5.  end for

6: end for

7: Initialize population

8: for iteration = 1 : numliter do

9:  for p=1:popSize do

10: d = dmat(pop(p, n), pop(p,1));

1: e = emat(pop(p,n), pop(p, 1));

12: for k=2 :ndo

13: d = d + dmat(pop(p, k — 1), pop(p, k));
14: e = e + emat(pop(p, k — 1), pop(p, k));
15: end for

16: totalDist(p) = d;

17: totalEnergy(p) = e;

18:  end for
19:  if minEnergy < globalMin then

20: result = minEnergy
21:  end if
22: end for

Fig. 1 shows the path selected by each algorithm for 10
waypoints. As the number of turns depends on the turning
angle, the proposed genetic algorithm aims at reducing the
number of turns and thus minimizes its energy consumption.
Fig. la shows the path selection for genetic algorithm with
energy consumption optimization. We can see that the distance
between two waypoints in a chosen path may be larger,
however, the energy consumption of choosing this path is less.
So the drone will choose that path instead. Fig.1b shows the
path selection by the UAV when using genetic algorithm by
optimizing the distance traveled. Table II presents the average
energy consumption, distance traveled and computation time
for the genetic algorithms and greedy algorithm. The energy
consumption by drone using genetic algorithm with energy
optimization and with distance optimization is 1.8766 kJ and
2.2019 kJ, respectively. We observed that the calculated energy
consumption by genetic algorithm with distance optimization
is 0.33 kJ higher than the genetic algorithm with energy opti-
mization. For greedy algorithm, the average energy consump-
tion of the drone is 2.076 kJ. Fig. 1c shows the path selection
by the UAV using greedy algorithm. Greedy algorithm fails to
find the optimized path for energy optimization as calculated
energy consumption by greedy algorithm is 0.2 kJ higher than
the genetic algorithm with energy optimization.

We also compared the computation time for the genetic
algorithm with energy optimization, genetic algorithm with
distance optimization, and greedy algorithm. The genetic
algorithm with energy optimization takes about 13 secs to

Authorized licensed use limited to: New York Institute of Technology. Downloaded on September 19,2020 at 23:14:24 UTC from IEEE Xplore. Restrictions apply.




TABLE III: Mean energy consumption of genetic algorithms, greedy algorithm and their SD for different waypoints.

GA (Energy optimization) GA (Distance optimization) Greedy algorithm (Energy optimization)
No. of waypoints Mean + Std. deviation Mean + Std. deviation Mean + Std. deviation
10 1.8766 kJ 0 2.2019 kJ 0 2.076 kJ 0.1994
25 26.3036 kJ 2.6533 28.86 kJ 8.9716 57.7268 kJ 16.4832
50 58.7393 kJ 7.9109 67.3361 kJ 16.5077 160.2181 kJ 80.5338
100 826.7902 kJ 44.8034 1021.307 kJ 188.712 4362.8 kJ 1353.15

complete, the genetic algorithm with distance optimization
takes 14 secs, while greedy algorithm with energy optimization
takes only 4 secs for path finding. We further compared these
three algorithms by increasing the number of waypoints. For
N = {25,50,100}, we generated a random symmetric energy
matrix of 25 x 25, 50 x 50 and 100 x 100, respectively.
We evaluated the total energy consumed by the UAV to
complete traversing all the waypoints. We carried out 100
experiments and compared the average energy consumption
for path planning of drone for each algorithm.

Table III shows the average energy consumption by
the proposed genetic algorithm with energy optimization,
the genetic algorithm that optimizes distance traveled, the
greedy algorithm and their standard deviations (SD) when
N = {10,25,50,100}. For the proposed genetic algorithm
with energy optimization, energy consumption for N =
{10,25,50,100} are 1.8766 + 0 kJ, 26.3036 + 2.6533,
58.7393 = 7.9109 kJ and 826.7902 + 44.8034 kJ, respectively.
Similarly, for N = {10, 25, 50, 100}, the energy consumption
for GA with travelled distance optimization are 2.2019 £ 0
kJ, 28.86 + 8.9716, 67.3361 + 16.5077 kJ and 1021.307 +
188.712 kJ, respectively. For greedy algorithm, the energy
consumption are 2.076 £ 0.1994 kJ, 57.7268 + 16.4832,
160.2181 + 80.5338 kJ and 4362.8 £+ 1353.15 kJ for N =
{10, 25,50, 100}, respectively. It is clearly shown that the
proposed genetic algorithm with energy optimization has the
smallest standard deviation and converges to minimum energy
consumption compared to genetic algorithm with distance
optimization and greedy algorithm. The proposed genetic
algorithm with energy optimization is shown to be able to
significantly reduce the drone energy consumption about 2-
5 times as compared to greedy algorithm as the number of
waypoints increases. The benefit of the proposed algorithm is
more prominent in larger network coverage path planning than
greedy algorithm.

VI. CONCLUSIONS

In this paper, we presented a model of drone path planning
considering the total energy consumption of completing a task.
The energy model is based on drone acceleration, deceleration,
hovering and turning. We formulated the energy-efficient path
planning problem as a traveling salesman problem. Genetic al-
gorithm was proposed to minimize the energy consumption of
a drone by reducing the number of turns. Our results show that
genetic algorithm with energy optimization uses on average 2-
5 times less energy comparing to that of the greedy algorithm
and the energy saving is more prominent as the number of

waypoints increases. As future work, we plan to improve the
the genetic algorithm to reduce its computation complexity
and extend the study to multiple-drone path planning problem
using different optimization algorithms.
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