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1. INTRODUCTION

Performance guarantee and energy efficiency are becoming increasingly impor-
tant for the implementation of embedded software. Traditionally, the worst-case
execution time (WCET) is considered to provide performance guarantee, how-
ever, this often leads to overdesigning the system (e.g., more hardware and
more energy consumed than necessary). In this paper, we consider the problem
of how to implement multiprocessor embedded systems to deliver performance
guarantee with reduced energy consumption.

Many applications, such as multimedia and digital signal-processing (DSP)
applications, are characterized by repetitive processing on periodically arriving
inputs (e.g., voice samples or video frames). Their processing deadlines, which
are determined by the throughput of the input data streams, may occasionally
be missed without being noticeable or annoying to the end user. For example,
in packet audio applications, loss rates between 1-10% can be tolerated [Bolot
and Vega-Garcia 1996], while tolerance for losses in low bit-rate voice applica-
tions may be significantly lower [Karam and Tobagi 2001]. Such tolerance gives
rise to slacks that can be exploited when streamlining the embedded processing
associated with such applications. Specifically, when the embedded processing
does not interact with a lossy communication channel, or when the channel
quality is high compared to the tolerable rate of missed deadlines, we are pre-
sented with slacks in the application that can be used to reduce cost or power
consumption.

Typically, slacks arise from the run-time task execution time variation and
can be exploited to improve real-time application’s response time or reduce
power. For example, Bambha and Bhattacharyya [2000] examined voltage scal-
ing for multiprocessor with known computation time and hard deadline con-
straints. Luo and Jha [2000] presented a power-conscious algorithm and static
battery-aware scheduling algorithms for distributed real-time battery-powered
systems [Luo and Jha 2001]. Zhu et al. [2001] introduced the concept of slack
sharing on multiprocessor systems to reduce energy consumption. The essence
of these works is to exploit the slacks by using voltage scaling to reduce en-
ergy consumption without suffering any performance degradation (execution
failures).

The slack we consider in this paper comes from the tolerance of execution
failures or deadline missings. In particular, since the end user will not notice a
small percentage of execution failure, we can intentionally drop some tasks to
create slack for voltage scaling, as long as we keep the loss rates to be tolerable.
Furthermore, much richer information than task’s WCET is available for many
DSP applications. Examples include the best-case execution time (BCET), ex-
ecution time with cache miss, when interrupt occurs, when pipeline stalls, or
when a different conditional branch happens. More important, most of these
events are predictable and we will be able to obtain the probabilities that they
may happen by knowing (e.g., by sampling technique) detailed timing informa-
tion about the system or by simulation on the target hardware [Tia et al. 1995].
This gives another degree of freedom to explore on-line and offline voltage scal-
ing for energy reduction.
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Dynamic voltage scaling (DVS), which can vary the supply voltage and clock
frequency according to the workload at run-time, can exploit the slack time
generated by the workload variation and achieve the highest possible energy
efficiency for time-varying computational loads [Burd et al. 2000; Qu 2001]. It
is arguably the most effective technique to reduce the dynamic energy, which is
still the dominate part of system’s energy dissipation, despite the fast increase
of leakage power on modern systems.

The most relevant works on DVS; to this paper, are on the energy minimiza-
tion of dependent tasks on multiprocessor systems with multiple voltages. Hua
and Qu [2005b] studied the voltage setup problem, which determines how many
levels and at which values should the voltages be implemented on the multiple
voltage system to maximally reduce the energy consumption. Schmitz and
Al-Hashimi [2001] investigated DVS processing elements power variations
based on the executed tasks, during the synthesis of distributed embedded
systems, and its impact on the energy saving. Gruian and Kuchcinski [2001]
introduced a new scheduling approach, LEneS, that uses list scheduling
and a special priority function to derive static schedules with low energy
consumption. The assignment of tasks to multiple processors is assumed to
be given. Luo and Jha [2001] presented static scheduling algorithm based
on critical path analysis and task execution order refinement. An on-line
scheduling algorithm is also developed to reduce the energy consumption
for real-time heterogeneous distributed embedded systems while providing
the best-effort services to soft aperiodic tasks. The deadlines and precedence
relationships of hard real-time periodic tasks are guaranteed [Luo and Jha
2002]. Mishra et al. [2003] proposed static and dynamic power-management
schemes for distributed hard real-time systems, where the communication time
is significant and tasks may have precedence constraints. Most recently, Hua
and Qu [2005a] propose a static power management with proportional slack
distribution and parallelism scheme (PDP-SPM). PDP-SPM takes advantage
of both local and global static slack in multiprocessor as well as the parallelism
to reduce energy consumption. However, these algorithms use the slacks to
reduce energy, but they do not drop tasks to create more slacks.

Different from the above, some energy-reduction techniques on single pro-
cessor have been proposed by Hua et al. [2003] for multimedia applications with
tolerance to deadline misses while providing a statistical completion ratio guar-
antee. Lee et al. [2004] proposed a local voltage-controller scheme that allows
each pipeline stages it’s own voltage level and a lower cost-dynamic retiming
scheme that incorporates per-stage clock delay elements to allow longer-latency
pipeline stages to borrow time from shorter-latency stages. Yuan and Nahrstedt
[2003] developed an energy-efficient soft real-time CPU scheduler that allocates
CPU cycles periodically to tasks based on statistical demand, rather than worst
case, to provide statistical performance guarantees.

Finally, we mention that early efforts on multiprocessor design range from
the design space exploration algorithm [Karkowski and Corporaal 1998] to the
implementation of such systems [Grbic et al. 1998; Sutton et al. 1998]. Scal-
able architectures and codesign approaches have been developed for the design
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Table I. Characteristics of the tasks and the Processor®

Task BCET WCET Voltage (V) | Power | Delay
A (1,80%) | (6,20%) vy =3.3 1 1
B | (2, 90%) | (7,10%) vy =24 0.30 18
C (2,75%) | (5,25%) v3 =18 0.09 3.4
(a) The three tasks. (b) Processor parameters.

“(a) Execution time distribution of the three tasks. Each row shows a task’s
best-worst-case execution time at the reference voltage v; and the probability
this execution time occurs at runtime. (b) Power and delay of the processor at
different voltages. power is normalized to the power at v; and delay column gives
the normalized processing time to execute the same task at different voltages.

of multiprocessor DSP systems [e.g., see Janka and Wills 2000; Scherrer and
Eberle 1998]. These approaches, however, do not provide systematic techniques
to handle voltage scaling, nondeterministic computation time, or completion
ratio tolerance. Performance-driven static scheduling algorithms that allocate
task graphs to multiple processors [Sih and Lee 1993] can be used in conjunc-
tion with best- or average-case task computation time to generate an initial
schedule for our proposed methods. It can then interleave performance moni-
toring and voltage adjustment functionality into the schedule to streamline its
performance.

2. AMOTIVATIONAL EXAMPLE

We consider a simple case where an application requires the repetitive ex-
ecution of three tasks A, BB,C, in that order. Suppose that each iteration of
“A - B — (C” must be completed in 10 CPU units (deadline) and the ap-
plication can tolerate 40% of the 10,000 iterations to miss this deadline. We
show how to leverage this tolerance to deadline misses for energy reduction.
For simplicity, we consider a single processor system that supports multiple
voltages.

Table Ia gives each task’s only two possible execution time and the prob-
abilities that they occur. For example, task A has its BCET, 1 CPU unit, for
80% of the time and its WCET, 6 CPU units, happens for the rest 20% of the
time. Table Ib shows the normalized power consumption and processing speed
of the processor at three different voltages. We now compare the following three
different algorithms:

I. For each iteration, run at the highest voltage v; to the completion or the
deadline whichever happens first.

II. For each iteration, run A at the highest voltage v; to its completion. Then,
if B cannot be completed by 8 at voltage v,, terminate the current iteration
(i.e., not attempt to run C at all); if B can be completed before 5 at vy, use
the lowest voltage to complete it by 5; otherwise run at v; to its completion.
Finally, we stop if C cannot be completed by the deadline 10 at voltage v
or run at the lowest voltage that can finish C by 10.

III. Assign 1, 7, and 2 (a total of 10) CPU units to A, B, and C, respectively.
During each iteration, each task can only be executed within this assigned
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Table II. Completion Ratio and Energy Consumption for the

Three Algorithms®
Q%) | t@; t@uy (@ug E E@(Q = 60%)
I 915 | 694 O 0 6.94 4.55
I 915 | 421 454 0 5.57 3.65
IIT | 60 256 0 4.90 | 3.00 3.00

“t@u1, t@uy, and t@ug are the average time that the processor operates
at three voltages for each iteration; E is the average energy consumption
to complete one iteration; and the last column, obtained by E - 60%/Q,
gives the minimum average energy consumption per iteration with a 40%
deadline misses tolerance.

slot. If it cannot be finished at v{, terminate the iteration; otherwise, run
at the lowest voltage that can complete the task within its assigned slot.

We generate the execution time for each task following the distribution given
in Table Ia for 10,000 iterations. We then simulate each of the above three al-
gorithms for 10,000 iterations. Table II reports their completion ratio Q, av-
erage processing time (at different voltages) per iteration, and average power
consumption per iteration. We observe that (1) algorithm I gives the highest
possible completion ratio®; (2) algorithm II achieves the same completion ratio
as algorithm I, but with less energy consumption; and (3) algorithm III trades
unnecessary completions (by completing only the required 60% iterations) for
further energy reduction.

2.1 Contributions

Although algorithm I is a straightforward best-effort approach, the settings for
algorithms II and III are not trivial. In algorithms II, how do we determine
the execution strategies for the three tasks? Is it a coincidence that it achieves
the same completion ratio as algorithm I? Does there exist other more energy-
efficient algorithm that maintains this completion ratio? For the individual exe-
cution slots in algorithm III, how are they determined? Why can they guarantee
the 60% completion ratio? Is it always more energy efficient than algorithms I
and II? Finally, can we extend them to multiprocessor systems?

We answer these questions by formulating and solving the energy minimiza-
tion problem with deadline miss tolerance on multiprocessor systems. We will
show that algorithm II comes from our best-effort energy minimization algo-
rithm (BEEM), which achieves the highest completion ratio with the provably
minimum energy consumption. We also show that algorithm III is based on
our offline on-line completion ratio (or quality of service) guaranteed energy-
minimization algorithm (QGEM). QGEM guarantees the required completion
ratio while converting the deadline miss tolerances into energy reduction via
DVS. This allows us to depart from the conservative view of overimplementing
the embedded software in order to meet deadlines under WCET. Our result
is an algorithmic framework that integrates considerations of iterative multi-
processor scheduling, voltage scaling, nondeterministic computation time, and

1A 100% is not achievable in this example. For example, if all tasks have them WCETS, we need
18 CPU units and cannot make the deadline 10.
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completion ratio requirement, and provides robust, energy-efficient multipro-
cessor implementation of embedded software for embedded DSP applications.

2.2 Paper Organization

The rest of the paper is organized as follows: in the next section, we formu-
late the problem of (dynamic) energy minimization with completion ratio guar-
antee. In section 4, we describe our practical solutions to this problem. The
simulation setup and results are reported in section 5. Section 6 concludes
the paper with a discussion on the limitation of our approaches and future
directions.

3. PROBLEM FORMULATION

3.1 Embedded Software Model

We consider the popular and powerful task graph, G = (V, E), model to rep-
resent the embedded software to be implemented on multiprocessor systems.
Each vertex in the graph represents one computation and directed edges rep-
resent the data dependencies between vertices. For each vertex v; € V, we
associate it with a finite set of possible execution time {¢;1 < t;o < --- < tip,}
and the corresponding set of probabilities {p; 1, pi.2; - - -, Di| Zf;l pi; = 1} that
such execution time may occur. That is, with probability p; ;, vertex v; requires
an execution time in the amount of ¢ ;. Note that ¢; ;, is the WCET and ¢; ; is
the BCET for task v;.
We further define the prefix sum of the occurrence probability

!
Py=Y pij (1)
j=1

Clearly, P;; measures the probability that the computation at vertex v; can be
completed within time ¢;; and we have P;,, = 1 which means that a completion
is guaranteed if we allocate CPU time to vertex v; based on its WCET ¢; ;..

A directed edge (v;,v;) € E shows that the data dependency between two
vertices v; and v;, namely, the computation at vertex v; cannot start before the
completion of vertex v;. For each edge (v;,v;), there is a cost for interprocessor
communication (IPC)w,, ,;, whichis the time to transfer data from the processor
that executes v; to a different processor that will execute v;. There is no IPC
cost, i.e., wy, ,; = 0, if vertices v; and v; are mapped to the same processor by
the task scheduler. For a given datapath < vyvg---v, >, its completion time is
the sum of the execution time at run-time, of each vertex, ¢;, and all the IPC
costs along the path. That is,

n
Cl<vivg---v, >) =e1+ ) Wy, +e€i) (2)
=2

The completion time of the entire task graph G (or equivalently the given ap-
plication), denoted by C(G), is equal to the completion time of its critical path,
which has the longest completion time among all its datapaths.
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We are also given a deadline constraint M, which specifies the maximum
time allowed to complete the application. The application (or its task graph)
will be executed periodically on a multiprocessor system with its deadline M
as the period. We say that an iteration is successfully completed if its completion
time, which depends on the run-time behavior, C(G) < M. Closely related to
M is a real-valued completion ratio constraint(or requirement) Q, € [0, 1],
which gives the minimum acceptable completion ratio over a sufficiently large
number of iterations. Alternatively, Qy can be interpreted as a guarantee on the
probability with which an arbitrary iteration can be successfully completed.

3.2 Multiple Voltage System Model

We assume that there are multiple supply voltage levels available at the same
time for each processor in the multiprocessor system. This type of system can
be implemented by using a set of voltage regulators each of which regulates a
specific voltage for a given clock frequency. In this way, the operating system
can control the clock frequency at run-time by writing to a register in the system
control state exactly the way as in Burd et al. [2000] except that the system
does not need to wait for the voltage converter to generate the desired operating
voltage. In sum, we can assume that each processor can switch its operating
voltage from one level to another instantaneously and independently with the
power dissipation P « CVdZd f and gate delay

~ Via
(Vaqg — Vin)®

at supply voltage Vy4 and threshold voltage V;,, where 1 < o < 2 is a con-
stant depends on the technology [Chandrakasan et al. 1992]. Furthermore, on
a multiple voltage system, for a task under any time constraint, the voltage
scheduling with, at most, two voltages, minimizes the energy consumption and
the task is finished just at its deadline [Qu 2001].

The scheduling strategy (or a scheduler) for such multiprocessor multiple
voltage system is a means of (1) assigning vertices to processors, (2) determining
the execution order of vertices on each processor, and (3) selecting the supply
voltage level for each processor.

d

3.3 Problem Statement

In this paper, we consider the following problem:

For a given task graph G with its deadline M and completion ratio
constraint Qy, find a scheduling strategy for a multiprocessor mul-
tiple voltage system, such that the energy consumption to satisfy the
completion ratio constraint Qg is minimized.

It is well-known that the variable voltage task scheduling for low power
is in general NP-hard [Hong et al. 1998; Qu 2001]. On the other hand, there
exist intensive studies on multiprocessor task scheduling problem with other
optimization objectives, such as completion time or IPC cost [McCreary et al.
1994; Sih and Lee 1993]. In this paper, we focus on developing on-line algorithms
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for voltage scaling (and voltage selection in particular) on a scheduled task
graph. That is, we assume that tasks have already been assigned to processors
and our goal is to determine when and at which voltage each task should be
executed in order to minimize the total energy consumption while meeting the
completion ratio constraint Q.

4. ENERGY-DRIVEN VOLTAGE SCALING TECHNIQUES WITH
COMPLETION RATIO CONSTRAINT

In this section, we first obtain, with a simple algorithm, the best completion
ratio on a multiprocessor system for a given task assignment. We then give a
lower bound on the energy consumption to achieve the best completion ratio.
Our focus will be on the development of on-line energy reduction algorithms that
leverage the required completion ratio, which is lower than the best achievable.

4.1 9™ the Highest Achievable Completion Ratio

Even when there is only one supply voltage, which results in a fixed processing
speed, and each task has its own fixed execution time, the problem of determin-
ing whether a set of tasks can be scheduled on a multiprocessor system to be
completed by a specific deadline remains NP complete (this is the multiproces-
sor scheduling problem [SS8], which is NP complete for two processors [Garey
and Johnson 1979].). However, for a given task assignment, the highest possi-
ble completion ratio can be trivially achieved by simply applying the highest
supply voltage on all the processors. That is, each processor keeps on executing
whenever there exist tasks assigned to this processor ready for execution? and
stops when it completes all its assigned tasks in the current iteration or when
the deadline M is reached. In the latter, if any processor has not finished its
execution, we say the current iteration is failed; otherwise, we have a success-
ful completion or simply completion. Clearly this naive method is a best-effort
approach in that it tries to complete as many iterations as possible. Since it
operates all the processors at the highest voltage, the naive approach will pro-
vide the highest possible completion ratio, denoted by 9™2*. In another words,
if a completion ratio requirement cannot be achieved by this naive approach
within the given deadline M, then no other algorithms can achieve it either.
When the application-specified completion ratio requirement Q;, < Q™*, a
simple counting mechanism can be used to reduce energy consumption. Specif-
ically, we cut the N iterations into smaller groups and shut the system down
once sufficient iterations have been completed in each group. For example, if
an MPEG application requires a 90% completion ratio, we can slow down the
system (or switch the CPU to other applications) whenever the system has
correctly decoded 90 out of 100 consecutive frames. This counting mechanism
saves total energy by preventing the system from overserving the application.
For systems with multiple operating voltages, we mention that energy could
have been saved over the above naive approach in the following scenario:

2A task is ready for execution if all its predecessors have been completed. The completion means the
completion of both processing at the predecessor and the IPC if the current task and its predecessor
have been assigned to different processors.
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¢ if we knew that an iteration would be completed earlier than the deadline
M, we could have processed with a lower voltage.

¢ if we knew that an iteration cannot be completed, we could have stopped the
execution earlier.

To save the maximal amount of energy, we want to determine the lowest voltage
levels to lead us to completions right at the deadline M and find the earliest
time to terminate an incompletable iteration.

Clearly, additional information about the task’s execution time is needed to
answer these questions. Although it is not realistic to require the knowledge of
the actual execution time before the real execution, it is possible to obtain each
task’s WCET, BCET, and the probabilistic distribution of its execution time. In
the rest of this section, we propose on-line voltage scaling techniques to reduce
energy with the help of such information.

4.2 BEEM: Achieving Q™ with the Minimum Energy

The best-effort energy minimization (BEEM) technique proposed by Hua et al.
[2003] gives the minimum energy consumption on a single processor system to
provide the highest achievable completion ratio. We propose algorithm BEEM1
to extend BEEM to multiprocessor systems. BEEM1 assumes the execution
time of each vertex is known before its execution. Note that this is not the same
as assuming the execution time of all the vertices are known before the start of
an iteration. At run-time with the results of the partial execution, the execution
time becomes more predictable for a single vertex. However, we also provide
algorithm BEEM2 that only requires the best- and worst-case execution time
of each vertex.

We define the latest completion time T}’ and the earliest completion time T}
for a vertex v using the following recursive formulas:

T =T =M (if v is a sink node) (3)
TY = min{T,” —tj, — Wy, |;,v;) € E} 4)
T/ = min{T}" —tj1 — wy,,|;,v;) € E} (5)

where ¢; 1 and ¢, are the BCET and WCET of vertex v;, wy, ,; is the cost of
IPC from vertices v; tov;, which is 0 if the two vertices are assigned to the same
processor.

Lemma 1. If an algorithm minimizes energy consumption, then vertex v;’s
completion time cannot be earlier than T}

Proor. Clearly such algorithm will complete each iteration at deadline M.
Otherwise, one can always reduce the operating voltage and processing speed
(or adjust the combination of two operating voltages) for the last task to save
more energy.

Let ¢ be vertex v;’s completion time at run-time. If ¢ < T, for any path
from v; to a sink node v, ug = v, u1, - -, ur = v, let WCET,, be the worst-case
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execution time of vertex v, then the completion time of this path will be

k—
T <t+Y (Waus +WCET,, ) < TV + Y (W, u,., + WCET,, )

i -

—
ol
—

Il
=3
~
Il
=3

k—
= T, + wy,u, + WCET,, + (wuj,uj+1 + WCE'TujH)
J

-

Il
—

k-1

< Teul + Z (wuj,uj+1 + WCETujH)
j=1

< .

<17

=M

This implies that even when the WCET occurs for all the successor vertices
of v; on this path, the completion of this path occurs before the deadline M.
Note that this is true for all the path, therefore, the iteration finishes earlier
and this cannot be the most energy efficient. Contradiction. O

Lemma 2. Ifvertex v;’s completion time ¢t > T}", then the current iteration is
not completable by deadline M.

Proor. Assuming that best-case execution time occur for all the rest vertices
at time ¢ when v; is completed, this gives us the earliest time that we can
complete the current iteration and there exists at least one path from v; to
one sink node v (xp = v;, u1,...,ur = v), and for each pair (uj, u 1), Tlu-’ =
Tluj “ —BCET,,,, —wy, The completion of this path occurs at time

Uj+1 sUj+1e

k-1
T =t+ (wuwu_m +BCET“.;’+1)
0
k7

~

1
> TV 4+ Z (Wu,,u;,, +BCET,,,,)
=0

b
= frluo + Wuyg,uq +BCETu1 + (Z'qu,ujur1 +BCETuJ+1)
J

Jury

Il
—

k—
= 7" + ) (Wu;u;, +BCETy,,,)
J

-

Il
—

T‘IZU
= M O
The proposed on-line BEEM1 algorithm leverages these two lemmas to scale
the voltage for the execution of each vertex, based on its execution time require-

ment. As we have stated earlier, we need to know only the execution time for
the current vertex. Like the naive approach, BEEM1 algorithm is capable of
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providing the highest possible completion ratio 9™#* and it does that with the
minimum energy consumption.

BEEMI1: Let ¢ be the current time that v is going to be processed and ¢! be v’s
real execution time,

o ift +¢) > T, terminate the current iteration;
o ift +¢Y < T}, scale voltage such that v will be completed at T,;
e otherwise, process at the highest voltage as in the naive approach;

THEOREM 3. If the execution time of each vertex becomes available at the
start of its execution, then BEEM 1 algorithm achieves Q™ with the minimum
energy consumption.

Proor. We first show that BEEM1 achieves Q™2 as the naive approach
does. This is clear because (i) we terminate an iteration when ¢ + ¢ > T;
Lemma 2 guarantees that this iteration cannot be completed; (ii) we slow down
the execution when ¢ +¢) < T, Lemma 1 shows that this delay will not make
any completable iteration incompletable.

Now we show that BEEM1 is also the most energy efficient on-line sched-
uler by contradiction. We consider the completion time of a vertex at ¢ + ¢!, if
this finish time is after 7}, energy will be wasted on incompletable iteration
according to Lemma 2; if this finish time is before T, Lemma 1 states that it
cannot be the most energy efficient; otherwise, if the finish time is in (T}, T}")
and the processor does not operate at the highest speed, we can easily construct
examples, similar to that in Lemma 1, to show that completable iterations will
become incompletable. O

However, when it is unrealistic to know each task’s real execution time (for
instance, when the cost of execution time prediction is high), we propose the
following on-line algorithm:

BEEM2: Let ¢ be the current time that v is going to be processed,

» if¢t + BCET, > T, terminate the current iteration;
» ift + WCET, < T/, scale voltage such that WCET, will be completed at T;
¢ otherwise, process at the highest voltage;

Without knowing task’s real execution time, BEEM2 conservatively (i) ter-
minates an iteration if it is incompletable even in vertex v’s best-case execution
time BCET,; and (ii) slows down to save energy while still guaranteeing that
vertex v’s worst-case execution time WCET, can be completed at its earliest
completion time 7. From the fact that BCET, <t? < WCET,, where t] is the
actual execution time, we can easily see

THEOREM 4. BEEM?2 algorithm achieves the highest completion ratio Q™*,

We mention that the pair {7, T’} can be computed offline only once and
both BEEM1 and BEEM2 algorithms require, at most, two additions and two
comparisons. Therefore, the on-line decision making takes constant time and
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/* Step 1: Minimium effort for completion ratio guarantee. */

1. find a topological order of the vertices: vi,- -+, vn;
2. th =tik,; /* assign WCET to each vertex */
3. 9=1, /* completion ratio must be 1 if each vertex gets its WCET */
4. determine the completion time L;
5. while (Q > Qo)
6. { for each vertex v; along critical paths;
7. { determine the completion time L’ when reduces ¢ from its current t;,; to t;;_1;
8. compute the completion ratio Q; =Q- Pi;;‘ll ;
9. } ’
10.  pick the vertex v; that achieves the maximum gain (L — L') - %%;
1. Q=9 Ay
gl ]
12. if (Q > Qo) tg = tj,l_l ;
13. }

Fig. 1. QGEM’s offline part to determine the minimum commitment to provide Q.

will not increase the run time complexity. Finally, similar to our discussion
for the naive approach, further energy reduction is possible if the required
completion ratio Qy < O™,

4.3 QGEM: Completion Ratio Guaranteed Energy Minimization

Both the naive approach and BEEM algorithms achieve the highest completion
ratio. Although they can also be adopted to provide exactly the required com-
pletion ratio Qy for energy reduction, they may not be the most energy efficient
way to do so when Qy < O™ In this section, we propose a hybrid offline on-
line completion ratio @ guaranteed energy-minimization (QGEM) algorithm,
which consists of three steps: (1) find the minimum effort to provide Qg; (2)
static execution time allocation for each vertex; and (3) on-line voltage scaling.

In Step 1, we seek to find the minimum effort (that is, the least amount of
computation ! we have to process on each vertex v;) to provide the required
completion ratio Qg (Figure 1). Starting with the full commitment to serve ev-
ery task’s WCET (line 2), we use a greedy heuristic to lower our commitment
the vertices along critical paths (lines 6-13). Vertex v; is selected first if the
reduction from its WCET ¢; . to ¢; ;1 (or from the current ¢;; to ¢;,; 1) maxi-
mally shortens the critical paths and minimally degrades the completion ratio,
measuring by their product (line 10).

The goal in Step 2 is to allocate the maximum execution time té for each
task v; to process the minimum computation ¢! and to have the completion
time L close to deadline M (Figure 2). Lines 3-9 repetitively scale té for all
the tasks. Because the IPCs are not scaled, maximally extending the allocated
execution time to each task by a factor of M/L (line 6) may not stretch the
completion time from L to M. Furthermore, this unevenly extends each path
and we reevaluate the completion time (and critical path) at line 7. To prevent
an endless repetition, we stop when the scale factor r is less than a small number
€ (line 5), which is set as 107% in our simulation. Lines 11-22 continue to scale
té for vertices off critical paths in a similar way.
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/* Step 2: Maximum execution time allocation with deadline constraint.*/
1. for each vertex v;

2. done(v;) =0; =t} /* allocate time t to each vertex */
3. determine the completion time L;

4. r= % -1

5. while (7 >¢€) /* to prevent an endless loop */
6. {th=ti-(1+7); /* scale the time allocated to each vertex */
7.  determine the completion time L;

8. r= % -1

9.}

10. for each vertex v; on critical paths done(v;) = 1;

11. while (done(v;) = 0 for some vertex v;)
12. { determine the completion time L;

13.  while (L < M)

14.  { for each vertex v; with done(v;) =0

15. th=1th - (1+9); /* 4 is a small positive number */
16. determine the completion time L; ,
7.} /* L may exceed deadline M, so we have to scale back t;. */

18.  for each vertex v; with done(v;) =0
19.  {tg =t5/(1+9);

20. if v; is on the critical path done(v;) = 1;
21.  } /* it is still possible to scale vertices off critical paths. */
22. }

Fig. 2. QGEM’s offline part to allocate execution time for each task.

/* Step 3: On-line voltage scheduling. */
. t = current time when vertex v; is ready for processing;
scale voltage such that the fixed workload t% can be completed by time D;;
execute task v; to its completion;
if the completion occurs later than D;
report failure; break and wait for the next iteration;

Cu W=

Fig. 3. On-line scheduling policy for algorithm QGEM.

Now for vertex v;, we have the pair (¢, té) that represents the minimum
amount of work and maximal execution time we have committed to v;,. We
define the expected drop-time for v; by the following recursive formula:

D; =t, + max {Dj + wy, |k, v;) € E} (6)
(vp,v;)€E

Step 3 defines the on-line voltage scheduling policy for the QGEM approach
in Figure 3, where we scale voltage to complete a task v; by its expected drop-
time D; assuming that the real-time execution time requirement equals to the
minimum workload t; we have committed to v; (line 2). If v; demands more, it
will be finished after D;, and we will drop the current iteration (line 4).

Note that if every task v; has real execution time less than ¢! in an iteration,
QGEM’s on-line scheduler will be able to complete this iteration. On the other
hand, if longer execution time occurs at run-time, QGEM will terminate the
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Table III. Characteristics of the Benchmark Task Graph®

Benchmark n m k M E

FFT1 28 2 15 1275 1040.4
FEFT2 28 2 16 2445 2122.4
Laplace 16 2 13 2550 1799.7
karp10 21 2 12 993 592.8
TGFF1 39 2 20 4956 4437.7
TGFF2 51 3 36 4449 6102.8
TGFF3 60 3 51 5487 8541.2
TGFF4 74 2 49 9216 8838.9
TGFF5 84 3 74 6990 11137.6
TGFF6 91 2 59 11631 10799.3
TGFF7 107 3 89 9129 13608.3
TGFF8 117 3 111 9705 15674.0
TGFF9 131 2 85 15225 15165.7
TGFF10 147 4 163 10124 21925.8
TGFF11 163 3 159 13068 22984.4
TGFF12 174 4 169 12183 25220.2

%n, Number of vertices; m, number of processors; £, number of effective
IPCs in the task graphs scheduled by DLS, that is, edges in the task
graph whose two vertices are assigned to different processors; M, dead-
line; E, average energy consumption per iteration, in the unit of the
dissipation in one CPU unit at the reference voltage 3.3V, by the naive
scheduler to achieve Qp = 0.900 with deadline constraint M.

iteration right after the execution of this task. From the way we determine ¢
(in Figure 1), we know that the required completion ratio Qy will be guaranteed.
Energy saving comes from two mechanisms: the early termination of unneces-
sary iterations (line 5 in Figure 3) and the use of low voltage to fully utilize
the time from now to a task’s expected drop-time (line 2 in Figure 3). We will
confirm our claim on QGEM’s completion ratio guarantee and demonstrate its
energy efficiency by simulation in the next section.

5. SIMULATION RESULTS

In this section, we present the simulation results to verify the efficacy of our
proposed approaches. We have implemented the proposed algorithms and sim-
ulated them over a variety of real-life and random benchmark graphs. Some
task graphs, such as FFT (Fast Fourier Transform), Laplace (Laplace trans-
form), and karp10 (Karplus-Strong music synthesis algorithm with 10 voices),
are extracted from popular DSP applications. The others are generated by us-
ing TGFF [Dick et al. 1998], which is a randomized task graph generator. Ta-
ble III gives the basic information about these benchmark task graphs. We
assume that there are a set of homogeneous processors available. However,
our approaches are general enough to be applied to embedded systems with
heterogeneous multiprocessors.

Before we apply our approaches to the benchmark graphs, we need to sched-
ule all tasks to available processors based on the performance, such as latency.
Here we use the dynamic level scheduling (DLS) [Sih and Lee 1993] method
to schedule the tasks; however, our techniques could be used with any alter-
native static scheduling strategy. The DLS method accounts for interprocessor
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communication overhead when mapping precedence graphs onto multiple pro-
cessors in order to achieve the latency from the source to the sink as small as
possible. We apply this method to the benchmarks and obtain the scheduling
results, which include the task execution order in each processor and inter-
processor communication links and costs. Furthermore, we assume that the
interprocessor communication is full duplex and the intraprocessor data com-
munication cost can be neglected.

After we obtain the results from DLS, we apply the proposed algorithms
to them. There are several objectives for our experiments. First, we want to
compare the energy consumption by using different algorithms under same
deadline and completion ratio requirements. Second, we want to investigate
the impact of completion ratio requirement and deadline requirement to the
energy consumption of the proposed approaches. Finally, we want to study the
energy efficiency of our algorithms with different numbers of processors.

We set up our experiments in the following way. For each task, there are three
possible execution time, ¢g < e; < eq, that occur at the following corresponding
probabilities pg > p1 > p2, respectively. All processors support real-time volt-
age scheduling and power management (such as shut down) mechanism. Four
different voltage levels, 3.3, 2.6, 1.9, and 1.2 V are available with threshold
voltage 0.5 V. For each pair of deadline M and completion ratio Qp, we simu-
late 1,000,000 iterations for each benchmark by using each algorithm. Because
naive, BEEM1, and BEEM2 all provide the highest possible completion ratio
that is higher than the required Qp, in order to reduce the energy, we take
100 iterations as a group and stop execution once 1009, iterations in the same
group have been completed.

Table IV reports the average energy consumption per iteration by differ-
ent algorithms on each benchmark with deadline constraint M and comple-
tion ratio constraint Qy(0.900). From the table, we can see that both BEEM1
and BEEM2 provide the same completion ratio with an average of nearly
29% and 26% energy saving over naive. Compared with BEEM2, BEEM1
saves more energy because it assumes that the actual execution time can
be known a priori. However, without this assumption the QGEM approach
can still save more energy than BEEM2 in most benchmarks. Specifically, it
provides 36% and 12% energy saving over naive and BEEM2 and achieves
0.9111 average completion ratio which is higher than the required comple-
tion ratio 0.9000. It is mentioned that for FFT2 benchmark, QGEM has neg-
ative energy saving compared to BEEM2, because the deadline M is so long
that BEEM2 can scale down the voltage to execute most of the tasks and save
energy.

Figure 4 depicts the completion ratio requirement’s impact to energy effi-
ciency of different algorithms with same deadline M(9705). We can see that
with the decrement of Qg, the energy consumption of each algorithm is de-
creased. However, different from naive, BEEM1, and BEEM2, the energy con-
sumption of QGEM does not change dramatically. Therefore, although under
high completion ratio requirement (Qy >0.75 in Figure 4), using QGEM con-
sumes the least energy, it may consume more energy than BEEM1, BEEM2,
and even naive when Q is low.
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Table IV. Average Energy Consumption per Iteration by Naive, BEEM1, BEEM2, and

QGEM to Achieve Qg = 0.900 with Deadline Constraints M%

Naive BEEM1 BEEM2 QGEM
Saving Saving Saving Saving
vs. vS. vs. vs.

Benchmark E Naive (%) | Naive (%) | Naive (%) | BEEM2 (%) Q
FFT1 1040.4 6.78 6.07 35.71 31.56 0.9118
FFT2 2122.4 18.15 18.15 15.96 -2.67 0.9104
Laplace 1799.7 42.75 32.63 45.12 18.53 0.9232
karp10 592.8 23.44 15.84 50.54 41.23 0.9392
TGFF1 4437.7 33.98 30.75 38.94 11.82 0.9090
TGFF2 6102.8 34.20 31.27 34.36 4.49 0.9185
TGFF3 8541.2 29.73 27.01 33.13 8.39 0.9034
TGFF4 8838.9 32.08 30.68 38.67 11.53 0.9109
TGFF5 11137.6 29.38 27.85 34.56 9.31 0.9065
TGFF6 10799.3 33.23 32.25 41.16 13.16 0.9057
TGFF7 13608.3 31.15 29.71 36.23 9.28 0.9027
TGFF8 15674.0 28.30 27.07 34.51 10.21 0.9074
TGFF9 15165.7 31.00 30.31 37.81 10.77 0.9084
TGFF10 21925.8 30.09 29.04 31.69 3.71 0.9029
TGFF11 22984.4 25.61 24.95 31.76 9.08 0.9100
TGFF12 25220.2 29.89 29.08 33.35 6.02 0.9074

Average 28.73 26.42 35.84 12.28 0.9111

¢E, the baseline energy by the naive scheduler from Table III; Q, the actual completion ratio achieved by
QGEM without forcing the processors stop at Q.

The deadline requirement’s impact to the energy consumption is shown in
Figure 5, with the same Q((0.900). Because the naive approach operates at the
highest voltage untill the required Qg is reached, when the highest possible com-
pletion ratio of the system is close to 1, its energy consumption keeps constant,
regardless of the change of the deadline M. However, in BEEM1 and BEEM2,
the latest completion time 7" and the earliest completion time 7 for each
vertex v depend on M (see 3-5), and the energy consumption will be reduced
dramatically with the increment of M. For QGEM, the increment of deadline
also has positive effect on the energy saving, while it is not as dramatic as it does
to BEEM1 and BEEMZ2. Similar to the completion ratio requirement’s impact,
we conclude that QGEM consumes less energy than BEEM1 and BEEM2 in
the short deadline (with the condition that Qy is achievable), while consuming
more energy when the deadline is long.

From Table IV and Figures 4 and 5, we can conclude that QGEM save more
energy than BEEM1 and BEEM2 when Q is high and M is not too long.
Actually this conclusion is valid regardless of the number of multiple processors.
Figure 6 shows the energy consumption of different algorithms under different
deadlines and different number of processors. With the increment of the number
of processors, its latency will be reduced. Thus, for the same deadline(e.g., 7275),
itis not relatively long and QGEM saves more energy than BEEM1 and BEEM2
for the system with small number of processors (e.g., four processors). However,
for the system with large number of processors (e.g., > five processors), QGEM
will consume more energy than BEEM1 and BEEM2.
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Fig. 4. Different completion ratio requirement’s impact to the average energy consumption per
iteration on benchmark TGFF8 with three processors.

6. CONCLUSIONS

Many embedded applications, such as multimedia and DSP applications, have
a high performance requirement yet are able to tolerate certain level of execu-
tion failures. We investigate how to trade this tolerance for energy efficiency,
another increasingly important concern in the implementation of embedded
software. In particular, we consider systems with multiple supply voltages
that enable dynamic voltage scaling, arguably the most effective energy re-
duction technique. We present several on-line scheduling algorithms that scale
operating voltage based on some parameters pre-determined offline. All the
algorithms have low run-time complexity yet achieve significant energy sav-
ing while providing the required performance, measured by the completion
ratio.

The algorithms proposed in this paper have several limitations on which we
are currently working:

e Leakage. As technology scales, leakage power dissipation is gaining more
and more attention recently. The circuit’s leakage power dissipation depends
on operating voltage and threshold voltage among many other factors. One
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Fig. 5. Different deadline requirement’s impact to the average energy consumption per iteration
on benchmark TGFF8 with three processors.

can refer to, for example, Kim et al. [2003], for detailed discussion on leakage
current and leakage power models. As we dynamically scale the operating
voltage, the leakage will become affected and this will impact the on-line
scheduling policy if we target the total (dynamic and leakage) energy mini-
mization. This is currently under investigation.

e Voltage scaling overhead. In our discussion, the overhead (particular, the
additional energy and time it takes for the circuit to reach the steady state at
the new voltage level) is not considered directly. However, this overhead, once
known, can be conveniently integrated into our approach. This is because
that in our dynamic voltage scaling approach for multiple voltages, there is,
at most, one voltage switch for each task [Qu 2001; Ishihara and Yasuura
1998]. One can compare the energy reduction with the overhead to decide
whether the voltage should be scaled or not.

¢ Scheduling. We have mentioned that we are using the dynamic level schedul-
ing method [Sih and Lee 1993] to schedule all the tasks on different proces-
sors first. Our proposed algorithms are then applied to reduce the energy
consumption. Note that this scheduler is not driven by energy. It will be
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Fig. 6. The average energy consumption per iteration on benchmark TGFF8 with different number
of processors and different deadlines (13525, 7275, 5925, and 4725).

interesting to study the impact of such scheduler to the system’s total energy
consumption.
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