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SECTION l.O
SUMMARY

The high-pressure turbine designed for the Energy Efficient Engine is a single
stage configuration that utilizes technology advancements in the areas of
aerodynamics, structures and materials to enhance efficiency, durability and

performance retention. In addition, the single stage design offers a large
savings in initial engine cost, weight, and maintenance cost because of the
significant reduction in the number of components, especially expensive air-
cooled airfoils.

On the basis of aerothermal-mechanical analyses as well as results from sup-

porting technology programs, the high-pressure turbine meets the performance
and durability goals for both the integrated core/low spool and the flight

propulsion system. The predicted efficiency for the flight propulsion system
is 88.8 percent, which exceeds the goal of 88.2 percent. For the integrated
core/low spool, the expected test efficiency is 87.1 percent, which exceeds

the goal of 86.7 percent. The turbine aerodynamic design utilizes low loss
performance features with low through flow velocity to achieve this efficiency.

The turbine airfoils exceed the established durability/life requirements by
the use of advanced materials and efficient cooling management. Both the vanes
and blades are constructed with advanced high-temperature, high-strength sin-

gle crystal alloys and coated with an improved oxidation resistant coating.
For added thermal protection, vane platforms are coated with an advanced ther-
mal barrier coating. Acceptable metal temperatures are maintained through the
use of impingement, convection and film cooling techniques to minimize cooling
without compromising durability. Total cooling requirements are 2.75 and 6.41

percent of core engine airflow for the blade and vane, respectively.

Turbine performance is enhanced by the advancements in sealing technology.
Cooling air leakage is effectively reduced by the use of full ring, boltless
sideplates as well as the extensive use of feather seals and W-seals. An ac-
tive clearance control system maintains close blade tip clearances throughout

the operating range. In this system, the blade tip seal is constructed of an
abradable, ceramic material and the blade has an abrasive tip treatment. At

design conditions, the calculated clearance of 0.032 cm (0.0126 in) surpasses
the goal of 0.047 cm (0.0186 in).

The high-pressure turbine in the integrated core/low spool and envisioned for
the future flight propulsion system is also the same design for the High-
Pressure Turbine Component Test Rig. This rig will be used to assess turbine

aerodynamic behavior and performance before the component is evaluated in the

integrated core/l ow spool.

Overall, the high-pressure turbine design for the Energy Efficient Engine re-

presents a considerable extension in the state-of-the-art of turbine tech-
nology. Much of this technology, especially the high temperature capability
materials, will have wide application in derivative and future gas-turbine

engines.



SECTION2.0
INTRODUCTION

The Energy Efficient Engine Component and Development Program, sponsored by
the National Aeronautics and Space Administration, is directed towards devel-
oping and demonstrating the technology to achieve greater fuel efficiency for
future comercial gas-turbine engines. The overall program goals outlined for
the program include a reduction in fuel consumption of at least 12 percent and
a reduction in direct operating cost of at least 5 percent relative to the
base Pratt & Whitney Aircraft JTgD-7A base engine. To demonstrate the tech-
nology to accomplish these goals, the Energy Efficient Engine Program is
organized into four tasks which involve:

Task l

Task 2
Task 3
Task 4

Flight Propulsion System Analysis, Design and Integration
Component Analysis, Design and Development
Core Design, Fabrication and Test
Integrated Core/Low Spool Design, Fabrication and Test

A major accomplishment under the Task 2 effort has been the design of an ad-
vanced high-pressure turbine system. Figure 2-I presents a logic diagram of
the high-pressure turbine design effort within the overall Energy Efficient
Engine Program.

The high-pressure turbine component has been designed to meet the requirements
for the flight propulsion system and the integrated core/low spool. In addi-

tion, the turbine design is the same for the High-Pressure Turbine Component
Test Rig, which will be used to assess turbine aerodynamic performance before
the component is tested in the integrated core/low spool. The design empha-
sizes the utilization of advancements in the areas of aerodynamics, materials/
cooling management and structures to achieve aggressive performance and dur-
ablllty design goals.

This report presents a comprehensive description of the aerodynamic and
thermal-mechanical design of the Energy Efficient Engine high-pressure turbine.
A description of the high pressure turbine rig design is also presented.
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SECT ION 3.0

DESIGN OVERVIEW

3.1 DESIGN GOALS AND CHALLENGES

The Energy Efficient Engine high-pressure turbine concept is a single stage
configuration capable of high work extraction and high system efficiency.
Performance and durability design goals established for the turbine component
address the overall program goals as well as the requirements for a future
commercial flight propulsion system.

The turbine efficiency goal for the flight propulsion system is 88.2 percent.
This represents a considerable increase in efficiency compared to a current

technology single-stage design. However, the expected test efficiency goal for
the integrated core/low spool is lower -- 86.7 percent. This is based on the
anticipation that leakage rates and part quality in the integrated core/low
spool vehicle will be worse than for a fully developed flight propulsion
system. In addition, restagger for compatibility with the increased annulus
low-pressure turbine and rematching associated with other component perfor-
mance losses further reduce efficiency.

Other key design goals include a specific work output of 448,000 J/kgm (192.96
Btu/Ibm), an expansion ratio of 4.0, a combined turbine cooling/leakage flow

rate of If.2 percent of core engine flow, and a rim speed of 527 m/sec (1730
ft/sec).

In terms of component durability, the flight propulsion system design goals
consist of a vane and blade life of lO,O00 hours, and disk life of 20,000

hours. In addition, an airfoil coating life goal of 6000 hours was established.

The achievement of these performance and durability goals with a single stage
turbine introduces certain design challenges. The two most prominent challenges
center around maintaining acceptable blade stress with the high rim speed
operation and minimizing system cooling flows and leakage losses. The follow-
ing paragraphs outline how these challenges have been approached, and the
specific design features that contribute to meeting the turbine performance
and durability goals are described in the next section.

To achieve the efficiency goal, the single stage turbine must operate at a
high ratio of wheel speed to specific work (high velocity ratio) and a low
ratio of through flow to wheel speed (Cx/U). The aerodynamic parameters of
velocity ratio and Cx/U can be translated into blade stress and blade
attachment stress, which results in a high AN 2 (the product of annulus area

and wheel speed squared). It is this structural concern that constrains attain-

ing a high level of aerodynamic performance with a highly loaded, single stage
turbine. In the design of the Energy Efficient Engine turbine, this challenge
has been addressed by the application of high strength blade and disk alloys,

along with increased blade taper.
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The efficient management of cooling flow is essential since significant

penalties in efficiency as well as increases in fuel burned result from the
large percentage airflow required to cool the turbine components. From a per-
formance standpoint, the goal is to minimize the a_.lountof coolant, while
maintaining acceptable metal temperatures to meet durability requirements. The
turbine design addresses this challenge by utilizing advanced high temperature
capability materials for the airfoils along with thermal barrier coatings and
an efficient cooling management system. This combination reduces the cooling
requirement by approximately 30 percent in comparison to current-technology

conL1ercial engines.

3.2 HIGH-PRESSURE TURBINE GENERAL DESCRIPTION

A cross sectional view of the high-pressure turbine for the Energy Efficient

Engine is presented in Figure 3.2-I.

The parts of the engine comprising the high-pressure turbine are those discus-
sed in this report and are shown in Figure 3.2-I. The design is based on

modularity to facilitate accessibility and maintainability. Along with the
high rim speed and large annulus area, the single stage design has numerous
features to reduce cost, increase aerodynamic efficiency, improve cooling
effectiveness, reduce cooling air leakage, and minimize performance deteriora-

tion. These various technology features are listed in Table 3.2-I.

TABLE 3.2-I

ADVANCED TECHNOLOGY DESIGN CONCEPTS

REDUCED COST CONCEPTS:

Si ngle-Stage Turbine
Reduced Number of Airfoils

INCREASED AERODYNAMIC EFFICIENCY
CONCEPTS:

High AN2/High Rim Speed
Contoured Vane End Walls
Low Loss Airfoils

Reduced Tip Loss Configuration
and Active Clearance Control

High Airfoil Loadings

REDUCED COOLANT FLOW CONCEPTS:

Singl e-Stage Turbine
Improved Airfoil Cooling

Effec tiveness

Single Crystal Airfoil Materials
Thermal Barrier Platform

Coatings
Efficient Coolant Supply System
Low Windage

REDUCED LEAKAGE CONCEPTS:

Reduced Leakage Length
Improved Gap Sealing
Improved Rim Sealing
W-Seals

PERFORMANCE RETENTION CONCEPTS:
Ceramic Outer Air Seal/

Abrasive Blade Tip



OF POOR QUALITY

c/)
,,.J

l.U
{/)
z
0
_0
n--
,<

14J

_.1

O
..1

n

_J

5

I--c_
z_u
_Ul--

"ro

..I

e,.

0

o

t.

!

*i,m

_J

_J

uJ

_J

°_

U.



The single stage configuration offers a potentially large savings in engine
cost, weight and maintenance costs because of a significant reduction in the
number of components, especially expensive air-cooled turbine airfoils. In

comparison to the base engine two stage version, the single stage turbine has
43 percent fewer airfoils. Also, the overall number of turbine parts has been
reduced by elimination of the second stage disk, seals, outer airseals and
related components.

The capability to operate at higher blade loadings because of a reduction in
airfoil number results in substantial performance gains. Other performance
enhancement features include contoured vane endwalls and an active clearance

control system to minimize operating clearances at cruise conditions.

A reduction in cooling flow with no compromise in durability is obtained pri-
marily through the use of advanced high-temperature materials and efficient

airfoil cooling methods. Both the vane and blade materials are single crystal
alloys which offer superior creep strength properties, along with good resist-
ance to thermal fatigue. In addition, the vane platforms are coated with a
thermal barrier coating for additional temperature capability. The internal
cooling system of the airfoils is efficiently designed to promote a high heat
transfer rate with a minimum of coolant airflow.

A substantial reduction in leakage has been achieved by the use of advanced
sealing techniques and the relatively fewer number of airfoils, which reduces

leakage sources. Besides the ceramic seals in the active clearance control
system, leakage is reduced in the blade attachment by the use of full-ring
boltless sideplates and W-seals. Also, feather seals are employed in the vane
inner and outer platforms to reduce leakage.

Turbine performance retention in the flight propulsion system will be enhanced
by an advanced blade tip sealing system. The turbine blade incorporates an
abrasive material tip treatment that is used in conjunction with an abradable
ceramic outer airseal.

3.3 DESIGN PERFORMANCE DATA

The engine performance data used to design the high-pressure turbine are a

combination of flight propulsion system predictions and integrated core/low
spool expectations. This design approach was taken to maximize the performance
of the high-pressure turbine during integrated core/low spool testing, while

still demonstrating a component that is representative of the flight propul-
sion system. As a result, the design uses power and flow levels expected for

the integrated core/low spool, while assuming predicted flight propulsion
system levels for the aerodynamic losses. This approach results in a high-
pressure turbine exit flow parameter that is incompatible with the design
inlet flow parameter of the low-pressure turbine. This flow parameter discrep-
ancy requires that the high-pressure turbine blade be restaggered for the in-
tegrated core/low spool test.



The design performance data for the high-pressure turbine is summarized in

Table 3.3-I. This table also compares this design performance with similar
data for the flight propulsion system and integrated core/low spool from which
it was derived.

TABLE 3.3-I

HIGH-PRESSURE TURBINE PREDICTED PERFORMANCE AT AERODYNAMIC DESIGN POINT

(10,668 m (35000 ft), 0.8 Mach Number, Standard Day)

Component Design Flight Propulsion Integrated Core/Low

(Before Restagger) System Prediction Spool Expectation

N (RPM) 13233 13178 13233

Total Wc/a (%Wae) 16.84 15.95 16.84

HPT Wc/a (%Wae) 14.10 13.19 14.10

FPIn (W_P) 16.98 16.82 16.98

FPou t (W_P) 66.74 65.98 68.16

Pr 3.998 4.032 4.084

Ah (Btu/sec) 13384 13086 13409

Efficiency (%) 87.9* 88.8 87.1

Efficiency Goal (%) -- 88.2 86.7

*Based on flight propulsion system aerodynamic losses and integrated

core/low spool cooling flows



SECTION 4.0
HIGH-PRESSURE TURBINE AERODYNAMIC DESIGN

4.1 OVERVIEW

The aerodynamic definition of the high-pressure turbine was based on a series
of analyses to establish the flow_ath, airfoil contours, solidity and matching
characteristics that achieve the highest level of performance within the con-
straints of the basic mechanical definition. Moreover, the final design was

influenced by results obtained from different supporting technology programs
that were in progress concurrent with the design process. These programs
served as design and diagnostic tools to address unique requirements of the
component design. The different programs consisted of the Uncooled Rig Program,
the Supersonic Cascade Rig Program and the Leakage Program. The contribution
of these programs to the turbine aerodynamic design is summarized in Section
4.2.5.

As a result of these design analyses and supporting technology programs, the
low throughflow velocity and high reaction aerodynamic approaches were
selected as the basis for the component design. Also, the airfoil design
philosophy of low uncovered turning, low exit wedge angle was maintained. The

general parameters governing the aerodynamic design of the turbine component
are listed in Table 4.l-I.

TABLE 4.l-I

GENERAL AERODYNAMIC PARAMETERS

Design Point
(Mn 0.8; I0,668 m (35000 ft)

F1 ight Propulsion

System
Sea Level Takeoff

(Hot Da_,)

STAGES

PTIN Pa (psia)
CET K(OR)
RIT K (OR)
N (RPM)
AH (Btu/sec)

FPin (W _T/PT)

_IA (%Wae)

Reac tio n

Velocity Ratio
NASA Work Factor (Ah/u 2)

Cx U
AN ( (IN2 RPM 2)

URIM m/see (ft/sec)
Clearance cm (fn_

Efficiency (Design)

],324,49] (]92.])
1633 (2940)
1561 (2811)
13232.
13384.
16.984
14.10
4.0

43.0 percent
0.556

l.62
0.351
4.06 x lOlO

481 (l580)

0.0469 (0.0185J

87.9 percent

1708 (3076)
1641 (2955)
13866.

4.46 x lOlO

5O4 (1655)
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As described previously in Section 3.3, a mixture of cycle performance data
from flight propulsion system predictions and the integrated core/low spool
expectations was used in the design of this turbine. The design intent was to
satisfy flight propulsion system requirements through application of the
results gained from the supporting technology programs. As work progressed it
became apparent that the high-pressure turbine in the integrated core/low
spool design should be matched to the expected integrated core/low spool per-
formace. The turbine design, therefore, uses the power and flow requirements
of the integrated core/low spool while assuming the level of aerodynamic

losses in the flight propulsion system. The high-pressure turbine exit flow
parameter resulting from this approach does not match the integrated core/low
spool low-pressure turbine flow parameter (Section 4.2.3). To achieve the
desired low-pressure turbine inlet aerodynamic conditions in the integrated
core/low spool, the high-pressure turbine blade was restaggered open 0.25
degree from its aerodynamic definition.

4.2 COMPONENT AERODYNAMIC DESIGN

4.2.1 Flowpath Definition

The flowpath for the high-pressure turbine component is presented in Figure
4.2.1-I, showing the turbine elevation and axial length. In the single stage
configuration, there is a total of 24 vanes and 54 blades.
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The vanes are characterized by aerodynamic sections having a blunt leading

edge and a long chord with the maximum airfoil thickness near the leading
edge. The inner vane endwall is cylindrical, while the outer is contoured in

an "S" shape (Figure 4.2.1-1). The large aerodynamic section thickness reduces
the losses associated with the introduction of cooling flow and the S-wall

design reduces endwall pressure losses. In addition, the number of vanes mini-

mizes blockage as well as optimizes the positioning of the vanes with the

combustor fuel injector nozzles.

The blades are highly tapered with a conical inner wall. Blade axial chord
taper was selected to accommodate stress requirements. Also, the stage is
defined with a high reaction level to enhance efficiency. On the basis of

design analyses, it was shown that higher reaction levels produced higher
efficiencies. The maximum allowable reaction level for this turbine design was

limited to 43 percent because increasing the axial pressure load on the rotor
resulted in excessive bearing loadings and consequent durability concerns.

Experimental testing in the supporting Uncooled Rig Program demonstrated the
benefit of the 43 percent reaction level in comparison to a lower level of 35

percent.

4.2.2 Airfoil Definition

Several analytical techniques were used to establish the turbine airfoil
definitions. A streamline computer design simulation generated the radial
aerodynamic environment. This information serves as input to the interactive
airfoil design system for a definition of the external contour of the airfoil.

Analyses are then performed to ascertain pressure distribution and boundary
layer characteristics. On the basis of these results, iterations of the air-
foil shape are made to optimize pressure distribution, boundary layer and low
loss characteristics.

Using these methods, vane sections were analytically defined. The sections
were designed so that the flow accelerated past the throat area with low,
smooth backend diffusion. The uncovered turning and exit wedge angle were

optimized to minimize pressure loss. Blade sections were designed to the same
pressure distribution criteria as the vane. Uncovered turning and exit angle
were optimized to reduce blade profile, trailing edge and shock losses. Results
from the Supersonic Cascade Program verified the final airfoil shapes. Signi-
ficant test results relating to the airfoil aerodynamic design are presented
in Section 4.2.5.

Velocity triangle data pertaining to the final airfoil definitions are presen-
ted in Table 4.2.2-I. These triangles are similar to those used in the testing
of turbine blades with a 43 percent reaction level (second build of the Un-

cooled Rig Program).

The assumed temperature profile for the combustor exit and the vane pressure
loss profile used in the design is shown in Figure 4.2.2-I.

Figures 4.2.2-2 through 4.2.2-4 present the airfoil contours of the vane root,
mean and tip sections, respectively, along with a summary of the section

aerodynamics and corresponding static pressure distribution. Figure 4.2.2-5
shows a two-dimensional schematic of the vane section stacking.



VANE

BLADE

Root

TABLE 4.2.2-1

GAS TRIANGLES*

Mean zlp

IN (deg) 90 ° 90 ° 90 °

OUT (deg) 11.6 ° 10.3 ° 9.1 °
M IN 0.09 0.08 0.07

M OUT 1.0 0.92 0.85

e GAS (deg) 78.4 ° 79.7 ° 80.4 o

IN (deg) 33.5 ° 42.7 ° 63.6 °

OUT (deg) 15.9 ° 16.9 ° 17.7 o

Mr IN 0.36 0.25 0.14

Mr OUT 1.22 1.24 1.28

e GAS (deg) 130.6 ° 120.4 ° 98.7 o

OUT (deg) 38.0 ° 43.8 o 48.4 °

M OUT (deg) 0.54 0.52 0.52

*Based on flat Inlet temperature and flat loss profiles.
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Similar design information is presented for the blade in Figures 4.2.2-6
through 4.2.2-12. As shown in Figure 4.2.2-6, the blade inlet angle has been

adjusted to account for differences between a rig and engine environment
(temperature, cooling and secondary airflows). The result is a blade design
with the root and tip sections that are undercambered 5 and I0 degrees,
respectively, and the mean section is overcambered 8 degrees in comparison to
the rig contours.

Figures 4.2.2-7 through 4.2.2-II present blade section contours for the root,
one-quarter root, mean, one-quarter tip and tip section, respectively. These

figures also provide a sumary of the aerodynamic properties as well as the
pressure distributions. Figure 4.2.2-12 shows the blade stacking.

Airfoil coordinates are given in Appendix A.
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4.2.3 High-Pressure and Low-Pressure Turbine Matching

To achieve the desired low-pressure turbine inlet aerodynamic conditions in

the integrated core/low spool, the high-pressure turbine blade stagger angle
was opened 0.25 degree from its aerodynamic definition. As indicated in Table

4.2.3-I, the net result of restaggering is a slight penalty in high-pressure
turbi ne efficiency.

TABLE 4.2.3-I

HIGH-PRESSURE TURBINE AERODYNAMICS AFTER RESTAGGERING

HPT

Designed HPT Run

(Initial IC/LS) At LPT FP

FPHp T IN 16.983 16.983

FPHp T OUT 66. 562 68.165

PR HPT 3.98 4.093

HPT Reaction 43. percent 43.8 percent

_THPT BASE 0 to -0.3 percent

Mn HPT OUT 0.523 0. 554

HPT OUT 43.8 degrees 43.0 degrees

LPT Converg

VI ROOT 1.4 1.35

BI ROOT 1.3 1.25

Restaggered HPT

Run at LPT FP

(Final IC/LS)

17,023

68.165

4.084

42.4 percent

0 to -0.15 percent

0.539

44.0 degrees

1.4

1.3

- Conclusion:

Restagger + 0.25 Degree To Get Back A_HPT, Bearing

Load (i.e., Reaction), and LPT Aerodynamics

4.2.4 Aerodynamic Efficiency Status

The high-pressure turbine efficiency estimates, based on results acquired from
the Uncooled Rig Program and the aerodynamic design, are summarized in Table
4.2.4-I. On the basis of these estimates, the efficiency goals for both the
integrated core/low spool and flight propulsion system are attainable at the
goal tip clearance 0.046 cm (0.0185 in) and exceeded at the status tip clear-
ance 0.032 cm (0.0126 in). The component design efficiency level is also
confirmed.

4.2.5 Supporting Technology Programs

In support of the high-pressure turbine aerodynamic design, several technology
programs were conducted to experimentally assess the critical advanced design
concepts. These programs included the Uncooled Rig Program, Supersonic Cascade
Program and Leakage Program. Results acquired from these efforts provided the
necessary technical guidance and insight to ensure a viable aerodynamic design.

]9
J
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TABLE 4.2.4-I

HIGH-PRESSURE TURBINE EFFICIENCY ESTIMATE BASED ON

UNCOOLED RIG TEST RESULTS

Aerodynamic Design Point

(10,668 m (35000 ft), 0.8 Mach No., Standard Day)

Flight

Propuls ion Component

System (%) Design (%)

Uncooled Rig (Build 2) 91.1 91.1 91.1

Coating -0.2 -0.2 -0.2

Cooling -3.7 -3.8 -3.8

Trailing Edge Blowing +i. 1 +i. 1 +1.1

Blade Rest agger - -0.i -0.i
Leakage - -0.1
Clearance

- -0.2
Wind age - -0.2
Part Quality - - -0.8
Engine Rematch - -0.2

EFFICIENCY ESTIMATE AT:

Goal Clearance 0.0472 cm (0.0186 in) 88.3

Status Clearance 0.0320 cm (0.0126 in) 88.8

GOAL EFFICIENCY (%)

88.1 86.6

- 87.1

88.2 - 86.7

Integrated
Core/Low

Spool (%)

The Uncooled Rig Program was basically directed towards establishing the
uncooled aerodynamic efficiency base and verifying the principal aerodynamic
design assumptions, specifically the benefits of increased stage reaction
level and low ratio of throughflow to wheel speed (Cx/U). The Supersonic
Cascade Program focused on determining the performance characteristics of

different vane endwa11 geometries and blade configurations, including loss
characteristics with cooling flow. The Leakage Program was structured to

investigate potential leakage sources in the turbine design and define
approaches to reduce leakage within the constraints of the component design
and sealing concepts evaluated.

Salient results from these programs, which influenced the turbine aerodynamic
design, are summarized in the following sections. A complete description of
the results of each program is contained in the following NASA Technical

Reports: Energy Efficient Engine High-Pressure Turbine Uncooled Rig Technology
Program (CR-165149, Reference l), Energy Efficient Engine High-Pressure
Turbine Supersonic Cascade Technology Report (CR-165567, Reference 2), and
Energy Efficient Engine High-Pressure Turbine Leakage Technology Report
(CR-165202, Reference 3).

4.2.5.1 Uncooled Rig Technology Program

Test results obtained from the Uncooled Rig Program demonstrated that sub-

stantial efficiency gains could be achieved by designing a single stage
turbine to operate at a low ratio of throughflow to wheel speed (Cx/U)
with an attendant high blade attachment stress and at higher turbine reaction
Ievel s.
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The benefits of decreasing the Cx/U value and increasing the AN2 para-

meter, as established by rig testing, are summarized in Figure 4.2.5-1. As

shown, the measured perfomance of the Energy Effi£ient Engine turbine con-
figuration is clearly superior to turbines with ANL parameters at state-of-

the-art levels. The benefit of operating at a low Cx/u translates into

1.15 percent increase in turbine efficiency over current performance levels.

7(%)

AN 2(IN 2_ RPM 2)

E3 4.6 x 101°

STATE-OF-ART 3.4 x 101°

92 1_ A_TPREDICTED = 1.1%
/

_. A_ MEASURED = 1'1°//°

MASSAVGU/''_'` E3 BLD#1

SINGLE STAGE HPT _

86

84 I I I I I
3.5 4.0 4.5 5.0 5.5 6.0

PR

Figure 4.2.5-I Turbine Uncooled Rig Performance Trends Showing Benefits of
Decreasing the Cx/U and Increasing the AN L Parameter

Figure 4.2.5-2 shows the positive effect achieved by increasing the turbine
stage reaction level. At the design point pressure ratio, testing with a
higher reaction level -- 43 percent as opposed to the lower reaction level of
35 percent-- produced a 0.8 percent improvement in performance.

Table 4.2.5-I presents the predicted uncooled rig efficiency, along with the
measured values. As indicated, the goals were surpassed. Overall, the results

from this program have established the uncooled aerodynamic efficiency of the
high-pressure turbine at gl.l percent and have verified the feasibility of the
advanced turbine aerodynamic design concepts.

OR_GI;_L PAGE t_

OF POOR QUALITy
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Figure 4.2.5-2 Efficiency Gains Associated with High Blade Reaction Levels

TABLE 4.2.5-1

TURBINE UNCOOLED RIG EFFICIENCY

Predicted (%) Measured (%)

Build 1 90.3 90.4

Build 2 90.8 91.1

4.2.5.2 Supersonic Cascade Program

In the Supersonic Cascade Program, two vane endwall geometries and three blade
sections were evaluated to ascertain their influence on turbine performance.
The vane endwall configurations included a contoured (S-wall) cascade and a

straight wall cascade. Test results are presented in Figure 4.2.5-3, showing
the spanwise distribution of total pressure loss for the two configurations.
The data trends show that the S-wall design demonstrated substantially less
pressure loss, a total of 17 percent, resulting primarily from the lower
secondary loss in the S-wall cascade.

The ability to assess the losses of cooling and leakage flows is essential in
order to properly predict the performance characteristics of a cooled turbine.

To demonstrate the ability to predict these losses in a transonic environment,
a cooled vane cascade test was conducted. In Figure 4.2.5-4, test data are
compared to the analytical predictions. The good correlation of results veri-
fies the ability of the design system to predict these effects.
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Blade cascades tested included overcambered and straightback designs which

were evaluated against the candidate design (base blade configuration) for the

Energy Efficient Engine high-pressure turbine. Cascade results demonstrated
that no additional performance benefits were achieved by using the straight-
back design. Figure 4.2.5-5 shows the response of blade base pressure coeffi-
cient with trailing edge coolant injection and exit Mach numbers, and Figure
4.2.5-6 shows the effect of trailing edge ejected cooling flow on mean section

total pressure loss. These results show that a significant performance im-
provement can be obtained with proper use of ejected cooling air.

0.1

-0.1

CPBAv G -O.2

-0.3

-0.4

-0.S

DESIGN POINT_ t%_)
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• SOLID AIRFOIL _ mJ
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I I I I I I I I
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I
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Figure 4.2.5-5 Effect of Trailing Edge Ejection Flow on Blade Pressure
Coefficient
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Fi gure 4.2.5-6
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4.2.5.3 Leakage Program _l _ d _ _ l _ ._ _b P _ ....

The Leakage Program was conducted to evaluate techniques for leakage reduction

in the high-pressure turbine. Based on this effort, the low leakage technology
in the Energy Efficient Engine high-pressure turbine has been successfully

substantiated. Test models were used to simulate component leak paths as well

as to assess leakage reduction concepts. These nodels simulated the blade-disk
attachment and the vane inner and outer platfom attachment seals.

The results of blade-disk attachment testing disclosed that leakage in this

area could be significantly reduced by paying careful attention to tolerances
along the contact surfaces between the vibration damper and platform contact
surface. As shown in Figure 4.2.5-7, attachment leakage is less than predicted,

thereby demonstrating the effectiveness of the blade dampers in sealing the

platforms.

Other tests were conducted to verify the full ring sideplate, W-seal design.

The data presented in Figure 4.2.5-8 show that a flat rear sideplate against
the disk face results in low leakage levels. Also, W-seals are effective in
controlling leakage, as indicated by the results in Figure 4.2.5-9.

80.0 -

- (4 DAMPERS)

TION

_-BLADE PLATFORM- 7
10.0 - \ /, BLADE GAP

- __/_t/__
- OA.PER-  

1 ,, - I FRONT LCONTACT POINT

Z_ VARIATIONS CAUSED
- ¢ BY DAMPER

O0 INTERCHANGE

1.0 l l I l I I I I I I I I l l I I I I
0.01 0.10 0.6

PDAMP - PAMB

PDAMP

Figure 4.2.5-7 Results of Blade-Disk Model Testing Showing Leakage in the
Attachment Area is Less Than Predicted
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Leakage tests were also performed to assess the effectiveness of feather seal
perturbations for leakage control in the vane inner and outer platform attach-
ments. Figure 4.2.5-I0 shows the various feather seal configurations tested,
and Figure 4.2.5-II presents the test rig arrangement, along with the major

components. All of the test rigs incorporated gaps similar to those expected
in the turbine component assembly. Testing demonstrated that significant
reductions in leakage were achieved by eliminating the feather seal inter-
sections and plugging the seal gaps. These results are shown in Figure 4.2.5-12
by the comparison of 0.025 to 0.050 cm (O.OlO to 0.020 in) thick two piece
overlapping seals in electrical discharge machined slots. In addition, the
results indicated that minimizing surface waviness was essential for obtaining

a good sealing surface. These results are presented in Figure 4.2.5-13.

Two-piece feather seal

with overlap _

(a)

(e)

Two-piece feather seal

(b)

Two-plece feather seal_

Two-piece feather seal

without overlap and

(c)

Two-piece feather seal

without overlap, with _'_

front and re___ I

(d)

wT_thPuitCev'_rlOng" feather seal

F°u r-_ ie/_efla th/_

I I I I I I I I Fj'M_

ORIG!NAL ;:AC,._ _.":;;
(h)
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Figure 4.2.5-I0 Promising Feather Seal Configurations Evaluated
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SECTION 5.0

AIRFOIL DURABILITY

5.1 OVERVIEW

The Energy Efficient Engine high-pressure turbine design emphasizes operation
at a moderately high combustor exit temperature with a minimum of cooling to
maximize fuel efficiency. This must be achieved, however, with no compromise
in component durability.

Turbine airfoil durability goals for both vanes and blades are lO,O00 hours of
service life for the flight propulsion system and 50 hours hot section life at
28oc (84OF) day sea level takeoff conditions for the integrated core/low
spool. The lO,O00 hour goal is established in terms of international missions,
and reflects an equivalent of 2200 missions. These goals are achieved through
the combination of improved cooling effectiveness and advanced high-temperature
capability materials.

5.2 TURBINE VANES

The themal design, including durability assessment, of the turbine vanes is
based on the combustor exit temperature profile shown in Figure 5.2-I. This
profile represents an atypical worst case situation at hot spot locations,
showing a nearly flat radial profile with a maximum temperature of 1888oc
(3431OF) which reflects an appreciably high design pattern factor of 0.42
and a deteriorated engine condition.

1926

(3500)

_J
o

o:: 164B
:::)
I.- (300O)

TT4 = 1500=C (2733"F)

n.."
,,, TT3 = 577oC (1071OF)
a..

PATTERN FACTOR = 0.42
LLI

I-

1371

(2500)

i I l l I i I J
0 20 40 60 80 1O0

% SPAN

Figure 5.2-I Combustor Exit Profile Used for Turbine Vane Durability
Assessment for Flight Propulsion System at Hot Day Sea Level

Takeoff Operating Conditions
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5.2.1 Vane Cooling Management System

Vanes in the Energy Efficient Engine high-pressure turbine, as aerodynamically
defined, are physically larger than turbine vanes in current gas-turbine
engines because of the selection of a low number of airfoils. This increases
vane surface area and causes inherently longer surfaces that must be cooled.
In turn, the longer surfaces necessitate a greater number of film cooling rows
to maintain acceptable metal surface temperature levels.

A diagram of the vane cooling system is presented in Figure 5.2.1-I. As indi-
cated, the vane requires only a total of 6.41 percent of core engine inlet
flow for cooling, excluding inner and outer platform surfaces. Internal sur-
faces are cooled by convection, while external surfaces are film cooled. In
comparison to current commercial engines operating at similar turbine stator
inlet temperatures, this represents a 1.2 percent reduction in cooling flow
requirements.

0.73%

2.31%

.91%

1.52%

0.325%

2.72%

1.52%

0.325%

TOTAL COOLING FLOW

6.41% WAE

Figure 5.2.1-I Turbine Vane Cool ing Design

O_IG_..',_, F.;_ _3
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Cooling air enters the vane from the tip and the root at a pressure of
2,840,657 Pa (412 psia) and temperature of 577oC (1071OF) at the
durability design condition of sea level takeoff, hot day. Exact percentages
of flow are depicted in Figure 5.2.1-I. The coolant is distributed within the
internal structure of the vane, which is designed with three cavities. These
cavities are convectively cooled through the use of sheet metal impinge_nt
tubes that fit into the three cavities. To provide maximum strength against

bulging deformation, two ribs tie the pressure wall and suction wall to-
gether. In addition, the vane trailing edge is convectively cooled by cooling
air flowing through a series of pedestals or braces between the vane walls.
Cooling flow passes around the pedestals and is discharged through a slot in
the trai Iing edge.

The front cavity impingement tube is supplied cooling air to convectively cool
the walls of the cavity. After the internal surface is cooled, the coolant is

discharged through an array of showerhead holes in the leading edge as well as
a set of holes downstream of the leading edge on the suction wall to provide a
cooling film over the external surface. The showerhead holes are angled
radially, as opposed to the axial angular orientation of the film cooling

holes on the suction and pressure walls, for more effective heat transfer in
the thick leading edge region.

The middle and rear cavities also contain impingement tubes from which
numerous cooling air jets are impinged against the vane inside surface.
Cooling air flows in a chordwise direction and is discharged through axially-
angled film holes in order to provide film cooling. A portion of the cooling
air in the rear cavity is channeled through the trailing edge pedestal and
discharged at the vane trailing edge. The size and spacing of the pedestals
have been selected to provide the desired convective cooling and cooling flow
level s.

Because of the somewhat unusual aerodynamic contour of the vane, the stag-
nation point on the airfoil appears on the pressure surface. This surface is
film cooled to offset this heat load by two sets of two rows of holes, approxi-
mately 0.058 cm (0.023 in) in diameter. The suction surface incorporates three
rows of cooling holes, approximately 0.050 cm (0.020 in) in diameter.

The cooling scheme, including cooling hole arrangement and flow distribution

for the inner and outer vane platforms, is shown in Figures 5.2.1-2 and
5.2.1-3, respectively. The outer platform requires nearly 0.5 percent flow,
while the inner platform requires 0.32 percent flow. The platform cooling
scheme is based on Pratt & Whitney Aircraft experience and utilizes impinge-
ment cooling from under the platform and convection cooling from drilled
holes. The large size of fhe airfoil makes exclusive use of convection cooling
infeasible because of the increased friction loss resulting from the longer
holes. Also, the requirement for more vane material to accommodate these
longer holes would result in a significant increase in weight.

Impingement cooling is employed for the portion of the platform adjacent to
the pressure side. Cooling holes are incorporated on the side and aft rails.
If required, additional impingement cooling can be provided on the platform

suction side. The heat transfer coefficients used for inner and outer platform
analysis are shown in Figures 5.2.1-4 and 5.2.1-5.
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Figure 5.2.1-2 Turbine Vane Inner
Platfom Cooling Scheme

Figure 5.2.1-3 Turbine Vane Outer
Platfom Cooling Scheme
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Figure 5.2.1-4 Turbine Vane Inner
Platforg Heat Transfer
Coefficients

Figure 5.2.1-5 Turbine Vane Outer
Platform Heat Transfer
Coefficients
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An assessment of the effectiveness of the vane cooling management system is
summarized in Figures 5.2.1-6 through 5.2.1-10. The effectiveness of the film

over the long suction wall is compared to two-dimensional flow on a flat plate

in Figure 5.2.1-6. As shown, the Energy Efficient Engine design is conserva-

tive relative to the flow on a flat plate. Results of a themal analysis,

using the combustor exit profile shown in Figure 5.2-1, are presented in

Figure 5.2.1-7. As shown by this isothem plot, the highest calculated metal

temperature is 1226oc (2239OF) on the suction side wall adjacent to the
third cavity.

The effectiveness of the film cooling technique for the pressure and suction

surfaces is corroborated by the film temperature distributions. A profile of

the pressure surface film temperature is presented in Figure 5.2.]-8 and a

similar profile of the suction surface film temperature distribution is shown

in Figure 5.2.1-9. Of particular importance in Figure 5.2.1-9 is the fact that

the leading edge film holes provide effective film protection for the entire

suction surface with 2.31 percent of the total engine flow. A resulting pro-
file for vane surface temperature is presented in Figure 5.2.1-10. The heat

transfer coefficients used in the profile analysis are shown in Figure
5.2.1-II.

5.2.2 Vane Materials

A summary of the turbine vane materials and coating is presented in Table
5.2.2-I. The base alloy is SC 2000 nickel base single crystal material, which
affords both high strength and high temperature capability. For the integrated
core/low spool, vanes will be fabricated from PWA 1480 single crystal material.
This material provides an approximate lOOC (50OF) metal temperature advan-
tage over directionally solidified material (PWA 1422) used for turbine air-

foils in modern Pratt & Whitney Aircraft commercial engines. The impingement
tubes are of Inconel 625 sheet metal stock.

The external surface of the vane is coated with an oxidation-erosion resistant

coating, PWA 270 (NiCoCrAly). A themal barrier coating (PWA 264) is applied
to the hot gas surface of the platform.

The materials and coatings planned for the flight propulsion system are

advanced derivatives of those selected for the integrated core/low spool. The
base alloy is a second-generation nickel base single crystal material (SC

2000). This material will provide an additional lOOC (50OF)metal tempera-
ture improvement over the PWA 1480 material.

For the flight propulsion system vane, both the internal and external surfaces

are coated. The external surface is coated with an advanced overlay coating
(PWA 286) that provides improved resistance to oxidation and erosion. An

aluminide coating (PWA 275) is also applied for the internal cavity to enhance
oxidation resistance. The platforms are coated with an advanced thermal

barrier coating (TBC lO0) for added temperature capability.
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TABLE 5.2.2-1

VANE MATERIALS AND COATINGS

Base Alloy

External Coating

Internal Coating

Platform Coating

Flight Propulsion System

SC 2000

(Advanced Single Crystal)

PWA 286

(Advanced NiCoCrAIY Overlay)

PWA 275

(Aluminlde)

TBC i00

(Advanced Ceramic Thermal

Barrier Coating)

Integrated Core/Low Spool

PWA 1480

(Single Crystal)

PWA 270

(NiCoCrAIY)

None

PWA 264

(Ceramic Thermal Barrier

Coating)

5.2.3 Turbine Vane Durability Assessment

To evaluate vane durability characteristics, estimates of strain were made

during transient engine operation. Transient strains essentially cause two

strain cycles per flight mission, and the effects of both were inc_.uded in

estimating cyclic life. Results show that the vane leading edge experiences

the greatest total strain range (0.7 percent). The relative strain at the

leading edge during the two strain excursions -- takeoff and reverse thrust

-- as opposed to other flight modes, is indicated in Figure 5.2.3-1. Strain

ranges for the other areas of the vane are identified in Figure 5.2.3-2.

The calculated vane life for the flight propulsion system and the integrated
core/low spool is presented in Table 5.2.3-I. Oxidation life and cracking life

exceed the goal values by lO00 hours or 300 cycles.

5.3 TURBINE BLADES

The thermal design of the turbine blades was based on the exit temperature
average profile produced by the vanes. This profile is shown in Figure 5.3-I,
and as indicated, the peak of the profile (gas path temperature of 1425oc
(2598OF)) occurs at the 65 percent span location. Consequently, the design
of the blade cooling system was tailored to match the spanwise temperature
ranges reflected by this profile in combination with the stress profile.

5.3.1 Blade Cooling Management System

The turbine blade cooling system design for the Energy Efficient Engine, like

the vane, relies on the efficient management of coolant to maintain acceptable
metal temperatures with minimum cooling air. The cooling system design was
verified by the results acquired from a supporting flow visualization model
test program.
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FLIGHT PROPULSION SYSTEM

Oxidation

Cracking

TABLE 5.2.3-1

VANE LIFE

Required

6000 Hours*

I0000 Hours

(2200 Flight Missions)

P,AGE I$

II_ ._UALI_ "_

Calculated

7000 Hours*

ii000 Hours

(2500 Flight Missions)

INTEGRATED CORE/LOW SPOOL

Oxidation 50 Hours (Hot Time) i00 Hours (Hot Time)

*i0,000 hours achieved with one recoating

1426

(2600)

1315

(2400)

_" 1204

o (2200)

_j"
uJ
n,-

1093
I-'- (2000)

I--

982

(18OO)

TT4.1 = 1425°C (2598°F)

TT3 = 577°C (1071°F)

Fi gure 5.3-I

I I I I I
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% SPAN.

Turbine Vane Exit Profile for Flight Propulsion System at Hot
Day Sea Level Takeoff Operating Conditions
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A schematic of the blade cooling design is presented in Figure 5.3.1-1, show-

ing the internal passages and distribution of cooling air. The blade internal

geometry is cooled through convection, while external surfaces are locally

film cooled from the leading edge showerhead holes and tip pressure side

holes. There are no film cooling holes on either the pressure or suction
surfaces of the airfoil.

The total cooling air requirement is 2.75 percent of the core engine inlet
flow. As indicated in Figure 5.3.1-I, cooling air enters the blade through
three root passages. The cooling flow is supplied to the blade root at a pres-
sure of 1,661,646 Pa (241 psia) and a temperature of 556°C (I033°F) at the

cooling design condition of hot day sea level takeoff.

BLADE COOLING FLOWS (TOTAL 2.75%)

0.40%

0.26%

///#

0.04%

0.70% 1.72% 0.33%

2.05%

ORIG!NA= PAC 7.
OF

Figure 5.3.1-I Turbine Blade Cooling System
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The front passage supplies approximately 25 percent of the total blade flow to

cool the leading edge and tip. This flow is discharged through a series of
0.038 to 0.050 cm (0.015 to 0.020 in) diameter showerhead holes at the leading
edge and an array of 0.050 to 0.063 cm (0.020 to 0.025 in) diameter holes at
the tip. Since the predicted gas temperatures are substantially lower at the
airfoil span extremes, as shown earlier in Figure 5.3-I, the leading edge
cooling hole pattern has been tailored to accor._odate these temperature re-
quirements. In addition, trip strips are integral with the internal passage
design to promote a higher heat transfer rate.

The middle passage utilizes approximately two-thirds of the total blade cool-
ing flow. Flow circulates through the internal cavity, making two spanwise

excursions, and enters the trailing edge passage where it passes through an
array of pedestals before being discharged into the gas path. Trip strips are
also used in the passages to raise the heat transfer coefficient. At the tip
and root sections, turning vanes are used to reduce aerodynamic flow separa-
tion and the attendant pressure loss penalty. Sizing of the flow areas was

carefully selected to avoid areas of diffusion that could lead to flow separa-
tion and high pressure loss.

The third blade passage directs a small percentage of cooling air to cool a
portion of the root area and supplements trailing edge cooling. Flow injection
improves the flow distribution in the root turn area with essentially no
penalty on the cooling supply pressure.

Verification of the coolant passage design was accomplished by the use of a
five times size flo_ model (Reference 4), which duplicated the conplete
internal shape of the blade.

The capability of the cooling system design to maintain acceptable metal tem-
peratures was confirmed by a thermal analysis. Figure 5.3.1-2 presents an
isotherm plot of the blade laid-span section. As indicated, the average metal
temperature is 954oC (1750OF). The highest predicted temperature is
slightly above I093oc (2000OF), and occurs on the suction wall surface

near the first rib. A profile of pressure and suction surface temperatures is
shown in Figure 5.3.1-3. The heat transfer coefficients used in the profile
analysis are shown in Figure 5.3.1-4.

5.3.2 Blade Materials

A summary of the materials and coatings selected for the turbine blade is

presented in Table 5.3.2-I for the integrated core/low spool and flight pro-
pulsion system. For both applications, the base material and coatings are the
same as for the turbine vane. The base material is an advanced nickel base
single crystal alloy and the blade is coated with an advanced oxidation

resistant coating. The major difference is that a thermal barrier coating on
the platfom is not required.
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TABLE 5.3.2-1

BLADE MATERIALS

Base Alloy

External Coating

Internal Coating

Flisht Propulslon System

SC 2000

(Advanced Single Crystal)

PWA 286

(Advanced NiCoCrAIY)

PWA 275

(Aluminide)

Intesrated Core/Low Spool

PWA 1480

(Single Crystal)

PWA 270

(NiCoCrAIY)

None

5.3.3 Turbine Blade Durability Assessment

An analysis of transient strains encountered during the flight cycle resulted

in predicted lives that meet the durability goals. Characterization of blade
strain properties showed that the first rib is subjected to the highest strain
(0.55 percent range). Rib strain as a function of flight mode and corresponding

operating temperature is shown in Figure 5.3.3-I. Strain ranges for other
parts of the blade are indicated in Figure 5.3.3-2.
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T.E. 0.27%

Figure 5.3.3-2 Predicted Strain

The calculated blade life for oxidation and cracking failure modes is tabula-

ted in Table 5.3.3-I. Durability goals for both the integrated core/low spool
and flight propulsion system are surpassed by an appreciable margin, as shown
by these results. Cracking as a result of creep is defined as the life limit-

ing failure mode. Figure 5.3.3-3 presents the calculated blade temperatures.

FLIGHT PROPULSION SYSTEM

TABLE 5.3.3-I

BLADE LIFE

Oxidation

Cracking*

Required

6,000 Hours

I0,000 Hours

(2200 Flight Missions)

Calculated

16,000 Hours

16,000 Hours

(3500 Flight Missions)

INTEGRATED CORE/LOW SPOOL

Oxidation

Creep

50 Hours (Hot Time)

50 Hours (Hot Time)
400 Hours (Hot Time)

80 Hours (Hot Time)

*Cracking due to interacting creep and low cycle fatigue
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As part of the durability assessment, blade life sensitivity to wall thickness
tolerances was analyzed to evaluate the possible impact of core shifts. The
predicted effects of wall thickness on blade life are summarized in Figure

5.3.3-4. Creep life is shown to be relatively insensitive to small tolerance
variations with a single crystal material.
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SECTION 6.0

SECONDARY AIRFLOW SYSTEM

6.1 OVERVIEW

The high-pressure turbine secondary flow system is designed to maximize the
use of secondary air for cooling and thrust balance as well as minimize para-
sitic leakage and the attendant performance penalty. The primary design fea-

tures that enhance leakage control and contribute to a higher overall system
perforuance incl ude:

A tangential on-board injection (TOBI) system for positive blade
coolant flow supply

Front rim cavity mini tangential on-board injection (TOBI) system
Boltless and full ring rotor sideplates
A multi knife-edge, stepped high-pressure compressor discharge seal.

The benefits derived from these features, in conjunction with improved sealing
concepts, result in the utilization of only 14.10 percent of the core engine
inlet flow for cooling the high-pressure turbine disk, blades, vanes and case
in the flight propulsion system.

Much of the sealing technology incorporated in the secondary flow system
design has evolved from a leakage supporting technology program. This effort
was instrumental in providing design guidance for the vane feather seals,
blade damper seals and outer air seal. Significant results from the leakage
program are described in Section 4.2.5.3.

6.2 SECONDARY FLOW SUMMARY

Figure 6.2-I shows a secondary flow map of the high-pressure turbine, identi-
fying cooling air flows, secondary cooling flows, leakage flow rates, and the

static pressure at various points. Table 6.2-I presents a status sugary of
the flow rates of the major turbine components in both the flight propulsion
system and integrated core/low spool. Secondary flow totals for the flight
propulsion system and integrated core/low spool are 14.10 and 14.56 percent of
the total inlet flow, respectively. The slight difference in total flow is

based on the assumption that the flight propulsion system will incorporate a
higher level of feather seal technology in the vane and outer seals. These

numbers differ from those shown for Wc/a in Table 3.3-I since they are
status numbers and represent flows calbulated after the parts were designed.

Table 3.3-I lists the flows estimated before completion of the design.

The design features that contribute to these low flow rates are described in
the following section.
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TABLE 6.2-1

SECONDARY FLOW STATUS SUMMARY

PERCENT Wae

A_RODYNAMIC DESIGN POINT

Flight Propulsion

System

Integrated Core/

Low Spool

DISK

Front Rim Cavity

Rear Rim Cavity

Sub Total

0.60

0.40

1.00

0.60

0.40

i. O0

BLADE

Foil Cooling Flow

Sldeplate Cooling

Leakage

Sub Total

2.75

0.19

0.23

3.17

2.75

0.19

0.23

3.17

VANE

Foll Cooling Flow

Platform Cooling

Leakage

Sub Total

6.41

0.81

1.40

8.62

6.41

0.81

1.83

9.05

CASE

Outer Air Seal Cooling

Active Clearance

Flange Leakage

Sub Total

0.99

0.25

0.06

1.30

1.03

0.25

0.06

1.34

TOTAL 14 .i0 14.56
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6.3 SECONDARY FLOW SYSTEM DESIGN FEATURES

The main design features in the secondary flow system are shown in Figure
6.3-I. These include a blade coolant supply tangential on-board injection
(TOBI) system, a front rim cavity mini tangential on-board injection (TOBI)
system, boltless rotor sideplates, and a multi knife-edge, stepped high-

pressure compressor discharge seal.

The blade tangential on-board injection system is a high efficiency cascade
design to ensure positive supply of blade cooling air, which is furnished from
the high-pressure compressor inner bleed. Since the system is pressure bal-
anced, inner and outer seals are not necessary. Also, only a small percentage
of air flow (O.l percent of the total engine inlet flow) is required around
the flow guides at the nozzle discharge plane. Furthermore, because the system
is balanced to accomodate the gas path inner diameter pressure, cooling flow
is insensitive to rim seal clearances.

The mini tangential on-board injection system shown in Figure 6.3-2 preswirls
the front rim cavity and thereby reduces windage heat up that would increase
front side plate temperature. The swirl field also provides a radial pressure
gradient between the blade supply tangential on-board injection system and the

gas path static pressure, thereby effectively linking the blade supply pres-
sure to the gas path leading edge inner diameter pressure. This keeps the
ratio of blade supply pressure to gas path inner static pressure fixed and
independent of seal leakage, attachment leakage and blade flow area.

The full ring, boltless sideplate configuration adopted for the Energy
Efficient Engine high-pressure turbine considerably reduces the leakage in-
herent in Conventional segmented sideplates. A diagram of the blade coolant
supply system, showing pressure and flow characteristics, is presented in
Figure 6.3-3. The design blade cooling flow is 2.75 percent of core engine air
flow and is supplied to the blade at an inlet pressure of 53.2 percent of the
total pressure at the high-pressure compressor exit. The tangential on-board
injection dump pressure of 43.1 percent of the total high-pressure compressor

exit pressure is increased to 48.2 percent by the free vortex pressure re-
covery, and up to 53.2 precent by solid body rotation in the disk feed
passages. As indicated, the full ring sideplate arrangement is very effective
in reducing leakage. In addition, the use of W-seals at the interface of the
rear plate and blade platfom successfully controls leakage flow.

Other pertinent rotor and turbine case secondary flow features include the

fol lowl ng:

o Rim Seals -- These seals are positioned at the leading and trailing

edge of the blade platfom to isolate the disk cavity from the gas
path. In essence, these serve as flow guides that function like fish-
mouth seals to prevent hot gas ingestion and the resulting heat up of
the disk rim.

High-Pressure Compressor Discharge Seal -- The compressor discharge
seal is a nine knife-edge structure with an abradable seal land. This
seal is designed to operate at a very close clearance 0.031 cm
(0.0125 in), permitting minimum leakage flow. The calculated leakage
flow rate is 0.4 percent of the total core engine flow.
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Rear Seal -- A seal at the rear of the high-pressure turbine is used

to provide thrust balance. The net thrust of the high-pressure rotor

is presently calculated at 22,241 N (5000 lb) at sea level takeoff
condi ti ons.

Buffer Seal -- This seal, which is located in the proximity of the
rear seal, is used to separate cool low-pressure compressor discharge

air from high-pressure turbine bore cooling air for the rear bearing

compartment.

Active Clearance Control System -- Turbine case active clearance
control is achieved through an internal system supplied with a mix-
ture of tenth and fifteenth-stage high-pressure compressor bleed
flow, which totals 0.25 percent of the total engine inlet flow. The
impingement of this air cools the full ring rails to control the
clearance of the outer air seals. The thermal environment of the

front and rear rails is precisely matched to prevent adverse themal
graidents.

Outer Air Seals -- These seals are ceramic coated and impingement
cooled by combustor secondary cooling air. Since the pressure of this

cooling air is relatively high, it is channeled to the intersegment
gap to cool the exposed intermediate seal layer as well as prevent
gas path ingestion.

0 W-Seals and Feather Seals -- Both sealing techniques have proved
effective in minimizing leakage during experimental model_ tests.
These seals are used extensively in the high-pressure turbine design.

6.4 Thermal Analysis

The effectiveness and adequacy of the secondary flow system has been verified

on the basis of results acquired from thermal analyses. Figure 6.4-I shows the
deteiled thermal model element breakup of the rotor and portions of the static
structure required to establish boundary conditions. Figure 6.4.-2 shows an
example of time transient responses for the disk during a snap acceleration/
deceleration. As expected, the rim thermal response is the fastest, while the
bore response is slowest.

Turbine case and outer seal temperatures were generated with the thermal model
shown in Figure 6.4-3. Results of the analysis are presented in Figure 6.4-4,
which shows a time transient response of elements at the ceramic interface in
the front and rear outer air seal rails for a snap acceleration/deceleration.
The ceramic interface temperature is a key parameter for outer air seal
structural Integrity.
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SECTION 7.0

COMPONENT MECHANICAL DESIGN

7.1 OVERVIEW

The mechanical definition of the high-pressure turbine component evolved
through an iterative process based on the results of the aerodynamic effort

and various supporting technology programs. Where necessary, the turbine
design for the flight propulsion system has been modified to meet specific
requirements associated with the integrated core/low spool. The resultant con-
figuration is illustrated in Figure 7.l-l. To facilitate design and analysis,
the total effort was divided into the analysis of the following subassemblies:

the rotor, vane and inner case, outer case and outer airseal, and number 4 and

5 bearing compartment.

7.2 TURBINE ROTOR ASSEMBLY

7.2.1 General Description

The high-pressure turbine rotor assembly is illustrated in Figure 7.2.1-I. The
primary elements in this assembly are the blade, disk, disk sideplates, vortex
plate and high-pressure turbine to high-pressure compressor bolted joint.
Design details pertaining to these components are discussed in the following
sec tions.

The Energy Efficient Engine high-pressure rotor construction is different from
most previous Pratt & Whitney Aircraft designs in that the rotor is straddle
mounted. This arrangement eliminates the bearing compartment forward of the
high-pressure turbine disk and places it after the disk. The advantage of
straddle mounting the rotor is shown by the results of a dynamics analysis. A
stiff high rotor equipped with a soft effective front spring mount (No. 3

bearing) eliminates any high critical speed response in the engine operating
range, as indicated in Figure 7.2.1-2.

Figure 7.2.1-3 shows that the most serious critical speed mode is a free-free
mode with lO0 percent strain energy. This mode occurs well above the rotor red
line speed at 27,600 rpm. A pitch mode with 4.2 percent rotor strain energy
occurs at 7450 and a bounce mode occurs at 4950 rpm, respectively, which are

both below idle speed.

Another possible critical mode is during startup when a stationary rotor be-
comes bowed as a result of thermals from residual heat in a nonoperating

engine. This mode occurs below idle. Acceptable bowed rotor start character-
istics are achieved with the aid of viscous film dampers on the bearing outer

races.

A significant concern in the design of the joint between the turbine front hub

and compressor rear hub was to provide adequate joint strength to prevent
separation in the event of blade loss and ensuing high rotor imbalance loads.

High strength, cobalt alloy MP 159 was selected as the bolt material for this
joint. Bolt tensile stress at steady state conditions was calculated to be
863,918,440 Pa (125,300 psi), and assembly tensile stress was I,I18,336,560 Pa
(162,200 psi). Steady state thread shear stress was 364,045,440 Pa (52,800
psi) and assembly principal shear was 847,370,920 Pa (122,900 psi). All
stresses were within allowable limits for this material. 59
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7.2.2 Blades OF. POOR QUAL;IY

7.2.2.1 Mechanical Design Features

The high-pressure turbine blade mechanical design is shown in Figure 7.2.2-I.
The mechanical design features of the blade are tailored to accommodate the
increased AN2 parameter, the benefits of which were demonstrated in the
high-pressure turbine Uncooled Rig Program, as discussed in Section 4.1.2.1.
The corresponding increased wheel speed associated with the higher AN2,
however, results in a higher stress load. To compensate for these higher
stresses, the blade is constructed from advanced high strength and high

temperature capability materials. It is also tapered, incorporates a slight
degree of tilt and has minimum wall thickness. The calculated average stress
loads are shown in Table 7.2.2-I.

SQUEALER

_COATING PWA 270

MATERIAL:

FPS' SC 2000

IC/LS)PWA 1480

1 PC BLADE CASTING

HINED DAMPER-SEAL

SURFACE

5 TOOTH ATTACHMENT

Figure 7.2.2-I Turbine Blade Mechanical Configuration

TABLE 7.2.2-I
HIGH-PRESSURE TURBINE BLADE STRESS SUMMARY

Calculated Force/Area Stress MPa (kpsi)*

Root

One-Quarter Root
Mean
Extended Neck

325,434 (47.2)
287,513 (41.7)
230,286 (33.4)
310,266 (45.0)

*Sea level takeoff condition, 28°C (84°F), high-pressure rotor

speed = 14,045 revolutions per minute (rpm)



The blade is constructed from a one-piece casting of a nickel base single

crystal alloy. An advanced overlay coating is also used on the airfoil surface
to provide additional resistance from oxidation and erosion. The materials

selected for the blade are SC 2000 for the flight propulsion system and PWA

1480 for the integrated core/low spool. SC 2000 is a second-generation stngle

crystal alloy still under development. It has improved stress rupture, creep,
thermal fatigue, notch fatigue strength, and coated oxidation resistance over

currently used directionally-solidified alloys. PWA 1480 is a currently avail-
able first-generation single crystal alloy with a 10oc (50OF) lower tem-

perature capability than SC 2000. The blades for the integrated core/low spool

were designed based on SC 2000 properties and cooling requirements, then

checked to ensure that they met the integrated core/low spool life goals.

Although PWA 270 coating is planned for use in the flight propulsion system to

enhance blade life, it is not required for the experimental hardware.

Taper is used to control the radial distribution of blade mass so centrifugal
forces due to wheel speed can be held to an acceptable level. The degree of
taper in the blade design is illustrated in Figures 7.2.2-2, and was deter-

mined as part of an analysis that assessed the combined effects of taper, wall
thickness, and blade tilt on airfoil stresses.

The degree of tilt in the airfoil design was established through an analysis
aimed at balancing the stresses resulting from gas bending loads as well as
those associated with centrifugal loads. Gas bending loads dominate at low

engine speed whereas centrifugal loads dominate at high engine speeds. The
degree of tilt in the blade design to accomplish the desired stress balance is
shown in Figure 7.2.2-3.

Blade wall thickness and cooling passage ribs were also tailored to provide
the desired distribution of radial mass. Figure 7.2.2-4 shows the nominal

thicknesses established for the root, mean and tip sections. The thin trailing
edge wall thickness of 0.0508 cm (0.020 in) including coating thickness was

dictated by the aerodynamic concern to maintain a trailing edge wedge angle of
2 degrees and a cooling air discharge slot width of 0.050 cm (0.020 in).

The internal cooling configuration of the blade required provisions to support
the ceramic core through the blade tip, while the blade is being cast (Figure
7.2.2-5). Following casting, these holes are plugged by welding in closure
plugs.

A blade tip squealer and abrasive tip cap have been selected in order to de-
crease the amount of performance deterioration that would normally result in
the event of blade tip rubs (see Section 7.6 for further discussion on blade
tip clearances). The blade tip squealer was designed to be compatible with the
tip cap configuration by incorporating a 0.127 cm (0.050 in) nominal wall

thickness, which will provide adequate surface area for the application of an

abrasive grit. The predicted performance gain expected by using only the
squealer with a 0.088 cm (0.035 in) wall thickness is approximately 0.4
percent. Increasing the wall thickness to 0.127 cm (0.050 in) decreases this

performance gain by O.l percent. However, using an abrasive tip cap will more
than offset this slight performance penalty. The blade tip squealer design is
shown in Figure 7.2.2-6.
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7.2.2.2 Airfoil Vibration Analysis

A s;;_uctural analysis of the single crystal blade was perfomed using the
NASTRAN analytical technique. This technique uses a three-dimensional finite
element analysis capable of showing airfoil vibratory response in terms of
mode shape and natural frequency.

A graphical display of the high-pressure turbine blade defined by the NASTRAN
technique is presented in Figure 7.2.2-7. The model utilizes plane stress
ele_nts for the airfoil skin and ribs, while the blade neck is simulated with
beam elements. Attachment flexibilities are included as springrates to ground.

L_

Figure 7.2.2-7 Graphical Display of Turbine Blade Defined by the NASTRAN
Analytical Technique

In addition, this model included the unique stiffness properties associated
with the single crystal atomic orientation whose characteristics could not be
evaluated by using the classical beam analytical models for blade vibration.

This enabled optimizing the crystallographic orientation of the blade to
ensure sufficient margin from critical vibratory excitations throughout the
engine operating range.

The initial NASTRAN blade analysis was based on an engine configuration which
had 14 struts in the transition duct downstream of the high-pressure turbine.
Also, the single crystal axes orientation was arbitrarily aligned with the
engine axis system (primary axis in the radial direction, secondary in the
axial direction (see Figure 7.2.2-8)), recognizing that the secondary axis
_OlO> and {I00} could be re-oriented spacially, if required. Results of this

initial analysis indicated unacceptable frequency margins in the engine
operating range.
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Figure 7.2.2-9 presents the estimated vibratory frequencies for the first five
modes of blade vibration. The critical engine order lines of 14E and 24E,
which correspond to turbine transition duct strut and first-stage turbine vane
passing frequencies, respectively, are shown with the estimated frequency
margins in the cruise-to-redline high-pressure rotor speed range. As indicated,
there is insufficient margin between the 14E order line and the third vibra-

tory mode (7.3 percent) and the 24E order line and fifth vibratory mode (2.6
percent).

Analysis of blade vibrations in these five resonant modes indicated that the
trailing edge region from mid-span to tip was the area of greatest vibrational
magnitude. This can be seen in the airfoil isodeflection characteristics
illustrated in Figures 7.2.2-I0 through 7.2.2-14.

To achieve acceptable margins, two methods of corrective action were taken.

The first was an engine configurational change to reduce the number of transi-
tion duct struts from 14 to II. This resulted in an lie order line signifi-

cantly below the 14E line, and permitted tuning of both first and second modes
so that adequate margin was provided for the first mode below minimum cruise
engine speed and for the second mode above redline speed.
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The second area of corrective action, which was required to provide adequate
frequency margin at redline speed for both the liE second mode and 24E fifth
mode resonances, involved investigation of the impact of single crystal secon-
dary axis orientation on blade vibration characteristics. Figure 7.2.2-15
shows how the _odulus of elasticity varies along the secondary axis of the

crystalline structure, thereby indicating that re-orientation of the secondary
crystallographic axis could be expected to affect the frequencies of the

various vibratory modes. To determine this variation, the crystal was rotated
about the radial axis {001} in a clockwise manner. The resulting mode frequen-
cies were plotted as a function of this rotation angle. The results are shown
in Figures 7.2.2-16. The final requirement for crystal secondary axis control
was predicated on obtaining the highest second and fifth mode frequencies.
This was obtained by rotating the crystal secondary axis 25 degrees. Because
of the significant trailing edge clockwise motion in these modes, it was
necessary to align the maximum in-plane modulus of elasticity with chord line
"A" running through the blade trailing edge, as shown in Figure 7.2.2-17.

(001) E = 18 x 106

J'ARBITRARY I

<i00)

E = 18 x 106

(ii0)

E = 33 x 106

Figure 7.2.2-15 Crystallographic Orientation
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An analysis of this r,lodifiedconfiguration demonstrated acceptable frequency
margins for both liE and 24E engine order lines. The results are presented in
the resonance diagram in Figure 7.2.2-18.

Blade platfom frequencies were calculated to ensure that no vane passing
resonances would occur in the engine operating range. Both lie and 24E reso-
nances were predicted to be well above redline speed.

The reduced velocity flutter parameter for the high-pressure turbine blades is
2.1, which is well below the established design limit for shroudless turbine
blades. The long chord and high frequency characteristics of the blade contri-
bute to this stability. Blade damper load was set at 4448 N (1000 Ib) to pro-
vide effective control of both buffet stress and resonant stress. The buffet

stress analysis assumed that the combustor liner pressure drop was 2.5 percent
of total pressure at the high-pressure compressor exit location.

Axial gapping between the blade, first vane, and hot strut was also analyzed.
The spacing along a streamline at the outer diameter between the blade trail-
ing edge and the hot strut leading edge was established at three times the
maximum thickness of the strut. The axial meanline gap between the blade lead-

ing edge and the first vane trailing edge was established at approximately
0.33 times the vane meanline axial chord.
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7.2.3 Blade Attachment

7.2.3.1 Mechanical Design Features

The attachment for the high-pressure turbine blade is a five-tooth firtree
design that evolved from a four-tooth design during the preliminary design
effort for the high-pressure turbine component. Primary contributing factors
to this change consisted of: (1) a flowpath revision that increased the plat-
form pull by 20 percent, and (2) a blade neck extension of 0.584 cm (0.23 in),
which increased neck pull by 50 percent. With the original four-tooth config-
uration, the combination of these factors increased the concentrated stress in
the attachment above the allowable level. Consequently, the five-tooth geo-
metry was adopted.

7.2.3.2 Structural Analysis

A stress analysis of the blade attachment geometry was conducted by using a
finite element technique. Results are su_m_arized in Table 7.2.3-I for the
nominal stresses of shear, bending, bearing, and tension. These results are
based on the most stress-limiting tooth in the firtree geometry.

As indicated by these results, the predicted shear and bearing stresses exceed
the maximum allowable limit by 8 and II percent, respectively. The remaining
values are substantially below limit, with the exception of tension, which is

only marginally higher than the acceptable limit. However, rig testing of
single crystal root attachment specimens has been successfully conducted both
at and above these stress levels with no evidence of material distress. On the

basis of these experimental data, the blade attachment configuration is
structurally adequate and the predictions are somewhat conservative.

Additional stress analyses were perfomed using two-dimensional finite element
technology to ensure concentrated attachment stresses provided adequate life
in the integrated core/low spool and the flight propulsion system. Life goals
are lO00 and 12,000 cycles, respectively, assuming the appropriate materials.
The results of this analysis are presented in Figure 7.2.3-I. Estimates for
the integrated core/low spool show that all stresses are below the maximum
level, thereby attaining the lO00 cycle goal. However, for the higher cyclic

life requirements of the flight propulsion system, blade stresses are lower
than the allowable limit but stresses are also higher on the disk by approxi-

mately the same percentage. This result suggests that the disk broach geometry
can be optimized to achieve the desired stress balance between the blade and
disk to meet the 12,000 cycle life goal.
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7.2.4 Disk

7.2.4.1 Mechanical Design Features

The high-pressure turbine disk that evolved from the detailed design effort is

illustrated in Figure 7.2.4-I. Design requirements for this disk were defined
by the high rim speed that resulted from the high AN 2 parameter selected for
the basic turbine aerodynamics. Characteristics of the disk required by this
parameter are a thick bore region and use of advanced high strength materials.

The disk rim features firtree attachments to hold the blades, shelves to sup-
port the boltless front and rear sideplates, a flange to support the vortex
plate, and curved elliptical cooling air supply holes which transport the
cooling air from the tangential on-board injection nozzle to the blade roots.

The design was based on flight propulsion system requirements and the use of
advanced MERL 80 material. This same disk configuration will be used in the
integrated core/low spool. However, the material will be PWA I099, which has

adequate mechanical properties to meet the life requirements of the demonstra-
tor vehicle and is currently available.

Details of the elliptical cooling air supply hole are illustrated in Figure
7.2.4-2. This design was predicated on the desire to keep rim width to a
minimum (i.e., minimize material mass in the rim area), control rim breakout
stress concentrations, and provide the required coolant air flow to the blade
root. Again, because of the high rim speeds, the primary concern was stress
concentration in the rim area.

7.2.4.2 Structural Analysis

Results of a stress analysis for the areas of the rim, blade attachment, and
sideplates indicated that average tangential stresses are within allowable

limits for the flight propulsion system disk and slightly less than allowable
for the integrated core/low spool to meet its lOO0 cycle life requirement.
Further refinement will bring these stresses within a11owable limits. Burst
margin is adequate. Disk web thickness was controlled to avoid possible low

order (2E through 4E) first coupled mode resonances occurring at high speed.
First coupled mode vibration is defined as that mode shape of the disk and
blade where disk deflection is in a fore and aft direction and accompanies
(coupled) bending of the blade (see Figure 7.2.4-3). Principal life and stress
characteristics are shown in Table 7.2.4-I.

TABLE 7.2.4-I

DISK LIFE AND STRESS SUMMARY

Bore Life (x 107,3 cycles)
Rim Life (x I0-° cycles)
Burst Margin
Average Tangential Stress MPa (kpsi)

Flight Propulsion
• _stem

Integrated Core/

Low Spool

35 8.5

I00 80
l.22 l.244

796,349 (I15.5) 759,462 (llO.15)
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Low cycle fatigue (LCF) requirements for the disk, sideplates and vortex plate
were set at 12,DO0 cycles. In order to assess disk low cycle fatigue character-
istics, a finite element analysis was undertaken. Figure 7.2.4-4 shows the
finite element break-up used, along with the boundary conditions assumed for
the analysis. To account for stresses generated along the curved elliptical

cooling air passage, a three-dimensional boundary integral equation analytical
model was used. The combined results of these analyses are summarized in
Figure 7.2.4-5, which shows the low cycle fatigue lives for the critical areas
of the turbine rim. As shown, calculated lives in three critical areas exceed

requirements. Since the low cycle fatigue properties of notched MERL 80 and
PWA I099 materials are identical, the same life is predicted for both the
flight propulsion system and the integrated core/low spool.

7.2.5 Sideplates and Vortex Plate

7.2.5.1 Mechanical Design Features

The disk sideplates and vortex plate are illustrated in Figure 7.2.5-I. The
full ring sideplates perform a dual function -- blade retention and sealing in
the rim areas. Axial loads at the critical sealing areas are generated by

centrifugal loads, acting on the sideplates that are canted away from the disk
rim. Undesireable retention holes in the sideplates were eliminated by design-
ing the sideplates to be trapped by bayonet connectors (engaged lugs and

slots) instead of conventional bolting arrangements. Stress analysis showed
that conventional bolting designs resulted in unacceptably high bolt and bolt
hole stresses. Leakage is controlled by damper seals sealing axially along the
blade platform and by a W-seal trapped by the blade and rear sideplate. Typical
sideplate loads are shown in Figure 7.2.5-2.
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Figure 7.2.4-4 Boundary Conditions Used in Disk Structural Analysis
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/SIDEPLATE

320,715 N (72,100 Ib)_

301,587 N (67,800 Ib)
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339,397 N (76,300 Ib)

_230,416 N (51,8OO Ib)

12,O10 N (2,700 Ib)
22,241 N (5,000 Ib)

Figure 7.2.5-2 Typical Sideplate Loads

There are several other advantages with the boltless sideplate configuration.
These include elimination of broach angle/bolt compatibility problems, reduc-
tion in rim cavity size requirements and elimination of flow restrictions

caused by the proximity of the bolt to the rim cooling air source.

Anti-torque features are provided by the blade metering plates that engage the
front sideplate and by torque pins for the rear sideplate. The assembly se-
quence, depicted in Figure 7.2.5-3, consists of the following sSeps. The front
sideplate is assembled first by heating the disk, then placing the plate into
position through the bayonet arrangement and rotating the plate 20 degrees to
engage the disk slots and sideplate lugs. The turbine blades, which are in-
stalled next, lock the front sideplate in place by extension of the blade

meter plate located at the bottom of the blade root attachment. The rear side-
plate assembly is similar to the front sideplate. After it has been rotated
into position, anti-torque pins are positioned to lock the plate. Figure
7.2.5-4 illustrates the anti-torque pin details.

The function of the vortex plate is to contain the blade cooling air and

provide a passage for free-vortex pressure rise to augment the pressure of
cooling flow exiting the tangential on-board injection nozzle. Pumping action
through the curved elliptical hole further raises the pressure before entering
the blade root cavity. The vortex plate is fastened to the disk in the same
manner as the front sideplate. The retaining feature is boltless, thereby
eliminates the need for windage covers and provides a clean external design.

Anti-torque for the vortex plate is provided through use of a blind rivet.
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STEP 2
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Figure 7.2.5-3 Blade and Sideplate

STEP 3

INSTALL REAR SIDEPLATE

Assembly Sequence

• CM (0.025 IN.) + 0.008 CM (0.003 IN.)

0.813CM (0.320 IN.) DIA
0.838 CM (0.330 IN.)

oeeoOi QY gl 

Figure 7.2.5-4 Anti-Torque Pin Details

84



7.2.5.2 Structural Analysis

A detailed finite element analysis of the sideplates and vortex plate was
conducted concurrently with that for the disk to determine stress rupture and
low cycle fatigue lives. The analysis identified critical stress locations at

the front sideplate and rear sideplate snap diameter fillets where centrifugal
loading of the plates are transraitted to the disk. The limiting low cycle

fatigue lives at these corresponding highest stress locations are shown in
Figure 7.2.4-5. Vortex plate stresses are relatively low resulting in high low

cycle fatigue lives.

The limiting stress rupture points occur on the front sideplate outer diameter
where the temperature is at 732oc (1350OF) and also at the front sideplate
snap diameter fillet where the temperature is down to 593oc (llO0OF), but
the stress is higher than at the outer diameter. Stress rupture lives at both
of these locations is greater than 1000 hours at hot day sea level takeoff
conditions. Stresses at all other sideplate and vortex plate locations are
lower than the above two and therefore have stress rupture lives greater than
lO00 hours.

A buckling analysis of the front sideplate was also conducted to assess the
possible effects of thermal gradients encountered during the flight cycle.
This analysis indicated that no buckling occurs at any point in time during
the flight cycle.

7.2.6 Air Seals

7.2.6.1 Mechanical Design Features

The high-pressure turbine rotor includes three knife-edge air seals. These
seals are illustrated in Figure 7.2.6-I and include the high-pressure com-
pressor discharge seal, the No. 4 bearing compartment buffer seal and the
thrust balance seal located on the rear side of the rotor. To avoid adding a

bore to support the thrust balance seal, it has been designed within its self-
sustaining radius, and thrust balance tuning is obtained by varying the
pressure within the piston area cavity.

7.2.6.2 Structural Analysis

Vibratory characteristics of both the stationary and rotating parts of the
seals were analyzed to ensure adequate resonance margin, concidence margin and
flutter stability in the engine operating range.

The resonance characteristics of rotating and stationary members were analyzed

to ensure that a frequency margin to resonance exists at all speeds through
redline to prevent vibratory excitation from the rotor.

Coincidence studies were also completed to confirm adequate coincidence
margins. Coincidence occurs when the mode shape of the rotating member matches
the mode shape of the stationary member at the same operating condition. At
such a coincidence, energy transfer can occur from one member to the other,
leading to excessive deflection and self destruction.

Analyses were also conducted on the seals, concerning aerodynamic flutter.
Stability criteria expressed as stability energy must be met for both rotating
and stationary members in order for the seals to be acceptable.
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HPC DISCHARGE

SEAL

THRUST BALANCE

SEAL

Figure 7.2.6-I Turbine Seal Designs

The rear thrust balance seal assembly is shown in Figure 7.2.6-2, and loca-
tions for axial and radial restraint are depicted. A frequency response analy-
sis of the assembly indicated that margins for resonance and coincidence met

or exceeded requirements for commercial applications. The predicted resonance
margins are 46 percent for the stationary seal land and 20 percent for the

rotating knife-edge seal. The estimated coincidence margin for this seal
assembly is 69 percent. The resonance and coincidence curves are shown in

Figures 7.2.6-3 and 7.2.6-4. Frequencies divided by nodal diameter are plotted
as a function of nodal diameter with the point of limiting margin indicated.
Maximum stability energy was calculated to be less than 0.0005 cm-kg/cm (O.OOl
in-lb/in), predicting flutter free operation. The dimensions shown in Figure
7.2.6-2 are minimum requirements for vibration-free operation.

As an added precaution to vibratory excitation, dampers were designed for both
the rotating and non-rotating members. Their configurations are shown in
Figure 7.2.6-2.

Details of the No. 4 bearing buffer seal assembly are shown in Figure 7.2.6-5.
Predicted resonance margins for this seal are 37 percent for the stationary
seal land and greater than lO0 percent for the rotating knife-edge seal, both
well in excess of commercial requirements. Coincidence margin for this seal is
48 percent, as shown in Figures 7.2.6-6 and 7.2.6-7. Like the thrust balance
seal, the Number 4 bearing buffer seal has a calculated maximum stability
energy less than 0.0005 cm-kg/cm (O.OOl in-lb/in) and is predicted to be free
from flutter. Again, the dimensions shown in Figure 7.2.6-5 are minimum re-
quirements to ensure vibration-free operation.

As with the thrust balance seal, damper rings were designed for the buffer air

seal as a precautionary measure, to prevent vibratory excitation. The dampers
were provided in the form of split rings fitting in grooves in the forward and
aft sides of the seal, as shown in Figure 7.2.6-5.
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(7.555 IN)

-R

15.811 CM (6.225 IN) - R

ROTATING PART

RADIAL

0.25 CM 10.10 INI (NOM,)

0.30 CM

INOMJ

) 718

NARYPART

R = 30.543 CM

(12.025 IN)

(0.13 IN) (MINI

(0,13 INI (MIN}

RADIAL

AINT

AXIAL RESTRAINT

/_ ROTATING DAMPER CUT

INTO 12 SEGMENTS

,1_--II- (AMS 5596)

,ILL" .069cm - .0719/N.)THICK

NON-ROTATING DAMPER

SLOTTED INTO 36 FINGERS

(AMS 5596)

.142 cm -- .173cmTHICK

(.056 -- .068 IN.)

Figure 7.2.6-2 Rear Thrust Balance Seal
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Figure 7.2.6-4 Thrust Balance Seal Rotor and Stator Coincidence Diagram
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Figure 7.2.6-5 Number 4 Bearing Buffer Seal Assembly
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The analysis of resonance and coincidence characteristics of the high-pressure
compressor discharge seal, shown in Figure 7.2.6-8, indicated more than ade-

quate frequency margins throughout the engine operating range. Predicted mar-
gins are 35 percent for the stationary seal land and greater than lO0 percent
for the rotating knife-edge seal. The coincidence margin for the seal assembly

is greater than 100 percent, as shown in Figures 7.2.6-9 and 7.2.6-I0. Minimum
dimensions to ensure vibration-free operation are shown in Figure 7.2.6-8.

Again as a precautionary measure, sheet metal finger dampers were provided for
the non-rotating portion of the seal, as shown in Figure 7.2.6-8.

MATERIALS: MERL 80 EXCEPT AS NOTED

HIGH ROTOR SPEEDS: REDLINE; 14.270 RPM

GROUND IDLE; 9.526 RPM

HPC BORE BASKET

AMS 4928

\ ,, .. ,,TBOREBASKET(PWA 1007}

FL / I I I I 22 FLOW HOLES I /

STATIONARY _

DAMPER SLOTTED

INTO 40 FINGERS

(AMS 5596)

.097cm -- .109cm THICK

(.038 IN.) -- (.043 IN.)

Figure 7.2.6-8 High-Pressure Compressor Discharge Seal Assembly
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Figure 7.2.6-9 High-Pressure Compressor Discharge Seal Rotor and Stator
Resonance Diagram
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Figure 7.2.6-I0 High-Pressure Compressor Discharge Seal Rotor and Stator
Coi ncidence Diagram
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7.3 VANE AND INNER CASE

7.3.1 General Description

The vane and inner case assembly is illustrated in Figure 7.3.1-I. The primary
elements are the vanes and the vane support structure, the tangential on-board

injection (TOBI) system, and the high-pressure compressor discharge seal sup-

port structure. Design details relating to these elements are described in the

following sections.

HIGH PRESSURE (4.0 IN)

COMPRESSOR
DISCHARGE SEAL

6.0 CM (2.4 IN)

19.5 CM (7.7 IN)R

3.0CM (1.2 IN)

0,5 cry1

(0.2 IN)

SYSTEM

NOTE: DIMENSIONS ARE NOMINAL. 6.8 CM

RADII ARE MEASURED FROM (2.7 IN}

ENGINE CENTERLINE

32.5 CM

(12.8 IN) R

i

VANE INNER

SUPPORT

40,8 CM

16.1 IN)R

Figure 7.3.1-I High-Pressure Turbine Vane and Inner Case Mechanical Design

7.3.2 Vanes

7.3.2.1 Mechanical Design Features

The turbine vane assembly, shown in Figure 7.3.2-I, comprises 24 vanes sup-

ported at the outer surface by bolts through the two holes in the outer flange.
These bolts absorb the radial loads as well as provide circumferential re-
straint. This avoids excessive torque loads at the inner support structure and

improper loading of the diffuser case struts. To minimize leakage caused by
vane twisting, both the inner and outer surfaces are clamped along a chordal
cut. By having a chordal cut, axial tilting of the vane, introduced by differ-
ential axial growth between the inner case and outer combustor case, is allow-
ed to occur without binding up or opening a leak path.

Vane platforms are sealed by feather seals inserted into various slots on the
platform surfaces, as shown in Figure 7.3.2-2, to prevent leakage of compressor
discharge air into the turbine flowpath. Results from the leakage supporting
technology program were incorporated in the design by minimizing feather seal
slot intersections, plugging end gaps, and controlling slot straightness.
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The vane materials and coatings selected for the flight propulsion system and
integrated core/low spool are presented in Table 7.3.2-I. The advanced

materials and coatings noted for the flight propulsion system vanes are re-
quired to meet the aggressive durability and temperature goals. Durability and
life goals for the integrated core/low spool pemit the use of state-of-the-art
materials. As shown, an internal coating is not required for the integrated
core/low spool vanes. Airfoil minimum wall thickness data are shown in Figure
7.3.2-3. Nominal wall thickness at trailing edge including coating is 0.055 cm
(0.022 in).

Base Alloy

External Coating

Internal Coating

Platform Coating

TABLE 7.3.2-I

VANE _TERIALS AND COATINGS

Flight Propulsion Integrated Core/

STstem Low Spool

SC 2000 PWA I¢B0

(advanced single crystal) (single crystal)

PWA 286 PWA 270

(advanced NiCoCrAly) (NiCoCrAIY)

PWA 275 None

(aluminide)

TBC 100 PWA 264

(advanced ceramic (ceramic

thermal barrier themal barrier

coating) coating)

O.O38 CM

(0.015 0.038 CM

(0.015 IN.)

THICKNESS

UNIFORMLY

TAPERED

0.132 CM

(0.052 IN.l:

:KNESS

UNIFORMLY

TAPERED

MIN WALL THICKNESS -

ROOT, MEAN AND

TIP SECTIONS

0.122 CM
203 CM

(0.080 IN.)

0.198 CM (0.078 IN.) r

0.122 CM (0.048 IN.) CM

FOR FULL SPAN (0.050 IN,] )
OF AIRFOIL

COATI NGS

FPS -- ADVANCED VAPOR

DEPOSITION

OVERLAY (NiCoCrAIY)

0.005-0.013 CM

(0.002-0.005 IN.) THICK

ICILS-- PWA 270 OVERLAY

(NiCoCrAIY)

0.005-0.013 CM

(0.002--0.005 IN.) THICK

Figure 7.3.2-3 Uncoated Vane Minimum Wall Thickness Distribution
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7.3.2.2 Structural Analysis

The structural analysis of the high-pressure turbine vanes is addressed as
part of the durability studies. See Section 5.2.3 of this report.

7.3.3 Inner Support, Tangential On-Board Injection, and High-Pressure
Compressor Seal Support

7.3.3.1 Mechanical Design Features

The high-pressure turbine inner support, tangential on-board injection system,
and high-pressure conpressor seal land support assembly are shown in Figure
7.3.3-I.

The inner vane support provides structural support to both the inner portion
of the vane and the compressor discharge seal land. The inner portion of the
vane is connected to the support through bolts that tie both the vane and

inner combustor liner together into the support. The compressor discharge seal
is supported from the inner region of the case through a bolt that also traps
the primary tangential on-board injection nozzle. Air is brought into the

center of this support case froB the combustor area to supply air to the pri-
mary and secondary tangential on-board injection nozzle.

Although parts for the integrated core/low spool are designed using forgings
and Inconel 718 welded construction, it is anticipated that cast materials
would be used for a flight propulsion system.

COMPR ESSOR_
DISCHARGE

SEAL LAND

 I]l ,jPR,MARYTOB,

COMBUSTOR LINER

TURBINE VANE

Figure 7.3.3-I
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The primary tangential on-board injection nozzle, shown in Figure 7.3.3-2, is
designed to be fabricated from Hastelloy X material. The 36 vanes are brazed
into slots in both the inner and outer wall s. By keeping the primary tangential

on-board injection nozzle a separate bolted-on unit, flexibility is provided
for easy modification to provide proper flow. One way of modifying the flow is
to cut back the trailing edge of the vanes and, thereby adjust the nozzle area.

The secondary (or mini) tangential on-board injection nozzle is shown in
Figure 7.3.3-3. The primary purpose of this nozzle is to swirl the coolant

flow to the front side of the turbine disk, thereby reducing windage heat up
of the front side plate. The vortex action of this nozzle affects the pressure
level of the pressure balanced tangential on-board injection system described
in Section 6.4 of this report.

The high-pressure compressor discharge seal is designed to maintain minimum

clearance at all operating conditions. By using a high expansion Tinidur
material rotating member, the seal permits component assembly using a rela-

tively large clearance that will close as parts heat up, providing a running
clearance between 0.027 and 0.035 cm (O.Oll and 0.014 in) depending on axial
location. Clearances are set to ensure no rubs during maneuvers and to mini-
mize the amount of rub during startup operation.

Figure 7.3.3-4 summarizes the seal clearances at two typical engine operating
conditions. A more detailed discussion of clearances is presented in Section

7.6 of this report.

7.3.3.2 Structural Analysis

Vane durability analysis is discussed in Section 5.0 of this report. The major

concern in the inner case design was to provide a lightweight design with
suitable load-carrying ability for the first vane blow off loads, while at the
same time minimizing deflections. Total blow off load of the first vanes,
acting in an aft direction on the vane inner and outer attachment points, is
222,410 N (50,000 Ib) at sea level takeoff. Half of this amount is taken by
the inner case.

A detailed shell analysis was conducted at hot day sea level takeoff. At this
condition, there is a large pressure load as well as thermal gradient. The
resulting stresses are sumarized in Figure 7.3.3-5, and as indicated, the
values are quite low relative to the high strength of the Inconel 718 material.
Thus, the impact from axial and radial deflections was the primary concern.
The same shell analysis was used to determine the magnitude of these deflec-
tions, and the resulting axial deflections are summarized in Figure 7.3.3-6.
Calculated radial clearances were not considered critical except at the com-

pressor discharge seal, where maintenance of seal clearance tolerances is
important. The critical axial deflection was at the vane inner support, as
noted. Excessive axial motion at this location could create undesirable leak-

age flow paths in the vane platfor_ and at the interface of the inner vane and
blade platform.
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I _AREA ADJUSTABLE

Figure 7.3.3-2 Nozzle Configuration for the Primary Tangential
Injection System

0n-Board

\\

SECTION A-A
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• MIN. ASSEMBLY CLEARANCE

OF 0.038 CM (0.015 IN)

• DESIRED SLTO CLEARANCE

OF 0.0317 CM (0.0125 IN)

• NO RUB AT MANEUVER

0.0193 CM (0.0076 IN)

• RESULTS

OF POOR QUALITY

®

(9 @ @
COLD GAP 0.043 CM (0.017 IN) 0.073CM (0.029 IN) 0.040 CM (0.016 IN)

PINCH PT _60 SEC. DECEL. _ 10-12 SEC. ACCEL, _" 80 SEC. DECEL,

AVG GAP @:

• ADP 0.030 CM (0.012 IN) 0.035 CM (0.014 IN) 0,027 CM (0.011 IN)

• SLTO 0.0317 CM (0.0125 IN) _-

Figure 7.3.3-4 High-Pressure Compressor Discharge Seal Clearance Sugary

FELT METAL

344.740 MPa

27.579 MPa

96.527 MPa (14 KSI)

(INCONEL X)

• STRESS LEVELS RELATIVELY LOW

• CONTROL AND LIMIT AXIAL

AND RADIAL DEFLECTIONS

206.844 MPa (30 KSl)

HASTELLOY X)

296.476 MPa (43 KSI)

461.952 MPa (67 KSI)

(INCONEL 718)

@ SLTO HOT DAY

<206.844 MPa (30 KSI)

48.264 MPa

(7 KSI)

358.530 MPa

(52 KSI)

i

193.054 MPa (28 KSI)

HOOP (WASPALOY) ®

Figure 7.3.3-5 Inner Vane Case Stress Summary
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ACTUA L A L LOWANCE

CM (IN) CM (IN I

(_ ---0.304 (0.120) 0.381 (0.150)

(_) 0.190 (0,075) 0.50 (0.20)

(_) 0.190 (0.075) 0.381 (0.150)

(_ 0.190 (0.075) 0.635 (0.250)

(_) ---0.127 (0.050) 0.635 (0.250)

(E) +0.127 (0.050) 0.381 (0.150)

RELATIVE TO ---- _1)"
VANE O.D.

Figure 7.3.3-6 Case Structure Deflection Sur.lmary

7.4 OUTER CASE AND OUTER AIRSEAL

The high-pressure turbine outer case and outer airseal assembly is illustrated

in Figure 7.4-I. The primary components of this assembly are the outer case,
the front and rear outer airseal support rails, the ceramic outer airseal

shoe, the cooling air impingement ring, and the active clearance control and
cooling air nanifolds. Design details relating to this assembly are discussed
in the following sections.

7.4.1 Mechanical Design Features

The mechanical design features of the outer case and outer airseal are shown
in Figure 7.4.1-I.

The outer case provides support for the outer diameter attachment of the inlet
guide vane as well as support for the outer airseal shoes. The vane outer dia-

meter support is carried through a flange and cone out to the flange connect-
ing the turbine outer case to the rear combustor case. A W-seal is provided
between this cone and the front surface of the outer airseal support rail.

This W-seal prevents leakage of high-pressure compressor discharge air that is
brought through the flange to provide cooling for the outer airseal shoes.
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Figure 7.4-1 High-Pressure Turbine Outer Case and
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Outer Airseal Assembly

HPT BLADE TIP GAP

OUTER AIRSEAL SHOE

COOLING AIR

MANIFOLD

HPT INNER

VANE SUPPORT

HPT CASE

FRONT OUTER AIR

SEAL SUPPORT RAI L

REAR OUTER AIRSEAL

SUPPORT RAI L

ACTIVE CLEARANCE CONTROL

AIR MANIFOLD

Figure 7.4.1-I Mechanical Design Features
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An internal active clearance control system is used for optimizing blade tip

clearance during all engine operating conditions. This is accomplished by

impinging controlled temperature air on the outer airseal support rails

(Figure 7.4.1-1) to move the blade outer air seal shoes radially. Temperatures

of the rear and front rails are kept stmilar for uniform deflection of both

rails. The controlled temperature air enters the active clearance control

manifold through eight bosses in the high-pressure turbine case, flows through

holes in the active clearance control manifold to impinge on the outer airseal

support ratls, and axtally discharges through holes in the rear outer airseal

support rail to an annulus between the hot strut outer diameter fairing and

the high-pressure turbine case. Further discussion of the active clearance

control system is contained in Section 7.5 of this report.

The blade outer airseal shoe, shown in Figure 7.4.1-2, features a ceramic

coating 0.327 cm (0.129 in) thick over a PWA 655 (cast Inconel 713) shoe

nominally 0.254 cm (0.100 in) thick. Slots in the shoe reduce its spring rate.

This prevents the ceramic material from being overstressed as it cools follow-

ing engine transient operation.

To minimize cooling air leakage, W-seals are also used on the front and rear

hook areas of the shoe and feather seals ape used at the circumferential ship

lap joint between shoes. The ship lap protects the feather seals from pressure

pulses caused by the passing blades and serves as a backup (but less effective)

seal. It also prevents a large step between shoes in the event of a blade rub.

If one end of a shoe deflects due to a rub, the ship lap will force the end of

the next adjacent shoe to deflect equally and simultaneously.

The shoes are held radially inward by the pressure differential across the

shoes. Vibrations are damped by a combination of the axial spring load applied
by the W-seals, pressure loadings and metal-to-metal contact in the ship lap
and feather seal areas.

High-pressure compressor discharge air cools the outer airseal shoes (Figure

7.4.1-I). Air is metered through holes in the inlet guide vane support, passes
through holes in the front outer airseal support rail to the cooling air mani-
fold, then flows through radial holes in a circumferential impingement ring to
cool the outer diameter of the outer airseal shoes.

After the outer alrseal shoes are cooled, portions of the air flow to three

different areas. The majority of the air flows through holes at one circumfer-
ential end of the shoes into the gap between shoes to prevent intrusion of gas
path air into the gap and to lower the metal and ceramic temperatures adjacent
to the gap. A small amount of the air leaks past the W-seals located between
the outer airseal shoes and the support rails. Some of the air passes through
axial holes in the hook area of the rear outer airseal support rail to main-
tain the temperature of the rear rail the same as that of the front rail.

The materials used in the outer case and outer airseal assembly are shown in
Figure 7.4.1-3. Waspaloy and Inconel 718 materials were selected for the case
wall and the common wall between the cooling air and active clearance control

manifolds to provide the required dynamic resistance to satisfy the blade
containment criteria, while maintaining an acceptable material thickness.

The ceramic is an abradable yttrium stabilized zirconia. The development goal

is for lO:l abradable volume ratio with grit imbedded blade tips.
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Figure 7.4.1-2 Details of the Outer Airseal Shoe Design
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Figure 7.4.1-3 Outer Case and Outer Airseal Materials Map
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7.4.2 Structural Analysis
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Structural analysis of this assembly was accomplished through the use of the
shell analysis model shown in Figure 7.4.2-I. This model includes pressure
loadings, vane and shoe support reactions, and thermal gradients based on a
steady-state sea level takeoff, hot day engine operating condition. Static
pressures are shown in Figure 7.4.2-I and the metal temperature distribul;ion
is shown in Figure 7.4.2-2.

Typical stresses resulting from this analysis are shown in Figure 7.4.2-3. All
are well below allowables at the assumed steady-state condition, thereby

satisfying both flight propulsion system and integrated core/low spool design
requirements.

.... AMBIENT PRESS.

VANE LOAD

OAS LOAD

_ OAS LOAD

LOAD

E_ STATIC PRESS. - % PT3

Figure 7.4.2-1 Shell Analysis Model

7.5 ACTIVE CLEARANCE CONTROL SYSTEM

Large turbine blade operating clearances have a deliterious affect on component
efficiency, and consequently a negative impact on overall system fuel consump-

tion. The goal, therefore, is to maintain tip clearances as close as possible,
while avoiding rubs during normal operating conditions.

Since the high-pressure turbine in the Energy Efficient Engine is a high per-
formance system, blade tip clearances are designed for minimum leakage. The
oal blade tip clearances are 0.068 cm (0.027 in) at takeoff and 0.047 cm
0.0186 in) at cruise (the aerodynamic design point). To achieve optimum

clearances during all flight conditions, the high-pressure turbine is designed
with an active clearance control system.
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Figure 7.4.2-2 Ter,lperature Map
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105



7.5.1 General Description
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Clearance between the blade tip and outer air seal varies with engine opera-
ting conditions as a result in the changes in temperature and speed. With

active clearance control, close turbine operating clearances are maintained by
controlling the relative growth between the rotor and external cases. This is
accomplished by changing the thermal expansion rate of the case through the
introduction of controlled temperature cool ing air.

The active clearance control system in the high-pressure turbine is shown

schematically in Figure 7.5.I-I. In this system, the primary components are
the outer case, front and rear outer airseal support rails, ceramic outer air

seal shoe, cooling air impingement ring, and active clearance control and
cooling air manifolds. Details pertaining to the mechanical design and
structural analysis of these components are contained in Section 7.4.

Optimum blade tip clearances are achieved during all operating conditions by

impinging controlled temperature air on the outer air seal support rails. The
introduction of this cooler temperature air lowers the turbine case metal

temperature and corresponding themal expansion, thereby controlling the
radial movement of the seal shoes towards the blade tip. Air for the active
clearance control system is supplied from two sources in the high-pressure
compressor: the tenth stage and the fifteenth stage. The mix of air from these
sources is contingent on the engine operating condition and the desired gap
closure.

COOLING AIR IMPINGEMENT RIN,

VANE BLADE

OAS

COOLING DLING AIR

AIR MANIFOLD

HPT IGV REAR OAS

SUPPOF SUPPORT RAI L

FRONT OAS ACC AIR

SUPPORT RAIL FROM 10TH OR 1STH

STAGE

ACC AIR MANIFOLD

Figure 7.5.1-I High-Pressure Turbine Active Clearance Control System
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The high-pressure compressor bleed air enters the active clearance control
manifold through eight bosses on the high-pressure turbine case. It then flows
through holes in the active clearance control manifold to impinge on the outer
air seal support rails. At this point, the air is discharged through holes in
the rear outer air seal support rail into an annulus between the turbine
intermediate case support strut outer diameter fairing and the high-pressure
turbine case.

7.5.2 Blade Tip Clearance Definition

In general, the rotor structure grows at a _ore rapid rate than the turbine

case during engine acceleration from idle to takeoff power because of the
centrifugal forces acting on the rotor. This results in the smallest clearance,
referred to as the pinch point gap, occurring shortly after acceleration to

takeoff power. Figure 7.5.2-I shows a typical radial growth time history for
the rotor and case, indicating the occurance of the pinch point.

An analysis of turbine rotor and case growth compatibility suggested that the
pinch point occuring at takeoff could be eliminated by using fifteenth stage
high-pressure co_pressor bleed air. However, it was not apparent that utiliza-

tion of only fifteenth stage air would optimize clearances throughout the air-
craft flight cycle.

RADIAL

GROWTH

CASE

PINCH

/ L .o,o. b

'q-START, _ _ ACCEL _ _'_ DECEL T--

COLD IDLE TAKEOFF IDLE

TIME

Figure 7.5.2-I Typical Rotor and Case Growth History
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As a result, a more comprehensive fltght cycle analysis of rotor and case

response growth was conducted. The analysis was based on the fltght profile

information presented in Table 7.5.2-I. In addition, the analysis assumed the
use of two turbine case cooltng schedules for active clearance control. Trends

for rotor and case response with the two cooltng schedules are presented in
Flgure 7.5.2-2.

The first schedule involved utilizing fifteenth stage high-compressor bleed
air from idle through climb power until attaining an altitude of 6096 m
(20,000 it). At this point, cooling flow was switched to the tenth-stage bleed.
As shown in Figure 7.5.2-2, this case cooling schedule provided the rapid case
growth necessary to eliminate the pinch point at takeoff, but produced less
than optimum clearance at both climb and cruise flight conditions.

TABLE 7.5.2-I

FLIGHT CYCLE FOR CLEARANCE ANALYSIS

Segment

'Start and

Idle-Taxl

Takeoff
Climb

Cruise

Descent

Approach/Landlng

Reverse

Idle-Taxl

DOMESTIC MISSION 1296 km (700 nm)

Power Altltude/speed Time

Settlr_L M/Mn (ft/Haeh No.) (mln)

Gr. idle

T.O.

H. Cl.

0.85-0.82 M. Cr.

FI. idle
0.30 T.O. - FI. idle

M. rev.

Gr. idle

010 7.5

0-457/0-0.39 (0-1500/0-0.39) 2.0

457-10,668/0.39--0.80 (1500-35,000/0.39-0.80) 17.4

10,668/0.80 (35,000/0.80) 56.6

10,668-457/0.80-O.39 (35,000-1500/0.80-0.39) 20.4

457-O/0.39-0.17 (1500-0/0.39-0.17) 2.0

0/0.15 0.2

0/O 7.5

113.6

O.381

(O.150

RADIAL 0.254
(0.100)

DEFLECTION,

CM/I N

0.127

(O.050)

OAS (15TH STAGE BLEED BELOW 6,096M [20,000 FT]

OAS (15TH STAGE BLEED IOTH ABOVE 6,096M [20,000 FT])

AT IDLE, IOTH ABOVE IDLE)

"___: f _ PINCH POINT . ,,_

// x lA

,/ii

I /

!

!
!

!

! 100 SEC

I,
pt-----SNAP ACCEL _-_L'_ SNAP DECEL -_ I I

COLD IDLE $LTO IDLE ADP MAX N2

TIME

Figure 7.5.2-2
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Rotor and Case Response with Two Cooling Bleed Schedules



The second cooling schedule assumed fifteenth-stage bleed air would be used

through idle to eliminate the take off pinch point and tenth stage air would
be used for the remainder of the flight cycle. This resulted in a second pinch

point occurring at climb power (Figure 7.5.2-2). However, by mixing fifteenth
and tenth stage air, this pinch point was eliminated. This effect is shown in
Figure 7.5.2-3, along with the initial two cooling schedules for comparison.
The final active clearance control bleed schedule is presented in Table
7.5.2-II. The resulting rotor and outer air seal response with this schedule

is shown for the flight cycle in Figure 7.5.2-4.

Results from this analysis were used in establishing the high-pressure blade

tip and seal gapping requirements as well as final blade tip operating
clearances. Factors considered in establishing tip clearances include: (1)

themal and centrifugal gradients; (2) tolerances, eccentricities and rotor

whirl; and (3) maneuver and cowl loads.

RADIAL

DEFLECTION

CM/IN.

0.381

(0.150)

0.254

(0.100)

0.127

(0.050)

0

I F" "
COLD IDLE

15TH STAGE BLEED BELOW 6,096M (20,000 FT)

10TH ABOVE 6,096M (20,000 FT)

OPTIMUM RESPONSE /

WITH MIXED BLEED _f

f ....... 15TH STAGE BLEED AT IDLE,

...\ 10TH ABOVE IDLE

"\/

• SNAP ACCEL

't, lr-

,- SNAPDECE--'t I
SLTO IDLE ADP

TIME

Figure 7.5.2-3 Effect of Mixed Bleed

TABLE 7 •5.2-II

HIGH-PRESSURE TURBINE ACTIVE CLEARANCE CONTROL SYSTEM

Idle

ACCEL-SLTO

ADP

Bleed System

For ACC

All 15th

Mixed 10th and 15th

All 10th
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0.381
(0.150
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ORIGINAL F,_C:_ ;3
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Figure 7.5.2-4 Rotor and Case Response with Optimum Mixed Cooling Bleed
Schedule

A summary of the high-pressure turbine gapping requirements, the minimums
needed to prevent a rub, is presented in Table 7.5.2-III for the flight condi-
tions of idle, sea level takeoff and cruise. In arriving at these values, a
number of considerations were used to establish a turbine build clearance.

First, the clearance must be large enough to accommodate machining tolerances
and eccentricities. Also, nominal unbalances in the rotor will produce addi-
tional rotor whirl motion for which more clearance must be provided. Further-
more, during the startup process, it is possible that the rotor can be bowed
because of unsymmetric themal gradients. Although this resultant r,mtion is

not very well defined, it is preferred to have the additional clearance to
acconw_odate such motion. Finally, during flight conditions, additional deflec-
tion of the cases occur under nomal maneuver and cowl aerodynamic loads. All
these clearances are added up to provide the final gapping requirements.

The final blade tip clearances, using the active clearance control schedule of
Table 7.5.2-II and recognizing the gap requirements of Table 7.5.2-III, are
tabulated in Table 7.5.2-IV. The comparison of the clearance goal and predic-
ted tip clearance status shows that the goals have been exceeded, thereby
resulting in an improvement in turbine efficiency.

The rotor and seal response throughout the flight cycle is shown in Figure
7.5.2-5. The critical design point is the pinch point, which occurs approxi-
mately six seconds into the snap acceleration. The clearance of 0.034 cm

(0.O134 in) is maintained throughout the acceleration segment. This results in
the clearance during start to idle being greater than required and also

results in the clearance at the aerodynamic design point being greater than
the requied 0.020 cm (0.0079 in). Although clearances at these two conditions

are greater than required, they are still significantly less that the design
goal s.
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Tolerances

Eccentricity

Rotor Whirl

Normal Maneuvers

Cowl Loads

Bowed Rotor Whirl

TOTAL

TABLE 7.5.2-III OF POOR r,l,_._ "'"

HIGH-PRESSURE TURBINE GAPPING REQUIREMENTS

Start-ldle ACCEL-SLTO

cm (in) cm (in)

0.0058 (0.0023)

0.0086 (0.0034)

0.0025 (0.0010)

0.0457 (0.0180)

0.0058 (0.0023)

0.0086 (0.0034)

0.0025 (0.0010)

0.0165 (0.0065)
0.0005 (0.0002)

0.0626 (0.0247) 0.0339 (0.0134)

ADP

cm (in)

0.0058 (0.0023)
0.0086 (0.0034)
0.0025 (0.0010)
0.0025 (0.0010)
0.0005 (0.0002)

0.0199 (0.0079)

Cold

Idle

SLTO

ADP

TABLE 7.5.2-IV

HIGH-PRESSURE TURBINE TIP CLEARANCE RESULTS

Goal cm (in) Status cm (in)

0.1739 (0.0685)

0.1244 (0.049)

0.0685 (0.027) 0.0340 (0.0134)

0.0472 (0.0186) 0.0320 (0.0126)

RADIAL

DEFLECTION

OAS .. ----
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Figure 7.5.2-5 Resultant Blade Tip Clearances
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7.6 NUMBER 4 AND 5 BEARING COMPARTMENT AND LUBRICATION SYSTEM

7.6.1 General Description

The number 4 and 5 bearing compartment for the Energy Efficient Engine high-
pressure turbine incorporates existing service-proven technology and parts.
The use of parts from current production engines minimizes expensive develop-

merit and fabrication costs, and also reduces the degree of risk normally
associated with the development of advanced technology hardware.

All parts in the number 4 and 5 bearing compartment meet Energy Efficient
Engine design requirements, including mechanical stiffness, load carrying,
imbalance, and high speed capability. Salient details of the number 4 and 5

bearing compartment for the integrated core/low spool are shown in Figures
7.6.l-I and 7.6.1-2.

HPT SHAFT

232°C

(450 °F)

1

432°C

(810%)

239(, PT3

490°C (915 ° F)

176 ° C

(350 ° F)

6% PT3

476°C (890°F)

176%

468°C(875°F)

12% PT3

LPT SHAFT

(840 ° F)

TURBINEINTERMEDIATE

CASE STRUT

OPERATING CONDITION: SLTOSTD-3 °C(25°F)

Figure 7.6.1-I Integrated Core/Low Spool Number 4 and 5 Bearing Compartment -
Temperature and Pressure Distribution at Sea Level Takeoff
-3 C (+25OF) Operating Conditions

7.6.2 Bearing Mechanical Design Features

The number 4 and 5 bearings for the integrated core/low spool are the same as
those used in a current Pratt & Whitney Aircraft engine. These bearings, in

addition to meeting all established integrated core/low spool llfe require-
merits, have logged a significant amount of service experience, and, therefore

provide a low risk base for application in the integrated core/low spool. In
addition, the cost of designing, manufacturing and testing new bearings is

eliminated. The bearings for the number 4 and 5 bearing compartment are
discussed in the following paragraphs.

OR_GL_,cZ_ F_C;Z __i
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The number 4 roller bearing for the integrated core/low spool measures 165 mm
at the inner diameter and 222 mm at the outer diameter; has 16 na_ diameter

rollers and operates at 2.3 X 106 DN. The beartng is oil damped, spring
centered, preloaded and under race cooled. The viscous oil damper and soft

centering spring are incorporated to satisfy high rotor dynamic response
criteria. The preloadtng benefit minimizes roller skidding. The under-race

cooling feature provides positive cooling to manage themal expansion through-

out all operating conditions. 0il flow is 7 kg/min (16 1b/rain) and heat gene-
ration is rated at 475,141 J/rain (450 Btu/min). The expected B1 life of the

number 4 bearing is greater than 500 hours, and the expected BIO life is

greater than 2500 hours. This bearing may have to be optimized to meet flight
propulsion system durability and life requirements.

The integrated core/low spool number 5 bearing is also a 165 mm inner dia-

meter, 222 mm outer diameter size bearing, with 16 m diameter rollers, but

operates at much lower speed than the number 5 bearing; 0.64 X 106 DN. It
has zero preload and reduced internal radial clearance. Its oil flow is 1

kg/min (4 lb/mtn) with a heat generation of 31,676 J/rain (30 Btu/min). A

viscous oil film damper has been incorporated on the outer ring to control low
rotor vibratory reponse. Integrated core/low spool life rating for this

bearing is B1 life greater than 10,000 hours and BIO life greater than 50,000
hours.

The results of a structural study to determine maximum stress and deflection
are shown in Figure 7.6.2-I.

The number 5 bearing for the flight propulsion system is similar to the number

4 bearing, but with the inner diameter borereduced to 160 mm and the outer
diameter increased to 230 ram.

.P

227,528 MPa (55 KSI)

OF POOR QUALITY
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7.6.3 Seals

The seals used in the number 4 and 5 bearing compartment of the integrated

core/low spool are derived from existing service-proven designs for minimized
risk and decreased cost. The operating environment of the integrated core/low
spool is less severe than that of the existing design. Therefore, the seals
more than adequately meet the life and durability requirements of the
integrated core/low spool.

Carbon seals were selected in place of knife edge seals because of the
increased radial deflection of the high-pressure turbine rotor associated with

the oil-damped number 4 bearing. The resulting large radial gaps would be
detrimental to labyrinth seal operation. Carbon seals minimize the breather
flow and limit total engine oil consumption to 0.22 I/hr (0.06 gal/hr).

The seal arrangement in the number 4 and 5 bearing compartment consists of a
number 4 front carbon seal, an intershaft seal consisting of back-to-back
carbon seals, and a number 5 rear carbon seal. These seals are dry-face, short
carbon with cooled rotating seal plates. Maximum surface rubbing speed is 135
m/sec (445 ft/sec) for the flight propulsion system and 140 m/sec (462 ft/sec)
for the integrated core/low spool, operating in a low-temperature and low-

pressure environment at 68,948 Pa (10 psi) seal pressure drop. Current engine
experience on similar seals has been accumulated at this rubbing speed with

seal pressure drops of 379,214 Pa (55 psi). The integrated core/low spool
seals are derived from existing hardware. The seals used in the flight propul-
sion system feature a high quality carbon grade with excellent durability
characteristics.

To reduce leakage, the low-pressure bearing compartments are buffered by cold
low-pressure compressor air bleed discharge. The system features a single
mainshaft deoiler in the front compartment. Air is introduced to the bearing
compartment between the low and high-speed shafts. The buffering air is bled
from the low-pressure compressor, routed through the center shaft, bled into
the bearing compartment and then discharged through blowdown tubes to the

deoiler in the main compartment. The main feature of this system is the self-
regulating design, which eliminates the need for extensive valving and pumps.

Analysis of the seal pressure drop indicates that positive seal pressure can
be obtained at all operating conditions. This positive seal pressure can be
achieved at sea level idle conditions by either reducing the exit bleed flow
or increasing the idle speed.

Integrated core/low spool seal operating conditions are summarized in Table
7.6.3-I. A summary of dry face seal pressure, temperature, and speed experi-

ence is presented in Figure 7.6.3-I.

7.6.4 Lubrication System

The lubrication system for the number 4 and 5 bearing compartment is part of a
system that features positive oil management to provide sufficient cooling and
lubrication flow. One of the main features of this system is the self-

regulation arrangement, which eliminates the need for expensive pumps and
extensive plumbing. As a result, the plumbing system is simplified, the size
and number of scavenge pumps reduced, and the need for a pressure regulating
valve eliminated.
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Rubbing Speed

plsec (ft/sec)

Seal _p Pa (psi)

Heat Generation

(Stu/mln)

Air Temperature

oc (OF)

TABLE 7.6.3-I

INTEGRATED COP.E/LOW SPOOL SEAL OPERATING CONDITIONS

Hiah Rotor Seals Low Rotor Seals

ADP SLTO IDLE ADP SLTO IDLE

140 (462) 102 (335) 39 (129)

48,263-68948 (7-10) <6894<(1) 20,684 (3)

133 (439)

20,684 (3)

39 (129)

48,263-68,948 (7-10)

131 139 93 26 24

232 (450) Front

Rear

232 (450)

426 (800)

It (37)

<6894<( 1 ]

• E 3 IC/LS OPERATING CONDITIONS LESS SEVERE THAN EXPERIENCE

SEAL

PRESSURE

DROP

Pa/PSI

689,480

(1001

551,584

(80)

I

413,688 i

(60)

275,792

(40)

137,896

(20)

91 (300)

454o C (850°F) - 510°C (950°F)

_315°C (600°F)-454 °C (850 ° F)

3710C (700 oF )-398 °C (750 °F )

777-rrr Z

E 3 FPS IC/LS

O x

I I 123:C(45°°FI I
,3501 121I 01 137,4501 152I5 1

MAXIMUM RUBBING SPEED - M/SEC (FT/SEC)

Figure 7.6.3-1 Dry Face Seal Pressure, Temperature and Speed Experience

An additional feature of the lubrication system is the blowdown system with

oil and air scavenged together through the turbine transition duct strut. The

integrated core/low spool uses two struts and the design ensures that the oil

and air mixture flows through each of the struts without backing up through
the scavenge lines. This design also eliminates the high cost of installing a

complex internal plumbing arrangement within a single strut. With the plumbing

divided between two struts, the fabrication cost and the associated operation-
al risk are substantially reduced.

Oil is transported from the main engine oil pump to two radial oil scoops in
the rear compartment, one scoop servicing the front bearing and the other
servicing the rear. The scoop efficiency for the integrated core/low spool is
60 percent, which is conmensurate with scoop efficiency levels of most current

comercial engines. The scoop arrangement for the flight propulsion system is
being refined for an efficiency increase.
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Adequate leakage provisions have been supplied to ensure that no oil touches
any of the hot parts. To address this requirement, an oil scupper line has

been incorporated to provide a drain through which oil can be transported away
from hot parts. This arrangement is depicted in Figure 7.6.4-I.

IC/LS REAR COMPARTMENT LUBRICATION SYSTEM

HIGH ROTOR LOW ROTOR

NO. 4 NO. 5

SEAL SEAL SEAL SEAL

G BEAL

SPLIT 3:4

t
18 KG/MIN 140 LB/MIN) TO SCOOP

• SCOOP EFFICIENCY 60%

SPLIT 4:3

t
5 KG/MIN (12 LB/MIN) TO SCOOP

• TOTAL OIL FLOW (INCLUDING NO. 4 DAMPER) 25 KG/MIN (57 LB/MIN)

• LINE SIZES ESTABLISHED; JETS NEED BENCH FLOW TESTS

• HIGH CAPACITY PUMP REQUIRED

Figure 7.6.4.1 Oil Scupper Line for the Number 4 and 5 Bearing Compartment

7.7 TURBINE SYSTEM WEIGHT SUMMARY

Preliminary weight analyses were conducted for the high-pressure turbine as
configured for the integrated core/low spool. Results of these analyses are
presented in Table 7.7-I. A detailed weight assessment will not be performed
until the final flight propulsion system preliminary design update.

TABLE 7.7-I
PRELIMINARY WEIGHT SUMMARY FOR INTEGRATED CORE/LOW SPOOL

HIGH-PRESSURE TURBINE CO_ONENT

Itern

Disk and Seals

BIade Assembly
Vane Assembly

Tangential On-Board Injection System (TOBI)
Outer Case Assembly

150 (330)

32 (71)

26 (58)

45 (99)

106 (233)

To tal 359 (791)
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SECTION 8.0
HIGH-PRESSURE TURBINE COMPONENT TEST RIG DESIGN

8.1 INTRODUCTION

The Energy Efficient Engine High-Pressure Turbine Component Rig was designed
to establish the performance base for the turbine and verify the advanced

aerodynamic/thermodynamic design concepts of the program. The rig design con-
figuration incorporates structural criteria and mechanical constraints consis-
tent with experimental hardware.

The following sections provide (1) a general description of the rig, including
salient rig assembly and safety features, (2) information describing the mech-
anical design, and (3) a description of the instrumentation used to monitor
turbine performance and rig structural integrity.

8.2 GENERAL DESCRIPTION AND MAJOR FEATURES

The turbine component rig is designed to test the full size high-pressure tur-
bine component at the design differential pressure, but at reduced temperature
and absolute pressure levels. It is intended to confirm the aerodynamic per-
formance of full sized integrated core/low spool hardware prior to running the
integrated core/low spool test. In addition, it will provide a check of pre-
dicted cooling and leakage flows and operation of the active clearance control
system. A cross section of the rig is illustrated in Figure 8.2-I.

The rig assembly includes an inlet section, rotor and vane assembly, and ex-
haust section. The rotor and vane assemblies and active clearance control sec-

tion are mainly component hardware (suitable for integrated core/low spool
operation) while the inlet, exhaust and outer case sections are rig unique
hardware. The rig features separate controls for all secondary flows as well
as main flow. In addition, a separate system is provided for the active clear-

ance control system, which covers an approximate 148oc (300OF) temperature
range for clearance change. The main flow temperature will be 426oc (800OF)

with the appropriate secondary air temperature ratio to simulate engine condi-
tions. A circumferential traverse instrumentation ring has been provided to
acquire a more thorough mapping behind the vanes and blades.

The rig incorporates an active clearance control system, which will be
evaluated during testing. The internal hardware of the active clearance

control system for the integrated core/low spool is also used in the rig.

Special consideration was given to the type of _aterial used in certain areas

of the rig. For example, rig hardware exposed to main and secondary airflow
was designed using stainless steel or comparable rust-resistant alloys, to
prevent contamination of coolant passages. High strength materials are used in

the high temperature regions of the rig, while external rig hardware is of
less expensive low carbon steel material.
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The rig safety systems are characterized by three primary modes. The first is

an explosive system activated by the occurrence of an overspeed condition. The
matn stream airflow bypasses the rig and re-enters in the exhaust duct. The

second system is a pop-valve, which also allows the airflow to bypass the rig.
In addition to speed, the pop-valve can be excited by loss of oil flow,

bearing compartment adverse pressure gradients, excessive vibration, and

excessive bearing temperature. The third system is an alarm system, which is

activated when the limits of various rig parameters are exceeded.

8.3 MECHANICAL DESIGN

8.3.1 Rotating Hardware

The rotating components in the rig consist of the front and rear bearing com-
partments, rotor shaft and rotor assembly.

The rig rotor design was analyzed for critical speeds and the rotor tie bolts
were analyzed for blade loss capability. In addition, the rotor air seals were

reviewed for resonance and coincidence. The critical speeds and mode shapes
determined from the rotor dynamics study are shown in Figure 8.3.1-I. Because

the mode shapes indicate a critical condition, a forced response analysis was
conducted. The resultant bearing loads corresponding to 0.002 cm (0.001 in) of

bearing support vibration at the speeds shown were judged to be acceptable
(Table 8.3-I).

The calculated stress in the rotor tie bolts resulting from a blade loss

situation is 482,636 MPa (70 kpsi), which is well under the O.2-percentyield
stress level of Inconel 718 material.

Seal dampers were provided for the rotor air seals as a conservative measure
to avoid any resonance or coincidence problem, as discussed in Section 8.3.3.
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TABLE8.3-1

HIGH-PRESSURETURBINECOMPONENTRIG
FORCEDRESPONSERESULTS

Rotor
Speed

Bearing Loads for 0.002 cm (0.001 in)
Bearin 9 Support Vibration k_ (Ib)

Front BearinB Rear Bea_rin_

4500 34 (75) 138 (306)

9850 230 (508) 386 (851)

8.3.2 Bearings and Seals

The bearing compartments were designed using existing parts with minor modi-
fications. Key features of the front and rear bearing compartments are de-
scribed as follows.

The front bearing has a 220 mm bore and a 320 mm flanged outer diameter. Its
maximum DN is 2.1 x 106 , and its maximum load is less than 4,535 kg (lO,O00
Ib). The calculated Bl life is greater than 250 hours.

The front compartment seals are the dry face type with an oil-cooled carbon
rubbing plate. Stackpole 2080 carbon grade seals are used for improved
durability. Air temperature in the compartment is estimated to be 65oc
(150°F). The seal operating conditions are listed in Table 8.3.Z.-I.

TABLE 8.3.2-1

FRONT COMPARTMENT OPERATING CONDITIONS

Condi tion

Aerodynamic Design
Point (ADP)

Maximum Speed

Differential

/%P Range*

Seal Differential Pressure Pa (psi)
( AP)

FORWARD REAR

Rubbing Speed
m/sec (ft/sec)

227,528 (33)

262,002 (38)

220,633 (32)

255,107 (37)

IZl (400)

134 (440)

186,159-351,634 (27-51) 179,264-344,740 (26-50)

* Range expected to be encountered during rig operation
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The design of the rear compartment bearing for the rig is the same as that of

the number 4 bearing for the integrated core/low spool. This oil-damped bear-

ing has a 165 mm bore and a 222 mm outer diameter and is equipped with a soft

centering spring. It also features preloadtng and under race oil cooling. Its

maximum radial load is less than 453 kg (1000 lb), and its calculated B1 life
is greater than lO00 hours. The maximum DN is 1.6 x lO 6,

The design of the rear compartment forward seal is the same as that of the
number 4 seal for the integrated core/low spool, and the rig rear seal is
derived from the integrated core/low spool number 5 rear seal. Both are the

dry-face type seal with oil cooled rubbing plates. Stackpole 2080 carbon grade
seals are used for improved durability. The temperature of the surrounding air
is maintained at 65°C (150°F). Operating conditions of the seals are shown
in Table 8.3.2-II.

TABLE 8.3.2-II

OPERATING CONDITIONS OF THE REAR COMPARTMENT SEALS

Seal Z_P Pa(psi) Rubbing Speed
Condition Both Seals m/sec (ft/sec 1

ADP 41,368 (6) 89 (293)

Max Speed 41,368 (6) 98 (324)

Operating Requirement: 68,948 Pa (lO psia) Compartment Pressures

8.3.3 Air Seals

Extensive vibrational analysis was conducted on all high pressure drop, high
speed air seals. Characteristics of the seals that were studied include
resonance, coincidence and aerodynamic flutter.

A total of five air seals was reviewed in the study. These included the front

and rear seals of the front bearing compartment and the three high-pressure
turbine component design seals shown in Figure 7.2.6-I. These three seals,
having been studied for their vibrational characteristics at integrated core/
low spool conditions, were studied for response at rig speeds and pressure
levels. The study results are as follows:

0 Front compartment front air seal (or thrust piston seal). Resonance
and coincidence characteristics are as shown in Figures 8.3.3-I and
8.3.3-2. Resonance margin for the stationary part of the seal is 60

percent and 45 percent for the rotating part. Coincidence margin is
46 percent.

A sheet metal damper of 0.170 cm (0.067 in) thick sheet metal was
provided to the rotating member as a conservative measure to avoid

any resonance. Aerodynamic flutter was considered unlikely for this

seal because of the influence of the damper and relatively low
pressure drop across the seal. The seal and its damper are shown in
Figure 8.3.3-3.
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DAMPER CUT INTO

8 SEGMENTS

(AMS 5504)

Figure 8.3.3-3 Front Compartment Front Airseal (Thrust Piston Seal)

O Front compartment rear airseal. This seal's function is to act as a

backup seal in the event of a malfunction of the carbon seal. A one-

knife edge design was selected as best suited for this purpose in the

unlikely event of a carbon seal failure.

Resonance and coincidence margins for this seal were found to be in-

adequate, Figures 8.3.3-4 and 8.3.3-5 indicate no margin near the
three nodal diameter frequency mode for both resonance and coinci-

dence. A damping feature was provided for this seal to avoid reson-

ance or coincidence. The damper is constructed of 0.160 cm (0.063 in)

thick sheet metal and is provided for both rotating and nonrotating
members. The configuration of the seal with dampers is shown in
Figure 8.3.3-6.

The addition of dampers to this seal, along with its single knife
edge design, makes it a low risk for aerodynamic flutter.

High-pressure compressor discharge seal. Resonance margin for this
seal, as shown in Figure 8.3.3-7, is 83 percent for the rotor and 68

percent for the stationary member. Coincidence margin is II percent,
as shown in Figure 8.3.3-8. Flutter stability for this seal was
analyzed for the integrated core/low spool application (Section
7.2.6.2) and found to be acceptable. The seal is therefore adequate
for the rig application because of the same pressure drops. Sheet
metal dampers 0.I09 cm (0.043 in) thick were provided for the
stationary member as a precautionary raeasure to provide additional
safety margin. The seal configuration with dampers is shown in Figure
8.3.3-9.
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Figure 8.3.3-6 Front Compartment Rear Airseal
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Figure 8.3.3-7 High-Pressure Turbtne R19 High-Pressure Compressor Discharge
Seal Resonance
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Figure 8.3.3-9 High-Pressure Compressor Discharge Seal
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0 Thrust balance seal. The margin for resonance on the thrust balance
sea] is 20 percent for the rotor, as shown in Figure 8.3.3-]0, and 56

percent for the stationary member. Coincidence margin is 21 percent,
as shown in Figure 8.3.3-11.

A damper was provided for the rotating member, 0.073 cm (0.029 in)
thick, as shown in Figure 8.3.3-]2.

Flutter stability is adequate because of the analysis completed for
integrated core/low spool and the similarity in rig and integrated
core/low spool pressure drops. The addition of a damper provides
additional confidence in flutter stability.

Number 4 bearing buffer air seal. Resonance margin for the buffer air
seal was determined to be 53 percent for the stationary member and 75
percent for the rotating member, as shown in Figure 8.3.3-13. The
coincidence margin was detemined to be 46 percent, as shown in
Figure 8.3.3-14.

Aerodynamic flutter was detemined to be unlikely because of the low
pressure drop across the seal. The analysis indicated no need for a
damper on this seal.

The seal configuration is shown in Figure 8.3.3-15.
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Figure 8.3.3-10 High-Pressure Turbine Rig Thrust Balance Seal Resonance
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Figure 8.3.3-15 Number 4 Bearing Buffer Seal - Rig

8.3.4 Static Hardware

The rig static structure consists of the inlet and exit ducts, vanes and
cases, including the active clearance control system.

The active clearance control system is used in the test program to evaluate
its effectiveness during rig testing. The internal hardware of the active

clearance control system for the integrated core/low spool is also used in the
rig. The integrated core/low spool outer turbine case could not be used be-
cause of the requirement to place the exit probes in a specific axial location,
which is incompatible with the case design. A rig-unique case was therefore
designed to accommodate the required instrumentation. The material chosen for
the rig case, Inconel 600, is a relatively low-cost nickel-based alloy that
adequately matches the thermal expansion properties of PWA I007 (Waspaloy)
material in the integrated core/low spool. The rig design was analyzed to
ensure that the outer air seal, over the turbine blade tip, moves out parallel
to the rig centerline in order to maintain essential chordwise clearance
between the blade tip and outer airseal platfom during temperature excursions.
The active clearance growth summary is shown in Figure 8.3.4-I.

8.4 SECONDARY FLOW SYSTEM AND THRUST BALANCE

The turbine component rig simulates engine cooling air and leakage flows and
blade tip clearances, while preventing oil weepage from the bearing compart-
ments and excessive thrust bearing loads. Figure 8.4-I presents the rig

secondary flows.

Sufficient rig instrumentation will allow measurement of these key flows. It
will also provide confirmation of leakage and swirl field flows with static
and total pressure sensors, cooling air temperatures and windage heat genera-
tion with thermocouples. Key thrust balance cavity pressures will be contin-

uously monitored and processed to give an on-stand readout of thrust load.
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POINT A _IPOINT B

,;" ' __ ' __ POINTC

A GWTH _ GWTH L_ GWTH

COND, PT A PT B PT C

CM (IN) CM (IN) CM (IN)

0,0279 0,0248 0,0218

1 (0.0110) (0.0098) (0,0086)

0.0596 0,0614 0.0632

2 (0,0235) (0.0242) (0,0249)

DIFF,- 0,0317 0,0365 0,0414

PTS 1&2 (0,0125) (0.0144) (0,0163)

CONDITION 1

* GROWTH AT RIG RUNNING

TEMPS, °C (=F)

CONDITION 2

* GROWTH WITH 93,3"C (200°F)

AT (CROSS-HATCH AREA)

ORIG'_,'.;L "+ .... -="..,+: : .:

OF POOR " :+'...... ++'

Figure 8.3.4-1 Active Clearance Control Growth Summary

The high-pressure compressor rear seal air supply will be injected tangentially
to simulate the high-pressure compressor discharge bleed swirl in the engine.
There will be separate control of the disk front rim cavity "mini" tangential
on-board injection flow to change the swirl level and, hence, blade supply
pressure. This will also affec.t thrust load. The temperature of the active
clearance control air will also be controlled between 18oc (650 F) and

204°C (400OF). This control will change outer air seal (blade tip) clear-
ances over the range available with the engine active clearance control system.
The bearing compartments will be vacuum-pumped to provide a positive pressure
gradient across the seals, thus preventing oil weepage. The rotor has been
thrust-balanced so that the maximum load is 4009 kg (8839 Ib).

8.5 RIG INSTRUMENTATION

The rig incorporates sufficient instrumentation to detemine turbine aerody-
namic performance and monitor rig structural integrity. This instrumentation

was specifically selected or designed to maximize data acquisition capability
without unduly perturbating the flow characteristics of the rig. This instru-
mentation measures overall stage performance and provides basic aerodynamic
data as well as airfoil and endwall aerodynamic loading information. In addi-

tion, it monitors rig safety parameters and also records the performance of
the "mini" tangential on-board injection system and active clearance control

system. Both the cascade and the full-stage rigs have essentially the same
instrumentation. A rig supervisory system will be employed to automatically

control all of the secondary flow systems. All probes and wires are calibrated
before instal Iati on.

The following sections describe rig perfomance and structural integrity
instrumentation. A summary of rig instrumentation is presented in Table 8.5-I.
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Rig Super-

visory Control

Inlet

Vane Surface

& Shrouds

Blade Outer Air

Seal (OAS) and

Active Clearance

Control (ACC)

System

Exi t

Vane Cooling

Tangential On-

Board Injector

(TOBI)

Disk Bore

Cooling

Exit

Cavities

Bearing Com-
96rtments

Totals

Laser Proximity

Vibrat ion

Speed

Air Angle

TT

8O

48

PT

TT

PS

TAIR

Tmetal

4

10

3

4

TABLE 8.5-1

INSTRUMENTATION SUMMARY

PT TAir Tmetal

2 i0 -

PS Miscellaneous

16

40 24

153

22 28 22 Laser Prox.

48

16

22

24

16

22

4 Air Angle

12 64 64

8 8

102

130

371

152

52

i0 24 22 I0 Vibration

3 speed
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8.5.1 Perfomance Instrumentation

Perfomance instrumentation measures inlet and exit flow, and blade tip
clearance.

Inlet Instrumentation. Inlet instrumentation consists of 4 total pres-
sure rakes, each with 10 sensors. In addition, there are 12 static pres-

sure taps located on both the inner and outer flowpath. The inlet rakes
are properly located circumferentially to prevent any rotor excitation.

Exit Instrumentation. Exit instrumentation consists of 4 total pressure
rakes and 4 total temperature rakes each with 12 sensors. In addition,
there are 12 static pressure taps located in both the inner and outer

flowpath. The rakes are located on a ring that can be traversed circum-
ferentially approximately 30 degrees. These rakes are positioned 90

degrees apart. Coupled with the pressure and temperature rakes, there are
4 air angle probes located at the exit plane. These probes are wedge
shaped and have the ability to traverse radially as well as circumferen-
tially. They are used to measure two static pressures and a total
pressure, and are also used to calculate exit air angle.

Blade Tip Clearance Measurement. Four equally spaced laser probes will
be used to measure and monitor the blade tip clearance. These probes will
be attached to the blade outer air seal shoes, extend through the outer

cases, and sealed by means of piston rings. Temperature variations in the
flow to the active clearance control system will provide tip clearance

changes. Probe measurements will then be used to determine any changes in
performance resulting from variations in tip clearance.

Compartment Air Temperature. Air temperature measurements taken in
various compartments, especially those conducting secondary air flow,
will be useful in calculating performance parameters.

8.5.2 Structural Integrity Instrumentation

This instrumentation verifies design assumptions and measures static tempera-
tures, pressures, and bearing temperatures. Probe strain gages and accelero-
meters are also used.

Static Pressure. Two turbine vanes will be instrumented on the airfoil
surface at three spanwise locations. Seventeen airfoil static pressure

taps will be positioned at each location, 10 on the suction surface and 7
on the pressure surface. Endwall static pressure taps will be placed at
both the inner and outer flowpath platforms. The number of these used
will depend on available platform area. Static pressure taps will also be

located throughout the rig in order to determine cooling and leakage
flows.

Static Temperature. One vane will be instrumented in the airfoil section
to determine the effectiveness of the cooling scheme. In addition,

instrumentation will be located on the active clearance control system to
verify its operation. All cooling flow systems will be instrumented to
monitor and maintain control of coolant flow temperatures.

135 [



Bearing Temperatures. Thermocouples will be located in the bearing
Compartments to ensure proper bearing and seal operating temperatures.

This instrumentation will be monitored throughout the test program.

Probe Strain Gages. The fixed inlet rakes will be strain gaged at the
root of _e rake to detect probe vibratory modes that might exist at test
conditions.

Accelerometer. Both horizontal and vertical accelerometers will be

located on the front and rear bearing supports. These wtll be monitored

throughout the test program.

8.6 FACILITY/RIG ADAPTATION

The facility for testing the high-pressure turbine component rig will provide
an open-loop air supply system. Two natural gas burners heat the primary air

to approximately 426oc (800OF). The secondary air, supplied by the main-
stream air upstream of the combustor, is delivered to the rig at approximately
65°C (150°F), thus maintaining the proper main air temperature and cooling
air temperature ratio. Power generated by the turbine is absorbed through two
lO,O00 horsepower dynamometers. The rig is connected to the power absorption
system through a coupling and gearbox. There are provisions for seven indepen-
dent secondary cooling air systems. Flow for both the primary and secondary
air systems is metered through critical flow venturies. An automated data

secondary system will be used to process data, and a rig supervisory system
will be employed to control all secondary flows.
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SECTION9.0
CONCLUDINGREMARKS

The high-pressure turbine design in the Energy Efficient Engine represents a
considerable advancement in turbine technology. The design capitalizes on the
inherent economic and weight advantages offered with a single stage system by
applying technology advancements in the areas of structures, ae,-odynamics and
materials. On the basis of results acquired from design analyses and, more im-
portantly, supporting experimental test programs, turbine performance and dur-
ability goals are achieveable. The predicted efficiency of 88.8 percent for
the flight propulsion system exceeds the goal of 88.2 percent. Durability ex-
pectations are commensurate with commercial service operation.

Overall, the technology evolved through the turbine design processes and
eventual demonstration during the integrated core/low spool test program will
have wide application. Much of this technology, particularly high temperature
capability materials, is applicable to any gas-turbine engine of the next gen-
eration, including advanced derivative models of current commercial engines.
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APPENDIX A

ENERGY EFFICIENT ENGINE HIGH PRESSURE TURBINE

COMPONENT VANE AND BLADE AIRFOIL COORDINATES

PRECEDING PAGE BLANK NOT RL_|EO
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0.600

0.625

0.650

0.675

0.700

0.725

0. 750

O. 775

.0.800

'0,825

0.850

0..375

0.900

0.910

0.920

0.930

0. :_,_0

O. 950

O. 900

0.970

0.980

0.990

I .000

-1.67371

-1.E_670

-1.63_69

-1.63267

-I.60566
-|.58865

-1.57164

-I .55662

-1.53761

-! _2060

-1 50359

-1 _5106

-1 61P53

-1 37600

-1 333q6

-1 29003

-l 24840

-1 20557

-1.16336

-1.12081

-1.07_28

-I.03575

-0.99322

-0.95069

-0.90816

-0.86563

-0.8_310

-0.78057

-0.73806

-0.69551

-0.65Z98

-0.610_

-0.56791

-0.52538

-0._8_5

-0._032

-0.39779

-0.35526

-0.31273

-0.27_20

-0.22767

-0 1G51_

-0 1,*_61

-0 12559

-0 10_5_

-0 09157

-0 07_56

-0 05755

-0.0_053

-0.02352

-0.00651

0.01050

0.02752

3.66059

3.73262

5.76822

3.79_10

3.51>11

3.83236

3.8_39

3._6315

3.87901

3.89318

3.90665

3.937_8

3.96354

3.9053_

6.0G_63

6.01530

6.02322

_.02625

6.02620

6.01G_7

6.00399

3.9_527

3.95035

3.92880

3._008

3.8_357

3.788_6

3.7_369

3.66796

5.55953

3._55_0

3.333_9

3.19012

3.0_F81

2.8_281

2.6_61

2.43150

2,_0936

1.97950

1.76356

1.50299

1.25882

1.0117_

0.91227

0.812_5

0.71236

0.61190

0.51123

0.61033

0.3091_

0.Z0783
0.10620

0.00221

3.o_059

3.56876

3.51296

3._8706

3._(595

3._$33

3._2_1

3._0907

3.3875_

3 36_97

3 3_151

3 27951

3 21_59

3 166_8

3 07267

2 99351

2.8_13

2.76625

2.68276

2.59976

2.51528

2._2o61

2._220

2.25_66

2.16_1

2.07268

1.90025

1.E8653

1.79167

1.6_506

1.59725

1._9600

1.39720

1.29_02

1.19066

!.03_$1

0.97652

0.86606

0,75285

0.63667

0.51613

0.39080

0.33881

0.28551

0.23073

0.17326

0.11320

0.06902

-0.01628

-0.02676

-0.0256_

-0.23526
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ORIGINAL PAG_ [,_

OF POOR QUALITY
EEE ENGINE VANE COORDINATES

MEAN, RADIUS : _5.001in.) 38.103 cm

X/BX

0.0

O.OIO

O.G20

0.030

0.O4O

O.O.rO

0.060

O. 070

O. 080

O. 090

O.IO0

O. 125

0.150

O. 175

0.200

0.225

O. _.50

O. 275

0._o0

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.5£5

0.550

O. 575

0.600

0.625

0._50

0.675

0. 700

O. 77.S

O. 750

O 775

0 gO0

O _25

0 t_,50

O g75

O ._O0

0.910

0.920

0.930

0.940

0.950

O. 960

0.970

0.960

0.990

I .000

-1,67335

-],65634

-1.63933

-].62232

-1.60531

-1.59830

-1.57130

-1.55429

-1.53728

-1.5£027

-1.50326

-1.46074

-1.418Z2

-1.37570

-1.33317

-I,24065

-1.24813

-1.2_561

-1.16309

-1.12057

-1.07604

-1.03552

-0.9_300

-0.95048

-0.90796

-0.86544

-O 822_2

-O 76039

-0 73737

-0 6_535

-0 6_C33

-O 61031

-0 56779

-0 52526

-0 4C274

-O 44022

-O 39770

-0 35516

-0 3]366

-O 27014

-0.2276]

-0.18509

-0.14257

-0.12556

-0.10_55

-0.07155

-0.07454

-0. 05753

-0.04052

-0.02351

-0.00650

0.0105l

0.02752

PRESSURE

SIDE

Y - TOP

3.91742

6.00945

4,04534

4.07129

4.09185

4.10909

4,12553

4.1414B

4.15691

4.17181

4.18619

4.21973

4.24969

4.27590

4.29813

4,31615

4.3_969

4.33_3

4.36205

4.34016

4. 33231

4.31796

4.29650

4.26742

4.22769

4.18239

4.12_3!

4.05396

3.96931

3.86790

3.74623

3.60056

3.43406

3.25073

3.05355

2.84441

2.62461

2.395_5

2.15772

1.9]197

1.65Ca0

1.3_75

|.13205

1.02_39

0.91452

0.80392

0.69248

0.58006

0.46692

0.35261

0.23737

0.12109

0.00194

SUCTION

SIDE

Y - BOTTOM

3.91742

3.82538

3. 78950

3.76354

3. 74302

3.725C0

3.70704

3.68795

3.66797

3.64717

3.62561

3.56857

3.50752

3.44289

3.37501

3.30414

3230_9

3,15421

3,07545

2.99_32

2.91090

2.82526

2.737_4

Z.6_750

2.55544

2.461_8

2.36501

2.76664

3. 16610

2.06337

1.95_42

1,_5113

1.74144

1.62920

1,51428

1.39651

1.27566

1.15140

1.02343

0.89123

0.75_21

0.61152

0.46157

0.39922

0.33554

0.26953

0.Z0168

0.13099

0.05762

-0.01430

-0.02674

-0.02543

0.24012
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OF PCOR Q : +

EEE ENGINE VANE COORDINATES

LE. TIP, RADIUS = (16.582 in.) 42. 118 cm

X/BX

0.0

0,010

0.020

0.030

0.0,'+ 0

O. 050

0.0S0

0.070

0,030

0.090

0.100

O. 125

0.150

q.175

O.C.O0

0.225

U._50

O. 275

0.300

0 ._5

0.350

0,375

0.400

,) .025

0. L,50

0._75

l). 5_ 0

_,5t.5

0.550

0.575

0.600

0.625

0,650

0.675

0.7C0

O. 725

O. 750

0. 775

0.800

0.8Z5

0 .C,50

O. $75

0.900

0.910

0.9_0

0.930

0.940

O. 950

0.960

0.970

O.9GO

O. 9';'0

1.000

-1.67286

-1.65584

-1.02183

-1.60483

-1.5C782

-I.5}OSZ

-1.55337

-1.53681

-1.51901

-1.50251

-I.96030

-1.41779

-1.375C3

-1._3_77

-1.290Z6

-1.Z:,775

-1.205_5

-1. 1627_

-1.120_3

-I 07772

-I 03521

-0 9_70

-0 950:9

-0 c07C8

-0 86510

-0 8_C57

-0.7001b

-0,73765

-0.6751_

-9,G5263

-0.61012

-0.56762

-0.5_511

-0.46_60

-0.4_009

-0.3_75B

-0.35507

-0.31_56

-0.27006

-0.22755

-0.10504

-0.14253

-0.1_553

-0.I0_52

-0.09152

-0.07452

-0.05751

-0.04051

-0.02351

-0.00650

0.01050

0.0Z751

PRESSURE
SIDE
Y - TOP

4.31186

4.40384

4.;3971

6.66565

4 ._8629

6.50353

_.51997

4.53591

_.55135

_.5_071

6.61452

6.6_5_6

_.67_5

_.69_00

_.71617

_.73263

4.79524

4.75379

4.75_06

4.75778

4.752_5

6.7_Z9

4.7_6C5

4.70398

4.674C0

_.63785

_.5_ZO_

6.535_5

_._6716

4.3_318

3.9771_

3.775_3

3.5q_45

3._976_

3.02703

2.73928

2.q3612

2.119_3

1.7_003

1.45117

1.31249

1.17Z#4

1.030_

0.0_12

0.74354

0.59040

0.45127

0.30305

0.1539Z

0.00152

SUCTION
SIDE

Y - BOTTOM

_.31185

_,Z1987

6.18401

_.15807

_.13756
4.11964

4.101_0

q.G_I56

_.O_OB3

4.03907

_.01636

3.95381

3.G_042

3.3_078

3.7_732

3.67033

3.5_012

3.50688

3.42079

3.33197

3._053

3.14656

3.05012

2.951Z5

2.8_9_3

2.7_635

_.6_033

_.5_l_0

2.42106

Z.30773

Z.191_6

2.07336

1.95211

1,8Z799

1.70083

1.57038

1.43639

1.2905_

1.15632

1.00_I

0._5638

0.69_65

0.5_639

0.45812

0.38551

0.31065

0.23384

0.15359

0.0684_

-0.01430

-0.02673

-0.0Z5_3

-0.333_7
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QL-AL_TY

EEE ENGINE BLADE COORDINATES

ROOT, RADIUS =(13.678in.) 34.742 cm

X/BX X

SUCTION PRESSURE

SIDE SIDE

Y - TOP Y - BOTTOM

0.0

0.010

O. 0:-0

0.030

0.0q0

0.050

0.060

C. 070

0.080

O.CgO

0.100

0.125

0.150

0. 173

C,_00

o .225

O._SO

0.275

0.300

0.325

0. 350

0.375

0.400

O. 4._5

0.450

0.475

0.5C0

0.5Z5

0.550

0.57_

0.500

0.625

0.650

0.575

0.700

0.725

0. 750

0. 775

0.800

0.525

0 ¢50

0 675

Q <;00

0 910

0 9."0

0 930

0 940

0 950

0 960

0 970

0.960

C.990

1.000

0.00006

0.01352

0,02695

O.0_oq5

0.05391

0.06737

O.OGOS4

0.09430

0.10776

0.12123

0.13q69

0.16B35

0._$2CI

0.2_067

0.26933

0.30_99

0.33655

0.37030

0,40396

0.43762

0 ._7128

0.504_

0.53950

0.57226

0.60_92

0.6355B

0.67323

0.70689

0.74055

0.77431

0._0707

0.64153

0.87519

0.90385

0.94251

0.97617

1.04348

1.07714

l.llC_O

l.lq4q6

1.17012
1.2117_

1.72524

1.23_70

1.25317

1.26563

1.27909

1.29256

I._0602

1.31943

_.332_5

1.34641

I.o8397
1.13073
l.lC03_

1.21SC6

1.2_638

1.2!018

1.31302

1.33_95

1.35601

1.405_3

!.4%c57
1.5Z554

1.55756

1.576t5

1.6!003

1._3203

1.64_75

1,663'_0

1.67_q6

1.68131

1.68_35

!.6933g

1.67_16

1.66035

1.63331

1.63303

1.60610

1.5713_

1.52772

1.47161
i.39C37

1,30322

1.21310

1.01i40

0.90717

O.BOIOI

0.6_305

0.50330

0.47106

0,42674

0.35123

0.33535

0.25949

0.24275

0.1957_

0.14835

0.1002_

0.05151

-0.00199

1,05397

1.04116

1.02650

1.01756

1.01216

1.00955

1.00941

1.01175

1.01680

1.02512

1.03475

1.055!5

1.07394

1.0_31

1.0_9q3

1.10747

_._5_

1.11470

I.i1405

I,!I069

l.lOq_4

1.09392

I C70¢5

I 05409

1 03491

1Cl3!l

0 _L363

0 9_143

0 93151

0.69573

0.66303

0.7_241

0.737_4

0.65036

0.6%_0

0.57_5
0.51_4

0.45397

0.333q5

0.30721
0._2_;34

0.]89!8

0.15270

O.IIA_6

0.07499

0.03371

-0.00955

-0.0_621

-0.0_9Q4

-0.02561

-0.00199
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OF FOOR QULLITY

EEE ENGINE BLADE COORDINATES

MEAN, RADIUS =I14.913in.) 37.879 cm

X/BX X

SUCTION

SIDE

Y - TOP

PRESSURE

SIDE
Y - BOTTOM

0.0

0.010

0.020

0.030

O. Ot+O

0.050

0.070

0.000

0.0'?0
0.I00

0.1."5

O. 150
0.175

0.200

0.;'25

0.250

O. 275
0.300

0.3,'5

0.350

O. 375

0.400

0 .(_25

o. _,50

O.q7E,

o. 5f: 0

0.52.5

0.550

0.575

0.6t!0

0.62.5

0.6"_0

0.675

0.7(_0

0.725

0.750

0.T;5

0.800

0.225

o.sr_,o

0.875

0.900

0.910

O. 9:'0

0.930

0.940

0. 950

0.950

0.970

O. 930

0.990

1.000

0.11588

0.12748

0.13907

0.150_6

0.16225

0.17724

0.18543
0.19703

0.203_2

0.22021

0 231_0

0 :5978

0 2_976

0 31874

0 3_772
0 37670

0 40568

0 43q{,G

0 4679%

0 49261

0 52159

0 55057

0 57955

0 _0353

0 63751

0 666_9

0 695:;7

0 7_/+45

0 753_3

0 7_4!

0 31139

0 6_037

0 86935

0 89_32

0 92730

0 95628

0 93525

1.01424

1.0#322

1.03"220

1.10118

1.13016

1.1591G

1.17073

1.1_232

1.19391

1.20550

1,21710

1.22669

1.24028

1._5187

1.263_6

1.27505

1.37101

1.41_88

1.44625

1.q7_ll

1.49979

1.52358

1.5q570

1.56630

1.5_353

1.60151

1.62332

1.65774

1.6_%27

1.71555

1.73717
1.75q29

1.76721

1.77526

1.72_'_I

1.7_!77

1.77_51

1.77129

1.75955

1.7q3_2

1.72222

1.695_9

1.662q3

1.62107

1.57205

1.50979

1._:3295

1.3502_

1.26463

1.17735

1.05S67

0.932_0

0.81(,39

0.72¢433

0.65081

0.5_31

0.4_235

O._q6G3

0.30793

0.2692_

0.23035

0.19!_7

0.15220

0.11255

0.07297

0.03329

-0.00666

-0.05190

1.37101

1.33092

1.31674

1.30765

1.30102

1.29729

1.29611

I._9615

1.29501

1.30183

1.30797

1.32937
1 30718

1 35_5

1 36_53

I _{554

! _6:'23

1 25399
1 341f6

1 32603

I _0652

1 26_/,2
1 ZE_95

1 22732
i 19"_5

I. 15_;'_%

1.11957

I .07777

1.03_15

0.9S176

0._5_62

0.B8277

0.827_7

0.76907

0.70328

0.6q485

_._7272

0.51007

0.q_77

0.36_76

0.23_10

0.20371

0.12659

0.00297

0.058C5

0.02427

-0.01061

-0.046_6

-0.07201

-0.078_8

-0.07909

-0.07_35

-0.05190
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OF POOR QUALITY EEE ENGINE BLADE COORDINATES

TIP, RADIUS = 06.149 in.) 41.018 cm

XIBX

SUCTION PRESSURE

SIDE SIDE

Y - TOP Y - BOTTOM

0.0

0.010

0.020

0 030

0 ,'Y_O

0 0_3

0 060

O 070

00CO

0 GgO

0 100

0 ]25

0:5O

0 175

0 200

0 225

0.250

0 • ?75

C. 7.00

0.3,'1.5

O. 350

0.3;'5

0._,00

0.425

0.450

0.475

G.EC3

.5:5

0.550

0.575

O.COO

0.b25

0.650

0.675

0,700

O. 7;:5

0.750

O. 775

0.6CO

0 .L,25

0.C50

O.._75

0.';00

0.910

0.900

0,930

0.940

O.gSO

0.950

G .970

0._50

0 .<;gO

i.000

O. 17520

0.1_22

0. I g_24

0.20526

0.21528

0.22_30

0.23532

0.2qSE4

0.25537

0.26539

O. _.75.11

O. 300_6

0.3"_551

0.35057

0.37562

0.43367

0,4," 57_'

0._3077

0.47:-33

0.530_3

0.525?3

0.550'_8

0.57604

0.50109

0.62614

0.65119

0.67_25

0.70130

0.72635

0.751Q0

0.776q5

0.801.51

0.82655

0.851GI

0.87667

0.90172

0.92677

O. 9_5282

0.976C0

1.00193

1.02_';8

1.05203

1.07733

1.0:3711

I .09713

1.10715

1.11717

1.12719

l. 13721

I •14723

1. 15725

I. 16727

1.17729

1. 95437

1.99237

2. 00598

2.01502

2.02,150

2.03714

2.03233

2,03707

2.04236

2.0q523

2,0_:34

,?.. 05538

2.05_21

2. G60_l

2.e5__3

2. c_4_1

2.0c,703

2.03"153

2. 02274

2. 0053t_

l. <_SqO 0

1.95.322

1.92732

1.6g0_9

I .04567

I. 7-3075

I. 722_5

1.6td>89

1.56466

I .Q3138

1.31932

I. 15,!47

1.07i97

O. _3941

0.&2422

0.741(,5

0.65093

0.57325

0 49359
0.41092

O. 37704

0. 34477

0.31164

0.27_60

0.24552

0.2124_,

0. i7935

0. 14630

0.11315

O. 07474

!. 95407

I. 91736

!. 90375

I .89_71

I ._$036

1.88397

1.88118

1.87982
1.87956

1.87915

1.87728

I .86500

I .85291

I .83251

I ._0741

I .77C09

I. 7_',:+_ 2

1. 70323

1.668_3

1.6?573

1.5o045

1,53257

I .48274

1 43089

1 377I 3

1 32164

1 264_r-7

1 20593

I I_{.i 3

I 03CS1

1 02244

0 gS_B5

0 89429

0.B2059

0. 767:.34

0,69495

0.62077

O.5D7P_5

0 ,_:C3Z2

0,417_5

0,316<;0

0,275_0

0.20323

0. _ 7420

0.I_510

0.11590

O. G_668

0.05915

0,05032

0.04 738

0.04G39

0.05352

0.07_7_
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OF POOR QUAL|_

A

ACC

ADP

amb.

Btu

CET

CpB

Cx

D

FP

FPS

HPC

HPT

IC/LS

ID

LE

LPT

M, Mn

N

N2

OAS

OD

P

PF

A P/P, Pr

APPENDIX B

LIST OF SYMBOLS

Annulus area

Active clearance control

Aerodynamic design point

Ambient

British thermal unit

Combustor exit temperature

Base pressure coefficient

Axial flow velocity

Di ame ter

Flow parameter, W_FT-/P

Flight propulsion system

High-pressure compressor

High-pressure turbi ne

Integrated core/low spool

Inner diameter

Leading edge

Low-pressure turbine

Mach number

Mechanical speed, rpm

High-pressure rotor speed,

Outer airseal

Outer diameter

Pressure

Patter ,_factor

Pressure ratio

r1_m
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PT

R

rpm

S

SLTO

T

TE

TOBI

U

Urim

Wae

Wc/a

LIST OF SYMBOLS (Continued)

Total pressure

Rankine

Revolutions per minute

Span

Sea level take-off

Temperature

Trail ing edge

Tangential on-board injection

Tangential wheel speed

Rim speed

Engine airflow

Total cooling airflow

0

A

6

CT

Angle

Angle

Delta

Deflection

Efficiency

Stress
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