
20 l O IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

Energy-Efficient Fault Tolerance in Chip Multiprocessors Using Critical Value Forwarding

Pramod SUbramanyan Virendra Singh

Indian Institute of Science

Bangalore, India

{pramod@rishi.sere, viren@sere}.iise.ernet.in

Kewal K. Saluja

University of Wisconsin-Madison

Madison, WI

saluja@engr.wise.edu

Erik Larsson

Link6ping University

Link6ping, Sweden

erila@ida.liu.se

Abstract

Relentless CMOS scaling coupled with lower design toler­

ances is making ICs increasingly susceptible to wear-out re­

lated permanent faults and transient faults, necessitating on-chip

fault tolerance in future chip microprocessors (CMPs). In this

paper we introduce a new energy-efficient fault-tolerant CMP

architecture known as Redundant Execution using Critical Value

Forwarding (RECVF). RECVF is based on two observations:

(i) forwarding critical instruction results from the leading to

the trailing core enables the latter to execute faster, and (ii)

this speedup can be exploited to reduce energy consumption by

operating the trailing core at a lower voltage-frequency level.

Our evaluation shows that RECVF consumes 37% less energy

than conventional dual modular redundant (DMR) execution of

a program. It consumes only 1.26 times the energy of a non­

fault-tolerant baseline and has a performance overhead of just

1.2%.

1. Introduction

Over the last three decades, continued scaling of silicon

fabrication technology has permitted exponential increases in

the transistor budgets of microprocessors. In the past, higher

transistor counts were used to increase the performance of

single processor cores. However increasing complexity and power

dissipation of these cores forced architects to tum to chip

multiprocessors (CMPs) in order to deliver increased performance

at a manageable level of power and complexity. While deep

sub-micron technology is enabling the placement of billions of

transistors on a single chip, it also poses unique challenges. ICs

are now increasingly susceptible to soft errors [25], wear-out

related permanent faults and process variations [2, 5].

Traditionally, high availability systems have been restricted to

the domain of mainframe computers or specially designed fault­

tolerant systems [4, 14]. However, the trend towards unreliable

components means that fault tolerance is now important for

the commodity market as well [1]. Fault-tolerant solutions for

the commodity market have different requirements and present

a different set of design challenges. The commodity market

requires configurable [1] and low cost fault tolerance. CMPs are

appealing in this context as they inherently provide replicated

978-1-4244-7501-8/ l O/$26.00 ©2010 IEEE

hardware resources which can be exploited for error detection

and recovery. A number of proposals [1, 10, 11, 17, 19, 20, 26--

31] have attempted to take advantage of these aspects of CMPs

to provide fault tolerance.

An important aspect of fault-tolerant CMP designs is their

energy-efficiency. Power and peak temperature are key perfor­

mance limiters for modem processors [12]. Since the power

budget for a chip is fixed, decreasing the power consumed in

any core increases the power available to other cores. This

enables them to operate at a higher frequency, increasing overall

system performance. Furthermore, reducing power dissipation

has an additional advantage of reducing operating temperatures,

which can increase chip lifetimes by an order of magnitude [7].

Reducing the energy overhead of fault tolerance schemes is also

important from the point of view of data center energy. Data

center energy consumption is expected to reach an unprecedented

level of 100 billion kilowatt hours by 2011. Unreliable chip

components would imply that a significant fraction of future data

centers would require fault tolerance mechanisms to cope with

hardware faults. Clearly, there is a pressing need for energy­

efficient fault-tolerant architectures for future microprocessors.

In this paper, we propose Redundant Execution using Critical

Value Forwarding (RECVF), an architecture for energy-efficient

fault-tolerant CMPs. RECVF executes one logical thread on two

cores of a CMP. One of these cores is designated as the leading

core, while the other is designated as the trailing core. The first

contribution of this paper is the introduction of the idea of critical

value forwarding (CVF). In an RECVF processor, the leading

core assists the execution of the trailing core by forwarding the

results of instructions on the critical path. CVF breaks data

dependence chains in the trailing core because the results of

instructions on the critical path are made available to the trailing

core even before they complete execution. This in tum allows

instructions dependent on these instructions to execute earlier,

creating a cascade effect that improves the performance of the

trailing core.

RECVF solves the following key challenges in design of such

an architecture:

121

1) Identifying instructions on the critical path. The challenge

here is to identify a few critical instructions that have the

most impact on performance.

2) Designing mechanisms for transferring the results of these

instructions from the leading to the trailing core.

3) Validating the forwarded values in the trailing core to

DSN 20 l O: Subramanyan et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

LOGICAL Til READ I LOGICAL THREAD 2

Figure 1 - CMP Block Diagram

ensure correct operation even in the presence of an error

in the forwarded values.

Our second main contribution is to combine the idea of

critical value forwarding with that of per-core Dynamic Voltage­

Frequency Scaling (DVFS) [12, 13]. This allows the trailing

core to execute at a much lower frequency than the leading

core, significantly reducing the energy overhead of redundant

execution. We propose two new algorithms for per-core DVFS

in this context and examine the energy savings due to these.

We evaluate RECVF extensively and compare it with two

previous proposals for energy-efficient fault-tolerant CMPs. Our

evaluation shows that for a conventional CMP with a shared

L2 cache, RECVF has a performance loss of less than 1.2%

and consumes 1.26 times the energy of the non-fault-tolerant

baseline processor. In comparison, the Parallelized Verification

Architecture (PVA) proposed by Rashid et al. [20] has a per­

formance loss of 4.7% and consumes 1.32 times the energy of

the baseline. Mukherjee and Reinhardt's Chip-level Redundantly

Threaded (CRT) [19] processor has a performance loss of 4.6%

and an energy consumption of 1.52 times the baseline. For

a future CMP architecture with private L2 caches and higher

interconnect latencies, RECVF has a performance loss of 3.9%

and an energy consumption of 1.45 times the baseline processor.

In comparison, PYA and CRT have a performance loss for 10.4%

and 9.3%, and consume 1.62 and 1.92 times the energy of the

baseline processor respectively.

2. Description of Architecture

RECVF provides fault tolerance by executing a single logical

thread on two cores of CMP. One of these cores is designated

as the leading core while the other is designated as the trailing

core. The two cores are assumed to be connected by a shared

interconnect. The leading and trailing cores exchange information

over this interconnect. In our implementation, we use a shared

bus as the interconnect. However, RECVF is amenable to imple­

mentation over more complex interconnects such as NoCs.

Figure I shows an eight core RECVF CMP executing three

logical threads requiring fault tolerance. The configuration shown

depicts each core with a private LI cache and all the cores sharing

a single L2 cache. RECVF can be used in implementations with

private L2 caches as well. The following subsections describe the

operation of each component of an RECVF processor.

978-1-4244-7501-8/10/$26.00 ©2010 IEEE

core

()
ti
.§

L-----r_J------lI �
C
o
� () ;;::::
E
Ql
:!2
Ql :::J
�

Retire �-------1 (ij () ""
�

Figure 2 - An RECVF processor core.

2.1. Core Architecture

Figure 2 shows the block diagram of an RECVF processor

core. The processor pipeline is augmented with three additional

structures, the branch outcome queue (BOQ), the instruction

result queue (IRQ) and circuitry implementing a critical value

identification heuristic. The BOQ and IRQ are used only in the

trailing core, while critical value identification is performed only

in the leading core.

2.1.1. Identifying Critical Values. Our approach to identifying

critical path instructions is similar to that proposed in [32]. The

basic idea is to mark an instruction as critical if it satisfies certain

marking criteria during its execution. We evaluated a number of

critical value identification heuristics based on this principle. A

list of these is shown in table I.

2.1.2. Handling Branch/Jump Instructions. Branch/Jump in­

structions are handled differently for the purposes of critical value

identification. RECVF marks mispredicted branch instructions

as critical. The target addresses of mispredicted branches are

forwarded from the leading to the trailing core. In the trailing

core, these addresses are used as predictions. As will be seen

in §2.5, this mechanism provides almost the same speedup as

forwarding the results of all branch instructions, but requires very

little bandwidth.

2.2. Operation of the Leading Core

With the exception of critical value marking and forwarding,

the leading core operates like conventional superscalar processor

cores. Critical value forwarding is done after instruction retire­

ment.

Both leading and trailing core execute instructions in chunks.

When the leading core finishes the execution of a chunk it

requests the trailing core to execute that chunk. An instruction

index within the current chunk is forwarded along with the value

by the leading core. This index is used by the trailing core to

map forwarded instruction results to instructions.

122 DSN 2010: Subramanyan et al.

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

Heuristic Marking Criteria Rationale

1 robStall Instruction at the head of ROB prevents Instructions that are unable to execute until they reach the head of

retirement because it is not yet executed. the ROB are likely to be on the critical path.

2 instQHead Instruction reaches head of instruction Instructions unable to execute until they reach the head of of the

queue before being selected for execution. instruction queue are likely to be on the critical path.

3 instQHFree Instruction produces a value that frees an Forwarding this value may help the dependent instructions execute

instruction at the head of its queue. earlier in the trailing core.

4 freedN Instruction freed at least N instructions for An instruction that frees a large number of other instructions for

execution when it completed. execution is more likely to be on the critical path.

S fanoutN Instruction produces a value that is used by An instruction that produces a value that a large number of other

at least N other in-flight instructions. instructions use is likely to be on the critical path.

6 everyN Every Nth instruction is marked as critical. A simple heuristic that serves as a benchmark for comparison against

more sophisticated heuristics.

7 allBJ All branch/jump instruction outcomes are This policy estimates the speedup obtained by forwarding just branch

forwarded. instructions.

8 mispredBJ Only mispredicted branch/jump instruction This policy compares the loss in speedup due to forwarding mis-

outcomes are forwarded. predicted branch outcomes in comparison to forwarding all branch

outcomes.

9 loadsOnly Only mispredicted branches and load values This is the baseline for full load replication (FLR). (See §2.4.)
are forwarded.

10 all All possible values are forwarded. Corresponds to an oracle heuristic given infinite storage space and

infinite bandwidth.

Table 1 - Description of Critical Instruction Identification Heuristics

2.3. Operation of the Trailing Core

2.3.1. Operation of the BOQ. The trailing core stores the

branch outcomes it receives in the branch outcome queue (BOQ).

Unlike previous implementations of the BOQ our implementation

is different because it does not store the targets of all branch

instructions. A branch outcome is mapped to a branch instruction

using the index transmitted by the leading core. When a branch

instruction is fetched, if the target address is present in the BOQ,

then this outcome is used to override the output of the branch

predictor.

2.3.2. Operation of the IRQ. The trailing core stores the results

of instructions other than branch instructions in the Instruction

Result Queue (IRQ). Like the BOQ, the IRQ also stores an index

along with the value to map instruction results to instructions. At

the time of dispatch, the IRQ is examined to see if the result of

this particular instruction is available. If so, the IRQ is read and

its value is written into the register file. This allows dependent

instructions of this instruction to begin execution immediately.

2.4. Options for Input Replication

An important issue that needs to be addressed in a system for

redundant execution is how inputs to the two cores are replicated.

In any fault-tolerant CMP proposal that does not use lockstepped

execution, there is a delay between the time a load instruction

is executed by the leading core and the time it is executed by

the trailing core. Between these two events, a different processor

may modify the value stored in the memory location addressed

by the load. This may cause the trailing core to read an incorrect

value, resulting in a problem referred to as the input incoherence

problem.

978-1-4244-7501-8110/$26.00 ©201O IEEE

The default implementation of RECVF, which we refer to

as partial load replication (PLR), fully re-executes most load

instructions in the trailing core. The only load instructions that are

not re-executed are those that read from cache lines obtained from

cache-to-cache transfers (see §3.2). Although we do not show

the results here, experiments with the SPLASH2 benchmarks

revealed that PLR re-executes 93% of all load instructions. Note

that for a single-threaded program, all load instructions are fully

re-executed. Hence, PLR has most of the fault-coverage of a

mechanism that fully re-executes loads without the corresponding

complexity and performance/energy costs.

We also study the option of full load replication (FLR). FLR

works like SRT/CRT [19, 21] and replicates the results of all load

instructions in the leading core and transfers them to the trailing

core. This option is expected to perform better at the cost of

lower fault coverage and a higher bandwidth requirement.

2.5. Effectiveness of Heuristics for Critical
Value Identification

Figure 3 shows the performance of the critical value identifica­

tion heuristics. The graph shows the mean speedup of the trailing

core over the leading core averaged across the SPEC benchmark

suite. Speedup is the ratio of the IPC of the trailing core to that of

leading core. Both cores are operated at the nominal frequency.

The IPC of the trailing core is computed only over its active

period, Le., excluding the regions of time between the completion

of chunk i and the start of execution of chunk i + 1 arrives. Note

that is a conservative estimate of the speedup. Section 4.1 has

further details on our methodology.

CVF has a large impact on the performance of the trailing

core. The trailing core experiences speedups of up to 1.6X and

2.2X over the leading core for PLR and FLR respectively. This

means that the trailing core can be operated at approximately 0.6

123 DSN 2010: Subramanyan et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

C. ::J "0

2.0

1.5

� 1.0
c.

Vl
0.5

• III I I .. •

(a) Partial Load Replication

Q) 0.9�
o.aU
0.7 �
0.6 ::l
0.5�
0.4> "0 0.3 �
0.2·E
0.1 �
O.O�

3.0
2.5

c. 2.0 ::J "0 � 1.5

c.
Vl 1.0

0.5
0.0 I I I I

�osO(\\�Q",<,��",e�?eeo;,,(\o"���ef'J�o'OS�,,�,eeo�,,(\o"���ef'J4 "II
\O� \(\s \'(\S ,

(b) Full Load Replication

Q) 0.9�
o.aU
0.7 �
0.6 ::l
0.5�
0.4 > "0 0.3 �
0.2·E
0.1 �
O.O�

Figure 3 - Performance of the critical value identification heuristics that we examine.

times the frequency of the trailing core for the PLR configuration,

while it can be operated at less than half the frequency of the

leading core for the FLR configuration. The best performing

heuristic is fanout2, and we report results only for this heuristic.

2.6. DVFS in the Trailing Core

Critical value forwarding creates slack in the trailing core

which can be exploited by operating the core at a lower voltage­

frequency level. However, the slack is not constant for all

programs. It also varies with program phases. When the leading

core is executing a phase of high IPC, there is less slack to

be exploited in the trailing core, and vice versa. Therefore, the

challenge is to dynamically set the voltage-frequency level of the

trailing core based on the program phase behavior. In this section

we describe two algorithms that attempt this.

2.6.1. QSize-DVFS algorithm. This algorithm is based on the

observation that the sizes of the BOQ and the IRQ are an

indication of how far behind the trailing core is as compared to

the leading core. Therefore, when a program goes from a phase

of low IPC to one of high IPC, the trailing core will be unable

to keep up, and the occupancy of these queues will increase.

Such an occurrence indicates that the frequency of the trailing

core ought to be increased. Conversely, if the queues are nearly

empty, then it means that the trailing core is able to easily keep

up with the leading core. In this scenario, the frequency of the

trailing core ought to be decreased.

The QSize-DVFS algorithm implements exactly this idea. It

maintains four thresholds: low and high thresholds for the BOQ

and IRQ. Periodically, the sizes of the queues are compared to

thresholds. If one of the queue sizes is less than the low threshold,

then the frequency is decreased. If one of the sizes are greater

than the high thresholds, then the frequency is increased.

We experimented with a number of different values for the

thresholds and chose the configuration which minimized the

ED2 (energy-delay-square) product across all the benchmarks.

Although we do not report the results here, we observed very

little variation (less than 2%) across different threshold values.

2.6.2. IPC-DVFS algorithm. The IPC-DVFS algorithm takes a

direct approach to determining the frequency of operation the

978-1-4244-7501-8/10/$26.00 ©2010 IEEE

trailing core. The idea behind this algorithm is use the ratio of

the IPCs of the two cores to set the frequency of the trailing

core. For example, if, for a certain period of execution, the IPC

of the leading core is 1.0, while that of the trailing core is 2.0,

then the trailing core ought be operated at half the frequency of

the leading core.

The IPC-DVFS algorithm generalizes this idea in the follow­

ing way. The two cores keep track of their respective IPC over

the DVFS update interval. At the end of the interval, the ratio

of the leading core IPC to the trailing core IPC is taken, and a

scaled version of this value is used to set the frequency of the

trailing core for the next interval.

3. Fault Tolerance Mechanisms

Any fault-tolerant system needs to address four important

issues: fault detection, fault isolation, fault recovery and fault

coverage. The following subsections discuss these topics in the

context of RECVE

3.1. Fault Detection

To detect faults, RECVF needs to compare the outputs of the

leading and trailing cores that execute a single logical thread.

To do this, the set of cores executing a program periodically

synchronize and exchange fingerprints [26]. A fingerprint is a

CRC-based hash of the architectural updates of the processor.

The hash incorporates register updates, load store addresses

and branch targets. The fingerprint is updated every cycle after

instruction retirement. It is exchanged with the partner core at

the time of a fingerprint comparison. Faults are detected when

fingerprints are exchanged and at least one of the cores detects a

mismatch in the fingerprints. If the fingerprints do not match, an

error recovery operation is triggered. If the fingerprints match,

then the current register state is stored in a checkpoint store and

all lines in the cache are marked verified (See §3.2).

3.1.1. Verification of Forwarded Values. A value forwarded

from the leading to the trailing core may be corrupted due to

the occurrence of an error. At first glance, it appears as if we

need an additional mechanism to verify the correctness of each

124 DSN 2010: Subramanyan et al.

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

value that is forwarded from the leading core. However, the

key observation here is that fingerprinting can be used to detect

the occurrence of errors in the forwarded values. To see why,

assume that an instruction ix in the leading core forwards an

erroneous value corresponding to the instruction i� in the trailing

core. Assume without loss of generality that ix is the earliest

instruction that forwards an erroneous value to the trailing core.

When i� executes in the trailing core, its input operands will have

the correct (Le. error-free) values and will compute the correct

result. Consequently, since ix and i� generate different results

(one correct and one erroneous), the fingerprints computed in the

two cores will be different. This enables detection of the error.

3.2. Fault Isolation

When a fault occurs in RECVF, it may be detected only

when the next fingerprint comparison occurs. Between the time

that the fault occurs and the time it is detected, the fault must

not propagate outside the CMP or to other executing processes.

This property is called fault isolation. In a CMP, there are two

ways in which a fault can propagate outside the CMP or to other

processes.

Firstly, a corrupted cache block may be replaced and written

back to a lower level of the memory hierarchy, from where it can

propagate to main memory or other processes. This is prevented

by using a cache architecture that is similar to speculative

versioning caches [16].

The cache in an RECVF CMP stores an unverified bit along

with every cache line in the Ll data cache. Any write to a cache

line sets the unverified bit. If the unverified bit is set, a cache

line is deemed to be locked and is not allowed to be written back

to a lower level of the memory hierarchy. When fingerprints are

compared and found to match, the unverified bits of all lines in

the cache are cleared. When a verified line is marked unverified,

the line must be written back to a lower level cache. If a line

needs to be replaced and all the lines in its set are locked, all the

processors synchronize and a fingerprint comparison is initiated.

Execution proceeds after the fingerprint comparison succeeds.

For correct execution of multithreaded workloads, the unveri­

fied bit must be transmitted along with the data when one cache

supplies data to another cache. RECVF implements partial load

replication (PLR) by forwarding load values from the leading to

the trailing core for all cache lines obtained from cache-to-cache

transfers. This requires the storage of one more bit along with

each cache line in the Ll data cache. This bit is called the C2C

and identifies unverified cache lines obtained from cache-to-cache

transfers. It is cleared when the line is marked verified.

The second method by which a fault may propagate out­

side the processor is through I/O operations. RECVF forces a

checkpoint to be taken and fingerprints compared before each

I/O operation to ensure that I/O is done only with verified data.

3.3. Fault Recovery

When an error is detected, the two cores reset the program

counter to the instruction following the last verified instruction,

and restore the register state from the checkpoint store. All

978-1-4244-7501-8/10/$26.00 ©201O IEEE

unverified lines in the Ll cache are invalidated and then normal

execution resumes. Invalidating all unverified lines in the Ll

cache ensures that any updates performed to memory are undone.

Subsequent accesses to these lines will fetch the verified versions

from the L2 cache.

3.4. Fault Coverage

Since, RECVF is based on spatial redundancy [21], it can

detect faults that result in different architectural updates in the

two cores. This includes almost all soft errors and hard errors that

result in diverging architectural state across the cores. RECVF

provides a high degree of coverage for processor control and

execution logic. However, RECVF may not be able to cover

all faults that occur in the cache coherence related circuitry

because it does not redundantly access the memory hierarchy for

unverified cache lines obtained from cache-to-cache transfers.

4. Evaluatiou

4.1. Simulation Methodology

Table 2 - CMP configuration

of cores 8
Technology node 32 nm
Nominal frequency 3 GHz
Fetch/issue/retire 4/4/4 instructions per cycle
ROB size 128 instructions
IntlFP registers 1601128
IntegerlFP window 64/32 instructions
Load/store queue 32 instructions
MemlIntlFP units 4/6/4
I-cache 32k/64B/4-way/2 cycles
D-cache 64k/64B/4-way/2 cycles
Memory 400 cycles
Branch predictor hybrid of bimodal/gshare

16k entries in each predictor
Branch target buffer 4k entries, 4-way set-associative
Return address stack 32 entries
BOQ size 64 entries
IRQ size 512 entries
Checkpointing interval 50,000 instructions
Checkpointing latency 64 cycles

Shared L2 configuration
L2 16 MB/64B/8-way/40 cycles
Interconnect latency 24 cycles

Private L2 configuration
L2 2 MB x 8/64B/8-way/24 cycles
Interconnect latency 40 cycles

Configuration for the PYA architecture of Rashid et al. [20]
PCB size 1024 entries
PCB sections 8
PCB access hash table 257 entries
PCB access latency 8 cycles
Hash table access latency I cycle

LVQ size 512 entries (for CRT [19] only)

Our evaluation uses an appropriately modified version of the

SESC execution-driven simulator [8]. The simulator models an

out-of-order superscalar processor in a detailed manner and fully

125 DSN 2010: Subramanyan et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

�2.0��·�···�··�··�···�··�··�··�···�··�··�·�������======================================�
al1.S
N � 1.0
E
o 0.5

PLR+Fanout2+QSize

z

I ��iiiii.iblbiiiilliiiii
z 0.0 N >- c. u c. - L. - X L. C. :::J t: .", Q) to "0 � E Q) C c. .t: to u .- U Q) 0 Q) C. E - c. � '" .;:: U '" to ·N to Cl Cl � E � ;;: t: > 8: to to to Q) Cl to .3: .- Q)

..c b to .., 0 E to 5- E E b '" � E c. > to Q) .� :::J Cl '" ;;:

Figure 4 - Normalized IPC (above) and normalized energy (below) of the shared L2 configuration

simulates "wrong-path" instructions. Details of the CMP model

are given in Table 2.

In order to put our results in context, we compare our

architecture against two previous proposals: (I) the Parallelized

Verification Architecture (PVA) from [20] and (2) Chip-level

Redundantly Threaded (CRT) processors from [19].

To estimate energy consumption, we modified SESC's power

model, which is based on Wattch [6]. We included power models

for the IRQ, BOQ, the Post Commit Buffer (PCB) used in PYA

and the Load Value Queue (LV Q) used in CRT. CACTI 5.3

[23] was used to model the energy of the shared L2 cache. The

voltage-frequency levels for per-core DVFS used in our study

are shown in Table 3. We assume fine-grained, low-latency per­

core DVFS similar to the one proposed in [13]. The impact of

higher-latency coarse-grained DVFS is investigated in §4.4.

We show results for two CMP configurations. One is a

conventional CMP architecture with a 16 MB shared L2 cache.

The second configuration has a 2 MB private L2 cache associated

with each core. In the private-L2 configuration prefetch hints are

forwarded from the leading to the trailing core caches.

Workload: We simulated ten integer and ten floating point

benchmarks from the SPEC CPU 2000 benchmark suite. For

each benchmark, we executed a single SimPoint [24] of length

one billion instructions.

4.2. Shared L2 Configuration Results

4.2.1. IPC Results. The top half of figure 4 shows the IPC of

each of the benchmarks normalized by the IPC of the baseline

processor. The mean IPC degradation of PYA is 4.7%. PYA loses

978-1-4244-7501-8/101$26.00 ©2010 IEEE

performance mainly due to high PCB occupancy. A full PCB can

stall retirement in the leading core. CRT's mean IPC degradation

is 4%. In CRT, a store cannot retire from the leading core's

store buffer until it is verified by the trailing core. This creates

additional pressure on the store buffer. CRT has a performance

problem with mesa and vortex, both of which have a high

fraction of store instructions.

The RECVF configurations exhibit mean IPC degradation

varying between 0.5% and 1.4%. The worst performing bench­

mark for RECVF is apsi. Apsi is slowed down because of

high occupancy of the IRQ for certain phases of the program.

When the IRQ is full, the leading core is unable to make progress

because the trailing core cannot accept the critical values sent by

the leading core.

Figure 5 - Component-wise energy consumption breakdown
for the architectures evaluated across all the benchmarks.

4.2.2. Energy Results. The bottom half of figure 4 shows

energy consumption normalized by the energy consumption of

the baseline processor. PYA consumes 1.32 times the energy of

the baseline, while CRT consumes 1.52 times the energy of the

baseline. The RECVF configurations using PLR consume 1.26

times the energy of the baseline. FLR is somewhat successful in

trading-off lower fault coverage for reduced energy consumption

with a mean energy consumption of 1.20 times the baseline.

126 DSN 2010: Subramanyan et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

To understand these results better, we present a breakup of

the energy consumption in Figure 5.

We can make the following observations from the figure.

Firstly, as one would expect, the leading cores of each config­

uration dissipate roughly the same amount of energy. Secondly,

the trailing core in CRT consumes more energy than the trailing

cores in RECVF and PYA, because the latter are running at lower

voltage-frequency levels. A third interesting observation is that

PYA consumes significantly higher energy in the L2 cache. This

is because PYA stores verified lines in the L2 cache, which is

effectively equivalent to using a write-through policy for the Ll

cache.

4.3. Private L2 Configuration Results

4.3.1. IPC Results. The top half of figure 6 shows the nor­

malized IPC for the private-L2 configuration. The mean IPC

degradation for PYA with a single-ported PCB is 10.4%. Vortex
and sixtrack are the worst-affected benchmarks, with IPC

degradations of 22% and 19% respectively. This is due to in­

creased PCB occupancy caused by higher interconnect latencies.

CRT also performs poorly for this configuration, exhibiting a

mean IPC degradation of 9.3%. This is because of increased

occupancy of the store buffer. On an average, store buffer

occupancy for CRT is 2.2 times the store buffer occupancy for

the baseline processor. Compared to the results for the shared L2

configuration in §4.2, the problem here is exacerbated by higher

interconnect latencies. The architectures based on RECVF have a

much lower mean fPC degradation for this configuration, varying

between 2.2% and 3.9%.

4.3.2. Energy Results. The bottom half of figure 6 shows the

energy dissipation for the private L2 configuration. It is apparent

that PYA and CRT dissipate much more energy than RECVE

PYA with a single-ported PCB consumes 1.62 times the energy

of the baseline processor. CRT dissipates 1.92 times the energy of

the baseline. RECVF consumes 1.45 times the energy of baseline

processor for the PLR configuration. The FLR configurations

consume 1.39 times the energy of the baseline.

4.4. Impact of Coarse-grained DVFS

1.0

1.0

� 0.'

� 0.9
g
Z 0.8

0.8

5 I-IPC = Energyl
0

5

o·

5·

0

1 .35

1 .30

1

1

1 .15

5 1 � �
QS\'1e; o.lJ\fs\'1e·, 1/1��2e: lO/logtz.e: 0.1/1 'AA:: Q.ll11'8,pC: 1110 �PC 10/100 \'Pc: 0.1/11l'"

Figure 7 - Impact of the higher-latency and coarse-grained

DVFS.

Our baseline architecture uses fast fine-grained DVFS sim­

ilar to the proposal in [13] re-evaluating trailing core voltage-

978-1-4244-7501-8/10/$26.00 ©2010 IEEE

frequency level every 1 /-Ls. In this section we evaluate the impact

of more conservative per-core DVFS implementations.

Figure 7 shows the normalized IPC and energy values aver­

aged across all the benchmarks for a number of DVFS configura­

tions. These results are for the shared L2 configuration. The first

and fourth bars in the figure correspond to our baseline DVFS

architectures. The other bars show coarse-grained DVFS with

parameters indicated as latency/update interval below the bars.

For example, "0.1 ms/1 ms" means switching between voltage­

frequency levels takes 0.1 ms, and voltage-frequency levels of

the trailing core are re-evaluated every 1 ms.
IPC decreases with increasing DVFS update intervals. This

is because longer update intervals find it harder to track fine­

grained changes in program phase. However, energy consumption

remains roughly constant across all the DVFS configurations.

The IPC-DVFS algorithm suffers a performance loss of 9%

at alms update interval. In contrast, for the QSize-DVFS

algorithm even with a very conservative DVFS architecture that

updates the voltage-frequency level every I ms, the mean IPC

degradation is only 4% and the increase in energy dissipation is

restricted to a few percent. This is an important result, showing

that RECVF is applicable even for much more conservative per­

core DVFS implementations.

4.5. Impact of Limited Voltage Scaling

;.,l.
Cl
Qj l.
c:

UJ
"0
Q)
.!:::!
III
E
L.

o
Z

_ Baseline (0.6-1.0 V)

c=1 Umited Scaling (0.7-1.0 V)

Figure 8 - Impact of limited voltage scaling

Both our proposal and PYA rely on voltage and frequency

scaling in order to reduce energy dissipation. Aggressive voltage

scaling might prove to be difficult in future technology nodes.

Figure 8 shows the impact of reduced voltage scaling for the

private L2 configuration.

PYA's energy dissipation increases by 9.1%. RECVF's

PLR+QSize configuration's energy dissipation increases by only

6.8%. None of the RECVF configurations show an increase of

more than 8.25%.

4.6. Bandwidth Requirements

Figure 9 shows the average core-to-core bandwidth required

by each scheme in units of values per cycle. For PYA this

includes the bandwidth consumed by verifying stores, PCB

lookups and invalidation messages, but does not include the

127 DSN 2010: Subramanyan et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

Figure 6 - Normalized IPC (above) and normalized energy (below) of the private L2 configuration

Q)
� 0.45 .-----r-­
.. 0.40
� 0.35
� 0.30
� 0.25
> 0.20
� 0.15
� 0.10
� 0.05
� 0.00
f- �\lp..

Figure 9 - Core-to-core communication bandwidth.

bandwidth required for the additional writes performed to the

L2 cache.

The PLR based design for RECVF has the lowest bandwidth

requirement, while CRT and FLR have the two highest require­

ments. PVA has a bandwidth requirement that is slightly higher

than that of RECVE

5. Related Work

Execution Assistance: Fault detection using redundant execution

is a well studied topic. In particular, our work builds upon a rich

body of earlier work in the area of leader/follower architectures.

In such architectures, a single logical thread is executed using

two physical threads, a leading and a trailing thread. Typically

the leading thread assists the trailing thread in order to improve

the trailing thread's performance. This idea is referred to as

execution assistance and was introduced by Rotenberg in AR­

SMT [22]. AR-SMT forwarded branch outcomes and all values

as predictions to the trailing thread. Variants of this idea were

also explored in DIVA [3] and SRT [21].

A large number of subsequent papers have used some form

of execution assistance in the design of several interesting ar­

chitectures. Table 4 presents a classification of some proposed

978-1-4244-7501-8/10/$26.00 ©2010 IEEE

Values Forwarded Proposals
All values AR-SMT [22j, DIVA [3j, Slipstream'[3 I j,

Madan et. al [17].
Loads and branches SRT [21], CRT [19], SRTR [33], CRTR [10],

SpecIV [I S], EERE [29], MRE [30].
Branches only PVA [20], Paceline [I I], Decoupled perfor-

mance correctness[9j, Circuit pruning[18j.
Critical values RECVF

I. Slipstream's leader core forwards all values that it executes. However,
it may execute a subset of program due to ineffectual instruction elision.

Table 4 - Mechanisms for Execution Assistance

mechanisms and how they compare to RECVE The rest of this

subsection discusses these design options.

While forwarding all values provides the highest possible

speedup in the trailing thread, it also requires inordinately high

bandwidth. As a result it is mainly suited for use within the

components of a single processor core, like in the case of

AR-SMT and DIVA. Forwarding all values to a different core

is likely to require adjacent placement of cores. This reduces

scheduling flexibility. Note that AR-SMT and Slipstream assume

the presence of value-prediction support in the baseline processor

to detect errors in the forwarded values. In contrast, our proposal

is able to use forwarded values in the trailing core with very little

additional hardware.

SRT [21] introduced the idea of forwarding only load values

and branch outcomes from the leading to the trailing thread, an

approach which has been adopted in a large number of subsequent

proposals [10, 15, 19, 28, 30, 33]. Forwarding branch outcomes

eliminates branch mispredictions while forwarding load values

has two beneficial effects. Firstly, it eliminates data cache misses

in the trailing thread. Secondly, it solves the problem of input

incoherence. However, load and branch instructions form more

than one-third of the instruction mix of the SPEC CPU 2000

benchmarks. As such forwarding the results of these instructions

requires considerable bandwidth. Furthermore, all these proposals

suffer from reduced fault coverage because they do not fully re­

execute load instructions in the trailing core.

128 DSN 2010: Subramanyan et al.

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

Forwarding only branch outcomes has also been studied in

a few proposals. As shown in §2.5, CVF can provide much

higher speedup of the trailing core with only marginally higher

bandwidth requirements.

RECVF improves upon existing mechanisms for execution

assistance by focusing on critical instructions. Our results show

that nearly 80% of the speedup of forwarding all instructions

can be achieved by forwarding the results of just 10-15% of all

instructions.

Fault-Tolerant Architectures: Todd Austin introduced DIVA [3]

which is a novel fault detection and correction architecture. DIVA

uses an in-order checker processor to detect errors in a larger

out-of-order superscalar processor core. The checker processor

is fabricated using larger and more reliable transistors making

it less susceptible to soft and hard errors. While the DIVA

idea itself is quite robust, some implementation details are not

amenable to modem deep sub-micron technologies. Firstly, DIVA

cannot detect soft errors that occur in the checker processor.

Secondly, resources and functional units in the checker core are

unavailable for normal execution. In contrast, our architecture

gainfully employs the computing resources of the trailing cores

when redundant execution is disabled.

Transient fault detection using simultaneous multithreading

was introduced by Rotenberg in AR-SMT [22] and Reinhardt and

Mukherjee [21] in Simultaneously and Redundantly Threaded

(SRT) processors. An SRT processor augments SMT processors

with additional architectural structures like the branch outcome

queue and load value queue for transient fault detection. Since

an SRT processor provides an unpredictable combination of

space and time redundancy, it cannot guarantee the detection of

permanent faults. Moreover, SRT has a performance overhead of

about 20-30% compared to the baseline processor, and consumes

about 1.5-1.6X the energy. Muhkerjee et al. also introduced chip­

level redundant threading (CRT) [19], which extends SRT to

simultaneously multithreaded chip multiprocessors. Gomaa et al.

studied Chip-level Redundant Threading with Recovery (CRTR)

[10], which uses the state of the trailing thread to recover from

an error. Our evaluation has shown that RECVF provides better

performance and energy efficiency than CRT. We expect that

RECVF will also outperform CRT derivatives such [10, 17]

because these proposals add additional overheads to CRT to

provide recovery.

Rashid et al. [20] proposed the parallelized verification ar­

chitecture (PVA) for fault-tolerant CMPs which saves energy

by parallelizing the verification and executing it on two cores.

The verification cores are operated at half frequency and voltage

levels. Our evaluation shows that that although PYA decreases

trailing cores' power significantly, this comes at the expense of in­

creased L2 cache power. RECVF has higher energy efficiency and

lower performance degradation than PYA. Furthermore, PYA uses

three cores to execute a single logical thread, while RECVF uses

only two. Consequently, RECVF also delivers higher throughput

than PYA.

Smolens et al. [26] introduced fingerprinting, which reduces

the bandwidth required for state comparison. Fingerprinting sum­

marizes the execution history and current state of a processor

using a hash value. Transient faults are detected by differences in

the hash value computed by the two cores. A related architecture

978-1-4244-7501-8/10/$26.00 ©201O IEEE

is Reunion [27] which provides input replication in chip multi­

processors without the requirement of lockstepped execution by

reusing the soft error handling mechanisms for dealing with input

incoherence. Reunion requires complex changes to the cache

coherence controller which is a component that is difficult to

design and verify. RECVF provides fault coverage comparable

to that of Reunion at a lower complexity and energy cost.

In [28, 29], we explored the idea of per-core DVFS to reduce

power in a CRT like architecture. That work was able to show

power savings for programs which had poor branch predictor and

L 1 data cache performance by utilizing the slack created by these

miss events to operate the trailing core at a lower frequency. The

idea of critical value forwarding introduced in this paper does

not rely on these programs properties.

In [30], we introduced the idea of Multiplexed Redundant

Execution (MRE). MRE uses the idea of coarse-grained multi­

threading to execute multiple trailing threads on a single core,

thereby improving CMP throughput. Although MRE does not

directly decrease core power, it reduces overall system power by

using fewer cores to redundantly execute a given set of programs.

Speculative Mechanisms for Performance Improvement:

Paceline [11] is a proposal for CMP performance improvement

that operates the leading core at higher than its nominal fre­

quency. In effect, the leading core performs timing speculation,

while the trailing core is used to detect errors. RECVF differs

from Paceline in two importance aspects. Firstly, timing spec­

ulation is orthogonal to our proposal. Secondly, critical value

forwarding is more effective than branch outcome forwarding at

speeding up the trailing core. Figure 3 suggests that RECVF may

perform energy-efficient timing speculation more effectively than

Paceline. We leave exploration of this idea for future work.

Slipstream [31] is another proposal for performance enhance­

ment that speeds up the leading core by detecting and eliding

"ineffectual instructions". The leading core speculatively removes

ineffectual instructions from the execution stream, and uses the

trailing core to fix up the results of misspeculation. Circuit prun­

ing [18], and performance correctness decoupled architectures [9]

are two different mechanisms that target performance improve­

ment using leader-follower configurations. Circuit pruning prunes

the hardware of the leader core to produce a smaller, but not fully

correct core that can operate at a higher frequency. The pruned

core assists the execution of a functionally correct trailing core.

The decoupled performance correctness architecture executes a

"skeleton" program on the leading core which generates branch

outcomes and cache prefetches for the trailing core. Unlike

RECVF, all these proposals implement some form of speculation

in the leading core to improve its performance. These speculative

mechanisms are orthogonal to RECVF, and can potentially be

synergistically combined with RECVF to produce interesting

architectures that provide energy-efficient fault-tolerance while

simultaneously increasing performance.

6. Conclusion

Decreasing feature sizes, lower design tolerances and higher

operating temperatures have resulted in the emergence of wear­

out related permanent faults and transient faults as significant

concerns in modem microprocessors.

129 DSN 2010: Subramanyan et al.

20 l O IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

In this paper, we showed the design of an energy-efficient

fault-tolerant microarchitecture for chip multiprocessors. Our

proposal introduces the idea of critical value forwarding (CVF), a

technique that improves the performance of redundant execution

by forwarding results of critical instructions from the leading core

to the trailing core. We proposed heuristics for identifying critical

values and showed how CVF can improve the performance of

the trailing core without any loss in fault coverage. We proposed

two algorithms for per-core dynamic voltage-frequency scaling

(DVFS) to exploit the slack created by CVE

Our evaluation showed that RECVF has a performance over­

head of less than 1.2% for a shared-L2 CMP and consumed only

1.26 times the energy of the baseline processor. For a future CMP

with higher latency interconnects and private L2 caches, RECVF

had a performance overhead of less than 4.0% and consumed

1.45 times the energy of the baseline processor. We compared

RECVF to two previous proposals for fault-tolerant CMPs and

found that RECVF delivered higher energy-efficiency and lower

performance degradation than either of the proposals.

Acknowledgements

We would like to thank the anonymous reviewers for their

insightful comments which improved the quality of this paper.

This work is partially supported by the Swedish Foundation

for International Cooperation in Research and Higher Education

through an institutional grant for younger researchers and by the

National Science Foundation under the grant CPA-0811467.

References

[1] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith. Config­
urable isolation: building high availability systems with commodity
multi-core processors. In Proceedings of the 34th ISCA , pages 470-
481, 2007.

[2] T. Austin, V. Bertacco, S. Mahlke, and Yu Cao. Reliable Systems
on Unreliable Fabrics. IEEE Des. Test, 25(4) :322-332, 2008.

[3] Todd Austin. DIVA: A Reliable Substrate For Deep Submicron
Microarchitecture Design. In Proceedings of the 32nd MICRO,
pages 196-207, 1999.

[4] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine,
J. Klecka, and J. Smullen. NonStop@ Advanced Architecture. In
Proceedings of DSN, pages 12-21, 2005.

[5] S. Y. Borkar. Designing Reliable Systems from Unreliable Com­
ponents: The Challenges of Transistor Variability and Degradation.
IEEE Micro, 25(6):10-16, 2005.

[6] D. Brooks et al. Wattch: A Framework for Architectural-level Power
Analysis and Optimizations. Proceedings of the 2 7th ISCA, pages
83-94, 2000.

[7] I. Parulkar et al. OpenSPARC: An Open Platform for Hardware
Reliability Experimentation. Fourth Workshop on Silicon Errors in
Logic-System Effects (SELSE), 2008.

[8] J. R enau et al. SESC Simulator. http://sesc.sourceforge.netJ, 2005.
[9] A. Garg and M. Huang. A Performance Correctness Explicitly­

Decoupled Architecture. Proceedings of the 38th MICRO, pages
306-317, 2008.

[10] M. Gomma, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz.
Transient-Fault Recovery for Chip Multiprocessors. Proceedings of

the 30th ISCA , pages 98-109, 2003.
[11] B. Greskamp and J. Torrellas. Paceline: Improving Single-Thread

Performance in Nanoscale CMPs through Core Overclocking. In
Proceedings of the 1 6th PACT, pages 213-224, 2007.

978-1-4244-7501-8/10/$26.00 ©20 l O IEEE

[12] C. Isci, A. Buyuktosunoglu, C-Y. Cher, P. Bose, and M. Martonosi.
An Analysis of Efficient Multi-Core Global Power Management
Policies: Maximizing Performance for a Given Power Budget.
Proceedings of the 39th MICRO, pages 347-358, 2006.

[13] W. Kim, M. S. Gupta, Wei Gu-Yeon, and D. Brooks. System level
analysis of fast, per-core DVFS using on-chip switching regulators.
Proceedings of the 14th HPCA, pages 123-134, 2008.

[14] I. Koren and C. M. Krishna. Fault Tolerant Systems. Morgan
Kaufmann Publishers Inc., 2007.

[15] S. Kumar and A. Aggarwal. Speculative instruction validation for
performance-reliability trade-off. Proceedings of the 14th HPCA ,
pages 405-414, 2008.

[16] M. Kyrman, N. Kyrman, and J. F. Martinez. Cherry-MP: Correctly
Integrating Checkpointed Early Resource Recycling in Chip Mul­
tiprocessors. In Proceedings of the 38th MICRO, pages 245-256,
2005.

[17] N. Madan and R. Balasubramonian. Power-efficient Approaches
to Redundant Multithreading. IEEE Transactions on Parallel and

Distributed Systems, pages l O66-l O79, 2007.
[18] Francisco Mesa-Martinez and Jose Renau. Effective Optimistic­

Checker Tandem Core Design Through Architectural Pruning. Pro­

ceedings of the 37th MICRO, pages 236-248, 2007.
[19] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed Design

and Evaluation of Redundant Multithreading Alternatives. Proceed­

ings of the 29th ISCA , pages 99-110, 2002.
[20] M. W. Rashid, E. J. Tan, M. C. Huang, and D. H. Albonesi.

Exploiting Coarse-Grain Verification Parallelism for Power-Efficient
Fault Tolerance. Proceedings of the 14th International Conference

on Parallel Architectures and Compilation Techniques, pages 315-
328, 2005.

[21] S. K. Reinhardt and S. S. Mukherjee. Transient Fault Detection via
Simultaneous Multithreading. Proceedings of the 2 7th ISCA, pages
25-36, 2002.

[22] E. R otenberg. AR-SMT: A Microarchitectural Approach to Fault
Tolerance in a Microprocessor. Proceedings of FTCS, pages 84-91,
1999.

[23] S. Thoziyoor et al. C ACTI 5.1. Technical Report HPL-2008-20,
HP Lobs, 2008.

[24] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automat­
ically Characterizing Large Scale Program Behavior. Proceedings
of the 10th ASPLOS, Oct. 2002 , pages 45-57.

[25] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi.
Modeling the E ffect of Technology Trends on the Soft Error Rate
of Combinational Logic. Proceedings of the 32nd DSN, pages 389-
398, 2002.

[26] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe, and A. G.
Nowatzyk. Fingerprinting: Bounding soft error detection latency
and bandwidth. Proceedings of the 9th ASPLOS, pages 224-234,
2004.

[27] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe. Reunion:
Complexity-Effective Multicore Redundancy. Proceedings of the
39th MICRO, pages 223-234, 2006.

[28] P. Subramanyan, V. Singh, K. K. Saluja, and E. Larsson. Power­
Efficient Redundant Execution for Chip Multiprocessors. Proceed­

ings of 3rd WDSN, 2009.
[29] P. Subramanyan, V. Singh, K. K. Saluja, and E. Larsson. Energy­

Efficient Redundant Execution for Chip Multiprocessors. Proceed­

ings of 20th GLSVLSI, 2010.
[30] P. Subramanyan, V. Singh, K. K. Saluja, and E. Larsson. Mul­

tiplexed Redundant Execution: A Technique for Efficient Fault
Tolerance in Chip Multiprocessors. Proceedings of DATE, 20 l O.

[31] K. Sundaramoorthy, Z. Purser, and E. Rotenburg. Slipstream
Processors: Improving Both Performance and Fault Tolerance. In
Proceedings of the 9th ASPLOS, pages 257-268, 2000.

[32] E. Tune, D. Liang, D. M. Tullsen, and B. Calder. Dynamic
prediction of critical path instructions. In Proceedings of the 7th
HPCA, pages 185-195, 2001.

[33] T. N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-fault
Recovery Using Simultaneous MUltithreading. Proceedings of the
29th ISCA , pages 87-98, 2002.

130 DSN 20 l O: Subramanyan et al.

