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Abstract 

Relentless CMOS scaling coupled with lower design toler­

ances is making ICs increasingly susceptible to wear-out re­

lated permanent faults and transient faults, necessitating on-chip 

fault tolerance in future chip microprocessors (CMPs). In this 

paper we introduce a new energy-efficient fault-tolerant CMP 

architecture known as Redundant Execution using Critical Value 

Forwarding (RECVF). RECVF is based on two observations: 

(i) forwarding critical instruction results from the leading to 

the trailing core enables the latter to execute faster, and (ii) 

this speedup can be exploited to reduce energy consumption by 

operating the trailing core at a lower voltage-frequency level. 

Our evaluation shows that RECVF consumes 37% less energy 

than conventional dual modular redundant (DMR) execution of 

a program. It consumes only 1.26 times the energy of a non­

fault-tolerant baseline and has a performance overhead of just 

1.2%. 

1. Introduction 

Over the last three decades, continued scaling of silicon 

fabrication technology has permitted exponential increases in 

the transistor budgets of microprocessors. In the past, higher 

transistor counts were used to increase the performance of 

single processor cores. However increasing complexity and power 

dissipation of these cores forced architects to tum to chip 

multiprocessors (CMPs) in order to deliver increased performance 

at a manageable level of power and complexity. While deep 

sub-micron technology is enabling the placement of billions of 

transistors on a single chip, it also poses unique challenges. ICs 

are now increasingly susceptible to soft errors [25], wear-out 

related permanent faults and process variations [2, 5]. 

Traditionally, high availability systems have been restricted to 

the domain of mainframe computers or specially designed fault­

tolerant systems [4, 14]. However, the trend towards unreliable 

components means that fault tolerance is now important for 

the commodity market as well [1]. Fault-tolerant solutions for 

the commodity market have different requirements and present 

a different set of design challenges. The commodity market 

requires configurable [1] and low cost fault tolerance. CMPs are 

appealing in this context as they inherently provide replicated 
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hardware resources which can be exploited for error detection 

and recovery. A number of proposals [1, 10, 11, 17, 19, 20, 26--

31] have attempted to take advantage of these aspects of CMPs 

to provide fault tolerance. 

An important aspect of fault-tolerant CMP designs is their 

energy-efficiency. Power and peak temperature are key perfor­

mance limiters for modem processors [12]. Since the power 

budget for a chip is fixed, decreasing the power consumed in 

any core increases the power available to other cores. This 

enables them to operate at a higher frequency, increasing overall 

system performance. Furthermore, reducing power dissipation 

has an additional advantage of reducing operating temperatures, 

which can increase chip lifetimes by an order of magnitude [7]. 

Reducing the energy overhead of fault tolerance schemes is also 

important from the point of view of data center energy. Data 

center energy consumption is expected to reach an unprecedented 

level of 100 billion kilowatt hours by 2011. Unreliable chip 

components would imply that a significant fraction of future data 

centers would require fault tolerance mechanisms to cope with 

hardware faults. Clearly, there is a pressing need for energy­

efficient fault-tolerant architectures for future microprocessors. 

In this paper, we propose Redundant Execution using Critical 

Value Forwarding (RECVF), an architecture for energy-efficient 

fault-tolerant CMPs. RECVF executes one logical thread on two 

cores of a CMP. One of these cores is designated as the leading 

core, while the other is designated as the trailing core. The first 

contribution of this paper is the introduction of the idea of critical 

value forwarding (CVF). In an RECVF processor, the leading 

core assists the execution of the trailing core by forwarding the 

results of instructions on the critical path. CVF breaks data 

dependence chains in the trailing core because the results of 

instructions on the critical path are made available to the trailing 

core even before they complete execution. This in tum allows 

instructions dependent on these instructions to execute earlier, 

creating a cascade effect that improves the performance of the 

trailing core. 

RECVF solves the following key challenges in design of such 

an architecture: 
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1) Identifying instructions on the critical path. The challenge 

here is to identify a few critical instructions that have the 

most impact on performance. 

2) Designing mechanisms for transferring the results of these 

instructions from the leading to the trailing core. 

3) Validating the forwarded values in the trailing core to 
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Figure 1 - CMP Block Diagram 

ensure correct operation even in the presence of an error 

in the forwarded values. 

Our second main contribution is to combine the idea of 

critical value forwarding with that of per-core Dynamic Voltage­

Frequency Scaling (DVFS) [12, 13]. This allows the trailing 

core to execute at a much lower frequency than the leading 

core, significantly reducing the energy overhead of redundant 

execution. We propose two new algorithms for per-core DVFS 

in this context and examine the energy savings due to these. 

We evaluate RECVF extensively and compare it with two 

previous proposals for energy-efficient fault-tolerant CMPs. Our 

evaluation shows that for a conventional CMP with a shared 

L2 cache, RECVF has a performance loss of less than 1.2% 

and consumes 1.26 times the energy of the non-fault-tolerant 

baseline processor. In comparison, the Parallelized Verification 

Architecture (PVA) proposed by Rashid et al. [20] has a per­

formance loss of 4.7% and consumes 1.32 times the energy of 

the baseline. Mukherjee and Reinhardt's Chip-level Redundantly 

Threaded (CRT) [19] processor has a performance loss of 4.6% 

and an energy consumption of 1.52 times the baseline. For 

a future CMP architecture with private L2 caches and higher 

interconnect latencies, RECVF has a performance loss of 3.9% 

and an energy consumption of 1.45 times the baseline processor. 

In comparison, PYA and CRT have a performance loss for 10.4% 

and 9.3%, and consume 1.62 and 1.92 times the energy of the 

baseline processor respectively. 

2. Description of Architecture 

RECVF provides fault tolerance by executing a single logical 

thread on two cores of CMP. One of these cores is designated 

as the leading core while the other is designated as the trailing 

core. The two cores are assumed to be connected by a shared 

interconnect. The leading and trailing cores exchange information 

over this interconnect. In our implementation, we use a shared 

bus as the interconnect. However, RECVF is amenable to imple­

mentation over more complex interconnects such as NoCs. 

Figure I shows an eight core RECVF CMP executing three 

logical threads requiring fault tolerance. The configuration shown 

depicts each core with a private LI cache and all the cores sharing 

a single L2 cache. RECVF can be used in implementations with 

private L2 caches as well. The following subsections describe the 

operation of each component of an RECVF processor. 
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Figure 2 - An RECVF processor core. 

2.1. Core Architecture 

Figure 2 shows the block diagram of an RECVF processor 

core. The processor pipeline is augmented with three additional 

structures, the branch outcome queue (BOQ), the instruction 

result queue (IRQ) and circuitry implementing a critical value 

identification heuristic. The BOQ and IRQ are used only in the 

trailing core, while critical value identification is performed only 

in the leading core. 

2.1.1. Identifying Critical Values. Our approach to identifying 

critical path instructions is similar to that proposed in [32]. The 

basic idea is to mark an instruction as critical if it satisfies certain 

marking criteria during its execution. We evaluated a number of 

critical value identification heuristics based on this principle. A 

list of these is shown in table I. 

2.1.2. Handling Branch/Jump Instructions. Branch/Jump in­

structions are handled differently for the purposes of critical value 

identification. RECVF marks mispredicted branch instructions 

as critical. The target addresses of mispredicted branches are 

forwarded from the leading to the trailing core. In the trailing 

core, these addresses are used as predictions. As will be seen 

in §2.5, this mechanism provides almost the same speedup as 

forwarding the results of all branch instructions, but requires very 

little bandwidth. 

2.2. Operation of the Leading Core 

With the exception of critical value marking and forwarding, 

the leading core operates like conventional superscalar processor 

cores. Critical value forwarding is done after instruction retire­

ment. 

Both leading and trailing core execute instructions in chunks. 

When the leading core finishes the execution of a chunk it 

requests the trailing core to execute that chunk. An instruction 

index within the current chunk is forwarded along with the value 

by the leading core. This index is used by the trailing core to 

map forwarded instruction results to instructions. 
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Heuristic Marking Criteria Rationale 

1 robStall Instruction at the head of ROB prevents Instructions that are unable to execute until they reach the head of 

retirement because it is not yet executed. the ROB are likely to be on the critical path. 

2 instQHead Instruction reaches head of instruction Instructions unable to execute until they reach the head of of the 

queue before being selected for execution. instruction queue are likely to be on the critical path. 

3 instQHFree Instruction produces a value that frees an Forwarding this value may help the dependent instructions execute 

instruction at the head of its queue. earlier in the trailing core. 

4 freedN Instruction freed at least N instructions for An instruction that frees a large number of other instructions for 

execution when it completed. execution is more likely to be on the critical path. 

S fanoutN Instruction produces a value that is used by An instruction that produces a value that a large number of other 

at least N other in-flight instructions. instructions use is likely to be on the critical path. 

6 everyN Every Nth instruction is marked as critical. A simple heuristic that serves as a benchmark for comparison against 

more sophisticated heuristics. 

7 allBJ All branch/jump instruction outcomes are This policy estimates the speedup obtained by forwarding just branch 

forwarded. instructions. 

8 mispredBJ Only mispredicted branch/jump instruction This policy compares the loss in speedup due to forwarding mis-

outcomes are forwarded. predicted branch outcomes in comparison to forwarding all branch 

outcomes. 

9 loadsOnly Only mispredicted branches and load values This is the baseline for full load replication (FLR). (See §2.4.) 
are forwarded. 

10 all All possible values are forwarded. Corresponds to an oracle heuristic given infinite storage space and 

infinite bandwidth. 

Table 1 - Description of Critical Instruction Identification Heuristics 

2.3. Operation of the Trailing Core 

2.3.1. Operation of the BOQ. The trailing core stores the 

branch outcomes it receives in the branch outcome queue (BOQ). 

Unlike previous implementations of the BOQ our implementation 

is different because it does not store the targets of all branch 

instructions. A branch outcome is mapped to a branch instruction 

using the index transmitted by the leading core. When a branch 

instruction is fetched, if the target address is present in the BOQ, 

then this outcome is used to override the output of the branch 

predictor. 

2.3.2. Operation of the IRQ. The trailing core stores the results 

of instructions other than branch instructions in the Instruction 

Result Queue (IRQ). Like the BOQ, the IRQ also stores an index 

along with the value to map instruction results to instructions. At 

the time of dispatch, the IRQ is examined to see if the result of 

this particular instruction is available. If so, the IRQ is read and 

its value is written into the register file. This allows dependent 

instructions of this instruction to begin execution immediately. 

2.4. Options for Input Replication 

An important issue that needs to be addressed in a system for 

redundant execution is how inputs to the two cores are replicated. 

In any fault-tolerant CMP proposal that does not use lockstepped 

execution, there is a delay between the time a load instruction 

is executed by the leading core and the time it is executed by 

the trailing core. Between these two events, a different processor 

may modify the value stored in the memory location addressed 

by the load. This may cause the trailing core to read an incorrect 

value, resulting in a problem referred to as the input incoherence 

problem. 
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The default implementation of RECVF, which we refer to 

as partial load replication (PLR), fully re-executes most load 

instructions in the trailing core. The only load instructions that are 

not re-executed are those that read from cache lines obtained from 

cache-to-cache transfers (see §3.2). Although we do not show 

the results here, experiments with the SPLASH2 benchmarks 

revealed that PLR re-executes 93% of all load instructions. Note 

that for a single-threaded program, all load instructions are fully 

re-executed. Hence, PLR has most of the fault-coverage of a 

mechanism that fully re-executes loads without the corresponding 

complexity and performance/energy costs. 

We also study the option of full load replication (FLR). FLR 

works like SRT/CRT [19, 21] and replicates the results of all load 

instructions in the leading core and transfers them to the trailing 

core. This option is expected to perform better at the cost of 

lower fault coverage and a higher bandwidth requirement. 

2.5. Effectiveness of Heuristics for Critical 
Value Identification 

Figure 3 shows the performance of the critical value identifica­

tion heuristics. The graph shows the mean speedup of the trailing 

core over the leading core averaged across the SPEC benchmark 

suite. Speedup is the ratio of the IPC of the trailing core to that of 

leading core. Both cores are operated at the nominal frequency. 

The IPC of the trailing core is computed only over its active 

period, Le., excluding the regions of time between the completion 

of chunk i and the start of execution of chunk i + 1 arrives. Note 

that is a conservative estimate of the speedup. Section 4.1 has 

further details on our methodology. 

CVF has a large impact on the performance of the trailing 

core. The trailing core experiences speedups of up to 1.6X and 

2.2X over the leading core for PLR and FLR respectively. This 

means that the trailing core can be operated at approximately 0.6 
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Figure 3 - Performance of the critical value identification heuristics that we examine. 

times the frequency of the trailing core for the PLR configuration, 

while it can be operated at less than half the frequency of the 

leading core for the FLR configuration. The best performing 

heuristic is fanout2, and we report results only for this heuristic. 

2.6. DVFS in the Trailing Core 

Critical value forwarding creates slack in the trailing core 

which can be exploited by operating the core at a lower voltage­

frequency level. However, the slack is not constant for all 

programs. It also varies with program phases. When the leading 

core is executing a phase of high IPC, there is less slack to 

be exploited in the trailing core, and vice versa. Therefore, the 

challenge is to dynamically set the voltage-frequency level of the 

trailing core based on the program phase behavior. In this section 

we describe two algorithms that attempt this. 

2.6.1. QSize-DVFS algorithm. This algorithm is based on the 

observation that the sizes of the BOQ and the IRQ are an 

indication of how far behind the trailing core is as compared to 

the leading core. Therefore, when a program goes from a phase 

of low IPC to one of high IPC, the trailing core will be unable 

to keep up, and the occupancy of these queues will increase. 

Such an occurrence indicates that the frequency of the trailing 

core ought to be increased. Conversely, if the queues are nearly 

empty, then it means that the trailing core is able to easily keep 

up with the leading core. In this scenario, the frequency of the 

trailing core ought to be decreased. 

The QSize-DVFS algorithm implements exactly this idea. It 

maintains four thresholds: low and high thresholds for the BOQ 

and IRQ. Periodically, the sizes of the queues are compared to 

thresholds. If one of the queue sizes is less than the low threshold, 

then the frequency is decreased. If one of the sizes are greater 

than the high thresholds, then the frequency is increased. 

We experimented with a number of different values for the 

thresholds and chose the configuration which minimized the 

ED2 (energy-delay-square) product across all the benchmarks. 

Although we do not report the results here, we observed very 

little variation (less than 2%) across different threshold values. 

2.6.2. IPC-DVFS algorithm. The IPC-DVFS algorithm takes a 

direct approach to determining the frequency of operation the 
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trailing core. The idea behind this algorithm is use the ratio of 

the IPCs of the two cores to set the frequency of the trailing 

core. For example, if, for a certain period of execution, the IPC 

of the leading core is 1.0, while that of the trailing core is 2.0, 

then the trailing core ought be operated at half the frequency of 

the leading core. 

The IPC-DVFS algorithm generalizes this idea in the follow­

ing way. The two cores keep track of their respective IPC over 

the DVFS update interval. At the end of the interval, the ratio 

of the leading core IPC to the trailing core IPC is taken, and a 

scaled version of this value is used to set the frequency of the 

trailing core for the next interval. 

3. Fault Tolerance Mechanisms 

Any fault-tolerant system needs to address four important 

issues: fault detection, fault isolation, fault recovery and fault 

coverage. The following subsections discuss these topics in the 

context of RECVE 

3.1. Fault Detection 

To detect faults, RECVF needs to compare the outputs of the 

leading and trailing cores that execute a single logical thread. 

To do this, the set of cores executing a program periodically 

synchronize and exchange fingerprints [26]. A fingerprint is a 

CRC-based hash of the architectural updates of the processor. 

The hash incorporates register updates, load store addresses 

and branch targets. The fingerprint is updated every cycle after 

instruction retirement. It is exchanged with the partner core at 

the time of a fingerprint comparison. Faults are detected when 

fingerprints are exchanged and at least one of the cores detects a 

mismatch in the fingerprints. If the fingerprints do not match, an 

error recovery operation is triggered. If the fingerprints match, 

then the current register state is stored in a checkpoint store and 

all lines in the cache are marked verified (See §3.2). 

3.1.1. Verification of Forwarded Values. A value forwarded 

from the leading to the trailing core may be corrupted due to 

the occurrence of an error. At first glance, it appears as if we 

need an additional mechanism to verify the correctness of each 
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value that is forwarded from the leading core. However, the 

key observation here is that fingerprinting can be used to detect 

the occurrence of errors in the forwarded values. To see why, 

assume that an instruction ix in the leading core forwards an 

erroneous value corresponding to the instruction i� in the trailing 

core. Assume without loss of generality that ix is the earliest 

instruction that forwards an erroneous value to the trailing core. 

When i� executes in the trailing core, its input operands will have 

the correct (Le. error-free) values and will compute the correct 

result. Consequently, since ix and i� generate different results 

(one correct and one erroneous), the fingerprints computed in the 

two cores will be different. This enables detection of the error. 

3.2. Fault Isolation 

When a fault occurs in RECVF, it may be detected only 

when the next fingerprint comparison occurs. Between the time 

that the fault occurs and the time it is detected, the fault must 

not propagate outside the CMP or to other executing processes. 

This property is called fault isolation. In a CMP, there are two 

ways in which a fault can propagate outside the CMP or to other 

processes. 

Firstly, a corrupted cache block may be replaced and written 

back to a lower level of the memory hierarchy, from where it can 

propagate to main memory or other processes. This is prevented 

by using a cache architecture that is similar to speculative 

versioning caches [16]. 

The cache in an RECVF CMP stores an unverified bit along 

with every cache line in the Ll data cache. Any write to a cache 

line sets the unverified bit. If the unverified bit is set, a cache 

line is deemed to be locked and is not allowed to be written back 

to a lower level of the memory hierarchy. When fingerprints are 

compared and found to match, the unverified bits of all lines in 

the cache are cleared. When a verified line is marked unverified, 

the line must be written back to a lower level cache. If a line 

needs to be replaced and all the lines in its set are locked, all the 

processors synchronize and a fingerprint comparison is initiated. 

Execution proceeds after the fingerprint comparison succeeds. 

For correct execution of multithreaded workloads, the unveri­

fied bit must be transmitted along with the data when one cache 

supplies data to another cache. RECVF implements partial load 

replication (PLR) by forwarding load values from the leading to 

the trailing core for all cache lines obtained from cache-to-cache 

transfers. This requires the storage of one more bit along with 

each cache line in the Ll data cache. This bit is called the C2C 

and identifies unverified cache lines obtained from cache-to-cache 

transfers. It is cleared when the line is marked verified. 

The second method by which a fault may propagate out­

side the processor is through I/O operations. RECVF forces a 

checkpoint to be taken and fingerprints compared before each 

I/O operation to ensure that I/O is done only with verified data. 

3.3. Fault Recovery 

When an error is detected, the two cores reset the program 

counter to the instruction following the last verified instruction, 

and restore the register state from the checkpoint store. All 
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unverified lines in the Ll cache are invalidated and then normal 

execution resumes. Invalidating all unverified lines in the Ll 

cache ensures that any updates performed to memory are undone. 

Subsequent accesses to these lines will fetch the verified versions 

from the L2 cache. 

3.4. Fault Coverage 

Since, RECVF is based on spatial redundancy [21], it can 

detect faults that result in different architectural updates in the 

two cores. This includes almost all soft errors and hard errors that 

result in diverging architectural state across the cores. RECVF 

provides a high degree of coverage for processor control and 

execution logic. However, RECVF may not be able to cover 

all faults that occur in the cache coherence related circuitry 

because it does not redundantly access the memory hierarchy for 

unverified cache lines obtained from cache-to-cache transfers. 

4. Evaluatiou 

4.1. Simulation Methodology 

Table 2 - CMP configuration 

# of cores 8 
Technology node 32 nm 
Nominal frequency 3 GHz 
Fetch/issue/retire 4/4/4 instructions per cycle 
ROB size 128 instructions 
IntlFP registers 1601128 
IntegerlFP window 64/32 instructions 
Load/store queue 32 instructions 
MemlIntlFP units 4/6/4 
I-cache 32k/64B/4-way/2 cycles 
D-cache 64k/64B/4-way/2 cycles 
Memory 400 cycles 
Branch predictor hybrid of bimodal/gshare 

16k entries in each predictor 
Branch target buffer 4k entries, 4-way set-associative 
Return address stack 32 entries 
BOQ size 64 entries 
IRQ size 512 entries 
Checkpointing interval 50,000 instructions 
Checkpointing latency 64 cycles 

Shared L2 configuration 
L2 16 MB/64B/8-way/40 cycles 
Interconnect latency 24 cycles 

Private L2 configuration 
L2 2 MB x 8/64B/8-way/24 cycles 
Interconnect latency 40 cycles 

Configuration for the PYA architecture of Rashid et al. [20] 
PCB size 1024 entries 
PCB sections 8 
PCB access hash table 257 entries 
PCB access latency 8 cycles 
Hash table access latency I cycle 

LVQ size 512 entries (for CRT [19] only) 

Our evaluation uses an appropriately modified version of the 

SESC execution-driven simulator [8]. The simulator models an 

out-of-order superscalar processor in a detailed manner and fully 
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Figure 4 - Normalized IPC (above) and normalized energy (below) of the shared L2 configuration 

simulates "wrong-path" instructions. Details of the CMP model 

are given in Table 2. 

In order to put our results in context, we compare our 

architecture against two previous proposals: (I) the Parallelized 

Verification Architecture (PVA) from [20] and (2) Chip-level 

Redundantly Threaded (CRT) processors from [19]. 

To estimate energy consumption, we modified SESC's power 

model, which is based on Wattch [6]. We included power models 

for the IRQ, BOQ, the Post Commit Buffer (PCB) used in PYA 

and the Load Value Queue (LV Q) used in CRT. CACTI 5.3 

[23] was used to model the energy of the shared L2 cache. The 

voltage-frequency levels for per-core DVFS used in our study 

are shown in Table 3. We assume fine-grained, low-latency per­

core DVFS similar to the one proposed in [13]. The impact of 

higher-latency coarse-grained DVFS is investigated in §4.4. 

We show results for two CMP configurations. One is a 

conventional CMP architecture with a 16 MB shared L2 cache. 

The second configuration has a 2 MB private L2 cache associated 

with each core. In the private-L2 configuration prefetch hints are 

forwarded from the leading to the trailing core caches. 

Workload: We simulated ten integer and ten floating point 

benchmarks from the SPEC CPU 2000 benchmark suite. For 

each benchmark, we executed a single SimPoint [24] of length 

one billion instructions. 

4.2. Shared L2 Configuration Results 

4.2.1. IPC Results. The top half of figure 4 shows the IPC of 

each of the benchmarks normalized by the IPC of the baseline 

processor. The mean IPC degradation of PYA is 4.7%. PYA loses 
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performance mainly due to high PCB occupancy. A full PCB can 

stall retirement in the leading core. CRT's mean IPC degradation 

is 4%. In CRT, a store cannot retire from the leading core's 

store buffer until it is verified by the trailing core. This creates 

additional pressure on the store buffer. CRT has a performance 

problem with mesa and vortex, both of which have a high 

fraction of store instructions. 

The RECVF configurations exhibit mean IPC degradation 

varying between 0.5% and 1.4%. The worst performing bench­

mark for RECVF is apsi. Apsi is slowed down because of 

high occupancy of the IRQ for certain phases of the program. 

When the IRQ is full, the leading core is unable to make progress 

because the trailing core cannot accept the critical values sent by 

the leading core. 

Figure 5 - Component-wise energy consumption breakdown 
for the architectures evaluated across all the benchmarks. 

4.2.2. Energy Results. The bottom half of figure 4 shows 

energy consumption normalized by the energy consumption of 

the baseline processor. PYA consumes 1.32 times the energy of 

the baseline, while CRT consumes 1.52 times the energy of the 

baseline. The RECVF configurations using PLR consume 1.26 

times the energy of the baseline. FLR is somewhat successful in 

trading-off lower fault coverage for reduced energy consumption 

with a mean energy consumption of 1.20 times the baseline. 
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To understand these results better, we present a breakup of 

the energy consumption in Figure 5. 

We can make the following observations from the figure. 

Firstly, as one would expect, the leading cores of each config­

uration dissipate roughly the same amount of energy. Secondly, 

the trailing core in CRT consumes more energy than the trailing 

cores in RECVF and PYA, because the latter are running at lower 

voltage-frequency levels. A third interesting observation is that 

PYA consumes significantly higher energy in the L2 cache. This 

is because PYA stores verified lines in the L2 cache, which is 

effectively equivalent to using a write-through policy for the Ll 

cache. 

4.3. Private L2 Configuration Results 

4.3.1. IPC Results. The top half of figure 6 shows the nor­

malized IPC for the private-L2 configuration. The mean IPC 

degradation for PYA with a single-ported PCB is 10.4%. Vortex 
and sixtrack are the worst-affected benchmarks, with IPC 

degradations of 22% and 19% respectively. This is due to in­

creased PCB occupancy caused by higher interconnect latencies. 

CRT also performs poorly for this configuration, exhibiting a 

mean IPC degradation of 9.3%. This is because of increased 

occupancy of the store buffer. On an average, store buffer 

occupancy for CRT is 2.2 times the store buffer occupancy for 

the baseline processor. Compared to the results for the shared L2 

configuration in §4.2, the problem here is exacerbated by higher 

interconnect latencies. The architectures based on RECVF have a 

much lower mean fPC degradation for this configuration, varying 

between 2.2% and 3.9%. 

4.3.2. Energy Results. The bottom half of figure 6 shows the 

energy dissipation for the private L2 configuration. It is apparent 

that PYA and CRT dissipate much more energy than RECVE 

PYA with a single-ported PCB consumes 1.62 times the energy 

of the baseline processor. CRT dissipates 1.92 times the energy of 

the baseline. RECVF consumes 1.45 times the energy of baseline 

processor for the PLR configuration. The FLR configurations 

consume 1.39 times the energy of the baseline. 

4.4. Impact of Coarse-grained DVFS 
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Figure 7 - Impact of the higher-latency and coarse-grained 

DVFS. 

Our baseline architecture uses fast fine-grained DVFS sim­

ilar to the proposal in [13] re-evaluating trailing core voltage-

978-1-4244-7501-8/10/$26.00 ©2010 IEEE 

frequency level every 1 /-Ls. In this section we evaluate the impact 

of more conservative per-core DVFS implementations. 

Figure 7 shows the normalized IPC and energy values aver­

aged across all the benchmarks for a number of DVFS configura­

tions. These results are for the shared L2 configuration. The first 

and fourth bars in the figure correspond to our baseline DVFS 

architectures. The other bars show coarse-grained DVFS with 

parameters indicated as latency/update interval below the bars. 

For example, "0.1 ms/1 ms" means switching between voltage­

frequency levels takes 0.1 ms, and voltage-frequency levels of 

the trailing core are re-evaluated every 1 ms. 
IPC decreases with increasing DVFS update intervals. This 

is because longer update intervals find it harder to track fine­

grained changes in program phase. However, energy consumption 

remains roughly constant across all the DVFS configurations. 

The IPC-DVFS algorithm suffers a performance loss of 9% 

at alms update interval. In contrast, for the QSize-DVFS 

algorithm even with a very conservative DVFS architecture that 

updates the voltage-frequency level every I ms, the mean IPC 

degradation is only 4% and the increase in energy dissipation is 

restricted to a few percent. This is an important result, showing 

that RECVF is applicable even for much more conservative per­

core DVFS implementations. 

4.5. Impact of Limited Voltage Scaling 
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Figure 8 - Impact of limited voltage scaling 

Both our proposal and PYA rely on voltage and frequency 

scaling in order to reduce energy dissipation. Aggressive voltage 

scaling might prove to be difficult in future technology nodes. 

Figure 8 shows the impact of reduced voltage scaling for the 

private L2 configuration. 

PYA's energy dissipation increases by 9.1%. RECVF's 

PLR+QSize configuration's energy dissipation increases by only 

6.8%. None of the RECVF configurations show an increase of 

more than 8.25%. 

4.6. Bandwidth Requirements 

Figure 9 shows the average core-to-core bandwidth required 

by each scheme in units of values per cycle. For PYA this 

includes the bandwidth consumed by verifying stores, PCB 

lookups and invalidation messages, but does not include the 
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Figure 6 - Normalized IPC (above) and normalized energy (below) of the private L2 configuration 
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Figure 9 - Core-to-core communication bandwidth. 

bandwidth required for the additional writes performed to the 

L2 cache. 

The PLR based design for RECVF has the lowest bandwidth 

requirement, while CRT and FLR have the two highest require­

ments. PVA has a bandwidth requirement that is slightly higher 

than that of RECVE 

5. Related Work 

Execution Assistance: Fault detection using redundant execution 

is a well studied topic. In particular, our work builds upon a rich 

body of earlier work in the area of leader/follower architectures. 

In such architectures, a single logical thread is executed using 

two physical threads, a leading and a trailing thread. Typically 

the leading thread assists the trailing thread in order to improve 

the trailing thread's performance. This idea is referred to as 

execution assistance and was introduced by Rotenberg in AR­

SMT [22]. AR-SMT forwarded branch outcomes and all values 

as predictions to the trailing thread. Variants of this idea were 

also explored in DIVA [3] and SRT [21]. 

A large number of subsequent papers have used some form 

of execution assistance in the design of several interesting ar­

chitectures. Table 4 presents a classification of some proposed 

978-1-4244-7501-8/10/$26.00 ©2010 IEEE 

Values Forwarded Proposals 
All values AR-SMT [22j, DIVA [3j, Slipstream'[3 I j, 

Madan et. al [17]. 
Loads and branches SRT [21], CRT [19], SRTR [33], CRTR [10], 

SpecIV [ I S], EERE [29], MRE [30]. 
Branches only PVA [20], Paceline [ I I ], Decoupled perfor-

mance correctness[9j, Circuit pruning[18j. 
Critical values RECVF 

I. Slipstream's leader core forwards all values that it executes. However, 
it may execute a subset of program due to ineffectual instruction elision. 

Table 4 - Mechanisms for Execution Assistance 

mechanisms and how they compare to RECVE The rest of this 

subsection discusses these design options. 

While forwarding all values provides the highest possible 

speedup in the trailing thread, it also requires inordinately high 

bandwidth. As a result it is mainly suited for use within the 

components of a single processor core, like in the case of 

AR-SMT and DIVA. Forwarding all values to a different core 

is likely to require adjacent placement of cores. This reduces 

scheduling flexibility. Note that AR-SMT and Slipstream assume 

the presence of value-prediction support in the baseline processor 

to detect errors in the forwarded values. In contrast, our proposal 

is able to use forwarded values in the trailing core with very little 

additional hardware. 

SRT [21] introduced the idea of forwarding only load values 

and branch outcomes from the leading to the trailing thread, an 

approach which has been adopted in a large number of subsequent 

proposals [10, 15, 19, 28, 30, 33]. Forwarding branch outcomes 

eliminates branch mispredictions while forwarding load values 

has two beneficial effects. Firstly, it eliminates data cache misses 

in the trailing thread. Secondly, it solves the problem of input 

incoherence. However, load and branch instructions form more 

than one-third of the instruction mix of the SPEC CPU 2000 

benchmarks. As such forwarding the results of these instructions 

requires considerable bandwidth. Furthermore, all these proposals 

suffer from reduced fault coverage because they do not fully re­

execute load instructions in the trailing core. 
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Forwarding only branch outcomes has also been studied in 

a few proposals. As shown in §2.5, CVF can provide much 

higher speedup of the trailing core with only marginally higher 

bandwidth requirements. 

RECVF improves upon existing mechanisms for execution 

assistance by focusing on critical instructions. Our results show 

that nearly 80% of the speedup of forwarding all instructions 

can be achieved by forwarding the results of just 10-15% of all 

instructions. 

Fault-Tolerant Architectures: Todd Austin introduced DIVA [3] 

which is a novel fault detection and correction architecture. DIVA 

uses an in-order checker processor to detect errors in a larger 

out-of-order superscalar processor core. The checker processor 

is fabricated using larger and more reliable transistors making 

it less susceptible to soft and hard errors. While the DIVA 

idea itself is quite robust, some implementation details are not 

amenable to modem deep sub-micron technologies. Firstly, DIVA 

cannot detect soft errors that occur in the checker processor. 

Secondly, resources and functional units in the checker core are 

unavailable for normal execution. In contrast, our architecture 

gainfully employs the computing resources of the trailing cores 

when redundant execution is disabled. 

Transient fault detection using simultaneous multithreading 

was introduced by Rotenberg in AR-SMT [22] and Reinhardt and 

Mukherjee [21] in Simultaneously and Redundantly Threaded 

(SRT) processors. An SRT processor augments SMT processors 

with additional architectural structures like the branch outcome 

queue and load value queue for transient fault detection. Since 

an SRT processor provides an unpredictable combination of 

space and time redundancy, it cannot guarantee the detection of 

permanent faults. Moreover, SRT has a performance overhead of 

about 20-30% compared to the baseline processor, and consumes 

about 1.5-1.6X the energy. Muhkerjee et al. also introduced chip­

level redundant threading (CRT) [19], which extends SRT to 

simultaneously multithreaded chip multiprocessors. Gomaa et al. 

studied Chip-level Redundant Threading with Recovery (CRTR) 

[10], which uses the state of the trailing thread to recover from 

an error. Our evaluation has shown that RECVF provides better 

performance and energy efficiency than CRT. We expect that 

RECVF will also outperform CRT derivatives such [10, 17] 

because these proposals add additional overheads to CRT to 

provide recovery. 

Rashid et al. [20] proposed the parallelized verification ar­

chitecture (PVA) for fault-tolerant CMPs which saves energy 

by parallelizing the verification and executing it on two cores. 

The verification cores are operated at half frequency and voltage 

levels. Our evaluation shows that that although PYA decreases 

trailing cores' power significantly, this comes at the expense of in­

creased L2 cache power. RECVF has higher energy efficiency and 

lower performance degradation than PYA. Furthermore, PYA uses 

three cores to execute a single logical thread, while RECVF uses 

only two. Consequently, RECVF also delivers higher throughput 

than PYA. 

Smolens et al. [26] introduced fingerprinting, which reduces 

the bandwidth required for state comparison. Fingerprinting sum­

marizes the execution history and current state of a processor 

using a hash value. Transient faults are detected by differences in 

the hash value computed by the two cores. A related architecture 
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is Reunion [27] which provides input replication in chip multi­

processors without the requirement of lockstepped execution by 

reusing the soft error handling mechanisms for dealing with input 

incoherence. Reunion requires complex changes to the cache 

coherence controller which is a component that is difficult to 

design and verify. RECVF provides fault coverage comparable 

to that of Reunion at a lower complexity and energy cost. 

In [28, 29], we explored the idea of per-core DVFS to reduce 

power in a CRT like architecture. That work was able to show 

power savings for programs which had poor branch predictor and 

L 1 data cache performance by utilizing the slack created by these 

miss events to operate the trailing core at a lower frequency. The 

idea of critical value forwarding introduced in this paper does 

not rely on these programs properties. 

In [30], we introduced the idea of Multiplexed Redundant 

Execution (MRE). MRE uses the idea of coarse-grained multi­

threading to execute multiple trailing threads on a single core, 

thereby improving CMP throughput. Although MRE does not 

directly decrease core power, it reduces overall system power by 

using fewer cores to redundantly execute a given set of programs. 

Speculative Mechanisms for Performance Improvement: 

Paceline [11] is a proposal for CMP performance improvement 

that operates the leading core at higher than its nominal fre­

quency. In effect, the leading core performs timing speculation, 

while the trailing core is used to detect errors. RECVF differs 

from Paceline in two importance aspects. Firstly, timing spec­

ulation is orthogonal to our proposal. Secondly, critical value 

forwarding is more effective than branch outcome forwarding at 

speeding up the trailing core. Figure 3 suggests that RECVF may 

perform energy-efficient timing speculation more effectively than 

Paceline. We leave exploration of this idea for future work. 

Slipstream [31] is another proposal for performance enhance­

ment that speeds up the leading core by detecting and eliding 

"ineffectual instructions". The leading core speculatively removes 

ineffectual instructions from the execution stream, and uses the 

trailing core to fix up the results of misspeculation. Circuit prun­

ing [18], and performance correctness decoupled architectures [9] 

are two different mechanisms that target performance improve­

ment using leader-follower configurations. Circuit pruning prunes 

the hardware of the leader core to produce a smaller, but not fully 

correct core that can operate at a higher frequency. The pruned 

core assists the execution of a functionally correct trailing core. 

The decoupled performance correctness architecture executes a 

"skeleton" program on the leading core which generates branch 

outcomes and cache prefetches for the trailing core. Unlike 

RECVF, all these proposals implement some form of speculation 

in the leading core to improve its performance. These speculative 

mechanisms are orthogonal to RECVF, and can potentially be 

synergistically combined with RECVF to produce interesting 

architectures that provide energy-efficient fault-tolerance while 

simultaneously increasing performance. 

6. Conclusion 

Decreasing feature sizes, lower design tolerances and higher 

operating temperatures have resulted in the emergence of wear­

out related permanent faults and transient faults as significant 

concerns in modem microprocessors. 
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In this paper, we showed the design of an energy-efficient 

fault-tolerant microarchitecture for chip multiprocessors. Our 

proposal introduces the idea of critical value forwarding (CVF), a 

technique that improves the performance of redundant execution 

by forwarding results of critical instructions from the leading core 

to the trailing core. We proposed heuristics for identifying critical 

values and showed how CVF can improve the performance of 

the trailing core without any loss in fault coverage. We proposed 

two algorithms for per-core dynamic voltage-frequency scaling 

(DVFS) to exploit the slack created by CVE 

Our evaluation showed that RECVF has a performance over­

head of less than 1.2% for a shared-L2 CMP and consumed only 

1.26 times the energy of the baseline processor. For a future CMP 

with higher latency interconnects and private L2 caches, RECVF 

had a performance overhead of less than 4.0% and consumed 

1.45 times the energy of the baseline processor. We compared 

RECVF to two previous proposals for fault-tolerant CMPs and 

found that RECVF delivered higher energy-efficiency and lower 

performance degradation than either of the proposals. 

Acknowledgements 

We would like to thank the anonymous reviewers for their 

insightful comments which improved the quality of this paper. 

This work is partially supported by the Swedish Foundation 

for International Cooperation in Research and Higher Education 

through an institutional grant for younger researchers and by the 

National Science Foundation under the grant CPA-0811467. 

References 

[1] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith. Config­
urable isolation: building high availability systems with commodity 
multi-core processors. In Proceedings of the 34th ISCA , pages 470-
481, 2007. 

[2] T. Austin, V. Bertacco, S. Mahlke, and Yu Cao. Reliable Systems 
on Unreliable Fabrics. IEEE Des. Test, 25(4) :322-332, 2008. 

[3] Todd Austin. DIVA: A Reliable Substrate For Deep Submicron 
Microarchitecture Design. In Proceedings of the 32nd MICRO, 
pages 196-207, 1999. 

[4] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R.  Jardine, 
J. Klecka, and J. Smullen. NonStop@ Advanced Architecture. In 
Proceedings of DSN, pages 12-21, 2005. 

[5] S. Y. Borkar. Designing Reliable Systems from Unreliable Com­
ponents: The Challenges of Transistor Variability and Degradation. 
IEEE Micro, 25(6):10-16, 2005. 

[6] D. Brooks et al. Wattch: A Framework for Architectural-level Power 
Analysis and Optimizations. Proceedings of the 2 7th ISCA, pages 
83-94, 2000. 

[7] I. Parulkar et al. OpenSPARC: An Open Platform for Hardware 
Reliability Experimentation. Fourth Workshop on Silicon Errors in 
Logic-System Effects (SELSE), 2008. 

[8] J. R enau et al. SESC Simulator. http://sesc.sourceforge.netJ, 2005. 
[9] A. Garg and M. Huang. A Performance Correctness Explicitly­

Decoupled Architecture. Proceedings of the 38th MICRO, pages 
306-317, 2008. 

[10] M. Gomma, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz. 
Transient-Fault Recovery for Chip Multiprocessors. Proceedings of 

the 30th ISCA , pages 98-109, 2003. 
[11] B. Greskamp and J. Torrellas. Paceline: Improving Single-Thread 

Performance in Nanoscale CMPs through Core Overclocking. In 
Proceedings of the 1 6th PACT, pages 213-224, 2007. 

978-1-4244-7501-8/10/$26.00 ©20 l O  IEEE 

[12] C. Isci, A. Buyuktosunoglu, C-Y. Cher, P. Bose, and M. Martonosi. 
An Analysis of Efficient Multi-Core Global Power Management 
Policies: Maximizing Performance for a Given Power Budget. 
Proceedings of the 39th MICRO, pages 347-358, 2006. 

[13] W. Kim, M. S. Gupta, Wei Gu-Yeon, and D. Brooks. System level 
analysis of fast, per-core DVFS using on-chip switching regulators. 
Proceedings of the 14th HPCA, pages 123-134, 2008. 

[14] I. Koren and C. M. Krishna. Fault Tolerant Systems. Morgan 
Kaufmann Publishers Inc., 2007. 

[15] S. Kumar and A. Aggarwal. Speculative instruction validation for 
performance-reliability trade-off. Proceedings of the 14th HPCA , 
pages 405-414, 2008. 

[16] M. Kyrman, N. Kyrman, and J. F. Martinez. Cherry-MP: Correctly 
Integrating Checkpointed Early Resource Recycling in Chip Mul­
tiprocessors. In Proceedings of the 38th MICRO, pages 245-256, 
2005. 

[17] N. Madan and R. Balasubramonian. Power-efficient Approaches 
to Redundant Multithreading. IEEE Transactions on Parallel and 

Distributed Systems, pages l O66-l O79, 2007. 
[18] Francisco Mesa-Martinez and Jose Renau. Effective Optimistic­

Checker Tandem Core Design Through Architectural Pruning. Pro­

ceedings of the 37th MICRO, pages 236-248, 2007. 
[19] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed Design 

and Evaluation of Redundant Multithreading Alternatives. Proceed­

ings of the 29th ISCA , pages 99-110, 2002. 
[20] M. W. Rashid, E. J. Tan, M. C. Huang, and D. H. Albonesi. 

Exploiting Coarse-Grain Verification Parallelism for Power-Efficient 
Fault Tolerance. Proceedings of the 14th International Conference 

on Parallel Architectures and Compilation Techniques, pages 315-
328, 2005. 

[21] S. K. Reinhardt and S. S. Mukherjee. Transient Fault Detection via 
Simultaneous Multithreading. Proceedings of the 2 7th ISCA, pages 
25-36, 2002. 

[22] E. R otenberg. AR-SMT: A Microarchitectural Approach to Fault 
Tolerance in a Microprocessor. Proceedings of FTCS, pages 84-91, 
1999. 

[23] S. Thoziyoor et al. C ACTI 5.1. Technical Report HPL-2008-20, 
HP Lobs, 2008. 

[24] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automat­
ically Characterizing Large Scale Program Behavior. Proceedings 
of the 10th ASPLOS, Oct. 2002 , pages 45-57. 

[25] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. 
Modeling the E ffect of Technology Trends on the Soft Error Rate 
of Combinational Logic. Proceedings of the 32nd DSN, pages 389-
398, 2002. 

[26] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe, and A. G. 
Nowatzyk. Fingerprinting: Bounding soft error detection latency 
and bandwidth. Proceedings of the 9th ASPLOS, pages 224-234, 
2004. 

[27] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe. Reunion: 
Complexity-Effective Multicore Redundancy. Proceedings of the 
39th MICRO, pages 223-234, 2006. 

[28] P. Subramanyan, V. Singh, K. K. Saluja, and E. Larsson. Power­
Efficient Redundant Execution for Chip Multiprocessors. Proceed­

ings of 3rd WDSN, 2009. 
[29] P. Subramanyan, V. Singh, K. K. Saluja, and E. Larsson. Energy­

Efficient Redundant Execution for Chip Multiprocessors. Proceed­

ings of 20th GLSVLSI, 2010. 
[30] P. Subramanyan, V. Singh, K. K. Saluja, and E. Larsson. Mul­

tiplexed Redundant Execution: A Technique for Efficient Fault 
Tolerance in Chip Multiprocessors. Proceedings of DATE, 20 l O. 

[31] K. Sundaramoorthy, Z. Purser, and E. Rotenburg. Slipstream 
Processors: Improving Both Performance and Fault Tolerance. In 
Proceedings of the 9th ASPLOS, pages 257-268, 2000. 

[32] E. Tune, D. Liang, D. M. Tullsen, and B. Calder. Dynamic 
prediction of critical path instructions. In Proceedings of the 7th 
HPCA, pages 185-195, 2001. 

[33] T. N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-fault 
Recovery Using Simultaneous MUltithreading. Proceedings of the 
29th ISCA , pages 87-98, 2002. 

130 DSN 20 l O: Subramanyan et al. 


