
Received August 6, 2018, accepted September 19, 2018, date of publication September 24, 2018, date of current version October 17, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2871821

Energy-Efficient Fault-Tolerant Scheduling
Algorithm for Real-Time Tasks in
Cloud-Based 5G Networks

PENGZE GUO 1, MING LIU1,2, JUN WU 1, (Member, IEEE), ZHI XUE1,

AND XIANGJIAN HE 2, (Senior Member, IEEE)
1Shanghai Key Laboratory of Integrated Administration Technologies for Information Security, Department of Electronic Engineering,

Shanghai Jiao Tong University, Shanghai 200240, China
2School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia

Corresponding author: Zhi Xue (zxue@sjtu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61332010.

ABSTRACT Green computing has become a hot issue for both academia and industry. The fifth-

generation (5G) mobile networks put forward a high request for energy efficiency and low latency. The cloud

radio access network provides efficient resource use, high performance, and high availability for 5G systems.

However, hardware and software faults of cloud systems may lead to failure in providing real-time services.

Developing fault tolerance technique can efficiently enhance the reliability and availability of real-time cloud

services. The core idea of fault-tolerant scheduling algorithm is introducing redundancy to ensure that the

tasks can be finished in the case of permanent or transient system failure. Nevertheless, the redundancy

incurs extra overhead for cloud systems, which results in considerable energy consumption. In this paper,

we focus on the problem of how to reduce the energy consumption when providing fault tolerance. We first

propose a novel primary-backup-based fault-tolerant scheduling architecture for real-time tasks in the cloud

environment. Based on the architecture, we present an energy-efficient fault-tolerant scheduling algorithm

for real-time tasks (EFTR). EFTR adopts a proactive strategy to increase the system processing capacity

and employs a rearrangement mechanism to improve the resource utilization. Simulation experiments are

conducted on the CloudSim platform to evaluate the feasibility and effectiveness of EFTR. Compared with

the existing fault-tolerant scheduling algorithms, EFTR shows excellent performance in energy conservation

and task schedulability.

INDEX TERMS Energy efficiency, fault tolerance, real-time, scheduling, cloud, 5G.

I. INTRODUCTION

The increasing requirements of communication quality have

promoted the evolution of mobile communication technolo-

gies. 5G networks are expected to provide ubiquitous connec-

tivity and real-time interaction. It is forecasted that there will

be more than 50 billion connected devices in 2020 [1]. The

mobile communication data in 2020 will be approximately

1000 times more than that in 2010 [2]. To achieve similar

energy consumption, the energy efficiency (usually mea-

sured in bits/Joule) should be increased by 100x times [3].

According to the statistics, the power consumption of tra-

ditional base stations (BSs) account for 72% of the total

power consumption of radio access networks (RAN), but the

energy efficiency of BS is only about 50% [4]. BSs usually

have excessive computing capacity to deal with the traffic

during peak hours. However, the resource utilization is low

during off-peak hours. Besides, the ancillary equipments in

distributed BSs consume large amount of energy. Spurred

by both economic and environmental considerations, green

computing has become a research priority in the design of

information systems [5]–[7].

Cloud radio access network (C-RAN), which centralizes

the baseband processing into cloud data centers, is a candi-

date solution for 5G [8]. In C-RAN, baseband unit (BBU)

pool is responsible for the signal processing, and remote

radio heads (RRHs) are distributed to receive and transmit

the data from/to user equipments (UEs). BBU and RRHs

are connected via high-speed optical fronthaul. Centralized

signal processing considerably reduces the energy consump-

tuion of cooling devices and other supporting equipments

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

53671

https://orcid.org/0000-0001-5398-6684
https://orcid.org/0000-0003-2483-6980
https://orcid.org/0000-0001-8962-540X

P. Guo et al.: Energy-Efficient Fault-Tolerant Scheduling Algorithm

in BSs. Scalable computing can dynamically adjust the sys-

tem resources according to the workload demands in the

cloud environment [9]. Centralized deployment can improve

the BS utilization by sharing resources under dynamic traffic

load.

As a new paradigm of delivering computing services,

cloud computing has the features of dynamic scalabil-

ity, measured service and on-demand resource provisioning

[10]–[12]. These features largely depend on virtualization.

With virtualization, physical hosts can be divided into several

virtual machines (VMs) [13]. As the mainstay of computing

resources, cloud-based BBU pool takes charge of most task

processing. It is of paramount importance to improve the

energy efficiency of BBU servers. The elasticity of cloud

computing raises challenges for C-RAN to increase the

resource utilization. In addition, with the tremendous increase

of network traffic, it is another tricky problem of how to meet

the deadline constraints of real-time user requests.

Nowadays more and more real-time services are realized

through wireless communication systems, e.g., Internet of

Things (IoT), vehicular networks [14], and video stream-

ing [15]. The timeliness of services should be guaranteed.

In real-time systems, the computational results should be

produced not only correctly but also timely [16]–[18]. The

consequences of missing deadlines are different for different

real-time systems [19]. For hard real-time systems, missing

deadlines can result in catastrophe consequence. While for

soft real-time systems, violation of time constraints usually

results in service quality degradation, but the system can

continue running [20].

In large-scale cloud data centers, node failures are com-

mon [21]. Therefore, fault tolerance is a mandatory mecha-

nism of wireless networks. Since one computing instance’s

failure may cause some tasks to violate the deadline con-

straints, C-RAN should ensure the timeliness of real-time

tasks even in case of failure. Fault-tolerant scheduling is an

effective method to increase the system reliability. Primary-

backup (PB) model is a popular fault-tolerant scheme. In the

PBmodel, each task is duplicated and the two copies (i.e., pri-

mary copy and backup copy) are sent to different computing

nodes for fault tolerance. Fundamentally, PB model utilizes

the redundancy technology to improve the reliability of the

system [22].

To the best of our knowledge, no previous work has been

done on dynamic energy-efficient fault-tolerant scheduling

for real-time tasks in cloud-based 5G networks. In this paper,

the UEs’ tasks that we concern are independent, aperiodic,

and non-preemptive. Both energy conservation and fault

tolerance is considered while meeting the real-time require-

ments. We first analyze the schedulability of real-time tasks

and then try to reduce the energy consumption. In addition,

we sufficiently consider the dynamics and elasticity of cloud

computing, e.g., VM migration and VM creation. When the

current system cannot guarantee the timing requirements,

new VMs are added. Proactive strategy is adopted to select

proper new VMs. Simulation results show that proactive

strategy and rearrangement mechanism bring substantial

improvement in energy efficiency and tasks guarantee ratio.

The rest of this paper is organized as follows. Related work

is described in Section II. Section III presents the system

model, including architecture framework, power model, and

VM migration. Scheduling criteria are also analyzed here.

Section IV describes the EFTR algorithm in detail. Section V

demonstrates the experiments to evaluate the performance of

EFTR. Finally, we make conclusions in Section VI.

II. RELATED WORK

Energy-efficient techniques of wireless networks have been

studied from the aspects of mobile devices, communica-

tion infrastructures, and cloud data centers. Many researches

are focused on the former two cases [23]–[26]. This work

focuses on energy saving in cloud data centers through task

scheduling.

Since finding the optimal allocation of tasks in unipro-

cessor and multiprocessor systems is an NP-complete prob-

lem [27], many varieties of heuristics for scheduling tasks

have been devised. For scheduling preemptive periodic

tasks in uniprocessor systems, Liu and Layland [28] pro-

posed the Rate-Monotonic (RM) algorithm, which priori-

tizes tasks in proportion to their frequency and is proved to

be the optimal fixed-priority algorithm. To precisely judge

the schedulability of tasks with priorities on uniprocessor,

Joseph and Pandya [29] put forward the sufficient and nec-

essary condition, called the Completion Time Test (CTT).

Rate-Monotonic First-Fit (RMFF), which extends the RM

algorithm from uniprocessor to multiprocessor with first-fit

bin-packing heuristic, was designed by Dhall and Liu [30].

Some works have been done on task scheduling in C-RAN.

Xia et al. [7] proposed an iterative coordinate descent algo-

rithm to find the scheduling solution for minimizing the

network power consumption of downlink C-RAN. Wang

and Cen [31] proposed a real-time scheduling algorithm for

periodic preemptive tasks in C-RAN. Zhang et al. [32] put

forward the near-far C-RAN (NFC-RAN) architecture com-

posed of near edge computing (NEC) and far edge computing

(FEC). Task assignment between NEC and FEC is elaborated

to increase the task completion rate. However, fault tolerance

has not been studied in these algorithms.

Bertossi et al. [33] put forward a multiprocessor-

based fault-tolerant algorithm FTRMFF using PB model.

The FTRMFF algorithm considers both backup overbook-

ing and deallocation [34] to reduce system overhead.

Guo and Xue [35] proposed the QFTRMFF algorithm, which

strives to optimize the QoS levels of tasks after the FTRMFF

scheduling. Unfortunately, these works are designed for

homogenous systems and not suitable for heterogeneous

systems. The computing resources in C-RAN have vari-

ous processing capabilities [36]. In addition, the tasks in

above works are preemptive, i.e., a task can take the place

of another executing task if their execution time overlaps.

However, we consider non-preemptive tasks in this paper.

Besides, some scheduling algorithms consider tasks with

53672 VOLUME 6, 2018

P. Guo et al.: Energy-Efficient Fault-Tolerant Scheduling Algorithm

FIGURE 1. Structure of C-RAN.

inter-dependence [37]–[39], but we focus on independent

tasks. Dependent tasks can be transformed to independent

tasks by setting new start times and deadlines [40].

The aforementioned methods fall into the category of static

scheduling. 5G systems allow users to transmit and receive

data in a timely manner and require on-line scheduling

[41]–[43]. Such dynamic processing cases raise higher

demands on scheduling since tasks are independent and no

priori knowledge about the upcoming tasks is given [44].

Luo et al. [45] proposedDYFARS,which leverages PBmodel

to provide fault tolerance and enhances the reliability without

additional costs. Zhu et al. [46] proposed a QoS-aware fault-

tolerant scheduling algorithm (QAFT) to increase the QoS

levels of real-time tasks. QAFT reduces system overhead

by advancing primary copies and delaying backup copies.

However, above fault-tolerant algorithms do not consider

virtualization, which is the fundamental technique of cloud

computing.

Recently, Wang et al. [47] put forward a fault-tolerant

elastic scheduling algorithm for real-time tasks in clouds

called FESTAL. FESTAL takes virtualization into account,

and uses backup overlapping to realize high system utiliza-

tion. However, the FESTAL algorithm fails to take energy

saving into account. Nonetheless, it provides a general

method for task scheduling in the fault-tolerant context.

III. SCHEDULING MODEL

A. ARCHITECTURE FRAMEWORK

C-RAN is composed of BBU pool, RRHs, and fronthaul

links, as shown in Fig. 1. After receiving requests from UEs,

RRHs send pre-processed baseband signals to BBU pool for

further processing. Each RRH is connected with a BBU pool

via fronthaul link. BBU pool takes over most of the signal

processing previously done in BSs. BBU pool consists of

computing servers or physical hosts. Different from tradi-

tional distributed system, UEs’ tasks are executed by VMs

rather than by physical hosts. Each host contains several VMs

which are responsible for executing tasks.

Fig. 2 shows the architecture framework of fault-tolerant

scheduling in the BBU pool. Multiple users submit their tasks

to the system. When a new task arrives, firstly it is sent to

Global Scheduler. After analyzing the information gathered

from all computing nodes, Global Scheduler makes decisions

according to the scheduling algorithm and sends the primary

and backup copies of the task to different VMs. Then the

primary copy is executed if theVM is idle, or waits in the local

queue if the VM is busy. When the primary copy is finished

successfully, the backup copy is deleted and the resource

occupied by the backup copy is reclaimed. Local Scheduler

is in charge of rearranging the order of the local queue

if any backup copy is deallocated from the VM. Resource

Manager decides how VMs should be added or migrated if

the current processing capacity is unable to meet the timing

requirements.

The power consumption of C-RAN is typically composed

of three parts: RRH power consumption, fronthaul power

FIGURE 2. Fault-tolerant scheduling architecture of BBU pool.

VOLUME 6, 2018 53673

P. Guo et al.: Energy-Efficient Fault-Tolerant Scheduling Algorithm

consumption, and BBU pool power consumption [48]. This

work focuses on energy saving in virtualized BBU pool

through task scheduling.

B. SCHEDULING CRITERIA

In the BBU pool, each task from UE is sent to a physical host

and executed by aVMon the host. The k-th VMon j-th host hj
is denoted by vmjk .Cj andCjk , which aremeasured byMillion

Instructions per Second (MIPS), denote the processing capac-

ity of hj and vmjk respectively. In this paper, primary-backup

model is employed to realize fault tolerance. In this model,

each task ti has two copies: primary copy tPi and backup

copy tBi . The VMs that accommodate tPi and tBi are denoted

by vm(tPi) and vm(t
B
i) respectively. t

P
i is executed before tBi .

When tPi is finished, the task is executed successfully and

tBi is removed from vm(tBi). Task ti arrives at ai and must

finish before its deadline di. li is the length of the task and is

measured byMillion Instructions (MI). The execution time of

task ti on vmjk is denoted by ejk (ti) = li/Cjk . s
P
i and f

P
i denote

the start time and finish time of tPi . s
B
i and f Bi denote the start

time and finish time of tBi . The start and finish times of copies

are decided by the scheduling algorithm. The backup copy

has two statuses: active and passive. A passive backup copy is

executed onlywhen the system encounters failure, whereas an

active backup copy is always executed even without system

faults. The status of tBi is decided by:

st(tBi) =

{

active, if f Pi > sBi ;

passive, otherwise.
(1)

Fig. 3 gives an example. The horizontal axis represents

time. tB1 and tB2 adopt passive backup scheme while tB3 adopts

active backup scheme because f P1 < sB1 , f
P
2 < sB2 and

f P3 > sB3 . The active backup copy t
B
3 is composed of redundant

part tBR3 (shaded area) and non-redundant part tBN3 (unshaded

area). The redundant part tBR3 overlaps with the primary

copy tP3 in the time axis.

FIGURE 3. Illustration of primary and backup copies.

It is assumed that if the host host(tPi) that accommo-

dates tPi encounters failure, all VMs on the host, including

vm(tPi), break down. The fault-tolerant scheduling algorithm

should guarantee that if a primary copy fails, its coresponding

backup copy can still finish before deadlines. The proposed

algorithm can tolerate at most one fault at any point of time.

If tolerating multiple faults at one time instant is required,

we can divide the hosts into several isolated groups, and apply

the algorithm to each group [49].

PB approach is accomplished by introducing redundancy,

i.e., the computing resource occupied by backup copies.

Except for resource reclaiming, backup-backup (BB) over-

lapping [33] is adopted in this work to reduce system over-

head. BB overlapping allows backup copies on the same

VM to share the same time interval, thus reducing the VMs

needed. Fig. 3 illustrates BB overlapping between tB1 and tB2 .

tB1 and tB2 are both passive backup copies. If host h1 fails, t
B
1

is invoked. There is no conflict between tB1 and tB2 because

when tP2 finishes at f2, t
B
2 is deallocated.

The overlapping criteria and scheduling principles are ana-

lyzed below. It is assumed that ti is a newly arrived task. All

other copies have been scheduled before its arrival.

1) PRIMARY COPY

The only criterion for scheduling primary copy is that no

overlapping is allowed. Because if two primary copies over-

lap, there must be execution time conflict; if a primary copy

overlaps with a backup copy tBj , they also have conflict when

host(tPj) fails and t
B
j gets invoked.

2) BACKUP COPY

Theorem 1: Backup copy cannot be scheduled on the

host where the corresponding primary copy is located,

i.e., host(tBi) 6= host(tPi).

Proof: Prove by contradiction. Suppose that host(tBi) =

host(tPi). Regardless of whether vm(tBi) = vm(tPi) or not,

if host(tPi) fails, both vm(t
P
i) and vm(t

B
i) break down. Thus,

tBi cannot be invoked and fault tolerance is infeasible. �

Theorem 2: Backup copy cannot overlap any primary

copy.

Proof: Prove by contradiction. Suppose that tBi overlaps

a primary copy tPj . When host(tPi) fails, tBi must execute.

No matter when the failure happens, tBi is bound to execute

the entire task, thus incurring time conflict between tBi and tPj .

Therefore, tBi cannot overlap tPj . �

Theorem 3: Backup copy cannot overlap backup copy if

their primary copies are on the same host, i.e., tBi cannot

overlap tBj if host(t
P
i) = host(tPj).

Proof: Prove by contradiction. Suppose that tBi overlaps

tBj and host(tPi) = host(tPj). When host(tPi) fails, both tPi
and tPj fail. tBi and tBj must execute, and execution time

conflict between tBi and tBj is inevitable. Therefore, tBi cannot

overlap tBj . �

Theorem 4: Redundant part of active backup copy cannot

overlap any backup copy, i.e., tBRi cannot overlap tBj .

53674 VOLUME 6, 2018

P. Guo et al.: Energy-Efficient Fault-Tolerant Scheduling Algorithm

Proof: Prove by contradiction. Suppose that tBRi over-

laps tBj . When host(tPj) fails, t
B
j is invoked. But tBRi always

executes, thus resulting in time conflict between tBRi and tBj .

Therefore, tBRi cannot overlap tBj . �

Theorem 5: Active backup copies cannot overlap with

each other.

Proof: Prove by contradiction. Suppose that tBi over-

laps tBj , and both tBi and tBj are active. Then there must be

overlapping between tBRi and tBj , or between t
B
i and tBRj , which

violates Theorem 4. Therefore, tBRi cannot overlap tBj . �

C. POWER MODEL

SPECpower benchmark [50] measures the power and per-

formance characteristics of server-class computer equipment.

For most servers, the data reflects linear relationship between

power consumption and processor utilization. Therefore,

the power model raised by Beloglazov et al. [51] is adopted in

this paper. The power consumption is defined in the following

equation:

P(t) = α · Pmax + (1− α) · Pmax · u(t), (2)

where Pmax is the power consumed when the server is 100%

loaded; α is the fraction of power consumed when the server

is idle; and u(t) is the CPU utilization which varies with time

due to different workloads.

Suppose there are N VMs on host hj, the CPU utilization

of hj is:

u(t) =

N
∑

k=1

Cjk (t)

Cj
, (3)

where Cjk (t) equals Cjk if vmjk is busy, or 0 if vmjk is idle.

The idle power α · Pmax includes the power consumed

by disk, memory, network interface, etc. For example, for

PowerEdge R710 (Intel Xeon X5570, 16 cores × 2.93 GHz,

8 GB), the idle power is 65 W and 100% active power is

220 W. The fraction of power consumed when the server is

idle is 29.55%. We analyzed the data on SPECpower bench-

mark and calculated the ratios between idle power and 100%

active power (i.e., the power consumption when the server

is idle divided by the power consumption when the server is

fully utilized). α is set to the average ratio 30% in this paper.

Thus, the energy consumption for each host over a period of

time is defined as:

E =

∫ t2

t1

P(t)dt = 0.3Pmax(t2 − t1)+ 0.7Pmax

∫ t2

t1

u(t)dt.

(4)

The energy consumption of vmjk to execute primary copy

tPi is:

Ejk (t
P
i) = 0.7Pmax

Cjk

Cj

li

Cjk
= 0.7Pmax

li

Cj
. (5)

The energy consumption of vmjk to execute backup copy

tBi is:

Ejk (t
B
i)=

0.7Pmax
Cjk

Cj
(f Pi − s

B
i), if st(tBi) = active;

0, otherwise.

(6)

D. VIRTUAL MACHINE MIGRATION

Live migration of virtual machines refers to the technique of

moving running VMs between physical hosts with negligible

downtime [52]. An important motivation of VM migration is

to consolidate the computing resource, thus increasing system

utilization. The existing algorithms for dynamic VM con-

solidation which aim to reduce energy consumption rarely

consider the cost of live migration.

It is assumed that the data of VMs is stored on network

attached storage (NAS) and only memory migration is con-

sidered in this paper. Pre-copy [53] is a widely used approach

for VMmigration. In this approach, all memory is transmitted

from the source host to the destination host at the first stage,

and dirty pages of memory are iteratively transferred until the

memory dirtying rate exceeds a threshold or the remaining

dirty memory is small enough. The performance of VM live

migrationmainly depends on thememory size, memory dirty-

ing rate, and network transmission rate. According to [54],

the total network traffic (Megabyte) of migration is:

Vmig =

n
∑

i=0

Vi =

n
∑

i=0

Vmemλi = Vmem
1− λn+1

1− λ
, (7)

where n is the total number of iterations, Vi is the data

transferred at each round, Vmem is the size of VM mem-

ory, and λ is the ratio of memory dirtying rate to network

transmission rate. In this paper, Vmig is set to the typical

value 1.3Vmem.

Some works have been done on the cost of VM migration

[54]–[56]. The results show that the energy consumption

indicates linear relationship with the data volume transferred.

Liu et al. [54] found that the energy consumption of live

migration is largely independent of the data transmission

rate in a wired network. They concluded that the energy

consumption increases linearly with the network traffic of

VM migration and gave the energy cost (Joule) model:

Emig = 0.512Vmig + 20.165. (8)

In order to meet the requirement of fault tolerance, there

are some constraints of VM migration [47]. We briefly list

the constraints here:

• VM migration should not cause any task’s primary and

backup copies to be located on the same host;

• VM migration should not cause two primary copies

to be located on the same host if their backup copies

overlap.

Actually, these constraints are essentially identical to the first

and third restricted conditions for backup copies.

VOLUME 6, 2018 53675

P. Guo et al.: Energy-Efficient Fault-Tolerant Scheduling Algorithm

FIGURE 4. Illustration of backup schedulability test.

IV. ENERGY-EFFICIENT FAULT-TOLERANT

SCHEDULING ALGORITHM

A. SCHEDULABILITY TEST

Suppose that ti is a newly arrived task. Before scheduling,

we need to perform the schedulability test to check whether

tPi and tBi are schedulable on some VMs.

To check schedulability of tPi on vmjk , we need to permute

the primary and backup copies on vmjk with the increasing of

their start times. Suppose N primary and backup copies are

assigned on vmjk and the time slots occupied by them within

interval [ai, di] are: [s1, f1], [s2, f2], · · · , [sN , fN]. sn and fn
are the start and finish times of the n-th copy (1 ≤ n ≤ N),

and ai ≤ s1 ≤ s2 ≤ · · · ≤ sN < fN ≤ di. Since

primary copy should not overlap any copy, these time slots

cannot be utilized by tPi . For the purpose of computational

completeness, we extend the time slots to [s0, f0], [s1, f1], [s2,

f2], · · · , [sN , fN], [sN+1, fN+1] where s0 = −∞, f0 = ai,

sN+1 = di and fN+1 = +∞. We need to scan these time slots

from left to right to locate the minimum index n (0 ≤ n ≤ N)

satisfying the following condition:

sn+1 − fn ≥ ejk (ti). (9)

If such index n exists, then tPi is schedulable on vmjk and the

earliest finish time of tPi on vmjk is fn + ejk (ti).

To check schedulability of tBi , BB overlapping should be

considered. The unavailable time slots for tBi include all parts

of primary copies, redundant parts of active backup copies,

and backup parts located before f Pi . Fig. 4 gives an example

about schedulability test for backup copy tBi . The schedula-

bility of tBi is checked on vm21. Suppose that t
P
i is assigned

to vm11 and four backup copies and one primary copy are

located on vm21. t
B
1 and tB4 are passive and tB2 and tB3 are active.

The shaded areas are not available for tBi because redundant

parts of active backup copies cannot overlap any copy. The

backup parts located before f Pi (i.e., [sB1 , f
B
1] and [sB2 , f

P
i]) are

not available for tBi either. Because if tBi occupies these time

slots, its status must be active, incurring tBRi overlaps tB1 and

tB2 , which violates the scheduling principle. Besides, the time

slot occupied by tB4 is available because it is passive. The

area occupied by tP5 is unavailable because no overlapping

is allowed for primary copy. So the unavailable time slots for

tBi on vm21 are [s
B
1 , f

B
1], [sB2 , f

P
i], [s

B
3 , f

P
3] and [sP5 , f

B
5].

Without loss of generality, suppose the unavailable time

slots for tBi on vmjk within interval [sPi , di] are [s1, f1], [s2,

f2], · · · , [sN , fN] and s
P
i ≤ s1 ≤ s2 ≤ · · · ≤ sN < fN ≤ di.

For the purpose of computational completeness, we extend

the time slots to [s0, f0], [s1, f1], [s2, f2], · · · , [sN , fN], [sN+1,

fN+1] where s0 = −∞, f0 = sPi , sN+1 = di and fN+1 = +∞.

To find the latest start time of tBi , these time slots should be

scanned from right to left to seek the maximum index n (0 ≤

n ≤ N) satisfying condition (9). If such index n exists, then tBi
is schedulable on vmjk and the latest start time of tBi on vmjk
is sn+1 − ejk (ti).

We summarize the above process into function

Schedulability(t∗i , vmjk). In short, function Schedulability

(tPi , vmjk) returns the earliest finish time of tPi if tPi is

schedulable on vmjk , and returns +∞ otherwise. Function

Schedulability(tBi , vmjk) returns the latest start time of tBi if

tBi is schedulable on vmjk , and returns −∞ otherwise.

B. REARRANGEMENT MECHANISM

In this work, we take the idea in [57] to adjust the execution

sequence of copies. In [57], the backup copy is deallocated

after its corresponding primary copy finishes and the idle

time slot left by the backup copy can be utilized by the

primary copies located on the same VM. This rearrangement

mechanism helps advance the start time of primary copies and

reduce the redundant parts of active backup copies. In order

to further reduce the system overhead introduced by backup

copies, we make improvements on the mechanism by rear-

ranging the backup copies. The pseudocode of rearrangement

is shown in Algorithm 1. When a primary copy finishes and

the corresponding backup copy is deleted, the rearrangement

process gets invoked on the VMwhich deallocates the backup

copy. Firstly, all primary copies waiting on the VM are

checked if they can move forward (see lines 1-13). Then all

backup copies are checked if they can move backward (see

lines 14-26). It should be noted that such change of execution

order does not violate the scheduling constraints listed in

Section III.

An example of rearrangement is shown in Fig. 5. When tP1
finishes at f P1 , tB1 is deallocated from vm21. The idle time inter-

val left by tB1 is utilized by tP3 . After checking schedulability,

tP3 moves forward. Besides, the status of tB3 becomes passive

53676 VOLUME 6, 2018

P. Guo et al.: Energy-Efficient Fault-Tolerant Scheduling Algorithm

Algorithm 1 Pseudocode of Rearrangement

1 foreach tPi on vmjk do

2 startTimeOrigin← sPi ;

3 finishTimeOrigin← f Pi ;

4 Deallocate tPi from vmjk ;

5 finishTimeNew← Schedulability(tPi , vmjk);

6 Allocate tPi on vmjk ;

7 if finishTimeNew < finishTimeOrigin then

8 sPi ← finishTimeNew− ejk (ti);

9 f Pi ← finishTimeNew;

10 Update the status of tBi according to (1);

11 else

12 sPi ← startTimeOrigin;

13 f Pi ← finishTimeOrigin;

14 foreach tBi on vmjk do

15 startTimeOrigin← sBi ;

16 finishTimeOrigin← f Bi ;

17 Deallocate tBi from vmjk ;

18 startTimeNew← Schedulability(tBi , vmjk);

19 Allocate tBi on vmjk ;

20 if startTimeNew > startTimeOrigin then

21 sPi ← startTimeNew;

22 f Pi ← startTimeNew+ ejk (ti);

23 Update the status of tBi according to (1);

24 else

25 sPi ← startTimeOrigin;

26 f Pi ← finishTimeOrigin;

due to the earlier finish time of tP3 . Then t
B
2 moves backward

utilizing the time interval left by tP3 . This mechanism brings

two benefits. Firstly, primary copies get the chance to fin-

ish earlier. Without the arrangement mechanism, tP3 cannot

start execute before f B2 . Secondly, the energy consumption of

redundant parts is reduced. tB3 does not consume energy after

its status changes from active to passive, and tB2 consumes less

energy.

C. PRIMARY AND BACKUP SCHEDULING

For primary copies, they should be executed as early as

possible. While for backup copies, they should be scheduled

as late as possible. More precisely, primary copies should be

assigned to VMs with earliest finish time (EFT) and backup

copies should be assigned toVMswith latest start time (LST).

Besides, both primary and backup copies must comply with

the policy of minimum energy cost (MEC). In this work,

MEC has higher priority than EFT and LST.

The pseudocode of primary and backup scheduling algo-

rithm is presented in Algorithm 2. Suppose ti is a newly

arrived task. The system firstly checks the schedulability of

the primary copy tPi on all VMs (see lines 1-5). If tPi passes

the schedulability test, the energy consumption of tPi on each

VM is calculated (see lines 6-7). If assigning tPi to a VM can

FIGURE 5. Illustration of rearrangement. (a) Before tP

1
finishes. (b) After

tP

1
finishes, tP

3
moves forward. (c) After tP

3
moves forward, tB

2
moves

backward.

decrease the energy consumption or advance the finish time

on the premise of equal energy consumption, tPi is assigned

to the VM (see lines 8-11). If it fails to find a VM to accom-

modate tPi , then function ScaleUp(tPi) (described below) is

called to scale up the system by creating new VMs. If the

system expansion remains unable to satisfy the scheduling

requirements, ti will be given up (see lines 12-17). If tPi is

successfully allocated, then the algorithm manages to sched-

ule the backup copy tBi . All VMs except for those on h(tPi)

are checked if tBi can be executed on them while meeting

the real-time requirement. The VM where tBi gets the latest

start time is selected (see lines 18-23). If assigning tBi to

existing VMs fails, ScaleUp(tBi) is invoked. If the system

can accommodate tBi after calling ScaleUp(tBi), then tBi is

allocated to the new VM; else ti is rejected (see lines 24-29).

The pseudocode of function ScaleUp(t∗i) is shown in

Algorithm 3. ScaleUp(t∗i) is triggered by existing system’s

failing to allocate primary or backup copy t∗i . Suppose

there are N types of VM templates that can be deployed

on the hosts. Their processing capacities (in MIPS) are

c1, c2, · · · , cN with c1 < c2 < · · · < cN , and memories

VOLUME 6, 2018 53677

P. Guo et al.: Energy-Efficient Fault-Tolerant Scheduling Algorithm

Algorithm 2 Pseudocode of Primary and Backup

Scheduling

1 foreach new task ti do

2 f Pi ←+∞; E(tPi)←+∞;

3 foreach host hj do

4 foreach VM vmjk on hj do

5 EFT ← Schedulability(tPi , vmjk);

6 if EFT 6= +∞ then

7 Calculate Ejk (t
P
i) according to (5);

8 if E(tPi) > Ejk (t
P
i) || (E(t

P
i) == Ejk (t

P
i)

&& f Pi > EFT) then

9 vm(tPi)← vmjk ;

10 f Pi ← EFT ;

11 E(tPi)← Ejk (t
P
i);

12 if vm(tPi) == Null then

13 vmnew← ScaleUp(tPi);

14 if vmnew 6= Null then

15 vm(tPi)← vmnew;

16 else

17 Reject ti;

18 foreach host hj 6= h(tPi) do

19 foreach VM vmjk on hj do

20 LST ← Schedulability(tBi , vmjk);

21 if LST 6= −∞ && sBi < LST then

22 vm(tBi)← vmjk ;

23 sBi ← LST ;

24 if vm(tBi) == Null then

25 vmnew← ScaleUp(tBi);

26 if vmnew 6= Null then

27 vm(tBi)← vmnew;

28 else

29 Reject ti;

(in MB) are m1,m2, · · · ,mN with m1 < m2 < · · · < mN . rj
is the remaining processing capacity of host hj. tVM denotes

the time for creating a VM, and thost denotes the boot time of

a physical host. poj is the time when host hj gets powered on.

BW is the bandwidth of the network between different hosts.

ScaleUp(t∗i) strives to create new VMs to raise the system’s

processing capability. Running hosts are checked first. The

VM template with minimum processing capacity that satis-

fies both timing requirement and processing capacity con-

straint is selected as a candidate. If t∗i is primary copy and the

expected finish time exceeds the average of ai and di, the new

VM’s processing capacity is increased by one level (see

lines 1-7). Because if f Pi > (ai+ di)/2, t
B
i is very likely to be

active. Besides, creating VMs with excessively low process-

ing capacities makes little sense for subsequent tasks. This

proactive strategy is a trade-off between decreasing energy

Algorithm 3 Pseudocode of Function ScaleUp(t∗i)

1 foreach running host hj do

2 Find the minimum processing capacity ck that

satisfies ai + tVM + li/ck ≤ di && rj ≥ ck ;

3 if such ck exists then

4 if t∗i is primary copy &&

ai + tVM + li/ck > (ai + di)/2 then

5 k ← k 6= N?(k + 1) : N ;

6 Create vmnew with processing capacity ck on hj;

7 Return vmnew;

8 foreach turning on host hj do

9 Find the minimum processing capacity ck that

satisfies poj + thost + tVM + li/ck ≤ di && rj ≥ ck ;

10 if such ck exists then

11 if t∗i is primary copy &&

poj + thost + tVM + li/ck > (ai + di)/2 then

12 k ← k 6= N?(k + 1) : N ;

13 Create vmnew with processing capacity ck on hj;

14 Return vmnew;

15 foreach host hj do

16 c
j
min← minimum VM processing capacity on hj;

17 m
j
min← minimum VM memory on hj;

18 Find the minimum processing capacity ck that

satisfies ai + 1.3m
j
min/BW + tVM + li/ck ≤ di &&

rj + c
j
min ≥ ck ;

19 if such ck exists then

20 foreach VM vm
j
min with processing capacity

c
j
min on hj do

21 foreach host hk 6= hj do

22 if rk ≥ c
j
min then

23 Migrate vm
j
min from hj to hk and

create vmnew with processing

capacity ck on hj;

24 Return vmnew;

25 Find the minimum processing capacity ck that satisfies

ai + thost + tVM + li/ck ≤ di;

26 if such ck exists then

27 if t∗i is primary copy &&

ai + thost + tVM + li/ck > (ai + di)/2 then

28 k ← k 6= N?(k + 1) : N ;

29 Turn on a new host and create vmnew with

processing capacity ck on the new host;

30 Return vmnew;

31 Return Null;

consumption and improving system performance. If no suit-

able VM can be allocated to running hosts, then hosts which

are starting up are considered. VM templates are checked if

53678 VOLUME 6, 2018

P. Guo et al.: Energy-Efficient Fault-Tolerant Scheduling Algorithm

they can be pre-allocated to hosts (see lines 8-14). If above

strategies do not work, then the algorithm checks if migrating

a VM from some host and consolidating the spare processing

capability can meet the time and resource requirements (see

lines 15-24). If creating a new VM on existing hosts is still

not feasible, then a new host is turned on and a new VM with

suitable processing capacity is created on it (see lines 25-30).

If all attempts to allocate t∗i fail, Null is returned (see line 31).

V. PERFORMANCE EVALUATION

A. PERFORMANCE METRICS

In this section, we evaluate the overall performance of EFTR.

We compare it with FESTAL, which is an algorithm recently

proposed by Wang et al. [47], baseline algorithm NPEFTR

(non-proactive EFTR), algorithm NPEFTR (non-proactive

EFTR), and NMEFTR (non-migration EFTR). The algo-

rithms for comparison are concisely explained as follows:

• FESTAL. It provides a general framework for task

scheduling in the cloud environment and considers both

virtualization and backup overlapping. Different from

EFTR, FESTAL adopts conservative policy instead of

proactive policy, which means FESTAL creates new

VMs with minimum processing capacities satisfying

the energy and resource constraints. FESTAL does not

adopt the rearrangementmechanism. Besides, it does not

consider the energy problem. For ease of comparison,

FESTAL is modified in such a way that it uses the same

scheduling strategy in Algorithm 2.

• NPEFTR. Different from EFTR, NPEFTR does not

adopt the proactive strategy.

• NREFTR. Different from EFTR, NREFTR does not

employ the rearrangement mechanism.

• NMEFTR. Different from EFTR, NMEFTR does not

employ the VM migration technique.

We compare the algorithms based on the following three

metrics:

• Guarantee Ratio is defined to be the ratio of the number

of successfully executed tasks over the total number of

tasks.

• Energy Consumption is defined as the total power con-

sumption.

• VM Count denotes the total number of VMs needed

during the scheduling.

B. EXPERIMENT SETUP

Simulation has the advantage of providing repeatable and

controllable environment. CloudSim [58] is selected as our

simulation platform. CloudSim is an event driven framework

for modeling cloud infrastructures and services. User defined

policies and strategies for managing tasks and resources can

be deployed on the platform. In this paper, three types of

hosts and VMs are available in the cloud data centers. The

maximum power of each host is 200, 250 or 400 W, and

their corresponding processing capacities are 1000, 1500 and

2000 MIPS, respectively. The processing capacities of three

types of VM templates are 200, 300 and 400 MIPS. The time

needed for creating a VM and turning on a host is 15 and

90 seconds respectively.

The characteristics of tasks, including task size, task count,

interval time and baseDeadline, are shown in Table 1. The

task size (MI) is uniformly distributed between 105 and

2 × 105. The task arrival rate is in compliance with Pois-

son distribution. 1/λ (s) denotes the mean time between

task arrival. The deadline of each task ti is di = ai + U

(baseDeadline, 4baseDeadline).

TABLE 1. Parameters of tasks.

C. PERFORMANCE IMPACT OF TASK COUNT

In this section, we conduct experiments to evaluate the per-

formance impact of task count. Task count increases from

5000 to 30000 with step 5000, and other variables are

constant.

Fig. 6(a) shows the energy consumption impact of task

count. With the increase of task count, more energy is

consumed, because longer execution time is needed and

more VMs are created. EFTR consumes least energy while

FESTAL consumes most energy. This result indicates that

proactive and rearrangement policies play important roles in

saving energy. The performance difference between EFTR

and NPEFTR shows that although the proactive strategy

increases the processing capacities of some new VMs, it does

increase the energy consumption because less VMs are

created (see Fig. 6(c)). The comparison between EFTR

and NREFTR indicates that the rearrangement mechanism

helps efficiently reduce idle power consumption by uti-

lizing the idle time slots left by deleted backup copies.

Besides, the energy consumption of NMEFTR indicates that

VM migration can effectively increase the resource utiliza-

tion. EFTR outperforms FESTAL by 9.02% on average in

energy conservation.

Fig. 6(b) shows that the guarantee ratio impact of task

count is relatively stable and the fluctuation is less than 1%.

This can be ascribed to the elasticity of cloud system. When

more tasks arrive, computing resources can be added from the

infinite resource pool to guarantee that tasks can meet their

deadlines. When the number of tasks are relatively small,

the time delays caused by turning on hosts and creating

VMs have a negative impact on the guarantee ratio. When

the number of tasks are large enough, the system reaches

a balanced state and less new hosts and VMs are needed.

So the guarantee ratio gradually increases to a stable value.

Besides, EFTR and NREFTR have higher guarantee ratios

than other three algorithms. This can be attributed to the

proactive strategy adopted by EFTR and NREFTR, which

increases the system processing capacity to accommodate

VOLUME 6, 2018 53679

P. Guo et al.: Energy-Efficient Fault-Tolerant Scheduling Algorithm

FIGURE 6. Performance impact of task count. (a) Energy consumption impact of task count. (b) Guarantee ratio impact of task count.
(c) VM count impact of task count.

FIGURE 7. Performance impact of task arrival rate. (a) Energy consumption impact of arrival rate. (b) Guarantee ratio impact of arrival
rate. (c) VM count impact of arrival rate.

more tasks. EFTR achieves 3% higher guarantee ratio than

FESTAL.

Fig. 6(c) demonstrates that EFTR needs least VMs among

the five algorithms. Compared with NREFTR, EFTR shows

that the rearrangement mechanism plays an important role in

reducing the system overhead by allowing waiting primary

copies to move forward and waiting backup copies to move

backwards. Compared with NPEFTR, EFTR shows that the

proactive strategy makes good trade-off between increasing

system processing capacity and reducing VM count. The

performance of NMEFTR shows that VMmigration can save

about 2% VMs for EFTR. EFTR needs 23.5% less VMs than

FESTAL.

D. PERFORMANCE IMPACT OF TASK ARRIVAL RATE

Parameter intervalTime reflects the task arrival rate. So the

smaller intervalTime is, the more frequently tasks arrive.

We vary intervalTime while keeping other parameters

unchanged to test the influence of task arrival rate.

From Fig. 7(a), we can observe that the energy consump-

tion increases gradually with the decrease of task arrival rate.

This is because larger time intervals between two tasks leads

to longer finish times of all tasks, thus increasing the overall

energy consumption. Compared with tasks’ execution times,

the change of time interval is relatively small, so the rise in

energy is not obvious. Basically, EFTR needs least energy.

The explanation is the same as that in Fig. 6(a). On average,

EFTR outperforms FESTAL by 10.43% in terms of energy

conservation.

Fig. 7(b) shows that the guarantee ratios of five algorithms

keep slow increasing trend with the decrease of task arrival

rate. The reason is that lower arrival rate means less resource

competition and less system load. Furthermore, the cloud

system has enough time to expand the computing capacities

by adding new hosts or VMs. EFTR and NREFTR with

proactive strategy have higher guarantee ratios than FESTAL,

NPEFTR and NMEFTR.

Fig. 7(c) illustrates that the VM count decreases sharply

when tasks arrive more slowly. When the task load is heavy,

the system has to add more VMs to accommodate the tasks

and to meet the deadline requirements. When the system load

becomes light, the system is capable to execute the tasks and

less new resources are needed. Owing to the proactive and

rearrangement policies, EFTR requires least VMs.

53680 VOLUME 6, 2018

P. Guo et al.: Energy-Efficient Fault-Tolerant Scheduling Algorithm

FIGURE 8. Performance impact of task deadline. (a) Energy consumption impact of deadline. (b) Guarantee ratio impact of deadline.
(c) VM count impact of deadline.

FIGURE 9. Energy overhead of VM migration. (a) Overhead impact of task count. (b) Overhead impact of arrival rate. (c) Overhead impact
of deadline.

E. PERFORMANCE IMPACT OF TASK DEADLINE

Task deadline is also a significant factor that affects the

algorithm performance. In this section, we compare the five

algorithms in terms task deadline.With the increase of param-

eter baseDeadline, the tasks have looser deadlines. Parameter

baseDeadline varies from 170 to 350 with step size 30.

As we can see from Fig. 8(a), the energy consumption

becomes larger when baseDeadline increases. Because more

tasks are accepted when deadlines become looser, thus more

VMs are created. When baseDeadline is larger than 230,

the energy consumption of all algorithms decreases. It can be

explained that when more tasks can be finished on existing

VMs, the finish times of tasks become earlier and the growth

of VM count slows down. Moreover, the downward trend

of EFTR is more obvious because it employs both proactive

and rearrangement policies to increase the system efficiency.

Compared with FESTAL, EFTR conserves energy by 9.89%

on average.

Fig. 8(b) shows that the guarantee ratio gets higher with

the increase of deadline. The reason here is obvious – looser

deadlines allow more tasks to finish before their deadlines

with the same system processing capacity. When baseDead-

line is big enough, the guarantee ratio gets close to 100%.

Besides, EFTR and NREFTR have higher guarantee ratios

than FESTAL, NPEFTR and NMEFTR. This is because

adopting proactive strategy can shorten the execution times

of tasks, thus raising the guarantee ratio.

The slowdown trend of VM count growth is obvi-

ous in Fig. 8(c). The VM counts of EFTR, NREFTR

and NMEFTR increase slowly and even decrease when

baseDeadline is large enough. However, the VM counts of

FESTAL and NPEFTR keep increasing. The effect of proac-

tive strategy is evident here. Besides, EFTR needs the least

number of VMs, which verifies the effectiveness of the rear-

rangement mechanism.

F. OVERHEAD OF VM MIGRATION

In this section, we evaluate the energy overhead of VMmigra-

tion in EFTR. As shown in Fig. 9, the overhead caused by

VM migration is generally proportional to the number of

VMs. The energy overhead is negligible compared with the

total energy consumption. However, the positive effect of

VM migration is obvious. From Fig. 6-8, we can see that

with VMmigration, the algorithm needs about 2% less VMs,

consumes 3% less energy, and accepts 2% more tasks. The

data indicates that employing the VM migration technique in

VOLUME 6, 2018 53681

P. Guo et al.: Energy-Efficient Fault-Tolerant Scheduling Algorithm

cloud BBU pool is efficient in energy conservation and task

processing.

VI. CONCLUSION

In this paper, we propose an energy efficient fault-tolerant

scheduling algorithm, called EFTR, for real-time tasks in

C-RAN. Fault tolerance is realized based on the primary-

backup model. EFTR algorithm dynamically schedules

primary and backup copies of tasks with timing require-

ments to different virtual machines. The scheduling criteria

and backup overlapping constraints are discussed in detail.

Schedulability test is designed to check whether the primary

and backup copies are schedulable on some VMs. In order to

increase resource utilization, we employ the rearrangement

mechanism to fully utilize the idle time slots. In addition,

EFTR inherits the elasticity of cloud computing and adopts

proactive strategy to increase the system processing capacity.

These policies significantly improve the system schedulabil-

ity and reduce the energy consumption. Through theoretical

analysis and simulation studies, we show that EFTR outper-

forms FESTAL in terms of energy conservation, guarantee

ratio and VM count under different workloads. Meanwhile,

we notice that our algorithm is not suitable for dependent

tasks, which are common in realistic environment. This is

our research focus in further studies.

REFERENCES

[1] ‘‘More than 50 billion connected devices,’’ Ericsson, Stockholm, Sweden,

White Paper, Feb. 2011.

[2] Q. Wang, D. Chen, N. Zhang, Z. Qin, and Z. Qin, ‘‘LACS: A lightweight

label-based access control scheme in IoT-based 5G caching context,’’ IEEE

Access, vol. 5, pp. 4018–4027, 2017.

[3] A. Abrol and R. K. Jha, ‘‘Power optimization in 5G networks: A step

towards GrEEn communication,’’ IEEE Access, vol. 4, pp. 1355–1374,

2016.

[4] ‘‘C-RAN: The road towards green RAN, version 2.5,’’ China Mobile Res.

Inst., Beijing, China, White Paper, Oct. 2011.

[5] Q. Xu, Z. Su, Q. Zheng, M. Luo, and B. Dong, ‘‘Secure content delivery

with edge nodes to save caching resources for mobile users in green cities,’’

IEEE Trans. Ind. Informat., vol. 14, no. 6, pp. 2550–2559, Jun. 2018.

[6] J. Wu, M. Dong, K. Ota, J. Li, and Z. Guan, ‘‘Big data analysis-based

secure cluster management for optimized control plane in software-defined

networks,’’ IEEE Trans. Netw. Service Manag., vol. 15, no. 1, pp. 27–38,

Mar. 2018.

[7] W. Xia, J. Zhang, T. Q. S. Quek, S. Jin, and H. Zhu, ‘‘Energy-efficient task

scheduling and resource allocation in downlink C-RAN,’’ in Proc. IEEE

Wireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1–6.

[8] J. Luo, Q. Chen, and L. Tang, ‘‘Reducing power consumption by joint

sleeping strategy and power control in delay-aware C-RAN,’’ IEEEAccess,

vol. 6, pp. 14655–14667, 2018.

[9] Q. Liu, T. Han, N. Ansari, and G. Wu, ‘‘On designing energy-efficient

heterogeneous cloud radio access networks,’’ IEEE Trans. Green Commun.

Netw., vol. 2, no. 3, pp. 721–734, Sep. 2018.

[10] A. Botta, W. de Donato, V. Persico, and A. Pescapé, ‘‘Integration of Cloud

computing and Internet of Things: A survey,’’ Future Gener. Comput. Syst.,

vol. 56, pp. 684–700, Mar. 2016.

[11] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, ‘‘Elasticity in cloud

computing: State of the art and research challenges,’’ IEEE Trans. Serv.

Comput., vol. 11, no. 2, pp. 430–447, Mar./Apr. 2018.

[12] P. M.Mell and T. Grance, ‘‘The NIST definition of cloud computing,’’ Nat.

Inst. Standards Technol., Gaithersburg, MD, USA, Tech. Rep., 2011.

[13] F. Zhang, G. Liu, X. Fu, and R. Yahyapour, ‘‘A survey on virtual machine

migration: Challenges, techniques, and open issues,’’ IEEE Commun. Sur-

veys Tuts., vol. 20, no. 2, pp. 1206–1243, 2nd Quart., 2018.

[14] Z. Su, Y. Hui, Q. Xu, T. Yang, J. Liu, and Y. Jia, ‘‘An edge caching scheme

to distribute content in vehicular networks,’’ IEEE Trans. Veh. Technol.,

vol. 67, no. 6, pp. 5346–5356, Jun. 2018.

[15] N. Abbas, H. Hajj, Z. Abbas, K. Jahed, and S. Sharafeddine, ‘‘An optimized

approach to video traffic splitting in heterogeneous wireless networks

with energy and QoE considerations,’’ J. Netw. Comput. Appl., vol. 83,

pp. 72–88, Apr. 2017.

[16] S. Baruah, M. Bertogna, and G. Buttazzo, Multiprocessor Scheduling for

Real-Time Systems (Embedded Systems). Springer, 2015.

[17] A. A. Safaei, ‘‘Real-time processing of streaming big data,’’ Real-Time

Syst., vol. 53, no. 1, pp. 1–44, Jan. 2017.

[18] J. A. Stankovic, ‘‘Misconceptions about real-time computing: A seri-

ous problem for next-generation systems,’’ Computer, vol. 21, no. 10,

pp. 10–19, Oct. 1988.

[19] J. W. S. Liu, Real-Time Systems. Englewood Cliffs, NJ, USA:

Prentice-Hall, 2000.

[20] A. Menychtas, D. Kyriazis, and K. Tserpes, ‘‘Real-time reconfiguration

for guaranteeing QoS provisioning levels in Grid environments,’’ Future

Gener. Comput. Syst., vol. 25, no. 7, pp. 779–784, Jul. 2009.

[21] S. Sharafeddine, K. Jahed, O. Farhat, and Z. Dawy, ‘‘Failure recovery in

wireless content distribution networks with device-to-device cooperation,’’

Comput. Netw., vol. 128, pp. 108–122, Dec. 2017.

[22] Z. Su, Q. Xu, J. Luo, H. Pu, Y. Peng, and R. Lu, ‘‘A secure content

caching scheme for disaster backup in fog computing enabled mobile

social networks,’’ IEEE Trans. Ind. Informat., to be published.

[23] S. Sharafeddine and A. El Arid, ‘‘An empirical energy model for secure

Web browsing over mobile devices,’’ Secur. Commun. Netw., vol. 5, no. 9,

pp. 1037–1048, Sep. 2012.

[24] A. Yadav, O. A. Dobre, and N. Ansari, ‘‘Energy and traffic aware

full-duplex communications for 5G systems,’’ IEEE Access, vol. 5,

pp. 11278–11290, 2017.

[25] K. N. R. S. V. Prasad, E. Hossain, and V. K. Bhargava, ‘‘Energy efficiency

in massive MIMO-based 5G networks: Opportunities and challenges,’’

IEEE Wireless Commun., vol. 24, no. 3, pp. 86–94, Jun. 2017.

[26] A. Mukherjee, ‘‘Energy efficiency and delay in 5G ultra-reliable low-

latency communications system architectures,’’ IEEE Netw., vol. 32, no. 2,

pp. 55–61, Mar./Apr. 2018.

[27] M. R. Garey and D. S. Johnson, ‘‘Complexity results for multiprocessor

scheduling under resource constraints,’’ SIAM J. Comput., vol. 4, no. 4,

pp. 397–411, Dec. 1975.

[28] C. L. Liu and J. W. Layland, ‘‘Scheduling algorithms for multiprogram-

ming in a hard-real-time environment,’’ J. ACM, vol. 20, no. 1, pp. 46–61,

Jan. 1973.

[29] M. Joseph and P. Pandya, ‘‘Finding response times in a real-time system,’’

Comput. J., vol. 29, no. 5, pp. 390–395, May 1986.

[30] S. K. Dhall and C. L. Liu, ‘‘On a real-time scheduling problem,’’ Oper.

Res., vol. 26, no. 1, pp. 127–140, Feb. 1978.

[31] K. Wang and Y. Cen, ‘‘Real-time partitioned scheduling in cloud-RAN

with hard deadline constraint,’’ in Proc. IEEE Wireless Commun. Netw.

Conf., Mar. 2017, pp. 1–6.

[32] L. Zhang, K. Wang, D. Xuan, and K. Yang, ‘‘Optimal task allocation in

near-far computing enhanced C-RAN for wireless big data processing,’’

IEEE Wireless Commun., vol. 25, no. 1, pp. 50–55, Feb. 2018.

[33] A. A. Bertossi, L. V. Mancini, and F. Rossini, ‘‘Fault-tolerant rate-

monotonic first-fit scheduling in hard-real-time systems,’’ IEEE Trans.

Parallel Distrib. Syst., vol. 10, no. 9, pp. 934–945, Sep. 1999.

[34] S. Ghosh, R. Melhem, and D. Mosse, ‘‘Fault-tolerance through scheduling

of aperiodic tasks in hard real-time multiprocessor systems,’’ IEEE Trans.

Parallel Distrib. Syst., vol. 8, no. 3, pp. 272–284, Mar. 1997.

[35] P. Guo and Z. Xue, ‘‘QoS-aware fault-tolerant rate-monotonic first-fit

scheduling in real-time systems,’’ in Proc. IEEE 2nd Inf. Technol. Netw.,

Electron. Autom. Control Conf., Dec. 2017, pp. 311–315.

[36] Y. Li, T. Jiang, K. Luo, and S. Mao, ‘‘Green heterogeneous cloud radio

access networks: Potential techniques, performance trade-offs, and chal-

lenges,’’ IEEE Commun. Mag., vol. 55, no. 11, pp. 33–39, Nov. 2017.

[37] S. Wang, K. Li, J. Mei, G. Xiao, and K. Li, ‘‘A reliability-aware task

scheduling algorithm based on replication on heterogeneous computing

systems,’’ J. Grid Comput., vol. 15, no. 1, pp. 23–39, Mar. 2017.

[38] Y. Ding, G. Yao, and K. Hao, ‘‘Fault-tolerant elastic scheduling algorithm

for workflow in cloud systems,’’ Inf. Sci., vol. 393, pp. 47–65, Jul. 2017.

[39] G. Xie et al., ‘‘Minimizing redundancy to satisfy reliability requirement for

a parallel application on heterogeneous service-oriented systems,’’ IEEE

Trans. Serv. Comput., to be published.

53682 VOLUME 6, 2018

P. Guo et al.: Energy-Efficient Fault-Tolerant Scheduling Algorithm

[40] D. Natale and Stankovic, ‘‘Dynamic end-to-end guarantees in distributed

real time systems,’’ in Proc. Real-Time Syst. Symp. (REAL), Dec. 1994,

pp. 216–227.

[41] S. Saha, A. Sarkar, and A. Chakrabarti, ‘‘Scheduling dynamic hard real-

time task sets on fully and partially reconfigurable platforms,’’ IEEE

Embedded Syst. Lett., vol. 7, no. 1, pp. 23–26, Mar. 2015.

[42] X. Zhu, J. Wang, H. Guo, D. Zhu, L. T. Yang, and L. Liu, ‘‘Fault-

tolerant scheduling for real-time scientific workflows with elastic resource

provisioning in virtualized clouds,’’ IEEE Trans. Parallel Distrib. Syst.,

vol. 27, no. 12, pp. 3501–3517, Dec. 2016.

[43] Y. Li, M. Chen, W. Dai, and M. Qiu, ‘‘Energy optimization with dynamic

task scheduling mobile cloud computing,’’ IEEE Syst. J., vol. 11, no. 1,

pp. 96–105, Mar. 2017.

[44] X. Qin and H. Jiang, ‘‘A dynamic and reliability-driven scheduling algo-

rithm for parallel real-time jobs executing on heterogeneous clusters,’’

J. Parallel Distrib. Comput., vol. 65, no. 8, pp. 885–900, Aug. 2005.

[45] W. Luo, J. Li, F. Yang, G. Tu, L. Pang, and L. Shu, ‘‘DYFARS: Boost-

ing reliability in fault-tolerant heterogeneous distributed systems through

dynamic scheduling,’’ in Proc. IEEE 8th ACIS Int. Conf. Softw. Eng.

Artif. Intell. Netw., Parallel/Distrib. Comput., vol. 1, Jul./Aug. 2007,

pp. 640–645.

[46] X. Zhu, X. Qin, andM. Qiu, ‘‘QoS-aware fault-tolerant scheduling for real-

time tasks on heterogeneous clusters,’’ IEEE Trans. Comput., vol. 60, no. 6,

pp. 800–812, Jun. 2011.

[47] J. Wang, W. Bao, X. Zhu, L. T. Yang, and Y. Xiang, ‘‘FESTAL: Fault-

tolerant elastic scheduling algorithm for real-time tasks in virtualized

clouds,’’ IEEE Trans. Comput., vol. 64, no. 9, pp. 2545–2558, Sep. 2015.

[48] T. Sigwele, A. S. Alam, P. Pillai, and Y. F. Hu, ‘‘Energy-efficient cloud

radio access networks by cloud based workload consolidation for 5G,’’

J. Netw. Comput. Appl., vol. 78, pp. 1–8, Jan. 2017.

[49] G. Manimaran and C. S. R. Murthy, ‘‘A fault-tolerant dynamic scheduling

algorithm for multiprocessor real-time systems and its analysis,’’ IEEE

Trans. Parallel Distrib. Syst., vol. 9, no. 11, pp. 1137–1152, Nov. 1998.

[50] (2018). Specpower_ssj2008 Results. [Online]. Available: http://www.

spec.org/power_ssj2008/results/power_ssj2008.html

[51] A. Beloglazov, J. Abawajy, and R. Buyya, ‘‘Energy-aware resource allo-

cation heuristics for efficient management of data centers for cloud com-

puting,’’ Future Generat. Comput. Syst., vol. 28, no. 5, pp. 755–768, 2012.

[52] A. Varasteh and M. Goudarzi, ‘‘Server consolidation techniques in virtu-

alized data centers: A survey,’’ IEEE Syst. J., vol. 11, no. 2, pp. 772–783,

Jun. 2017.

[53] C. Clark et al., ‘‘Live migration of virtual machines,’’ in Proc. 2nd Conf.

Symp. Netw. Syst. Design Implement., vol. 2. Berkeley, CA, USA: USENIX

Association, Jan. 2005, pp. 273–286.

[54] H. Liu, H. Jin, C.-Z. Xu, and X. Liao, ‘‘Performance and energy modeling

for live migration of virtual machines,’’ Cluster Comput., vol. 16, no. 2,

pp. 249–264, 2013.

[55] A. Strunk, ‘‘A lightweight model for estimating energy cost of live migra-

tion of virtual machines,’’ in Proc. IEEE 6th Int. Conf. Cloud Comput.,

Jun./Jul. 2013, pp. 510–517.

[56] V. De Maio, R. Prodan, S. Benedict, and G. Kecskemeti, ‘‘Modelling

energy consumption of network transfers and virtual machine migration,’’

Future Gener. Comput. Syst., vol. 56, pp. 388–406, Mar. 2016.

[57] P. Guo and Z. Xue, ‘‘Real-time fault-tolerant scheduling algorithm with

rearrangement in cloud systems,’’ in Proc. IEEE 2nd Inf. Technol. Netw.,

Electron. Autom. Control Conf., Dec. 2017, pp. 399–402.

[58] R. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,

‘‘CloudSim: A toolkit for modeling and simulation of cloud computing

environments and evaluation of resource provisioning algorithms,’’ Softw.,

Pract. Exper., vol. 41, no. 1, pp. 23–50, 2011.

PENGZE GUO received the B.S. degree from the

School of Electronic and Information Engineer-

ing, Xi’an Jiaotong University, China, in 2013.

He is currently pursuing the Ph.D. degree in

information and communication engineering with

Shanghai Jiao Tong University. His research inter-

ests include real-time systems, fault tolerance, and

cloud computing.

MING LIU is currently a joint Ph.D. Student with

the School of Electronic Information and Electri-

cal Engineering, Shanghai Jiao Tong University,

China, and the Faculty of Engineering and Infor-

mation Technologies, University of Technology

Sydney, Australia. His research interests include

cyber threat intelligence, intrusion detection sys-

tems, and scalable data analytics.

JUN WU (S’08–M’12) received the Ph.D. degree

in information and telecommunication studies

from Waseda University, Japan, in 2011. He was

a Post-Doctoral Researcher with the Research

Institute for Secure Systems, National Institute

of Advanced Industrial Science and Technology,

Japan, from 2011 to 2012. He was a Researcher

with the Global Information and Telecommuni-

cation Institute, Waseda University, from 2011 to

2013. He is currently an Associate Professor with

the School of Electronic Information and Electrical Engineering, Shanghai

Jiao Tong University, China, where he is also the Vice Director of the

National Engineering Laboratory for Information Content Analysis Technol-

ogy. His research interests include the advanced computing, communications

and security techniques of software-defined networks, information-centric

networks smart grids, Internet of Things, and fifth generation. He has

authored over 100 refereed papers in these fields. He is a TPC member

of more than 10 international conferences, including ICC, GLOBECOM,

and WINCON. He is the Chair of the IEEE P21451-1-5 Standard Working

Group. He has hosted and participated in a lot of research projects including

the National Natural Science Foundation of China, the National 863 Plan

and 973 Plan of China, and the Japan Society of the Promotion of Science

Projects. He is a Guest Editor of the IEEE SENSORS JOURNAL. He is currently an

Associate Editor of the IEEE ACCESS.

ZHI XUE received the Ph.D. degree in com-

munication and information systems from the

School of Electronic Information and Electri-

cal Engineering, Shanghai Jiao Tong University,

China, in 2001. He is currently a Professor with

Shanghai Jiao Tong University. His research inter-

ests include cyber security and cloud computing.

XIANGJIAN HE (M’99–SM’05) received the

Ph.D. degree in computing sciences from the Uni-

versity of Technology Sydney, Australia, in 1999.

Since 1999, he has been with the University of

Technology Sydney. He is currently a Full Pro-

fessor and the Director of the Computer Vision

and Pattern Recognition Laboratory, Global Big

Data Technologies Centre. He is a Co-Leader of

the Network Security Research Team, Center for

Real-Time Information Networks, University of

Technology Sydney.

VOLUME 6, 2018 53683

	INTRODUCTION
	RELATED WORK
	SCHEDULING MODEL
	ARCHITECTURE FRAMEWORK
	SCHEDULING CRITERIA
	PRIMARY COPY
	BACKUP COPY

	POWER MODEL
	VIRTUAL MACHINE MIGRATION

	ENERGY-EFFICIENT FAULT-TOLERANT SCHEDULING ALGORITHM
	SCHEDULABILITY TEST
	REARRANGEMENT MECHANISM
	PRIMARY AND BACKUP SCHEDULING

	PERFORMANCE EVALUATION
	PERFORMANCE METRICS
	EXPERIMENT SETUP
	PERFORMANCE IMPACT OF TASK COUNT
	PERFORMANCE IMPACT OF TASK ARRIVAL RATE
	PERFORMANCE IMPACT OF TASK DEADLINE
	OVERHEAD OF VM MIGRATION

	CONCLUSION
	REFERENCES
	Biographies
	PENGZE GUO
	MING LIU
	JUN WU
	ZHI XUE
	XIANGJIAN HE

