
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Energy-efficient FPGA spiking neural accelerators with supervised and 
unsupervised spike-timing-dependent-plasticity

Permalink
https://escholarship.org/uc/item/4mf2z8cp

Authors
Liu, Yu
Yenamachintala, Sai Sourabh
Li, Peng

Publication Date
2019
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4mf2z8cp
https://escholarship.org
http://www.cdlib.org/


27

Energy-e�icient FPGA Spiking Neural Accelerators

with Supervised and Unsupervised

Spike-timing-dependent-Plasticity

YU LIU, SAI SOURABH YENAMACHINTALA, and PENG LI, Texas A&M University

The liquid state machine (LSM) is a model of recurrent spiking neural networks (SNNs) and provides an ap-

pealing brain-inspired computing paradigm for machine-learning applications. Moreover, operated by pro-

cessing information directly on spiking events, the LSM is amenable to e�cient event-driven hardware im-

plementation. However, training SNNs is, in general, a di�cult task as synaptic weights shall be updated

based on neural �ring activities while achieving a learning objective. In this article, we explore bio-plausible

spike-timing-dependent-plasticity (STDP) mechanisms to train liquid state machine models with and without

supervision. First, we employ a supervised STDP rule to train the output layer of the LSM while delivering

good classi�cation performance. Furthermore, a hardware-friendly unsupervised STDP rule is leveraged to

train the recurrent reservoir to further boost the performance. We pursue e�cient hardware implementation

of FPGA LSM accelerators by performing algorithm-level optimization of the two proposed training rules

and exploiting the self-organizing behaviors naturally induced by STDP.

Several recurrent spiking neural accelerators are built on a Xilinx Zync ZC-706 platform and trained for

speech recognition with the TI46 speech corpus as the benchmark. Adopting the two proposed unsupervised

and supervised STDP rules outperforms the recognition accuracy of a competitive non-STDP baseline training

algorithm by up to 3.47%.
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1 INTRODUCTION

The biological brain o�ers a promising source of inspiration for building novel hardware architec-
tures and algorithms of next generation computing systems. Biological neurons perform complex
interactions at large scales and conduct sophisticated tasks with impressive energy and space ef-
�ciency. Their exhibiting behaviors and properties are currently studied in signi�cant research
e�orts aiming to model them with modern analogical tools.
Recently, increasing attention has been attracted to the concept of reservoir computing, which

provides a bio-inspired computational model for exploiting the power of recurrent neural net-
works [16, 18]. The liquid state machine (LSM) is one speci�c model of reservoir computing, which
operates on spiking neurons.
As shown in Figure 1, the LSM consists of two major parts. The reservoir, in which a number

of spiking neurons are randomly wired up to resemble the recurrent topologies of cortical mi-
crocircuits, provides a complex nonlinear dynamics and maps the input into a high-dimensional
response. The readout layer receives reservoir responses as inputs for �nal classi�cation. In the
conventional LSMmodel, only the synapses from the reservoir to the readout layer are trainable to
relax the challenge of training the complex recurrent reservoir. The LSM is especially competent
for spatiotemporal pattern classi�cation applications such as speech recognition [10, 25, 27].

Due to their power e�ciency and inherent information encoding scheme, spiking neural net-
works (SNNs) have been targeted for dedicated silicon-based implementation on both analog and
digital hardware. For instance, the Neurogrid mixed-analog-digital multi-chip system [4] realized
neural elements with analog electronic circuits and transmit the axonal arbors with digital spikes,
[23] developed an analog SNN for reinforcing the performance of conventional cardiac synchro-
nization therapy devices. While analog circuits take the advantage of the inherent characteristics
of silicon devices and provide low-power SNNs hardware realization, the computing accuracy
is generally limited, especially for complex real-world applications such as image classi�cation
and speech recognition. However, examples of digital VLSI SNN implementations include IBM’s
TrueNorth chip [1] and Intel’s Loihi [8]. However, both of them hold their own limitations to fully
tap the computational power of spiking neural networks. The TrueNowth chip lacks integrated
on-chip training capability and can only perform inference on the hardware; and no competitive
on-chip training results on the real-world applications have been demonstrated by the Loihi chip
by far. Generally speaking, while SNNs holding a lot of promise due to their closer resemblance to
biological neurons than older generations of arti�cial neural networks, training spiking neural net-
works, especially recurrent spiking neural networks, to achieve the state-of-the-art performance
remains a very di�cult challenge.
To this end, the LSM is envisioned as a good trade-o� between the ability in exploiting the

power of recurrent spiking neural networks and engineering tractability. Recently, the unique
architectural and functional properties of the LSM have been leveraged for cost-e�ective hard-
ware implementations with integrated e�cient on-chip spike-dependent learning mechanisms
to tune the reservoir and the readout layer [13, 14, 26, 27]. However, a key limitation of the
output training algorithms implemented in these works is that good performance is typically
guaranteed only with full connectivity between the reservoir and readout. This leads to overall
high complexity of the network and also large overhead for hardware implementation. Besides,
training algorithms that applied to the LSM and SNNs in general shall update the synaptic weights
only based on the local neural �ring activities while achieving the end learning objectives. This
natural property of the SNN imposes a signi�cant challenge on the design of learning algorithms,
as most conventional optimization methods do not satisfy it.
The above challenges motivate us to seek an alternative learning algorithm. To this end, spike-

timing-dependent plasticity (STDP) [5], a well-known unsupervised learning mechanism can be
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Fig. 1. A model of the liquid state machine.

considered as a good solution if combined with supervision given that it operates by locally tuning
synaptic weights according to temporal spike correlations and produces interesting self-organizing
behaviors. Ideas of combining supervision and STDP have been explored for precisely timed spike
pattern reproduction and decision making [9, 19, 20], however, without demonstrating in real-
world applications.
A preliminary version of the work in this article has been presented in Reference [12] that pro-

posed the calcium-modulated supervised STDP particularly under the context of the LSM, which
was only evaluated in software simulation with continuous values and STDP learning curves. In
this article, we explore STDP mechanisms to train liquid state machine models with and without
supervision on a hardware LSM accelerator. First, we employ a supervised STDP rule to train
the output layer of the LSM while delivering good classi�cation performance. Furthermore, a
hardware-friendly unsupervised STDP rule [13] is leveraged to train the recurrent reservoir for
a further performance boost. We pursue e�cient hardware implementation of FPGA LSM acceler-
ators, which allows for on-chip training and inference by performing algorithm-level optimization
of the two proposed training rules and exploiting the self-organizing behaviors naturally induced
by STDP. The runtime on-chip learning accuracy as well as the hardware implementation over-
head of the LSM neural processors are reported in this article.
The implemented calcium-modulated supervised STDP algorithm for the output layer targets

two important objectives: delivering good learning performance and sparsifying output synapses
to reduce network complexity and potentially hardware overhead. By nature, these two objectives
are competing with each other as sparsifying readout synapses can easily harm learning perfor-
mance. To address this challenge, a unifying two-step supervised STDP tuning approach is adopted
such that both objectives can be achieved at the same time.
Toward the objective to improve the learning performance, a calcium-modulated learning algo-

rithm based on supervised STDP is proposed, denoted as CaL-S2TDP . In CaL-S2TDP , for a given
input class, the supervisory signal applied to the targeted output neuron and instructs it to �re at
a high frequency level. For the undesired output neurons that associated to di�erent labels with
the presented input, motivated by the STDP mechanisms discovered in the brain [7], we de�ne a
depressive STDP learning rule to force them to �re at a desired low frequency level. In this way,
we maximize the distance of �ring frequencies from the desired neuron to undesired neurons for
making classi�cation decisions.
Moreover, the proposedCaL-S2TDP deals with the weight saturation problem that has not been

addressed in earlier supervised STDP algorithms. The weight saturation in SNNs prevents neurons
from learning new information in its later training stage [6] and can result in a poor learning per-
formance. The weight saturation problem is even worse on hardware SNNs as the synaptic weight
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resolution is limited. Furthermore, frequent weight updates lead to excessive memory access on
the hardware neural processor and hence increase the power consumption. To solve these prob-
lems, in the proposedCaL-S2TDP algorithm, we employ a probabilistic weight update scheme and
a calcium-modulated stop-learning mechanism to slow down the weight update and hence the
learning progress.
In general, a full connection between the reservoir and the readout layer with high bit resolu-

tions are required for good classi�cation performance. This could potentially lead to the over-
�tting problem due to the high network complexity, and also brings a large silicon overhead
and energy dissipation on hardware LSM accelerators. Toward the objective of sparsifying output
synapses to reduce network complexity and potentially hardware overhead, which tackles this is-
sue, we propose a calcium-modulated sparsi�cation algorithm based on supervised STDP, denoted
as CaS-S2TDP . The CaS-S2TDP algorithm sparsi�es the readout connectivity to a noticeable de-
gree and demonstrates that it can reduce power consumption without signi�cantly degrading the
learning performance.
The key ingredient of the proposed supervised STDP readout training algorithm is that we

cascade theCaS-S2TDP and CaL-S2TDP training and achieve the aforementioned two competing
objectives simultaneously through a unifying two-step supervised STDP-based readout tuning
approach. Essentially, CaS-S2TDP exploits the automatic competition among a�erent synapses
of each readout neuron induced by the STDP weight tuning mechanism [22]. This as a result
produces a synaptic weight dynamics with desired sparsity while preserves the spatiotemporal
structure in the input. The sparsity discovered byCaS-S2TDP is carried over to the training under
CaL-S2TDP .

While STDP in general is amenable to hardware realization given its simplicity and locality,
realizing continuous STDP in a digital architecture with cost e�ectiveness still poses a substan-
tial challenge. An accurate implementation with high resolution costs large hardware overhead.
However, utilizing low bit resolution by sparsely sampling the continuous weight and STDP
curve could easily harm the learning performance. To address this challenge, in this work, we
perform the algorithm-level optimization for the two STDP training algorithms and also lever-
age the self-organizing behaviors naturally induced by STDP. In the reservoir, the data-driven
hardware-optimized STDP [13] is adopted, which gives a low bit-resolution hardware realization
with minimum discretization errors. In the readout layer, we design the learning engine with mini-
mized resource and power overhead by maximizing the resource sharing among di�erent learning
processes.
Several FPGA recurrent spiking neural accelerators are built on a Xilinx Zync ZC-706 platform

with the ARM microprocessor on the same board serving as the host. For demonstration purpose,
the neural accelerators are trained for the non-trivial speech recognition task with the TI46 [24]
speech corpus benchmark. Our results indicate that the LSM neural accelerators can achieve up to
3.47% classi�cation performance boost with two unsupervised and supervised training algorithms
compared to the baseline. Besides, we also show that both unsupervised and supervised STDP
algorithms can be implemented on the hardware with great e�ciency.

2 HARDWARE-FRIENDLY UNSUPERVISED STDP FOR RESERVOIR TRAINING

In this section, we brie�y introduce the standard STDP as a reference and then discuss the imple-
mented hardware-friendly unsupervised STDP for reservoir tuning.

2.1 Baseline Unsupervised STDP

The nearest-neighbor STDP is an unsupervised Hebbian learning mechanism that updates the
weight of a synapse based on the relative spiking timing of its pre- and postsynaptic neurons [5].
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Fig. 2. (a) The standard STDP curve. (b) The equilibrium weight distribution obtained by applying STDP on

a reservoir.

For a given synapse connected from neuron j to neuron i , the weight gets update on both pre-
and postsynaptic spike events and the amount ∆w relies on the temporal di�erence ∆t = ti − tj
between the spike pair:

∆w+ = A+ (w ) · e−
|∆t |
τ+ if ∆t > 0,

∆w− = A− (w ) · e−
|∆t |
τ− if ∆t < 0,

(1)

where ∆w+ and ∆w− denote the weight update value caused by long-term potentiation (LTP)
and long-term depression (LTD), and A± (w ) determines the strength of LTP/LTD, respectively. A
typical STDP characteristics is plotted in Figure 2(a).

By nature, STDP introduces self-organizing behavior to the network by inducing competition
among the a�erent synapses of a neuron and can potentially lead to a sparse network topology.
This is exploited by us in both the reservoir and the readout layer to build an energy-e�cient
neural processor, which will be introduced in Sections 2.2 and 3.3, respectively. To give an im-
pression on the obtained sparse structure, we apply standard STDP on the reservoir and plot the
converged synaptic weight distribution in Figure 2(b). Generally, as a common practice, only exci-
tatory synapses are tunable while inhibitory synapses are �xed for a stabilized network dynamics.
The resulting bimodal weight distribution indicates a considerable amount of zero-valued and
low-valued synapses, which can be dropped o� in the following training stages to save hardware
energy.

2.2 Proposed Hardware-Friendly STDP for Reservoir Tuning

Reference [11] demonstrates that tuning reservoir with unsupervised STDP can supply the readout
training thus boost the learning performance. Moreover, the self-organizing behavior introduces
the sparsity into the reservoir and improve the hardware implementation e�ciency. However, a
cost-e�ective hardware realization of a given STDP presents a challenge. On one hand, straightfor-
ward hardware implementation in high bit resolution gives a good performance, however, at a cost
of large power/area overhead. On the other hand, simply reducing the overhead by implementing
the algorithm with low bit resolution leads to an immediate performance drop. To address this
challenge, we adopt the hardware-optimized STDP realization with low bit resolution based on a
data-driven approach [15], which is brie�y summarized here.

Implementation STDP on the hardware neural processor requires both synaptic weights and the
learning curve to be discretized, which introduces aggregated quantization errors. To solve this,
the adopted hardware-optimized STDP algorithm discretizes the synaptic weight and the learning
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curve collaboratively in a data-driven approach to match realistic synaptic events and minimize
quantization error over a large set of STDP updates. This includes (1) discretizing the continuous
weights such that the equilibrium weight distribution is well represented, and (2) discretizing the
STDP curve to match the characteristics of the synaptic update given the spike timing di�erence
∆t and the continuous weight change ∆w .
The pseudo-code of the hardware-friendly STDP algorithm is presented below. The weight w

and weight change ∆w with superscript d refer to the discretized values, while those with the
superscript c represent the continuous ones. The synaptic weight resolution B is usually chosen
to be very small for resource and power e�ciency. In this way, the STDP curve is mapped to a
look-up table (LUT) for weight update in the hardware. This optimization problem can be solved
o�ine given the small design space.

ALGORITHM 1: Hardware-friendly STDP Algorithm

begin

STEP 1: Pro�le continuous STDP:

Run continuous STDP simulation with typical inputs, collect synaptic events:

{∆tk ,∆w
c
k
,wc

old,k
,wc

new,k
}, k ∈ [1,N ], and weight distribution

STEP 2: Optimize weight discretization:

Set digital reservoir synaptic weight resolution B

foreachwc
k
do

minimize
wd

j

∑
k min

wd
j

{(wc
k
−wd

j )
2}, wd

j ∈ [wmin,wmax], j ∈ [1, 2, . . . , 2
B ]

end

STEP 3: Optimize STDP learning curve:

Set digital reservoir synaptic weight resolution B

foreach {wd
old,k

,∆tk } do

minimize
wd

new ,k

∑
k min
wd
new,k

{(wc
new,k

−wd
new,k

)2}, wd
new,k

∈ {wd
1 ,w

d
2 , . . . ,w

d
2B
}

end

end

3 HARDWARE-FRIENDLY SUPERVISED STDP FOR READOUT TRAINING

In SNNs, information is encoded and processed in the form of local spikes. This enforces synaptic
weights to be updated locally based on neural �ring activities when training SNNs. Under this
consideration, STDP, which by nature locally tunes the synaptic weight according to temporal
spike correlations, can serve as a good alternative to train SNNs toward certain learning objec-
tives. However, how to apply supervision on the by-default unsupervised STDP mechanism needs
careful study, which we present in this section.

3.1 Baseline Supervised STDP

Classi�cation decisions made by the LSM can be inferred from the associated class label of the out-
put neuron with the highest �ring frequency. Given that, we describe the target of a supervised
training algorithm on spiking neural networks as: maximizing the �ring frequency of the readout
neuron whose class label corresponds to the presented input sample, referred to as the “desired
neuron,” and at the same time minimizing the �ring frequency of all other readout neurons, re-
ferred to as “undesired neurons.”
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Fig. 3. (a) Proposed D-S2TDP algorithm. The neuron i1 is the desired neuron and i2 is the undesired neuron.

(b) and (c) Weight update under the proposed D-S2TDP algorithm. The potentiation or depression keeps

updating synaptic weights when a valid spike pair is presented. Besides, by applying CT, the spike event of

the desired neuron happens periodically.

Mathematically, this is to solve the following optimization problem:

max
f i
j

N∑

i=1

��
�
f ic (i ) (Xi ,W ) −

C∑

j�c (i )

f ij (Xi ,W )
��
�
, subject tof ij ≥ 0, (2)

where N is the total number of training samples, C is the total number of input classes, and Xi is
the ith input sample that belongs to class c (i ). f ij is the �ring frequency of the jth readout neuron

under the ith input, andW is the readout synapse weight vector.
In Equation (2), for each input sample, we want to maximize the distance of �ring rate between

the desired neuron and undesired neurons to optimize the classi�cation error over the entire train-
ing dataset. However, solving it in a mathematically exact manner is formidable.
Therefore, instead of solving Equation (2) directly, we propose the deterministic supervised

STDP algorithm, referred to as D − S2TDP , which is a feasible solution exploiting the local weight
update characteristics of STDP (Figure 3(a)). The main idea of the D-S2TDP is based on the ob-
servation that the standard STDP rule works by adjusting the strength of the synaptic connection
between a neuron pair based on their relative �ring timing. This can be leveraged to control the �r-
ing activities of the postsynaptic neuron, in our case the desired output neuron, to an expected level
if a well-de�ned supervisory signal is given. The supervisory signal, i.e., classi�cation teacher (CT)
signal in Figure 3(a), is an injected positive current to force the desired neuron to �re frequently
and hence invoke enough weight updates. Under the mediation of the STDP, a�erent synapses of
the desired output neuron form a stronger connection, which in turn further increases the like-
lihood of the postsynaptic neuron to �re in presence of its presynaptic spikes. As illustrated in
Figure 3(b), with the CT presented, the desired neuron i1 generates more spikes in response to a
presynaptic spike, resulting in further potentiation ofwi1 . The presence of CT also robustly bring
up the learning process when the initial weights are very small.
In terms of undesired neurons, we want to prevent them from �ring when unassociated input

samples are presented. To achieve this, a novel depressive STDP rule is proposed (see Figure 3(a))
to depress a�erent synapses so that the chance of postsynaptic �ring is reduced. As depicted in
Figure 3(c), when the undesired postsynaptic neuron i2 �res in response to a causal spike pattern,
the a�erent synaptic weightwi2 is decreased to discourage it to �re again.
The depression induced by the anti-causal (i.e., post-before-pre) spike pairs still applies to both

desired and undesired neurons. This enables competition among plastic synapses such that a sparse
structure can be learned [22].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 3, Article 27. Pub. date: May 2019.



27:8 Y. Liu et al.

3.2 ProposedCaL-S2TDP Training Algorithm

The proposed D-S2TDP e�ectively serves the supervised training purposes on spiking neurons.
However, the deterministic weight update scheme could result in several known issues such as
poor memory retention, weight saturation and large dynamic hardware power consumption. To
address these problems, we optimize the supervised STDP algorithm with the proposed CaL-
S2TDP algorithm.

In D-S2TDP , the desired output neuron maintains a high �ring frequency and hence frequently
updates its synaptic weights. However, the number of weight levels is limited by the �nite reso-
lution representation when implemented on the hardware. As a result, the learning ends up in a
way that most recent information presented to the neuron is learned better than the past informa-
tion [2, 3]. This issue is known as “memory retention.” Moreover, when training on the hardware,
the frequent weight update results in frequent switching activities of the associated signals and
logic cells as well as intensive weight memory access, which leads to high power consumption.
To this end, we adopt the probabilistic weight update scheme in Reference [11] to slow down the
learning process for better learning performance and hardware power e�ciency.
Moreover, without any stop-learning mechanism, readout synapses are continuously tuned by

the supervised STDP with the on-going reservoir responses and the synaptic weights are pushed
to a bimodal distribution (Figure 2) by STDP by nature. Ultimately, readout neurons will be unable
to respond to any new stimuli, since most of their a�erent synapses are saturated at the maxi-
mum/minimum weight values.
To solve the weight saturation problem, we disable the potentiation of a synapse when its post-

synaptic neuron is very active. Similarly, the depression stops when the postsynaptic neuron is
already silent. Inspired by Reference [6], in our work, the internal calcium concentration of a neu-
ron is used to indicate its average �ring level over a long time interval and tomanage the activation
of the learning. The calcium concentration c (t ) is de�ned as

dc (t )

dt
= −

c (t )

τc
+

∑

i

δ (t − ti ), (3)

where τc is the time constant and ti is the time when the postsynaptic neuron �res. The internal
calcium concentration level of the neuron increases with its �ring frequency.
Given the above considerations, we integrate the calcium-modulated weight update in the su-

pervised STDP readout training algorithm. First, a calcium threshold cθ is de�ned to separate active
neurons from inactive ones. Then, an activation margin δ is set. Synapse potentiation is allowed
when c < cθ + δ and depression is allowed when c > cθ − δ . Following the principle of Hebbian
learning, we also de�ne the lower bound of the potentiation activation range and the upper bound
of c for depression. Combining the stop-learning mechanism and probabilistic weight updates, the
CaL-S2TDP algorithm is de�ned as

w ← w + d w/ prob . ∝|∆w+ |, if ∆t > 0&&cθ < c < cθ + δ ,

w ← w − d w/ prob . ∝|∆w− |, if ∆t < 0&&cθ > c > cθ − δ , (4)

where ∆w+/∆w− are the weight adjustments determined by the STDP rule. They further determine
the probabilities of a weight update for LTP and LTD, respectively.
For the undesired neuron, since the depressive STDP is employed for both causal and anti-

causal spike pair patterns, only the second equation in Equation (4) applies. The weight update in
CaL-S2TDP algorithm is illustrated in Figures 4(c) and 4(d), where, unlike D-S2TDP as shown in
Figures 3(b) and 3(c), no weight update is allowed if the calcium level is too low or too high.
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Fig. 4. (a) Proposed CaL-S2TDP training algorithm. The neuron i1 is the desired neuron and i2 is the un-

desired neuron. (b) The calcium-modulated activation range. (c, d) Weight update of desired and undesired

neurons. The potentiation or depression only happens when the postsynaptic calcium level c is in the acti-

vation range.

3.3 ProposedCaS-S2TDP Sparsification Algorithm

In an LSM, synapses from the reservoir to the readout layer are fully connected and their weight
resolutions are usually high to achieve good learning results. This could result in two problems:
over-�tting due to the highmodel complexity, and large hardware implementation overhead. How-
ever, randomly dropout readout synapses can signi�cantly degrade the learning performance.
Therefore, we want to design an algorithm to smartly prune readout synapses. The major dif-
ference between a sparsi�cation algorithm from a classi�cation algorithm is that the objective of
the sparsi�cation algorithm is to allow su�cient competition among synapses rather than to learn
certain input patterns.
We realize that the STDP algorithm by nature mediates a�erent synapses of a neuron to charac-

terize competitions among them. Some synapses are strengthened while others are weakened [22].
As a result, it leads to a bimodal weight distribution (see Figure 2 as an example) out of whichmany
zero-valued or small-valued synapses can be pruned out. Therefore, the tuningmechanism of STDP
can be leveraged in our work to develop a supervised readout sparsi�cation algorithm. Moreover,
to embed the sparsi�cation into real-world classi�cation tasks, the designed algorithm should take
the spatiotemporal structures in the training samples into consideration such that the discovered
sparse patterns �t well with the features represented by the reservoir responses. Working toward
this target, we recognize that it is only necessary to instruct each readout neuron to learn the
sparse structure of the input subset of its associated class. This leads to the maximum sparsity
and the information from other classes will not be mistakenly learned through the sparsi�cation
process.
Given the above considerations, we proposed the CaS-S2TDP algorithm for readout sparsi�ca-

tion learning. The external supervised sparsi�cation teacher (ST) signal (Figure 5(a)) is introduced
in CaS-S2TDP to ensures that only the a�erent synapses of the desired output neuron are under
sparsi�cation learning at a time and also bring up initial �ring events of each readout neuron.
To maintain good learning performance, the stop-learning mechanism is also included in the

CaS-S2TDP algorithm as shown in Figure 5(b). However, compared to CaL-S2TDP , the activation
range of calcium concentration is more relaxed for both LTP and LTD to maximize sparsity at the
same time avoid undesirable bias in calcium regulation. In conclusion, the resulting CaS-S2TDP
sparsi�cation algorithm is summarized as

w ← w + d w/ prob . ∝|∆w+ |, if ∆t > 0&&c < cθ + δ ,

w ← w − d w/ prob . ∝|∆w− |, if ∆t < 0&&cθ − δ < c .
(5)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 3, Article 27. Pub. date: May 2019.



27:10 Y. Liu et al.

Fig. 5. (a) The CaS-S2TDP sparsification algorithm. The activity level of the selected readout neuron i1 is

boosted by the sparsity teacher (ST). (b) Stop learning for readout synapse sparsification.

3.4 Two-step Hardware-Friendly Supervised Readout Training

Combining CaS-S2TDP with CaL-S2TDP algorithms, we propose a unifying supervised STDP
readout training approach executed in two steps seamlessly. First, CaS-S2TDP is applied to the
output layer. At the end of the sparsi�cation, the zero-weight synapses are removed and the re-
maining synapses are trained by the CaL-S2TDP .
In the proposed readout training algorithm, CaS-S2TDP learns to capture the spatiotemporal

structures of the input spikes through the self-organizing behavior of STDP. Therefore, unlike
random synapse dropout, the discovered sparsity from the sparsi�cation step can be passed to the
classi�cation training step thus degrade the learning performance as little as possible.
RealizingCaS-S2TDP andCaL-S2TDP on hardware entails e�cient implementation of the STDP

learning curve and the stochastic weight update scheme. Inspired by the realization of the unsuper-
vised STDP algorithm in the reservoir, for the proposed supervised STDP algorithms, the weight
update probability calculation is implemented by a lookup table whose entry values are carefully
chosen o�ine according to the associated learning curve. In our design, there is a lookup table for
LTD and LTP process, respectively. Moreover, to minimize the resource and power overhead of
the supervised STDP implementation, we use the same learning engine for both sparsi�cation and
classi�cation training in each readout neuron. This involves resource sharing and execution time
interleaving ofCaS-S2TDP andCaL-S2TDP , which will be introduced in more detail in Section 5.2.

4 HARDWARE IMPLEMENTATION ARCHITECTURE

In this section, we describe the overall architecture of the LSM processor and the realization of
digital spiking neurons.

4.1 Overall LSM Processor Architecture

Figure 6 depicts the overall architecture of the LSM neural processor. The reservoir and the readout
layer are implemented by a reservoir unit (RU) and a training unit (TU), respectively. Each reservoir
neuron is implemented with a reservoir element (RE) and the output neuron is implemented with
the output element (OE). The synaptic connectivity from the external input to the RU is speci�ed by
a pre-de�ned crossbar interface. The spiking responses generated from REs are registered and sent
to all OEs. Meanwhile, these spikes are also fed back to some reservoir neurons through reservoir
synapses, the connectivity of which is speci�ed by another pre-de�ned crossbar. Neurons at the
same layer work in parallel to fully exploit the inherent abundant parallelism of the spike-based
learning algorithm.
The RU and the TU are trained in two stages in the LSM neural processor. First, RU is trained

until the synaptic weight distribution converges. Then, the readout training stage starts, which
can be further divided into the sparsi�cation training phase and classi�cation training phase, in
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Fig. 6. Overall architecture of an exemplary LSM neural processor.

Fig. 7. Hardware implementation of a single digital neuron element.

which the TU is trained by theCaS-S2TDP andCaL-S2TDP algorithm, respectively. At the end of
the readout sparsi�cation training phases, the zero-values readout synapses will be dropped out
as the network continues to the classi�cation training phase. These dropped out synapses are not
used for inference as well. During the entire readout training stage, RU is activated to provide
spike inputs to TU while maintaining its synaptic weights.

4.2 Implementation of Digital Spiking Neurons

The proposed LSM neural accelerator operates through a series of computational steps and re-
quires a large number of storing elements inside each neuron. As shown in Figure 7, a digital
neuronmodule (RE or OE) contains three sub-modules that perform di�erent functions at each bio-
logical time step: input spike processing, neuron update and spike generating, and synaptic weight
learning. These three operations span across several well-de�ned computational steps controlled
by the corresponding states associated with the global FSM at each layer. The unique architectural
and functional properties of the proposed LSM neural processor naturally lead to well-de�ned
boundaries between these sub-modules in terms of execution and storage. At each emulation time
step, �rst, the synaptic input processing module computes the second-order synaptic spike re-
sponses with the arrival of spike inputs. Then, the spike generation module updates the mem-
brane voltage with the synaptic responses and generates spikes based on the widely used leaky
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Fig. 8. (a) The design of the learning engine in LEs that implements the hardware-friendly unsupervised

STDP reservoir tuning mechanism. (b) An illustration of how time di�erence ∆t is computed in the hardware

learning engine.

integrate-and-�re (LIF) model. At last, the learning module tunes the a�erent presynaptic weights
of the associated neuron.
The major di�erence between the RE and the OE lies in the learning module, speci�cally the

implemented learning functions, arithmetic resolutions of digital synapses, and the realization
of the weight memory. A block memory (BRAM on FPGAs) inside each OE is used to store all its
presynaptic weights. REs, on the other side, make use of �ip �ops (FFs) to store the weight because
of the lower synaptic bit resolution and fewer input synapses per neuron.

5 CIRCUIT LEVEL OPTIMIZATION

In this section, we discuss the cost-e�ective hardware implementation of the presented training
mechanism in the RE and OE, respectively.

5.1 Implementation of Unsupervised STDP

The learning engine in the LE implements the proposed hardware-friendly unsupervised STDP
reservoir tuning mechanism [15], as depicted in Figure 8(a). In the implementation, shift registers
(SRs) are used to calculate the ∆t in Equation (1) so that a heavily loaded and frequently switching
global clock counter can be avoided to save power. Assuming the number of a�erent synapses of
a postsynaptic neuron ism, the presynaptic shift registers SR1 to SRm track the associated presy-
naptic spikes and the postsynaptic shift register (i.e., SR0) is used for tracking �ring events of the
neuron itself in which the learning module is instantiated. The depths of pre- and postsynaptic
shift registers is decided by time windows for LTP and LTD, respectively.
At each biological time step, the learning module checks each shift register in a serial manner

and updates the synapse weight if a valid spike pair presents. The time di�erence of a spike pair
is calculated by comparing the location of “spikes” in the shift register. When a neuron �res, the
MSB of its a�liated shift register is set to “1,” and the register shifts one bit to the right at every
biological step of the network. All shift registers in the reservoir neurons are driven by the global
clock for spike synchronization. By examining the relative position of “spikes” in shift registers,
the temporal di�erence ∆t between pre- and postsynaptic spikes can be easily inferred. As the
example in Figure 8(b) explains, for the considered spike pair, ∆t = tpost − tpre = tj − ti = 2. Note
that the potential weight update only happens when there is(are) “1”(s) at the MSB of the shift
register(s), which indicates the �ring of the pre- or postsynaptic neuron at the current biological
time step.
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Fig. 9. Implementation of the proposedCaS-S2TDP andCaL-S2TDP algorithm. The blue path are the control

path specified to CaL-S2TDP and the orange path are specified to CaS-S2TDP . The black paths represent

the data and control path shared by two algorithms.

5.2 Implementation of Supervised STDP

When implementing the supervised STDP learning mechanism in the OE, we make the follow-
ing two observations. First, CaS-S2TDP and CaL-S2TDP share the principles in the weight up-
date scheme including the basics of STDP learning mechanism, probabilistic weight update, and
the calcium-modulated stop-learning rule. Second, in the readout training stage, the sparsi�ca-
tion training under CaS-S2TDP and classi�cation training under CaL-S2TDP are executed in two
phases in order without overlap. This gives us an opportunity to explore the resource sharing of
logic cells and memories when implementing these two algorithms to optimize the resource uti-
lization and power e�ciency. As shown in Figure 9, the entire data path, including arithmetic logic
cells and STDP learning lookup tables (LUTs), are shared by both algorithms. Moreover, in CaL-
S2TDP implementation, the “potentiation” in the depressive STDP rule for undesired neurons is
implemented by the same LTP LUT as the regular STDP LTP curve for calculating update prob-
ability. To realize the depression update, instead, we inverse weight update value from +∆W to
−∆W when ∆t > 0, which is controlled by the CT as shown in Figure 9. As such, we maximize the
resource reuse to build an overhead and energy e�cient readout learning engine.
In the learning engine in OEs, �rst, we follow the implementation in the RE that computes the

spike timing di�erences using shift registers. As shown in Figure 9, SR0 is the postsynaptic shift
register and SR1 to SRm are the presynaptic shift registers. In OEs, the value ofm is generally much
larger than that in the LE due to the full connectivity of the readout synapses.
After the spike timing di�erence ∆t is computed, �rst, its signed bit is examined to determine

whether this is an LTP or LTD update. LTP and LTD lookup tables store the weight update proba-
bility, which is related to the time di�erence. In general, a smaller |∆t | indicates a stronger relation
between the pre- and postsynaptic neurons thus leads to a higher weight update probability ac-
cording to the STDP tuning mechanism. The entries of both look-up tables are optimized to get
good learning performance. At each biological time step, at most one LUT is enabled. The LUTs are
implemented with the distributed RAM on the FPGA with zero read latency. The weight update
probability output from the LUT is then compared it with the output from the random number
generator (i.e., Figure 9), which is implemented by a linear-feedback shift register that generates
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Fig. 10. The illustration of the recurrent spiking neural computing system.

a di�erent pseudo-random number at each biological time step. If the generated random number
is smaller than the probability threshold, and at the same time the calcium concentration is in
the activation range, then the corresponding synaptic weight is updated. Similar to the RE, the
calculation of ∆t and ∆w in OE are executed in serial in the order of synapse index in each neuron.

Note that during the readout sparsi�cation phase, only the a�erent synapses of the desired
readout neuron are enabled for weight update. Therefore, the in Figure 9 serves as an enable signal
for the STDP LUTs and the following data path. If ST equals to 0, then the entire weight update
logic stays inactivated.

6 EXPERIMENTAL SETTINGS AND BENCHMARKS

6.1 Recurrent Spiking Neural Accelerator Setup

In this work, several LSM neuromorphic processors are built on a Xilinx Zync ZC-706 platform as
FPGA accelerators. The onboard ARM Cortex-A9 MPCore microprocessor serves as the host for
the FPGA neural accelerator to provide input data and to receive the output spikes and analyze
the classi�cation performance. Figure 10 shows the recurrent spiking neural processing system.

The LSM neural accelerator communicates with the host through a high-speed 32-bit AMBA
AXI interface in a hand-shaking manner. When the host receives a request (req_input in Figure 10)
for a new input from the LSM accelerator, it writes the input pattern of the current biological time
step to the input spike bu�er located inside the interface. The depth of the input bu�er is 1 and the
width equals the number of spike channels of the input data. The original input �les are stored in
an SD card, which can only be directly accessed by the host. After the input spike write is done,
the host asserts an input valid signal (input_vld in Figure 10) in the con�guration registers (con�g
registers in Figure 10). This bit will be seen by the LSM accelerator and it then takes the spikes
from the input bu�er and starts processing. The neural accelerator is also responsible for cleaning
the input_vld bit after reading input spikes. Before the input_vld signal is deasserted by the LSM
accelerator, the host is blocked and would not process any other function.
During the inference stage, the host takes the output spikes generated from the LSM neural ac-

celerator to analyze the classi�cation accuracy. After the LSM neural processor �nishes processing
the current input, it asserts the output_ready signal. The host keeps pooling the con�guration reg-
isters for this signal. When the host sees the signal asserted, it takes the spikes out from the output
spike bu�er and updates the spike counts of each output neurons accordingly. At the end of each
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Table 1. Optimized Weight Discretization

of Unsupervised STDP

wd
1 = 0 wd

2 = 2 wd
3 = 6 wd

4 = 8

∆t = −3 wd
1 wd

2 wd
3 wd

4

∆t = −2 wd
1 wd

1 wd
2 wd

3

∆t = −1 wd
1 wd

1 wd
1 wd

2

∆t = 0 wd
1 wd

2 wd
3 wd

4

∆t = 1 wd
3 wd

4 wd
4 wd

4

∆t = 2 wd
2 wd

3 wd
4 wd

4

∆t = 3 wd
1 wd

2 wd
3 wd

4

Table 2. Parameter Se�ings of the

Proposed Supervised STDP

Algorithms

Parameter Value

A+ 3.0
A− 1.5
τ+ 4.0
τ− 8.0
∆W 1
cθ 5.0
δ 3.0
τc 64.0

input sample, the host interprets the classi�cation decision by selecting the corresponding class
label of the output spiking neuron that �res most during the presence of the current input sample.
This classi�cation decision is then compared with the ground truth label to see if it is correct.
At the end of the inference stage, the host will report the overall classi�cation accuracy as the
performance of the LSM neural processor.

6.2 Training Setup and Benchmarks

In the LSM neural accelerator implemented in this work, there are 135 reservoir neurons set up on
a 3D grid using the approach described in Reference [27]. Eighty percent of the reservoir neurons
are excitatory and the rest are inhibitory. The number of readout neurons is decided by the number
of classes to be classi�ed in the benchmark, which is 26 in our case.
In the reservoir layer of the proposed recurrent spiking neural processor, we adopt the op-

timized hardware-friendly unsupervised STDP training from Reference [13]. To minimize hard-
ware implementation cost, the reservoir synaptic weights is set to 2 and weight changes are only
executed when |∆t | ≤ 3. Table 1 shows the lookup table that is implemented in the LSM neural
accelerator.
For the supervised STDP readout training approach, the parameters of the algorithms are se-

lected by exploring the design space to a certain level, and we present the chosen values of the
key parameters in Table 2. To optimize the hardware overhead and at the same time guarantee
a good learning performance, the readout synaptic weight is set to 10-bit signed integers for all
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Table 3. Performances of LSM Neural Accelerators with Di�erent Training Mechanisms

Fixed +
Baseline

Unsupv
STDP +
Baseline

Fixed +
CaL-
S
2
TDP

Unsupv
STDP +

CaL-S2TDP

Fixed +
CaL-S2TDP
&CaS-S2TDP

Unsupv STDP +
CaL-S2TDP &
CaS-S2TDP

Classi�cation
Accuracy

91.53%
(−)

93.46%
(+1.93%)

94.23%
(+2.70%)

95.00%
(+3.47%)

91.92%
(+0.39%)

93.84% (+2.31%)

algorithms that are studied in this article. The initial weights are random values betweenWmin

andWmax . The depth of both LTD and LTP LUT are set to 16 and the LUTs are tuned o�ine in the
software simulator such that a good classi�cation performance can be achieved.
The adopted benchmark is a subset of the TI46 speech corpus [24], which contains utterances

of English letters from “A” to “Z.” There are 260 samples in this benchmark, ten for each letter,
recorded from a single speaker. The time domain speech signals are �rst preprocessed by Lyon’s
passive ear model [17] and then encoded into 78 spike trains using the BSA algorithm [21].

During the readout sparsi�cation phase, theCaS-S2TDP is iterated for a su�cient number until
the distribution of the readout synaptic weight reaches a steady state. Based on our observation,
the iteration times is set to 20, which is same as the number of iterations of the unsupervised
STDP reservoir training. This will lead to 25% readout synapses to be sparsi�ed. Then, the readout
layer is trained by the proposedCaL-S2TDP algorithm for another 250 iterations, during which the
zero-weight output synapses will not be considered for weight update. A �vefold cross-validation
scheme is adopted when evaluating the recognition performance.

7 EXPERIMENTAL RESULTS

With the experimental settings introduced in Section 6, in this section, we report the learning
performance and hardware overhead of the LSM neural accelerators with the proposed supervised
and unsupervised STDP training algorithms.

7.1 Classification Performance of the Recurrent Spiking Neural Accelerator

Given the considered design space, the on-chip learning performances of several recurrent spiking
neural processors for the speech recognition task with the TI46 corpus benchmark are reported
in Table 3. In the table, we also show the performance boost of each training mechanism com-
pared to the baseline design. The neural accelerators are implemented with di�erent reservoir
and readout training mechanisms as described in the table. The “X+Y” by default means apply-
ing X training mechanism to the reservoir layer and Y to the output layer of the corresponding
LSM neural accelerator. The “baseline” output training algorithm is a competitive non-STDP su-
pervised spike-dependent training algorithm proposed in Reference [27]. In the �xed reservoir,
synapses weights are not changeable and are set to 1 for excitatory synapses and −1 for inhibitory
ones. The “Unsupv STDP” represents the proposed hardware-friendly unsupervised STDP reser-
voir training algorithm.
From the results, it is evident that both unsupervised STDP reservoir training and supervised

STDP readout training algorithm can noticeably improve the classi�cation accuracy of the LSM
neural accelerator. By simply training the reservoir with the proposed hardware-friendly unsu-
pervised STDP algorithm, we can get a performance boost of 1.93% on top of the baseline design.
When applying only the CaL-S2TDP on the readout layer, the performance boost is up to 2.7%.
And when we combine the STDP-based reservoir training and the readout training, we can get
a major performance improvement of 3.47% on the �nal classi�cation. The table also shows that
with a sparsi�ed readout connection brought by CaS-S2TDP , the LSM neural processor can still
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Table 4. Hardware Resource Utilization of LSM Neural Accelerators

with Di�erent Training Mechanisms

Fixed +
Baseline

Unsupv
STDP +
Baseline

UnsupV
STDP +

CaL-S2TDP

Unsupervised +
CaS-S2TDP &
CaL-S2TDP

FFs 12,694 12,717 19,841 19,844

LUTs 43,975 45,785 57,581 57,788

FFs Utilization 2.90% 2.91% 4.54% 4.54%

LUTs Utilization 20.18% 20.95% 26.34% 26.43%

Table 5. Classification Training Power of Di�erent Algorithms on LSM Neural Accelerators

Fixed +
Baseline

Unsupv
STDP +
Baseline

Unsupv
STDP+

CaL-S2TDP

Unsupv STDP+

CaS-S2TDP &
CaL-S2TDP

Training for Classi�cation
Power (mW)

161 195 237 229

deliver a decent learning performance that is higher than the baseline. This outperforms the LSM
neural processors with randomly dropped readout synapses, in which an apparent performance
degradation is observed according to the results reported in Reference [12].

7.2 Hardware Overhead and Training E�iciency of the Recurrent

Spiking Neural Accelerator

In this section, we compare the overhead of implementing di�erent training mechanisms on the
LSM neural accelerators in terms of resource utilization and dynamic power consumption. Table 4
shows the hardware resource utilizations of LSM neural processors implemented with di�erent
learning mechanisms in terms of slice �ip �ops (FFs) and slice LUTs as well as their percentages of
usage with respect to the available resources on the targeted FPGA board. Here, we only consider
the resource usage of the LSM neural processor accelerator itself and the overhead of the AXI
interface is not included, because the interface only takes a small portion of the design and is
the same among di�erent LSM neural processors. Similarly, in Table 5, we report the dynamic
training power consumption of di�erent spiking neural accelerators, which is estimated by the
Xilinx Power Analyzer given the activity-based simulation results. The power results are estimated
under the 100MHz clock frequency, which is consistent with the working clock frequency of the
physical hardware accelerator.
Tables 3, 4, and 5 together show the trade-o� between the learning accuracy and the hardware

implementation overhead on the recurrent spiking accelerator of di�erent training algorithms.
From Tables 4 and 5, we can tell that implementing the supervised STDP readout training re-
quired an extra overhead for both on-chip resources and power. The extra overhead is mainly due
the cost of computing the spike timing di�erence ∆t of pre- and postsynaptic neurons for all read-
out synapses. To achieve a decent classi�cation performance, the time windows and correspond-
ingly depths of shift registers reserved in proposed supervised STDP algorithms, CaS-S2TDP and
CaL-S2TDP , are set to 12 for both LTP and LTD. This is much larger than that in the reservoir for
the unsupervised STDP, which is set to 3. Moreover, a full connectivity between the reservoir and
the readout layer required a large number of �ip �ops to be utilized for implementing supervised
STDP algorithms, which contributes majorly to the extra resource and dynamic power overhead.
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However, considering that the extra overhead of implementing unsupervised and supervised train-
ing mechanism on the LSM neural accelerator is relatively small compared to its learning accuracy
boost over the baseline, and that the power and resource utilization is overall low compared to the
training cost on the software simulator, the training e�ciency of the hardware LSM neural accel-
erator is still noteworthy.
The results from Tables 4 and 5 also show that the proposed CaS-S2TDP reduces the power

consumption of the readout classi�cation training stage compared to the case when only theCaL-
S2TDP is applied. Besides, the additional overhead to implement CaS-S2TDP is very small. This
indicates that by sharing the resources in the learning engine in readout neurons, we can e�ciently
implement the supervised STDP readout training for both sparsi�cation and classi�cation at the
same time.

8 CONCLUSION

In this article, we explore bio-plausible STDP training mechanisms with and without supervi-
sion on LSM FPGA recurrent spiking neural accelerators. A novel two-step supervised STDP ap-
proach is implemented to train the output layer of the LSM for both classi�cation performance and
synapse sparsi�cation, and a hardware-friendly unsupervised STDP is used to train the reservoir.
The hardware e�ciency of the LSM neural accelerators is optimized by performing algorithm-
level optimization of the two training algorithms and exploiting the self-organizing behaviors of
the STDP. Using the speech recognition task as a demonstrating application, we measure the clas-
si�cation performance of the proposed recurrent spiking neural accelerator built on the Xilinx
Zync ZC-706 FPGA. The results demonstrate that the proposed unsupervised and supervised STDP
training algorithms can work together to greatly improve the accuracy of the LSM with excellent
hardware e�ciency.
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