
The University of Manchester Research

Energy-Efficient Heterogeneous Cellular Networks with
Spectrum Underlay and Overlay Access
DOI:
10.1109/TVT.2017.2773506

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Tang, J., So, D. K. C., Alsusa, E., Hamdi, K., Shojaeifard, A., & Wong, K-K. (2017). Energy-Efficient
Heterogeneous Cellular Networks with Spectrum Underlay and Overlay Access. IEEE Transactions on Vehicular
Technology, 67(3), 2439-2453. https://doi.org/10.1109/TVT.2017.2773506

Published in:
IEEE Transactions on Vehicular Technology

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:26. Aug. 2022

https://doi.org/10.1109/TVT.2017.2773506
https://www.research.manchester.ac.uk/portal/en/publications/energyefficient-heterogeneous-cellular-networks-with-spectrum-underlay-and-overlay-access(95d7699e-51cd-4cc5-a707-724ba669b0ab).html
/portal/d.so.html
/portal/e.alsusa.html
/portal/k.hamdi.html
https://www.research.manchester.ac.uk/portal/en/publications/energyefficient-heterogeneous-cellular-networks-with-spectrum-underlay-and-overlay-access(95d7699e-51cd-4cc5-a707-724ba669b0ab).html
https://www.research.manchester.ac.uk/portal/en/publications/energyefficient-heterogeneous-cellular-networks-with-spectrum-underlay-and-overlay-access(95d7699e-51cd-4cc5-a707-724ba669b0ab).html
https://doi.org/10.1109/TVT.2017.2773506


Energy-Efficient Heterogeneous Cellular Networks with
Spectrum Underlay and Overlay Access

Jie Tang, Member, IEEE, Daniel K. C. So, Senior Member, IEEE, Emad Alsusa, Senior Member, IEEE, Khairi
Ashour Hamdi, Senior Member, IEEE, Arman Shojaeifard, Member, IEEE, and Kai-Kit Wong, Fellow IEEE

Abstract—In this paper, we provide joint subcarrier assign-
ment and power allocation schemes for quality-of-service (QoS)-
constrained energy-efficiency (EE) optimization in the downlink
of an orthogonal frequency division multiple access (OFDMA)-
based two-tier heterogeneous cellular network (HCN). Consid-
ering underlay transmission, where spectrum-efficiency (SE) is
fully exploited, the EE solution involves tackling a complex
mixed-combinatorial and non-convex optimization problem. With
appropriate decomposition of the original problem and leveraging
on the quasi-concavity of the EE function, we propose a dual-
layer resource allocation approach and provide a complete so-
lution using difference-of-two-concave-functions approximation,
successive convex approximation and gradient-search method.
On the other hand, the inherent inter-tier interference from
spectrum underlay access may degrade EE particularly under
dense small-cell deployment and large bandwidth utilization. We
therefore develop a novel resource allocation approach based on
the concepts of spectrum overlay access and resource efficiency
(RE) (normalized EE-SE trade-off). Specifically, the optimization
procedure is separated where the macro-cell optimal RE and the
corresponding bandwidth is first determined, then the EE of
small-cells utilizing the remaining spectrum is maximized. Sim-
ulation results confirm the theoretical findings and demonstrate
that the proposed resource allocation schemes can approach the
optimal EE with each strategy being superior under certain
system settings.

Index Terms—Heterogeneous cellular network (HCN), or-
thogonal frequency division multiple access (OFDMA), energy-
efficiency (EE), spectrum-efficiency (SE), resource efficiency
(RE).

I. INTRODUCTION

The global mobile data traffic, thanks largely to the ever-
growing use of applications on smart devices, increased by
a tremendous 4k times in a decade from 2005 to 2015 and
is expected to further grow going into 2020 and beyond [1].
It is well-understood that the conventional cellular network
architecture using macro-cells only cannot possibly support
demand going forward. This trend has driven the wireless
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industry to devise new technologies and standards for a new
fifth-generation (5G) mobile network. A promising enabler for
supporting user equipments (UEs) with increased density and
quality-of-service (QoS) requirements is to deploy different
types of base stations (BSs), thus forming what is referred to as
heterogeneous cellular network (HCN) [2], [3]. The underlying
air interface technology for HCN in the downlink is orthogonal
frequency division multiple access (OFDMA) as specified in
modern cellular standards [4].

Meanwhile, spectrum-efficiency (SE), a measure of the total
amount of information transmitted per unit bandwidth, has
been used as a key performance indicator in the design and
analysis of cellular networks [5]–[7]. More recently, particular
focus has been placed on the SE maximization problem
in OFDMA-based HCNs. In particular, although intra-cell
interference is suppressed via exclusive channel assignment
in OFDMA, considering the dense and irregular deployment
of nodes in HCNs, there remains inter-cell interference from
both intra- and inter-tier sources. As a result, novel interference
management strategies for HCNs has been an active area
of research [8], [9]. In [10], a joint subcarrier and power
allocation method is proposed to maximize SE considering
densely deployed small-cells. In [11], a distributed resource
allocation scheme using convex optimization is developed to
enhance SE in a two-tier HCN. The authors in [12] propose a
joint scheduling and power allocation scheme for maximizing
the HCN sum rate. As a remedy to poor performance or/and
high complexity, the authors in [13] propose a novel dis-
tributed interference management scheme. In addition, taking
into account the presence of UEs with heterogeneous QoS
requirements, the authors in [14] propose a joint subcarrier
assignment and power allocation algorithm for the small-
cells under an interference temperature limit to protect the
macro-cell from harmful inter-tier interference. In [15], the
problem of joint subcarrier assignment and power allocation
is investigated in the context of downlink OFDMA-based
HCNs where the sum rate of all small-cell UEs is maximized
whilst protecting the minimum throughput requirements of the
macro-cell UEs.

On the other hand, placing the focus solely on maximizing
SE will lead to ever-rising network power consumption, which
goes against global commitments for sustainable development
jointly in terms of energy cost and environmental factors.
Energy-efficiency (EE), defined as the total amount of in-
formation delivered per unit energy, is widely recognized as
an important measure for joint spectrum- and energy-efficient
cellular network design. The EE optimization problem has at-
tracted great interest in the context of OFDMA-based systems



[16]–[19], and more recently OFDMA-based HCNs [20]–[24].
In [20], a resource allocation scheme for maximizing EE in
spectrum underlay access OFDMA-based HCNs is proposed.
In [21], the authors have jointly considered EE enhancement
and interference control for OFDMA-based HCNs where the
problem has been formulated as a Stackelberg game. In
[22], the authors propose an energy-efficient spectrum sharing
scheme among a macro-cell and multiple small-cells. In partic-
ular, the EE of the small-cells is maximized whilst preventing
any potential severe interference leakage to the macro-cell
UEs. The authors in [23] further investigate the joint power
allocation and admission control problem in OFDMA-based
HCNs. Specifically, considering spectrum underlay access, a
novel resource allocation approach has been proposed with
the goal of admitting the maximum possible number of UEs
whilst keeping interference below a certain threshold.

A. Main Contributions
Previous works in the literature [20]–[23] investigated EE

optimization in spectrum sharing OFDMA-based HCNs with
spectrum underlay access, where interference constraints are
imposed on the small-cell BSs in order to protect the QoS
requirements of the macro-cell UEs. The inherent severity of
inter-tier interference from spectrum underlay access may nev-
ertheless degrade EE in certain cases. In addition, in contrast
to the state-of-the-art studies on EE maximization [20]–[23]
where the impact of spectrum utilization is not considered, in
this paper we directly include bandwidth usage in the analysis
by modeling the dynamic circuit power consumption as a
linear function of the bandwidth [25], [26]. As a result, the
global frequency reuse strategy may lead to higher circuit
power consumption and degraded EE performance. On the
other hand, utilizing overlay transmission, where the allocated
bandwidth for the macro-cell and the small-cells are exclusive,
is considered a promising strategy when it comes to densely
deployed or bandwidth-abundant HCNs. In this paper, a fun-
damental study of EE in the context of an OFDMA-based two-
tier HCN consisting of a macro-cell and multiple small-cells is
provided. We consider both underlay and overlay transmission
strategies and provide joint subcarrier assignment and power
allocation schemes for maximizing EE subject to satisfying
QoS constraints. It should be noted user association plays a
pivotal role in enhancing the load balancing, the SE, and the
EE in HCNs [27], [28]. However, similar to the works in [10]–
[15], [20]–[23] where the user-BS association is considered
fixed during runtime, this paper jointly investigates the power
and bandwidth relationship under fixed user association strat-
egy in order to optimize EE considering spectrum underlay
and overlay access.

We first consider spectrum underlay access under constraints
in terms of minimum user rate requirements as well as
maximum transmit powers of the different BS types. The
EE maximization problem under this setup, involving the
apportion of limited radio resources to different UEs in differ-
ent cells, is mixed-combinatorial and non-convex, and hence
very challenging to solve. In order to tackle this problem,
we decompose the original problem into a series of sub-
problems with single inequality constraints. Based on the

quasi-concavity of the EE function, a dual-layer resource allo-
cation approach is accordingly proposed for solving each sub-
problem. We provide a complete solution where the inner-layer
is solved using difference-of-two-concave-functions approxi-
mation and successive convex approximation while gradient-
search is invoked for the outer-layer. The proposed joint
subcarrier assignment and power allocation algorithm using
underlay transmission may not be energy-efficient in certain
cellular environments such as dense (due to severe inter-
tier interference) or bandwidth-abundant (due to high circuit
power) cases. In addition, the computational complexity for
the proposed underlay-based approach can be high when the
number of subcarriers or/and the number of UEs is relatively
large. Consequently, motivated by our previous work on re-
source efficiency (RE) [29] and the idea of spectrum overlay
access as an effective inter-tier interference mitigation strategy,
a novel transmission scheme for the two-tier HCN is proposed
where the optimization procedure for the macro-cell and the
small-cells is separated. Specifically, we first optimize the RE
at the macro-cell and determine the corresponding optimal
bandwidth using joint subcarrier assignment and power alloca-
tion. We then assign the remaining spectrum to the small-cells
and accordingly optimize their EE. Numerical results validate
the effectiveness of the proposed algorithms and show that
each algorithm has its strong point depending on scenario
parameters such as the small-cells density and the bandwidth
utilization.

B. Organization

The remainder of this paper is organized as follows. The
system model and problem formulation is given in Section
II. In Section III, the fundamentals for EE optimization in
OFDMA-based HCNs is studied, where in particular the
EE optimization problem with multiple inequality constraints
is transformed into a multiple single inequality problems.
In Section IV, joint subcarrier assignment and power allo-
cation algorithm for the inner-layer is first introduced by
exploiting some properties of the optimization problem. In
particular, an efficient solution based on difference-of-two-
concave-functions approximation for the inner-layer process is
developed, followed by a complete solution to the dual-layer
scheme. In Section V, a novel low-complexity algorithm is
developed based on overlay transmission. Simulation results
are provided in Section VI and conclusions are drawn in
Section VII.

II. PRELIMINARIES

In this section, we describe the two-tier OFDMA-based
HCN setup under consideration. The QoS-constrained EE
optimization problem is then mathematically formulated.

A. System Model

We consider the downlink of an OFDMA-based two-tier
HCN comprising of a macro-cell and L small-cells. The set of
cells is denoted using L = {0, 1, 2, · · · , L}, where indexes 0
and {1, 2, · · · , L} correspond to the macro-cell and the small-
cells, respectively. In addition, we assume that there are K0



macro-cell UEs (MUEs) and Kl small-cell UEs (SUEs). For
simplicity, the index of the UEs (MUEs and SUEs) associated
with cell l ∈ L is denoted with Kl. The HCN total available
spectrum, Wtot, is divided into Ntot subcarriers with each
having a bandwidth of WC = Wtot

Ntot
. Specifically, the set of

all accessible frequencies is denoted with N (where |N | =
Ntot). We consider exclusive channel assignment, where any
OFDMA subcarrier can only be employed by at most one UE
in a given cell at a given time, in order to prevent harmful
collision. Note that the UE-BS association is considered fixed
during runtime.

The channel power gain from the cell-m BS to the cell-l k-
th UE over subcarrier n is denoted with hn[k,l,m]. The received
signal-to-interference-plus-noise ratio (SINR) at the cell-l k-th
UE over subcarrier n can be formulated as [30]

γn[k,l] =
hn[k,l,l]p

n
l∑

m∈L\{l} h
n
[k,l,m]p

n
m + σn[k,l]

(1)

where pnl is the transmit power of the cell-l BS over subcarrier
n and σn[k,l] is the noise power at the cell-l k-th UE over
subcarrier n. Note that intra-cell interference is avoided under
exclusive channel assignment. We thus can express the rate
for the cell-l k-th UE over subcarrier n using

rn[k,l] = WC log2

(
1 + γn[k,l]

)
. (2)

Hence, the rate achieved by UE [k, l] is given by

R[k,l] =
∑
n∈N

ρn[k,l]r
n
[k,l] (3)

where ρn[k,l] ∈ {1, 0} indicates whether or not the nth subcar-
rier is assigned to the UE [k, l].

OFDM and OFDMA modulated signals exhibit high peak-
to-average power ratio; thus suffering from severe nonlinearity
effects. In practice, to circumvent the resulting performance
degradation, input backoff is implemented by reducing the
power of the input signal at the PA, so that the amplification
stays within the linearity region as much as possible. This will
lead to EE reduction because the PA efficiency is typically
designed to peak near the saturation point and it usually
drops rapidly as the input power decreases. On the other
hand, it has been shown in [31] that the relations between
relative RF output power and BS power consumption are
nearly linear. Hence, considering that BSs are the dominant
sources of energy consumption in cellular networks, a linear
approximation of the BS power model appears justified,

P = ζPT + PC (4)

where ζ, PT and PC denote the BS reciprocal of drain
efficiency of the power amplifier, transmission power, and
circuit power consumption, respectively. Furthermore, the cir-
cuit energy consumption consists of static (fixed) and dynamic
parts, where the latter depends on the active links parameters.
Motivated by the approach in [25] and [26], the circuit power
consumption is considered to be proportional to the total
utilized bandwidth for transmission. Consequently, the total

circuit power can be written as

Pc = Ps + %W (5)

where Ps is the static circuit power in transmission mode, % is
a constant corresponding to the dynamic power consumption
per unit bandwidth, and W is the occupied bandwidth. As a
result, the total power consumption in the two-tier OFDMA-
based HCN under consideration is given by

P =
∑
l∈L

(ζP
[l]
T + P

[l]
C ) (6)

where P [l]
T =

∑
n∈N p

n
l denotes the transmission power at the

cell-l BS, and pnl is the power allocated on the nth subcarrier
at the cell-l; P [l]

C = P ls + %Wl represents the circuit power at
the cell-l BS where P ls and Wl respectively denote the static
circuit power and the occupied bandwidth at the cell-l.

B. Problem Formulation
Recall that EE is defined as the total number of successfully

delivered bits per unit energy. The two-tier OFDMA-based
HCN EE in the downlink can hence be described using the
following equation

λEE ,
C

P
=

∑
l∈L
∑
k∈Kl R[k,l]∑

l∈L(ζP
[l]
T + P

[l]
C )

(7)

where C and P are respectively used to denote the total data
rate and the total power consumption of the HCN. Given
that an OFDMA-based cellular network will occupy as much
bandwidth as possible in order to maximize the EE [29], in
this paper, we consider a two-tier OFDMA-based HCN where
the entire spectrum is fully occupied in order to exploit the
EE. Therefore, the whole bandwidth is occupied and shared
by macro-cell and small-cells, i.e., Wl = Wtot, l ∈ L.
Moreover, we are concerned with the problem of achieving
high EE whilst guaranteeing the required QoS constraints
for each user under limited transmit power resources. In
other words, the power allocated on the nth at the cell-
l, pnl ≥ 0 and the subcarrier assignment ρn[k,l] ∈ {1, 0} are the
optimization variables. Hence, we formulate an optimization
problem for maximizing EE under a series of (minimum) rate
requirements and maximum power budgets. Accordingly, the
EE optimization problem for the two-tier OFDMA-based HCN
is formulated as

max
ρ,p

λEE (8)

s.t.
∑
n∈N

pnl ≤ P [l]
max, ∀l ∈ L, (9)∑

n∈N
ρn[k,l]r

n
[k,l] ≥ δ[k,l], ∀k ∈ Kl,∀l ∈ L, (10)∑

k∈Kl

ρn[k,l] = 1,∀n ∈ N ,∀l ∈ L, (11)

where ρ denotes a feasible subcarrier assignment indicator
vector and ρ = {[ρn[k,l]]LKN×1| ρn[k,l] ∈ {1, 0},∀l ∈ L,∀k ∈
Kl,∀n ∈ N}, p denotes a feasible power allocation vector and
p = {[pnl ]LN×1| pnl ≥ 0,∀n ∈ N ,∀l ∈ L}, P [l]

max is the max-
imum transmit power of the cell-l BS and δ[k,l] corresponds



to the minimum rate requirements for UE [k, l]. Therefore,
constraints (9)-(10) are used to guarantee the maximum power
budget and the minimum rate target in each cell. In addition,
the constraint in (11) corresponds to the exclusive subcarrier
assignment strategy in any cell.

The EE optimization problem here, which considers join
subcarrier assignment and power allocation in the presence of
inter-cell interference, is mixed-combinatorial and non-convex.
The solution is therefore nontrivial and cannot be obtained
directly. As a result, in the following sections, we develop
two different resource allocation approaches considering both
spectrum underlay and overlay access.

III. FUNDAMENTALS OF EE OPTIMIZATION IN
OFDMA-BASED HCNS WITH SPECTRUM UNDERLAY

ACCESS

With spectrum underlay access, the small-cells share the
available radio spectrum with the macro-cell and hence in-
troduce inter-tier interference which renders the resource al-
location problem significantly more challenging to tackle. In
addition, the variables for subcarrier assignment and power
allocation are coupled together and hence the non-convex
optimization problem in (8)-(11) is extremely difficult to
solve. In this section, we provide a fundamental study for
energy-efficient design in OFDMA-based underlay HCNs. In
particular, a relationship between optimal EE and UE’s data
rate is derived as in the following theorem.

Theorem I. For any rate vector for the UEs that satisfies
the minimum rate constraint, R ≥ δ, achieved with power
allocation pnl ,∀(l, n) ∈ (L,N ) and subcarrier assignment
ρn[k,l], the maximum achievable EE, namely,

λ∗EE(R) , max
ρn

[k,l]
,pnl

λEE (12)

s.t. R ≥ δ, ∀k ∈ Kl,∀l ∈ L, (13)∑
n∈N

pnl ≤ P [l]
max, ∀l ∈ L, (14)∑

k∈Kl

ρn[k,l] = 1,∀n ∈ N ,∀l ∈ L, (15)

where R = [R[1,0] R[2,0] · · · R[KL,L]] and δ =
[δ[1,0] δ[2,0] · · · δ[KL,L]], is strictly quasi-concave in R.

Proof: See Appendix A.
By definition, a continuous and strictly quasi-concave func-

tion has a unique maximum value over a finite domain [32].
Therefore, Theorem I indicates that there always exists a
unique EE solution. On the other hand, the original EE
optimization problem is very challenging to solve due to
the multiple inequality constraints in (10). By extending the
Lagrange dual decomposition method for single-cell multi-
carrier systems [16] to our OFDMA-based underlay HCN
setup, the gradient ascent approach can be invoked to generate
R, and

R(n+ 1) = [R(n) + µ∇λEE(R(n))]+. (16)

However, a closed-form expression for the gradient of this
vector does not exist; hence, it is impossible to directly employ
(16) in order to obtain the solution in (8)-(11). Nevertheless,

we can transform the gradient ascent method in (16) using the
following approach [33]

R0(n+ 1) = [R0(n) + µ∇λEE(R0(n))]+,

...
RL(n+ 1) = [RL(n) + µ∇λEE(RL(n))]+. (17)

As a result, the vector gradient can be alternatively decom-
posed into multiple scalar gradient; thus making the opti-
mization problem relatively easier to solve. Accordingly, we
propose an iterative resource allocation scheme to tackle the
EE optimization problem for two-tier OFDMA-based HCNs.
Similar to the gradient decomposition approach in [33], by
keeping one minimum rate constraint at a time and setting
all others as equality constraints (fixed rate), the optimization
problem with multiple inequality constraints can be decom-
posed into a series of optimization problems with single
inequality constraint. Specifically, all other users will be under
equality constraints whilst user [k∗, l∗] is under inequality
constraint (minimum rate requirement). Therefore, the EE
maximization problem is transformed into

max
R[k∗,l∗]

λEE (18)

s.t. R[k,l] = R̄[k,l], ∀(k, l) ∈ (Kl,L)\(k∗, l∗), (19)
R̄[k∗,l∗] ≥ δ[k∗,l∗], (20)

where R̄[k,l] represents the optimal rate (for all other users
apart from user [k∗, l∗]) obtained from the previous iteration.
Under this setup, we can obtain the solution for user [k∗, l∗],
R̄[k∗,l∗], by solving the above single inequality constrained
optimization problem. Once this UE’s rate is obtained, the
next user is placed under inequality constraint (minimum rate
requirement), i.e., ∀ (k∗ + 1, l∗) ∈ (Kl,L), while all other
users have updated rate values from the previous iteration. In
particular, we can rewrite the constraints in (19)-(20) as

R[k,l] = R̄[k,l], ∀ (k, l) ∈ (Kl,L)\{k + 1∗, l∗}, (21)∑
n∈N

ρn[k∗+1,l∗]r
n
[k∗+1,l∗] ≥ δ[k∗+1,l∗]. (22)

After solving the problem for the next user, the maximum EE
value is stored in the buffer and the corresponding optimal
rate R̄[k∗+1,l∗] for user [k∗ + 1, l∗] is updated. This process
is repeated cyclically for all cells until convergence, i.e.,
λoptEE(n + 1) − λoptEE(n) ≤ ε. We provide a pseudocode for
the proposed iterative resource allocation scheme:
(1) Initialize [k∗, l∗] as the first user in (Kl,L) with inequal-

ity constraint;
(2) Tackle the problem in (18)-(20) and store λoptEE(n) in the

buffer;
(3) Modify the constraints using (21)-(22) and update the

corresponding rates;
(4) Repeat steps (2) and (3) until convergence λoptEE(n+1)−

λoptEE(n) ≤ ε.
The decomposed EE optimization problem in (18)-(20) has a
single inequality constraint. With a fundamental study of the
problem, we can arrive at the following theorem.

Theorem II. For any given rate for user [k∗, l∗], R[k∗,l∗] ≥



δ[k∗,l∗], achieved with power allocation pnl ,∀(l, n) ∈ (L,N )
and subcarrier assignment ρn[k,l], the maximum EE, namely,

λ∗EE(R[k∗,l∗]) , max
ρn

[k,l]
,pnl

λEE (23)

s.t. R[k,l] = R̄[k,l], ∀(k, l) ∈ (Kl,L)\(k∗, l∗), (24)∑
n∈N

ρn[k∗,l∗]r
n
[k∗,l∗] = R[k∗,l∗] ≥ δ[k∗,l∗], (25)∑

n∈N
pnl ≤ P [l]

max, ∀l ∈ L, (26)∑
k∈Kl

ρn[k,l] = 1,∀n ∈ N ,∀l ∈ L, (27)

is strictly quasi-concave in R[k∗,l∗].
Proof: Theorem II is a special case of Theorem I, thus a

similar proof to that in Appendix A can be applied here.
Theorem III. In the rate region for user [k∗, l∗]

[δ[k∗,l∗] δ[k∗,l∗](max)], the EE, λ∗EE(R[k∗,l∗])
(i) strictly decreases with R[k∗,l∗] and is maximized at

R[k∗,l∗] = δ[k∗,l∗] if

dλ∗EE(R[k∗,l∗])

dR[k∗,l∗]

∣∣∣∣
R[k∗,l∗]=δ[k∗,l∗]

≤ 0,

(ii) strictly increases with R[k∗,l∗] and is maximized at
R[k∗,l∗] = δ[k∗,l∗](max) if

dλ∗EE(R[k∗,l∗])

dR[k∗,l∗]

∣∣∣∣
R[k∗,l∗]=δ[k∗,l∗]

> 0

and
dλ∗EE(R[k∗,l∗])

dR[k∗,l∗]

∣∣∣∣
R[k∗,l∗]=δ[k∗,l∗](max)

≥ 0,

(iii) first strictly increases and then strictly decreases with
R[k∗,l∗] and is maximized at R[k∗,l∗](λ

opt
EE) if

dλ∗EE(R[k∗,l∗])

dR[k∗,l∗]

∣∣∣∣
R[k∗,l∗]=δ[k∗,l∗]

> 0

and
dλ∗EE(R[k∗,l∗])

dR[k∗,l∗]

∣∣∣∣
R[k∗,l∗]=δ[k∗,l∗](max)

< 0,

(iv) infeasible if

δ[k∗,l∗] > δ[k∗,l∗](max),

where δ[k∗,l∗](max) is the maximum feasible rate for user
[k∗, l∗] under the constraints in (24)-(27) and R[k∗,l∗](λ

opt
EE)

is the rate for user [k∗, l∗] that corresponds to the maximum
EE under the constraints in (24)-(27).

Proof: see Appendix B.
The quasi-concavity property guarantees the existence of

a unique maximum, hence Theorem II proves the existence
of a unique EE solution. Moreover, the quasi-concavity of
EE optimization problem (Theorem III) further indicates that
λEE(R[k∗,l∗]) either decreases or first increases and then
decreases with R[k∗,l∗]. Thus, problem (23)-(27) can be solved
through a dual-layer decomposition method using the follow-
ing processes:

(i) Inner-layer: Finds the maximum EE in cell-l∗,
λ∗EE(R[k∗,l∗]), under a fixed rate, R[k∗,l∗].

(ii) Outer-layer: Obtains the optimal EE, λoptEE , using heuristic
search.

Note that the key challenge for adopting the proposed dual-
layer decomposition method lies in the inner-layer mechanism,
as discussed in the following section.

IV. JOINT SUBCARRIER ASSIGNMENT AND POWER
ALLOCATION FOR EE MAXIMIZATION

In this section, we provide a joint subcarrier assignment and
power allocation method for the inner-layer by exploiting the
fundamental properties of the optimization problem. A com-
plete solution to the proposed dual-layer resource allocation
approach is then presented.

Given that a centralized control is capable of providing
optimal resource allocation for the entire network and exhibits
a fast convergence, we employ a centralized approach for
underlay access where the network contains a single central
entity that performs resource allocation. This central entity
collects information, such as the channel quality and the
resource demand from all users.

Given that the optimization problem in (23)-(27) involves
fixed throughput requirements (equality constraints), it can be
equivalently expressed in terms of the the following power
minimization problem

min
ρn

[k,l]
,pnl

∑
l∈L

∑
n∈N

pnl (28)

s.t.
∑
n∈N

ρn[k,l]r
n
[k,l] = R[k,l], ∀(k, l) ∈ (Kl,L), (29)∑

k∈Kl

ρn[k,l] = 1,∀ n ∈ N ,∀ l ∈ L, (30)∑
n∈N

pnl ≤ P [l]
max, ∀ l ∈ L. (31)

The above power minimization problem involves subcarrier
assignment and power allocation, therefore, we can extend the
iterative approach proposed in [12] to a HCN scenario.

The joint subcarrier assignment and power allocation pro-
cess can be separated as

ρ[0]→ p[0]︸ ︷︷ ︸
Initialization

→ · · ·ρ[t]→ p[t]︸ ︷︷ ︸
Iteration t

→ ρopt → popt︸ ︷︷ ︸
Optimal Solution

. (32)

where pn = [pn0 , p
n
1 , · · · , pnL], pl = [p1

l , p
2
l , · · · , pNl ], p =

vec[p0,p1, · · · ,pL], ρ[k,l] = [ρ1
[k,l], ρ

2
[k,l], · · · , ρ

N
[k,l]], ρl =

vec[ρ[1,l], ρ[2,l], · · · , ρ[Kl,l]] and ρ = vec[ρ[0], ρ[1], · · · , ρ[L]].
Note that the number inside the square bracket denotes the
iteration number.

At the initial moment of each iteration t, based on a given
power allocation p[t− 1] from the last iteration, we solve the
subcarrier assignment problem and obtain the optimal ρ[t].
We then find the optimal power allocation p[t] based on the
fixed ρ[t] obtained from the previous step. This process is
repeated until convergence, i.e., no further EE improvement is
realized. Therefore, this iterative resource allocation approach
simplifies the original EE problem by separating it into two
sub-problems, namely the subcarrier assignment process and
the power allocation process. More importantly, the number



of variables is decreased by nearly a half in each sub-problem
hence allowing for more tractable algorithm designs.

A. Optimal Subcarrier Assignment for Power Minimization
Problem

Having a fixed power allocation p[t − 1] obtained from
the last iteration, we attempt to obtain the optimal subcarrier
assignment ρ[t] at iteration t. The optimization problem in
(28)-(31) is accordingly converted to

max
ρn

[k,l]

∑
l∈L

∑
n∈N

∑
k∈Kl

rn[k,l](ρ
n
[k,l],p

n[t− 1]) (33)∑
k∈Kl

ρn[k,l] = 1,∀ n ∈ N ,∀ l ∈ L (34)

where rn[k,l](ρ
n
[k,l],p

n[t − 1]) denotes the rate function with
respect to the subcarrier assignment ρn[k,l] and the power
allocation result obtained from the previous iteration. We can
therefore arrive at the following theorem.

Theorem IV. The solution of (33)-(34) involves assigning
subcarriers to UEs that consume the lowest power (i.e., the
highest SINR) on those subcarriers.
Proof: see Appendix C.

The optimal subcarrier assignment for all UEs can be found
using Theorem IV, thus avoiding the need for an exhaustive
search approach which here would be exponentially compu-
tationally complex in the number of subcarriers. Furthermore,
by extending the approach in [15] to a HCN scenario, the
subcarrier assignment problem can be decomposed into L sub-
problems such that

max
ρn

[k,l]

∑
n∈N

∑
k∈Kl

rn[k,l](ρ
n
[k,l],p

n[t− 1]) (35)

s.t.
∑
n∈N

∑
k∈Kl

ρn[k,l] = 1,∀ n ∈ N . (36)

Recall from Theorem IV that the optimal solution of (35)-(36)
is to assign each subcarrier to the UE with the highest SINR.
We can therefore conclude the optimal subcarrier assignment
strategy for cell l ∈ L at iteration t using

ρn[k,l][t] = ρn∗[k,l] =

{
1, if k = argmaxk∈Klr

n
[k,l](pn[t− 1])

0, otherwise
.

(37)

B. Optimal Power Allocation for Power Minimization Problem

After determining the optimal subcarrier assignment ρ[t]
at iteration t, we aim to find the optimal power allocation.
Therefore, problem (28)-(31) is now converted to

min
pnl

∑
l∈L

∑
n∈N

pnl (38)

s.t.
∑
n∈N

ρn[k,l]r
n
[k,l] = R[k,l], ∀(k, l) ∈ (Kl,L), (39)∑

n∈N
pnl ≤ P [l]

max, ∀ l ∈ L. (40)

It is easy to note that the power allocation problem (38)-
(40) is non-convex as a result of the non-convexity of the

SINR and corresponding rate functions. Hence, we extend the
successive convex approximation approach proposed in [15]
to our work in order to solve the above non-convex problem.
The methodology can be described as:

1 Initialize a power vector p[0] and tp = 1.
2 Create the tp-th convex sub-problem by estimating the

non-concave rate function (involving SINR) with some
concave function based on the previous result p[tp − 1].

3 Tackle the tp-th sub-problem to achieve the solution p[tp],
and accordingly update the approximation parameters in
Step 2.

4 Update tp = tp + 1 and iterate this process until p[tp]
converges.

In the following part, an efficient power allocation approach
based on difference-of-two-concave-functions approximation
is proposed to update Step 2 and 3.

To solve Step 2 and 3 in the above successive convex
approximation process, we formulate the data rate function (2)
in a difference-of-two-concave-functions approximation form∑

n∈N
ρn[k,l]r

n
[k,l](pn) = fl(p)− gl(p), (41)

where ρn[k,l] denotes the subcarrier assignment obtained pre-
viously, fl(p) and gl(p) are respectively representing two
concave functions which are defined as

fl(p) =
∑
n∈N

ρn[k,l] ln(
∑
m∈L

hn[k,l,m]p
n
m + σn[k,l]) (42)

and

gl(p) =
∑
n∈N

ρn[k,l] ln(
∑

m∈L\{l}

hn[k,l,m]p
n
m + σn[k,l]). (43)

We then approximate gl(p) based on a fixed p[tp− 1] (obtain
from iteration tp − 1) such that [34]

gl(p) ≈ gl(p[tp − 1]) +∇gTl [tp − 1](p− p[tp − 1]) (44)

where ∇gl(p) is a vector with length (L + 1)N , and its
corresponding entry is defined as

∇gl(p)(Nj+n) =

0, if j = l
ρn[k,l]h

n
[k,l,j]∑

s∈L\{l} h
n
[k,l,s]

pns+σn
[k,l]

, if j = L\{l} .

(45)
Therefore, combining (41) with (45), we can obtain∑

n∈N
ρn[k,l]r

n
[k,l](pn) ≈ fl(p)

−gl(p[tp − 1])−∇gTl [tp − 1](p− p[tp − 1]). (46)

It should be noted that the right-hand side of the above
equation is concave in p.

Therefore, (46) enables us to reformulate the problem
(38)-(40) into a series of convex optimization sub-problems.
Particularly, the tp-th iteration (tp sub-problem) is established
as

min
pnl
‖p‖ (47)



s.t. fl(p)− gl(p[tp − 1])−∇gTl [tp − 1](p− p[tp − 1])

= R[k,l], ∀(k, l) ∈ (Kl,L),
(48)∑

n∈N
pnl ≤ P [l]

max, ∀ l ∈ L, (49)

where p[tp − 1] has been determined from the last iteration
tp − 1. Since the objective function and the constraints are
all convex, this problem (tp sub-problem) can be efficiently
solved using Branch and Bound (BnB) method [35]. However,
the BnB method has very high complexity and hence not
practical to use. Introducing a new indication vector sl =
[0(l−1)N 1N 0(L−l)N ]T , where 0m is a 1 ×m vector whose
elements are all zeros, and 1m is a 1 × m vector whose
elements are all ones, constraint (49) can be reformulated as,

psTl ≤ P [l]
max, ∀ l ∈ L. (50)

Therefore, the optimization problem can be transformed into
second order cone programming (SOCP) form, which can be
solved efficiently using interior point methods [32]. Once the
sub-problem (47)-(49) is found, p[tp] is obtained and updated
in (44) to solve the (tp + 1) sub-problem in the next iteration.

C. A Complete Solution to the Dual-Layer Approach

The inner-layer, which under a fixed rate for user-[k∗, l∗],
R[k∗,l∗], finds the maximum EE, λ∗EE(R[k∗,l∗]), can be effi-
ciency solved based on the proposed joint subcarrier assign-
ment and power allocation algorithm. Next, we propose an
approach for the outer-layer process using gradient-search.

With an initial setting R[k∗,l∗](1), λ∗EE(R[k∗,l∗](1)) can be
obtained using the proposed joint subcarrier assignment and
power allocation algorithm. On the basis of Theorem II and
Theorem III, we can then update R[k∗,l∗] using the following
approach

R[k∗,l∗](n+1) =


R[k∗,l∗](n)

$

dλ∗EE(R[k∗,l∗])

dR[k∗,l∗]

∣∣∣∣
R[k∗,l∗]

(n) < 0

$R[k∗,l∗](n) otherwise
(51)

where $ > 1 denotes the search step size. Furthermore, we
need to reduce the step size $ if the gradient dλ∗EE(R[k∗,l∗])

dR[k∗,l∗]
changes its sign as

$(n+ 1) =
$(n)

2
, (52)

and (51) is repeated until convergence. Since λ∗EE(R[k∗,l∗]) is
strictly quasi-concave in R[k∗,l∗], λ∗EE(R[k∗,l∗]) either strictly
decreases or first increases and then strictly decreases with
R[k∗,l∗], and the proposed approach will terminate with either
convergence, i.e., |λ∗EE [R[k∗,l∗](n+1)]−λ∗EE [R[k∗,l∗](n)]| ≤
ε, or δ[k∗,l∗] if λ∗EE(R[k∗,l∗]) is monotonically decreasing and
δ[k∗,l∗](max) if λ∗EE(R[k∗,l∗]) is monotonically increasing. As
stated in Theorem III, the problem would be infeasible if
δ[k∗,l∗] > δ[k∗,l∗](max) holds. Nonetheless this condition only
occurs if δ[k∗,l∗](max) is very small, which rarely happens in
general. In addition, we can obtain δ[k∗,l∗](max) by solving the

1) Initialize R[k∗,l∗](1) = δ[k∗,l∗], and set n = 1;
2) IF δ[k∗,l∗] > δ[k∗,l∗](max)

3) RETURN Infeasible;
4) ELSE
5) REPEAT
6) Obtain the maximum EE λ∗EE(R[k∗,l∗]) using the

proposed joint subcarrier assignment and power
allocation approach in Section IV.A and Section IV.B;

7) Update R[k∗,l∗](n) using (51); n = n+ 1;
8) UNTIL |λ∗EE [R[k∗,l∗](n+ 1)]− λ∗EE [R[k∗,l∗](n)]| ≤ ε;
9) END

TABLE I
COMPLETE SOLUTION TO THE EE OPTIMIZATION PROBLEM

following problem

max
ρn

[k,l]
,pnl

R[k∗,l∗] (53)

s.t.
∑
n∈N

ρn[k,l]r
n
[k,l] = R[k,l], ∀(k, l) ∈ (Kl,L)\(k∗, l∗),

(54)∑
k∈Kl

ρn[k,l] = 1,∀ n ∈ N ,∀ l ∈ L, (55)∑
n∈N

pnl ≤ P [l]
max, ∀ l ∈ L, (56)

which can be efficiently solved using the joint subchannel
and power allocation algorithm in [15]. It should be noted
that the computational complexity of the outer-layer algorithm
depends on the number of iterations and is linear with 1

$2

[36]. Therefore, choosing an appropriate $ to balance the
convergence speed, accuracy and complexity is very important.
The complete solution to the EE optimization problem in
(23)-(27) for the OFDMA-based two-tier HCN with spectrum
underlay access is summarized in Table I.

V. SOLUTION BASED ON SPECTRUM OVERLAY ACCESS
AND RESOURCE EFFICIENCY

The inter-tier interference from the proposed underlay-based
approach may degrade EE especially under high throughput
requirements in densely deployed scenarios. In addition, con-
sidering that the available bandwidth is fully exploited by
the macro-cell and the small-cells at the same time, a higher
circuit power consumption and hence reduced EE performance
may be incurred. Furthermore, although the proposed iterative
joint subcarrier and power allocation algorithm is numerically
stable, its computational complexity depends on the number
of optimizing variables, which can be large if the number
of subcarriers or the number of UEs is large. Hence the
complexity of this scheme is comparatively high. As a result,
based on the idea of spectrum overlay access, we next develop
a low-complexity resource allocation approach for the two-
tier HCN under consideration, where the allocated bandwidth
for the macro-cell and the small-cells are mutually exclusive.
In other words, although the entire bandwidth is still fully
occupied by the network, the proportion allocated for macro-
cell and small-cells can be optimized. Therefore, under this



setup, a distributed control mechanism is used where it does
not require a central entity and allows BSs to make resource
allocation decisions by themselves through the interaction
between BSs. Hence, this distributed control is attractive owing
to its low implementational complexity and low signaling over-
head. It is particularly suitable for large networks, especially
for HCNs associated with many autonomous small-cells. In
order to consider transmission-bandwidth requirements, a new
paradigm named resource efficiency (RE) has been proposed in
[29] that is capable of exploiting the tradeoff between EE and
SE by balancing consumption power and occupied bandwidth
(simultaneously optimizing both EE and SE). Therefore, we
first optimize the RE for macro-cell in order to determine the
optimal proportion of bandwidth where the total circuit power
plays a very important role in this process. After determining
the spectrum for macro-cell, the EE of small-cells utilizing the
remaining spectrum is maximized in order to further improve
the system.

A. Resource Efficiency Optimization for Macro-cell

In [29], RE is defined as a weighted EE-SE trade-off using
a normalizing factor β

λRE ,
R

P
(1 + β

ηP
ηW

) (57)

where ηP and ηW respectively denote the power utilization
and bandwidth utilization such that

ηP ,
P

Ptot
, ηW ,

W

Wtot
. (58)

The notion behind RE maximization requires EE and SE
as input vectors in a multi-objective optimization problem.
Hence, there does not exist a-priori correspondence between
a weight vector and a solution vector. This implies that the
weights that control EE and SE has to be decided by the
decision maker. In addition, it has been shown in [29] that
the corresponding EE is decreasing with increasing β while
the corresponding SE is increasing with increasing β. As a
result, we modify the RE formulation to a more generalized
expression

λRE , α
R

P
+ (1− α)τ

R

W

=
R

P

(
α+ (1− α)

ηP
ηW

)
(59)

where 0 ≤ α ≤ 1 and τ = Wtot

Ptot
.

The generalized RE optimization problem in the downlink
of the macro-cell can be mathematically formulated as

max
ρ, p, α

∑
k∈K0

∑
n∈N ρ

n
[k,0]r

n
[k,0]

ζP
[0]
T + P

[0]
C

(α+ (1− α)
ηP
ηW

) (60)

s.t.
∑
n∈N

ρn[k,0]r
n
[k,0] ≥ δ[k,0], ∀k ∈ K0, (61)∑

k∈K0

ρn[k,0] = 1,∀ n ∈ N , (62)∑
n∈N

∑
k∈K0

ρn[k,0] ≤ Ntot, (63)

∑
n∈N

pn0 ≤ P [0]
max (64)

where P
[0]
T =

∑
n∈N p

n
0 and P

[0]
C = P ls +

%WC

∑
k∈K

∑
n∈N ρ

n
[k,0]. Problem (60)-(64) is mixed-

combinational and non-convex. In order to tackle this, the
subcarrier assignment and power allocation procedures are
separated. Specifically, we first analyze the fundamental
properties of the case with a given weight α and a given
subcarrier assignment set, which are summarized in the
following paragraphs. For simplicity, here, we remove the
index from the macro-cell parameters, e.g., transmission
power is changed from P

[0]
T to PT , MUEs set is changed

from K0 to K, the rate and the corresponding power for
user [k, 0] on the subcarrier n is changed to rk,n and pk,n,
respectively.

Considering a given weight α, subcarrier allocation vector
ρ and its corresponding UEs set Sk(∀k ∈ K), the maximum
RE at a certain transmit power, PT , namely,

λRE(PT ) , max
pk,n≥0

∑
k∈K

∑
n∈Sk rk,n

ζPT + PC
(α+ (1− α)

ηP
ηW

)

(65)
subject to ∑

n∈Sk

rk,n ≥ δk,∀k ∈ K, (66)

∑
k∈K

∑
n∈Sk

pk,n = PT ≤ Pmax, (67)

has the following properties:
(i) λRE(PT ) is a continuously differentiable quasi-concave
function with respect to PT ,
(ii) the derivative of λRE(PT ) meets the following condition

dλRE(PT )

dPT
=

(α+ (1− α) ηPηW )dR̄(PT )
PT

− αζλEE(PT )

ζPT + PC
(68)

where

λEE(PT ) =
R̄(PT )

ζPT + PC
, (69)

R̄(PT ) , max
pk,n≥0

R(PT ) = max
pk,n≥0

∑
k∈K

∑
n∈Sk

rk,n, (70)

rk,n = WC log2 (1 + pk,ngk,n) , (71)

and R̄(PT ) represents the maximum sum rate under the
maximum power constraint and minimum rate constraint (66)-
(67) meeting the condition

dR̄(PT )

PT
= max
k∈K,n∈Sk

WCgk,n log2 e

1 + p∗k,ngk,n
(72)

where pk,n denotes the power allocated for the kth user on the
nth subcarrier, gk,n ,

|hnk |
2

σnk
and p∗k,n(n ∈ Sk) are respectively

representing the channel-power-to-noise ratio (CNR) of the
k-th UE on the n-th OFDMA subcarrier and the optimal
allocated power on the n-th subcarrier to obtain R̄(PT ).
Proof: See Appendix D.

For the case with fixed transmission power PT and subcar-
rier assignment vector ρ, we can rewrite the RE of the two-tier
HCN as



λRE(PT ) = max
pk,n≥0

R(
α

P
+ (1− α)

Wtot

WPtot
) = ωR̄(PT ),

(73)
where ω , α

P + (1 − α) Wtot

WPtot
. To derive the optimal power

allocation, we can extend the multi-level water-filling scheme
[29] to a HCN scenario as follows

p̃k,n = (µk −
1

gk,n
)+, ∀n ∈ Sk, (74)∑

n∈Sk,p̃k,n>0

WC log2(µkgk,n) = δk, (75)

p∗k,n = p̃k,n + (µ− 1

gk,n
− p̃k,n)+, (76)

∑
k∈K

∑
n∈{Sk|p̄k,n>p̃k,n}

(µ− 1

gk,n
− p̃k,n) = PT −

∑
k∈K

∑
n∈Sk

p̃k,n,

(77)
where µk and µ are used to denote the intermediate variables.
The multi-level water-filling approach consists of two steps.
Firstly, the power is allocated in order to satisfy the minimum
rate requirement of the macro-cell UEs, where the allocated
power in this step is PS =

∑
k∈K

∑
n∈Sk p̃k,n. Next, the re-

maining power is allocated in order to further improve the sum
rate. Since quasi-concave function guarantees the existence
of a unique maximum, we thus apply the gradient method
to search for the optimal power. In particular, for a fixed
subcarrier assignment set, gradient-based power adaptation
can be used with single-UE water-filling in (74)-(75), and
the multi-level water-filling in (76)-(77), where the power is
updated using the gradient of RE

PT (n) = PT (n− 1) + t× dλRE(PT )

dPT
(78)

with t being the step size. Since the quasi-concavity property
implies that λRE(PT ) either strictly decreases or first increases
and then strictly decreases with PT , the proposed algorithm
will terminate with either convergence or P0 = C−1

0 (Sk, γk)
if λRE(PT ) is monotonically decreasing in [P0, Pmax] and
Pmax if λRE(PT ) is monotonically increasing in [P0, Pmax].

We are now ready to investigate the subcarrier assignment
strategy. Theorem IV in Section IV can be applied here.
Specifically, we assign each subcarrier to the MUE that would
achieve the highest SNR on that subcarrier.

ρn∗k =

{
1, if k = arg maxk∈K γnk
0, otherwise

. (79)

Note that the proposed power allocation approach only aims
to solve the RE optimization problem (60)-(64) with fixed
normalizing factor α. Let λRE(α) denote the objective value
of problem (60)-(64) with a given α. It is easy to see that
λRE(1) denotes the maximum RE value of problem (60)-(64)
that only aims to maximize EE without taking SE into account.
On the other hand, λRE(0) corresponds to the case in which
SE is maximized without taking EE into account. Therefore,
based on this result, we further develop a bi-section approach
to numerically search for the optimal value of α per described
in Table II.

By employing the proposed bi-section based subcarrier

1) Initialize αmin = 0 and αmax = 1;
2) REPEAT;
3) Let αmid = αmin+αmax

2 , perform the subcarrier
assignment approach using (79);

4) FOR each UE k ∈ K
5) Perform single-UE water-filling using (74)-(75) to

obtain p̃k,n and µk, calculate the power
consumption PS ;

6) END FOR
7) IF PS > Pmax
8) infeasible;
9) ELSE
10) Initial Power PT (1) ∈ [PS , Pmax];
11) REPEAT
12) For the remaining power, perform the

multi-level water-filling in (76)-(77);
13) The transmission power is updated using

the gradient of RE in (78);
14) UNTIL when |PT (n)− PT (n− 1)| ≤ ε;
15) END IF
16) IF λRE(αmid) ≥ λRE(αmax), let αmax = αmid,

OTHERWISE αmin = αmid;
17) UNTIL |αmax − αmin| ≤ ε.

TABLE II
PROPOSED BI-SECTION-BASED SUBCARRIER ASSIGNMENT AND POWER

ALLOCATION APPROACH

1) FOR Wc = Wmin : Wtot

2) Perform the proposed bi-section based subcarrier
assignment and power allocation approach;

3) Save the current RE value in the buffer;
4) END FOR
5) The maximum RE value and its corresponding

bandwidth is determined.

TABLE III
PROPOSED RESOURCE EFFICIENCY MAXIMIZATION SCHEME

assignment and power allocation approach, the optimal RE
can be obtained for a given bandwidth (given number of
subcarriers). As a result, starting from Wmin = KWC (i.e.,
each UE should be guaranteed at least one subcarrier), we
apply the proposed gradient-based power adaptation and the
subcarrier allocation policy to the current bandwidth setting,
and store the optimal RE value in the buffer λRE(W ). Then,
we increment the bandwidth using W = W + WC . The
proposed subcarrier assignment and power allocation approach
is performed again to obtain the maximum RE of the macro-
cell under the updated bandwidth. This procedure is repeated
for all possible bandwidth options, i.e., from Wmin to Wtot.
Hence, the optimal RE and the corresponding bandwidth of
the macro-cell is determined. The remaining bandwidth is then
dedicated to the small-cell operation. A complete description
of the algorithm can be found in Table III.

B. Energy-Efficiency Optimization for Small-Cells

Once the RE of the macro-cell is maximized, the remaining
bandwidth is allocated exclusively to the small-cells. Since the



macro-cell and small-cells are not sharing the same spectrum,
there is no inter-tier interference. Moreover, considering the
maximum transmit power of the small-cells is usually low
(small coverage), and small-cells are geographically separated,
the intra-tier interference between small-cells is considerably
small. Therefore, considering the effect of intra-tier interfer-
ence as a raised thermal noise, we propose a low-complexity
suboptimal resource allocation approach to maximize the EE
of the small-cells. The SINR expression can therefore be
rewritten as

γn[k,l] =
hn[k,l,l]p

n
l

σ̄n[k,l]
. (80)

where σ̄n[k,l] is the combined noise and intra-tier interference.
As a result, the optimization problem in (8)-(11) can be
decomposed to a series of relatively isolated and simple
optimization problems. In other words, one only needs to solve
the EE maximization problem for each small-cell (l ∈ L). This
can be formulated as

max
ρn

[k,l]
,pnl

∑
k∈Kl R[k,l]

ζP
[l]
T + P

[l]
C

(81)

s.t.
∑
n∈N

pnl ≤ P [l]
max, (82)∑

n∈N
ρn[k,l]r

n
[k,l] ≥ δ[k,l], ∀k ∈ Kl, (83)∑

k∈Kl

ρn[k,l] = 1, ∀n ∈ N . (84)

With a given total transmit power, PT , the maximum EE can
be written as λEE , 1

(α+(1−α)
ηP
ηW

)
λRE . Since both PT and

W are constant, the maximum EE can be rewritten as λEE =
νλRE . Therefore, the EE maximization problem in (81)-(84)
is a special case of the RE maximization problem in (60)-(64).
Therefore, the proposed gradient-based power adaptation and
the subcarrier allocation policy can be applied here to solve
the EE optimization problem.

As a result, we apply the proposed subcarrier allocation
policy in (79) for the remaining bandwidth, and then perform
the multi-level water-filling algorithm in (74)-(77) to obtain the
optimal value. The power is then updated using the gradient
of the EE as

PT (n) = PT (n− 1) + t× dλEE(PT )

dPT
(85)

where t is the step size. Since λEE(PT ) either strictly decreas-
es or first increases and then strictly decreases with PT , the
proposed approach will terminate with either convergence or
P0 = δ−1

k (Sk, γk) if λEE(PT ) is monotonically decreasing in
[P0, Pmax] and Pmax if λEE(PT ) is monotonically increasing
in [P0, Pmax]. This procedure is repeated for all the small-
cells.

VI. SIMULATION RESULTS

In this section, we present numerical results in order to
verify our theoretical findings and analyze the performance
of the proposed underlay and overlay approaches in terms of
EE. It is assumed that ten uniformly-distributed small-cells are

Central frequency of
HCN 2 GHz

Subcarrier bandwidth,
WC

15 kHz

Number of small-cells 10

Number of UEs at the
macro-cell, K0

10

Number of UEs at the
small-cells, Kl

3

Maximum transmit
power of macro-cell,
P

[0]
max

46 dBm

Maximum transmit
power of small-cell,
P

[l]
max

30 dBm

Path loss from macro-
BS to UEs 128.1 + 37.6 log10 dM (dB) [37]

Path loss from small-
BS to UEs 140.7 + 36.7 log10 dP (dB) [37]

TABLE IV
LIST OF SIMULATION PARAMETERS
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Fig. 1. EE versus SE curves with different small-cell circuit power
parameters.

in the coverage area of a existing macro-cell, where ten and
three uniformly-distributed UEs are serviced in the macro-cell
and each small-cell, respectively. The radius of the macro-cell
is set to 250 m, and that of the small-cells is set to 50 m.
It should be noted that all results are obtained from various
random locations of the UEs with identical and independent
Rayleigh fading channels and Log-Normal shadowing with
standard deviation of 8 dB. The minimum rate requirements
per user for both macro-cell and small-cells are set to 10 Mbps.
The drain efficiency of the power amplifier is 30% for our
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Fig. 2. The performance of the proposed dual-layer approach with respect
to optimal EE.

simulation. Moreover, to balance the convergence speed and
complexity, the stopping criteria ε and ε are set to 10−3. Other
simulation parameters are detailed in Table IV. In addition,
these system parameters are merely chosen to demonstrate the
EE optimization in an example and can easily be modified to
any other values to address different scenarios.

In the first simulation, the performance of the proposed
two solutions are studied. The EE-rate relationship (Theorem
II) is first evaluated where the achievable rate of user under
inequality constraint is varied. It has been shown in [36] that
the EE in a MIMO-BC scenario converges after approximately
40 iterations when $ = 2, but is reduced to 17 iterations
when a larger step size is chosen, e.g., $ = 3. Therefore,
$ is set to 3 in our simulation in order to achieve a balance
point between convergence speed, accuracy and complexity.
It can be seen from Fig. 1 that the EE-rate relationship
is quasi-concave and formes as a bell shape curve, where
this quasi-concavity property is the basis of the proposed
underlay-based approach. Furthermore, Fig. 1 also investigate
the impact of circuit power on the EE-rate relationship. As
anticipated, with increased circuit power, the corresponding
optimal EE decreases due to higher power consumption. The
performance of the proposed decomposition approach is then
compared to the optimal EE. As it can be seen from Fig. 2,
the proposed scheme successfully reaches the optimal EE after
approximately 200 iterations. The validity of the proposed
methodology is hence confirmed. On the other hand, Fig. 3
depicts the convergence behavior of the proposed overlay-
based approach. It is observed that the optimal α in this case
is very close to 0.5, this is inline with our original work on
RE in [29] where the amount of reduction is only 4% on EE
and 2% on SE for an equal weight.

Next, we evaluate the EE performance of the different
schemes with spectrum underlay and overlay access. For the
proposed RE-based overlay solution, we use a worst-case-
method to model the interference. In particular, we assume
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Fig. 3. Convergence analysis of the proposed bi-section based approach.

all the interfering small-cell BSs are operating using the
maximum power budget (30 dBm) with equal power allocation
over the remaining subcarriers. For comparison purposes, we
compare the proposed schemes against the joint subcarrier
assignment and power allocation scheme in [15]. The optimal
EE is evaluated across the 0-20 dB CNR range. It should be
noted that we vary the CNR by changing the channel gain
where the results are averaged over 10000 randomly generated
instances of channel. Therefore, the noise power is fixed in
our simulation. In addition, the number of subcarrier is 1024
where the subcarrier bandwidth is 15 KHz, and the circuit
power is set to 5 W for all cells. As it can be seen from Fig.
4, the EE achieved by the proposed bisection-based approach
is very close to that of the proposed decomposition resource
allocation approach whilst being much more efficient in terms
of computational complexity. It is important to highlight, how-
ever, that the performance gap increases in high CNR region.
This is because the overlay-based approach treats the intra-
tier interference as noise, and will become dominant when the
noise power diminishes at high CNR regime; hence resulting
in reduced EE performance. Furthermore, both algorithms
achieve higher EE compared to the scheme proposed in [15]
which aims to maximize the sum rate.

The impact of the bandwidth on the optimal EE is illustrated
in Fig. 5, where the circuit power is fixed to 5 W. Since
the subcarrier bandwidth is fixed to 15 KHz, we vary the
number of subcarriers in order to investigate the effect of
the bandwidth. In addition, the CNR is set to 10 dB in
this simulation. It can be seen that with a moderate number
of subcarriers (small bandwidth), e.g., N ≤ 1000, the EE
achieved by the proposed overlay-based approach is lower than
that of the proposed approach using underlay transmission.
However this trend is reversed when the system has a larger
bandwidth (e.g., N ≥ 1000). The reason for this observation
is that the proposed underlay-based approach allocates all
available bandwidth to all cells. The excessive transmission-
associated circuit power, which is modeled as a linear function
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Fig. 4. Comparison of different subcarrier assignment and power allocation
schemes in terms of EE.
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Fig. 5. Impact of the number of subcarriers on the EE performance of
different schemes.

of the bandwidth, will reduce the EE performance in a system
with large bandwidth. On the other hand, the proposed overlay-
based approach allocates the exclusive spectrum parts to the
macro-cell and small-cells and hence is more suitable for in
the context of bandwidth-abundant HCNs.

Finally, the impact of small-cells density on the optimal EE
is investigated in Fig. 6. In this simulation, the number of
subcarrier is fixed to 1024 where the subcarrier bandwidth
is 15 KHz, the circuit power is set to 5 W for all cells,
and the CNR is set to 10 dB. As shown in the figure, with
a lower small-cells density, e.g., L ≤ 10, the EE achieved
by the proposed bisection-based approach is lower than that
of the proposed decomposed resource allocation approach.
However, for the case of dense small-cells, e.g., L ≥ 10, the
EE achieved by the strategy using RE and overlay transmission
is superior. This is because when the small-cells density is low,
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Fig. 6. Impact of small-cells density on the EE performance of different
schemes.

the inter-tier interference will have less impact resulting in
lower transmit power levels needed to satisfy the QoS targets.
Therefore, the underlay transmission strategy is suitable under
this setup. On the other hand, for the case of a dense deployed
HCN, e.g., with L ≥ 10, the inter-tier interference will become
significant when spectrum is shared by the different tiers.
Hence, extra power is required to maintain the throughput
requirements of the UEs. Moreover, since macro-cell and
small-cells occupy the whole bandwidth at the same time, the
excessive transmission associated circuit power will further
degrade EE performance. Consequently, the proposed overlay-
based approach where different portions of the spectrum is
allocated exclusively to the macro-cell and the small-cells is
more suitable for dense multi-tier cellular environments.

VII. CONCLUSIONS

In this paper, we have addressed the EE optimization
problem for OFDMA-based two-tier HCNs consisting of a
macro-cell and multiple small-cells. Subcarrier assignment and
power allocation policies were jointly investigated to optimize
EE considering spectrum underlay and overlay access. Consid-
ering underlay transmission, where macro-cell and small-cells
are sharing the available spectrum, we proved the relationship
between EE and achievable rate is a quasi-concave function.
On the basis of this property, we decomposed the original
problem with multiple inequality constraints into multiple
optimization problems with single inequality constraints. For
each sub-problem, we separated the subcarrier assignment and
power allocation process and developed an optimal solution
based on difference-of-two-concave-functions approximation,
successive convex approximation and gradient-search method.
On the other hand, the underlay approach may not be energy-
efficient due to severe inter-tier interference in a dense HCN
scenario. In addition, it will lead to a higher power consump-
tion in a bandwidth-abundant system and hence reduce the EE
performance. Therefore, we developed a novel low-complexity



resource allocation scheme based on the idea of overlay
transmission and RE. In this approach, we first optimized the
RE of macro-cell and determined the optimal corresponding
bandwidth, we then allocated the remaining bandwidth to
small-cells and optimized the EE. Simulation results confirmed
the theoretical findings and demonstrated that the proposed
algorithms can efficiently approach the optimal EE.

APPENDIX A

PROOF OF THEOREM I

To prove λ∗EE(R) is a quasi-concave function, we denote the
superlevel sets of λ∗EE(R) as

Sκ = {R ≥ δ|λ∗EE(R) ≥ κ}. (86)

In accordance with [32], for any real number κ, if the
convexity for Sκ is satisfied, λ∗EE(R) is strictly quasi-concave
in R. Therefore, we here divide the proof into two cases. For
the case of κ < 0, since EE is always positive and hence there
are no points on the counter, λ∗EE(R) = κ. For the case of
κ ≥ 0, λEE can be rewritten as

λEE =

∑
l∈L
∑
k∈Kl R[k,l]

ζPT (R) + PC
, (87)

and hence Sκ can be rewritten as κζPT (R) + κPC −∑
l∈L
∑
k∈Kl R[k,l] ≤ 0. In [33], its been proved that PT (R)

is convex in R, therefore the convexity property of Sκ holds
and λ∗EE(R) is strictly quasi-concave in R. This completes the
proof of Theorem I. �

APPENDIX B

PROOF OF THEOREM III

Proof: In order to prove Theorem III, we analyze the limit of
λ∗EE(R[k∗,l∗]) as follows

lim
R[k∗,l∗]→∞

λ∗EE(R[k∗,l∗])

= lim
R[k∗,l∗]→∞

max
ρn

[k,l]
,pnl

∑∑
l∈L,k∈Kl\{k∗,l∗} R̄[k,l] +R[k∗,l∗]

ζP ∗T (R[k∗,l∗]) + PC

= lim
R[k∗,l∗]→∞

o(P ∗T (R[k∗,l∗]))

P ∗T (R[k∗,l∗])

= 0. (88)

Hence, with strict concavity of λ∗EE(R[k∗,l∗]) which
is proved in Appendix A, starting from R[k∗,l∗] =
δ[k∗,l∗], λ∗EE(R[k∗,l∗]) either strictly decreases with R[k∗,l∗]

if dλ∗EE(R[k∗,l∗])

dR[k∗,l∗]

∣∣∣∣
R[k∗,l∗]=δ[k∗,l∗]

≤ 0, or first strict-

ly increases and then strictly decreases with R[k∗,l∗] if
dλ∗EE(R[k∗,l∗])

dR[k∗,l∗]

∣∣∣∣
R[k∗,l∗]=δ[k∗,l∗]

> 0. The maximum EE in the

rate region [δ[k∗,l∗] δ[k∗,l∗](max)] is straightforward as indicated
in Theorem III. This completes the proof. �

APPENDIX C

PROOF OF THEOREM IV

Suppose that when we obtain the optimal solution of problem
in (33)-(34), where for cell l ∈ L, subcarrier n ∈ N is
allocated to UE k ∈ Kl \{k∗(n, l)}, where k∗(n, l) represents
the UE that consumes the lowest power on subcarrier n.
However, to maintain the minimum rate demand, if n is instead
allocated to k∗(n, l) and pnk∗(n,l),l < pnk,l, the interference
received by the UEs that use n will be decreased, hence
reducing the power consumption for all UEs. This statement
contradicts the initial assumption that the optimal assignment
for n ∈ N is allocated to UE K ∈ Kl \ {k∗(n, l)}. Therefore,
subcarrier n should be assigned to k∗(n, l). This completes
the proof of Theorem IV. �

APPENDIX D

With a given subcarrier assignment set ρ, λ̄RE(PT ) could
be rewritten as α R̄(PT )

P + νR̄(PT ), where ν = (1−α) Wtot

WPtot
.

Under the water-filling approach, the transmit power on
each subcarrier is non-decreasing. With the assumption that∑
k∈K

∑
n∈Sk 4pk,n = 4PT , the existence of the limit

reveals that R̄(PT ) is continuously differentiable and satisfies
the following equation

dR̄(PT )

dPT
=
dR̄(PT )

dpk,n
= max
k∈K,n∈Sk

WCgk,n log2 e

1 + gk,np̄k,n
. (89)

Furthermore, for the case of k ∈ K and n ∈ Sk, WCgk,n log2 e
1+gk,np̄k,n

is non-increasing with PT whilst maxk∈K,n∈Sk
WCgk,n log2 e
1+gk,np̄k,n

is decreasing with respect to PT . Hence, we can conclude that
d2R̄(PT )
dP 2
T

< 0 and R̄(PT ) is a strictly concave function with
PT .

Similar to the proof in Appendix A, if the convexity for Sθ
holds, R̄(PT )

PT
is strictly quasi-concave in PT . Therefore, we

here divide the proof into two cases. For the case of θ < 0, s-
ince rate is always positive and hence there are no points on the
counter, R̄(PT )

PT
= θ. For the case of θ ≥ 0, Sθ can be rewritten

as Sθ = {PT ≥
∑
k∈KR

−1(Sk, δk)|θζPT +θPC−R̄(PT )} ≤
0, where R−1(Sk, δk) denotes the minimum transmit power
required to satisfy the rate demand δk. Therefore, given that
the concavity of R̄(PT ) holds and Sθ is strictly convex in PT ,
R̄(PT )
PT

is continuously differentiable and quasi-concave with
respect to PT , this concludes the proof of property (i).

Moreover, considering λ̄RE(PT ) as α R̄(PT )
P + νR̄(PT ),

the derivative of RE dλ̄RE(PT )
dPT

should satisfy the following
equation

dλ̄RE(PT )

dPT
= α

d R̄(PT )
P

dPT
+ ν

dR̄(PT )

dPT
. (90)

Thus, based on (90), d
R̄(PT )

P

dPT
can be further constructed as

follows

d R̄(PT )
P

dPT
= lim
4PT→0

R̄(PT+4PT )
ζ(PT+4PT )+PC

− R̄PT
ζPT+PC

4PT

=

dR̄(PT )
dPT

− ζλ̄EE(PT )

ζPT + PC
. (91)



Hence, we observe

dλ̄RE(PT )

dPT
=

(α+ (1− α) ηPηW )dR̄(PT )
PT

− αζλ̄EE(PT )

ζPT + PC
(92)

where dR̄(PT )
dPT

= maxk∈K,n∈Sk
WCgk,n log2 e
1+gk,np̄k,n

, λ̄EE(PT ) =
R̄(PT )
ζPT+PC

. This concludes the proof of property (ii). �
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M. A. Imran, D. Sabella, M. J. Gonzalez, O. Blume, and A. Fehske,
“How much energy is needed to run a wireless network?” IEEE Wireless
Commun., pp. 40–49, Oct. 2011.

[32] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, Cambridge, UK, 2004.

[33] J. Tang, D. So, E. Alsusa, K. A. Hamdi, and A. Shojaeifard, “Resource
allocation for energy efficiency optimization in heterogeneous network-
s,” IEEE Journal on Sel. Areas in Commun., vol. 33, no. 10, pp. 2104–
2117, Oct. 2015.

[34] H. H. Kha, H. D. Tuan, and H. H. Nguyen, “Fast global optimal power
allocation in wireless networks by local D.C. programming,” IEEE
Trans. Wireless Commun., vol. 11, no. 2, pp. 510–515, Feb. 2012.

[35] S. Boyd, Branch and Bound Methods. Stanford University.
[36] J. Tang, D. So, E. Alsusa, K. A. Hamdi, and A. Shojaeifard, “Energy

efficiency optimization with interference alignment in multi-cell MIMO
interfering broadcast channels,” IEEE Trans. Commun., vol. 63, no. 7,
pp. 2486–2499, July 2015.

[37] 3GPP, “Coordinated multi-point operation for LTE physical layer aspects
(Rel. 11),” Feb. 2011.


