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Energy-Efficient Hybrid Key Management Protocol 
for Wireless Sensor Networks 

Tim Landstra, Maciej Zawodniok, S. Jagannathan 
Department of Electrical and Computer Engineering 

University of Missouri-Rolla, MO 65409, USA. 
{tjland, mjzx9c, sarangap@umr.edu} 

Abstract— In this paper, we propose a subnetwork key 
management strategy in which the heterogeneous security 
requirements of a wireless sensor network are considered to 
provide differing levels of security with minimum communication 
overhead. Additionally, it allows the dynamic creation of high 
security subnetworks within the wireless sensor network and 
provides subnetworks with a mechanism for dynamically 
creating a secure key using a novel and dynamic group key 
management protocol. The proposed energy-efficient protocol 
utilizes a combination of pre-deployed group keys and initial 
trustworthiness of nodes to create a level of trust between 
neighbors in the network. This trust is later used to allow secure 
communication between neighbors when creating a dynamic, 
high security subnetwork within the sensor network. Results of 
simulations of the protocol in Ns2 are presented and the 
complexity of the protocol is analyzed. The proposed protocol 
reduces delay by 50% and energy consumption by 70% over the 
existing dynamic group key management (DGKM) scheme. 

Keywords-component; wireless sensor network, key 
management, energy efficiency, network security 

I. INTRODUCTION

Wireless sensor networks have recently come into the 
forefront of research due to their possible uses in military and 
disaster relief cases. Wireless sensor networks (WSN's) are a 
highly constrained type of network, comprised of sensor nodes 
with limited capabilities and larger gateway nodes with more 
capabilities. In sensor networks, the toughest constraints 
include the limited available energy and memory. Thus, 
lightweight and energy-efficient security protocols are 
necessary for these networks. 

Some papers in literature investigate the use of dynamic 
key management techniques in WSNs [1]. Dynamic keys are 
preferable over pre-deployed keys because they minimize the 
number of keys that must be stored by nodes. Additionally, the 
key can be changed frequently, decreasing the ability for 
adversaries to determine the network's key. In the paper by 
Panja et al. [1], a secure and dynamic group key management 
(DGKM) protocol is proposed utilizing a modified Tree Based 
Group Diffie-Hellmann key management protocol [2]. This 
protocol allows clusters in a sensor network to dynamically 
create a key for the cluster by having nodes create partial keys 
from the leaves of the group up to the root. Nodes use the 
partial keys of their children as inputs to the function k mod p
where p is a prime number, k is the result of an xor'ing of two 

of the node's children's partial keys and  is a primitive root of 
p. The cluster head aggregates the partial keys of all the nodes 
and creates a group key which is then broadcasted to the group. 

The majority of previous literature considers the needs of 
security in a WSN to be homogenous in nature. In practice, this 
may not be true as many nodes in a sensor network may be in 
an idle state or transmitting information of little importance. 
These nodes do not need to operate at a high security level that 
consumes large amounts of energy. This paper introduces a 
novel security protocol for sensor networks that utilizes the 
heterogeneous nature of the security requirements of sensor 
networks to realize two distinct security and energy levels 
within the network. The protocol allows the majority of a 
network to operate in a low security mode with static keys that 
conserves energy, while dynamically creating keys for high 
security subnetworks. This dynamic key creation protocol uses 
a subtree energy average function to determine the subtree or 
subtrees to be used to create the dynamic partial keys. This 
subtree energy average function conserves energy over the 
DGKM protocol since the number of nodes in the subnetwork 
may be much greater than the number of partial keys desired 
for the protocol. Additionally, we propose a method to combine 
a static and dynamic key management protocol to create a 
hybrid protocol. 

The proposed protocol allows the network to form a high 
security subnetwork localized around a sensing event in the 
network. This aspect of the protocol relaxes the assumption of 
homogenous security needs of a network that is present in most 
literature on sensor network security. We observe that often a 
sensed event will span over more than one of the clusters 
present in a typical sensor network. Thus, all the nodes in each 
affected cluster must come out of idle state and several keys 
must be used to communicate the event back to the base 
station. This observation was addressed recently in the paper by 
Ratnaraj et al. [3] from a routing perspective and our protocol 
further improves security and energy efficiency. 

In general, a set of pre-deployed keys have to be stored at 
each node in WSN in order to initialize secure communication. 
Next, a dynamic key management scheme is needed to create 
new and revoke old or compromised keys. Rigorous work has 
been published on random pre-deployment of keys [7-10] 
where a limited number of pair-wise or partial keys are 
randomly assigned to nodes before deployment. In general, the 
number of necessary pre-deployed keys or partial keys 
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increases with network size [7-9]. A prior or explicit 
knowledge about deployment as used in [8] and [9] can only 
reduce the number of required pre-deployed keys, but it still 
will increase with network size. In contrast the proposed 
scheme requires only 3 keys to be initially stored by each node 
regardless of the network size and deployment pattern. 
Consequently, the scheme is a fully scalable solution which 
simplifies pre-deployment preparations. 

Furthermore, to enable secure communication between any 
pair of neighbor nodes a session key has to be established. 
Typically, a shared key is used since low complexity and 
energy requirements of the shared-key encryption schemes. 
Such a pair-wise key can be either generated from pre-
deployed partial keys [7-8], or found among the pre-deployed 
keys [9-10], or established through a third party who shares the 
pair-wise keys with each of the nodes in the pair [7-10]. In 
contrast, the proposed scheme dynamically creates pair-wise 
keys between neighbor nodes during short initial post-
deployment phase. The scheme reduced energy consumption 
by employing simple and basic cryptography mechanisms. 
When a high security subnetwork is created, the stronger key is 
setup at the expense of higher energy consumption. However, 
the overall energy consumption is reduced when compared 
with homogenous schemes which always have to use the high 
security mechanisms. In contrast, the proposed scheme 
employs the energy-expensive high security methods only 
when needed. 

In this paper we analyze the proposed protocol and compare 
against other protocols in literature in terms of complexity of 
the key management algorithm, and communication and 
storage overhead. Simulations are performed in Ns2, 
comparing the energy consumed in the simulation environment 
to other protocols in a fully functioning network as well as in a 
network with node failures. It is found that the protocol 
consumes less energy, uses less messages and is more scalable 
than LEAP and the Dynamic Key Management Protocol and 
provides a similar level of security.  

II. SENSOR NETWORK ARCHITECTURE

Sensor networks are often deployed remotely and the 
network designers have no control over the location or 
placement of the sensors in the terrain, or the relation to other 
sensors around them. This paper considers a random node 
deployment over a rectangular topography of varying size. 
Once the nodes have been deployed, it is assumed that there is 
a period of time Tmin where the nodes are not able to be 
compromised by an enemy and can safely exchange keys [4]. 
Before the time Tmin, the nodes are responsible for broadcasting 
their individual key to their 1-hop neighbors. These individual 
keys can be created by the nodes by generating a random 
number. When a sensing event occurs within the network, it is 
assumed that the nodes around the event form into a 
subnetwork with a hierarchy. The energy-efficient self-
organizing protocol (SOS) discussed by Ratnaraj et al. in [3] is 
employed in this application to create a subnetwork around an 
event. The subnetwork includes a set of nodes that are 
designated as Cluster Head's (CH's) that are above the other 
nodes in the subnetwork in the hierarchy. 

The SOS protocol assumes the network is monitoring 
localized, random events. Nodes sensing an event, will measure 
their proximity to the event by measuring the strength of the 
signal they are receiving. If the sensed signal strength is greater 
than a design threshold, then such nodes will group themselves 
into a subnetwork. Once the subnetwork has been established, 
the nodes exchange their energy remaining and a number of 
cluster heads are chosen based on energy remaining, proximity 
to the event, and size of the subnetwork. Nodes are then 
clustered by proximity to the chosen CH's.  

Nodes are expected to know the number of nodes that are 
part of the same subtree or cluster and part of the same level as 
itself. The number of nodes that are part of cluster i on level j.
is denoted as nij. Additionally, cluster heads are expected to 
know the remaining energy of all the nodes that are members 
of their cluster. These assumptions will all be fulfilled since the 
SOS protocol [3] is used. 

III. PROTOCOL DETAILS

This protocol uses two separate key management schemes: 
for a group-wide and subnetwork key management. The first 
scheme manages a group-wide key and individual keys. The 
group-wide key is used for non-critical broadcast messages 
between nodes. The individual keys are used for secure 
communication between nodes creating a subnetwork and 
setting up a subnetwork key. The second key management 
scheme is creating and distributing the keys for the 
dynamically created subnetworks. Securely distributing the 
keys for the subnetworks created by events within the sensor 
network is a non-trivial problem since the subnetworks may 
contain any arbitrary set of neighboring nodes. These nodes all 
must have a mechanism to securely communicate with each 
other to distribute the subnetwork key to all the subnetwork 
members.  

A. Group-wide and Individual Keys 
The protocol begins with deployment of the network. 

Before the network is deployed, three values must be stored in 
each node. Two of these values will be common to each node 
in the network. The first, K1, is a group-wide key that will be 
used for group-wide communication between nodes not 
involved in a subnetwork. The second value, K2, will be used 
for exchanging pair-wise keys between neighboring nodes and 
will be erased after time Tmin, similar to the LEAP protocol [2]. 
The third value, K3, is unique to each node and is stored on 
both the node and the base station. This key can be used for 
private messages between a node and the base station. 

Remark 1. The EHKM protocol considers any new node 
added after Tmin time as an intruder. This improves resilience to 
security attacks from approaching enemy at the expense of 
increased difficulty of adding a new legitimate node. 

After deployment, nodes begin by transmitting a HELLO 
message before time Tmin has elapsed. The HELLO message 
will be structured in the following way: 

21 - :  _ ,  ( ),  ( 2,  _ || )KNi hop Node ID E nonce MAC K Node ID nonce→  (1) 
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The node’s HELLO message contains a random nonce 
encrypted with K2, which serves as its secret key for any 
messages it sends during the network's lifetime. Any node 
receiving a HELLO message decrypts the nonce and verifies 
the message using the MAC. With a successful verification, the 
node stores the ID and nonce pair. Thus, whenever a node 
receives a non-broadcast message in the future from a 
neighbor, the node knows the packet was encrypted by the 
nonce that is paired with the source's ID and is able to decrypt 
the message. Once Tmin has elapsed, the nodes are responsible 
for deleting K2 from their memories. 

Remark 2. Key K2 is used during the Tmin time to 
authenticate the nodes. The Tmin is set to be lower than a 
minimum time required for attacker to compromise a node. 
Hence, the attacking node will not know the K2 key and thus 
fail the authentication. 

B. Subnetwork Key Management Protocol 
The subnetwork section of the key management protocol 

begins with the creation of a subnetwork within the WSN. 
First, the cluster heads find the average energy remaining for 
all the nodes in their cluster. 

_ ( ) ( ) /ij iavg energy i sum E n=  (2) 

where avg_energy(i) is the average energy per node in cluster i
which CHi is responsible for calculating, Eij is the energy left in 
the j th node of the i th cluster and ni is the number of nodes in 
cluster i. The cluster heads then send this value and the number 
of nodes in their clusters to the other cluster heads. Then, the 
Head Cluster Head (HCH) is selected among the cluster head 
of the subnetwork. The cluster head with the highest average 
energy left in its cluster becomes HCH. 

  (max( _ ( )))HCH CH avg energy i=  (3) 

The network has a predetermined number of partial keys 
that are sufficient to create a subnetwork key that is determined 
a priori. This value, m, has been suggested to be 15 in past 
literature [1], but can be any value such that m partial keys of 
length l will create a subnetwork key of sufficient length (m * l)
to be secure for the length of time the subnetwork is expected 
to be active. Once the HCH has been determined, the other 
cluster heads check to see if the number of nodes in the HCH's 
cluster, nHCH, is sufficient to generate m partial keys. If it's not, 
then the CH with the second highest average energy remaining 
in its member nodes is added as chosen cluster. This method 
continues until the number of nodes in the chosen clusters is 
greater than m. Once sufficient cluster heads have been chosen 
to generate the m partial keys that are needed, the algorithm is 
started. The cluster heads broadcast a start_algorithm message 
to their cluster with the cluster ID and the depth into the cluster 
that the message should go before nodes begin creating partial 
keys. The depth field in the messages allows the algorithm to 
restrict partial key creation to the upper levels of a cluster's 
hierarchy to conserve energy. For all the clusters chosen other 
than the last one, the depth field is set to -1. This means that all 

nodes in the cluster must generate a partial key. For the last 
cluster that was chosen, the depth field is set to (m – 
sum(nother_clusters)). That is, the number of partial keys desired, 
minus the number of nodes in all the other selected clusters. 
This ensures that only exactly m partial keys are returned to the 
HCH thus maximizing energy conservation.  

When a node receives a start_algorithm message from its 
cluster head, it checks the depth field to see if it is equal to -1. 
If it equals -1, then the node rebroadcasts the message if the 
node is not a leaf node. If the node is a leaf node, then it creates 
its partial key and sends the key to its parent and its CH. If the 
depth field does not equal -1, the node subtracts the number of 
nodes in its level and cluster and if the depth field is still 
greater than 0, rebroadcasts the message. If, after the 
subtraction, the depth field becomes less than or equal to 0, 
then the node acts as a leaf node and randomly creates its 
partial key and sends the key to its parent and to the HCH.  

Once the HCH receives the required m partial keys from 
the subnetwork, the HCH constructs the subnetwork key and 
broadcasts it to the subnetwork. This subnetwork key is 
encrypted with the individual keys of the nodes as it is 
transmitted throughout the subnetwork.  

C. Dynamic Cluster Key Management Algorithm 
Once the network determines the clusters that will be 

creating the partial keys and passing them to the head cluster 
head, a variant of the dynamic group key management protocol 
proposed in [1] by Panja et al. is used to generate the 
subnetwork keys. In this protocol, the leaves begin the protocol 
by randomly generating a partial key. This key is then passed to 
the parent of the leaf node. Once the parent receives the partial 
keys from two of its children, it is able to create its own partial 
key by combining the two keys using a function f(partial key 
child 1, partial key child 2). This function is represented as  

1 2( 1,  2)    mod  k kf k k p⊕= α  (4)

where p is a prime number, α is a primitive root of p, and k1

and k2 are the children's partial keys (k1, k2 < p). The parent 
then passes its partial key to its parent and passes the partial 
keys of all its children to the cluster head. The cluster head 
collects all the partial keys and combines them to form the 
cluster key. Then, it broadcasts the key to the cluster. 

The proposed protocol, unless otherwise specified, uses this 
algorithm for subnetwork key creation and distribution. Several 
modifications are made to the protocol to allow for more node 
topologies. One modification is that the protocol no longer 
assumes that all nodes are either leaves or have more than one 
child. If a node only has one child, it waits to receive its child's 
partial key then generates a random number as the second 
partial key for the algorithm. Additionally, instead of 
generating a key for only a cluster, the algorithm is expanded to 
generate a key for an entire subnetwork. 

Remark 3. In general, the traffic analysis attacks are a 
considerable threat to hierarchical schemes. The proposed 
EHKM counteracts such an attack by limiting the number of 
exchanged messages which can hint the location of CHs. 
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Additionally, the rotation of CHs in the clustering scheme 
ensures that traffic patterns change often. Moreover, the CHs 
rotation will facilitate quick recovery in case of physical 
destruction of a CH identified via the traffic pattern attack. 

IV. PERFORMANCE ANALYSIS

In this section, a performance analysis of the proposed 
protocol is performed. This includes an analysis of the 
complexity of the algorithm and the storage costs imposed 
upon memory. Also, an analysis of the number of messages 
that are sent is included. Finally, simulation results from Ns2 
with a variety of network configurations and number of node 
failures are analyzed. 

A. Complexity Analysis 
Table I displays the results of the complexity analysis on 

the protocol and compares it to several existing key 
management schemes. As can be seen the message cost and 
complexity of the algorithm are both less than other schemes 
such as LEAP and dynamic key management. Note, that for 
most cases m << N.  

TABLE I. COMPLEXITY ANALYSIS

SetUp Key Management 
Messages Messages Complexity 

Storage 

Leap [4] N(1+5d) 2(d-1)^2/N+2N O(d^2) (3d+2+L)KL
Dynamic 

[1] - 3N O(logN) mlogN+k 

Proposed N 3m+NS+NCH O(logm) (d+2)KL+k 

where: 

 d – average degree of connectivity of the network 

 N – number of nodes in network  

 NS – number of nodes in a subnetwork NS < N 

 M – number of desired partial keys 

 KL – individual key length (in bytes)  

 K – dynamic subnetwork key length (in bytes) 

 L – length of key chain 

 NCH – Number of cluster heads in subnetwork 

In Table I, the degree of the network is the average number 
of nodes that are within communication range of a given node. 
It is proportional to the density of nodes in the network and 
may be a value from 10 to 20 for a reasonably dense network. 
The setup cost of the protocols is measured in the number of 
messages that must be sent by the network in order to initialize 
the key management protocol. For the proposed protocol, each 
node must send one message to initialize the protocol. This 
leads to N messages being sent by the network. The LEAP 
protocol has several rounds of key exchange between nodes 
and their neighbors individually. This leads to a number of 
message proportional to N as well as d.

The number of messages that need to be sent by the 
proposed protocol for the key management of the network is 
measured from the time a subnetwork forms to the time a 
subnetwork key is successfully distributed to the nodes of the 
subnetwork. First the NCH cluster heads must distribute the 
average energy left in their clusters. This results in NCH
messages. Then the start_algorithm message is distributed to m
nodes who reply, both to their parent and to their cluster head. 
This causes 3m messages to be sent. Finally, the subnetwork 
key is broadcasted to the NC nodes of the subnetwork. The time 
complexity of this stage is log(m) since the 3m messages 
dominates the NC and NCH messages. The LEAP protocol 
requires several rounds of messages within a localized area and 
then two rounds of broadcasting. For the dynamic protocol, 
there are three rounds of messages for every cluster in the 
network, leading to 3N messages being sent. 

The storage of the proposed protocol is measured in terms 
of how many bytes of storage must be used to store the keys of 
the key management protocol. For the proposed protocol, a 
node must store all the individual keys of nodes within 
communication range of it. This is measured by the density of 
the network, d. The number of bytes used to store the 
individual keys is d * KL. The node must also store the 
network-wide key and the key it shares with the base station. 
Then each node must also store the subnetwork key, which is 
of length k. The LEAP protocol stores 3 keys for each 
neighbor, an individual key, a group key and a key chain with L
values. All of of these keys have length KL. The proposed 
protocol has a lower storage cost than the LEAP protocol 
(d*KL versus 3*d*KL) but will have a comparable storage cost 
to the dynamic protocol for current network sizes. For a 
network with the following properties (d = 20, N =1000, m = 
20, KL = 10, k = 14) both the proposed protocol and DGKM 
protocol require 214 bytes of memory for key storage.  

B. Simulation Results 
The proposed protocol was simulated in Ns2 and compared 

to the dynamic key management protocol. The simulation 
results are shown in the following subsections. For the 
simulations, a 2-ray ground reflection model was used with 
antennas 1m above the ground. A random distribution of 25, 50 
and 100 nodes was simulated on topography of 1000m x 
1000m, 2000m x 1000m and 2000m x 2000m respectively, to 
keep node density at a constant 2.5x10-5 nodes / m2. A 
subnetwork size of 25 nodes was used and the subnetwork was 
split into three clusters whose size was based on orientation of 
nodes in relation to assigned cluster heads. The number of 
partial keys desired was set to 7 for this simulation and partial 
key size messages were set to 4 bytes (32 bits). This would 
result in a 224-bit subnetwork key. The routing protocol used 
was AODV. The networks were simulated from network 
deployment until the establishment of the subnetwork's first 
key. The simulations were repeated with random node 
placement and the results averaged. The performance of the 
proposed EHKM protocol has been compared with another 
group key-based scheme the DGKM [1]. 
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1) One Subnetwork with 25 Nodes, Network Size of 50 
Nodes 

This simulation was run with a 50 node network and a 
subnetwork of 25 nodes. The network was simulated from 
deployment until the successful creation of the first subnetwork 
key. The event that is being monitored is assumed to be in the 
middle of the network and the SOS protocol is used to cluster 
the nodes and form cluster heads. Three clusters were created 
from the 25 node subnetwork in range of the sensed event. For 
the SDGK protocol, two clusters of 25 nodes were utilized. The 
network energy consumption was then measured.  

Figure 1. Energy consumed per node 

For the simulation it was found the total energy used in the 
network for the proposed protocol was 2.73J and for the 
dynamic key management protocol a total energy of 14.2J was 
used. It is obvious from Figure 1, that the proposed protocol 
uses significantly less energy than the dynamic key 
management strategy. This is because not every node in the 
subnetwork is responsible for generating a partial key and 
transmitting it to the HCH. This allows nodes not in the chosen 
clusters to conserve energy. Additionally, the proposed 
protocol receives the necessary partial keys faster than in the 
dynamic key management protocol. In this simulation, it took 
0.08s for node 14 to receive the 7 partial keys. The dynamic 
key protocol took 0.63s to gather the required partial keys. 

2) One Network with 25 Nodes Results 
The above simulation was run for a 25 and 100 node 

network as well. The summary of the results can be found 
below in Figures 2, 3 and 4. For the DKGM protocol, the 
network was broken up into N/25 clusters of 25 nodes each. 

As can be seen in Figures 2 through 4, the proposed 
subnetwork modification of the dynamic group key 
management protocol is more scalable to larger network sizes 
than the existing dynamic group key management protocol in 
terms of energy consumed, delay and number of packets 
dropped. This is because the number of packets to create the m 
desired partial keys is minimized by only involving the 
minimum number of nodes. The DGKM protocol requires all 

the nodes in a cluster to generate a partial key even when the 
number of nodes in the cluster may be much greater than m.
This causes excess partial keys to be sent to the cluster head 
and increases the energy usage with the generation and 
transmission of these partial keys. 

With the proposed protocol combined with the subtree 
energy average function, the number of partial keys generated 
and sent to the subnetwork head is either equal to, or slightly 
greater than m. Not all nodes in the subnetwork generate and 
transmit partial keys. Additionally, nodes higher on the 
hierarchy are chosen to generate the partial keys to further 
minimize communication needed.  

Figure 2. Energy utilized 

Figure 3. Delay 

C. Multiple Events in One Network 
In the previous sections, only one generation of subnetwork 

was considered. In this section, a network is considered where 
multiple events take place over a period of time. In the 
Dynamic Group Key Management protocol, it is assumed that 
the groups would rekey regularly, using the same amount of 
energy that was consumed during the initial key establishment 
phase. The period of time between re-establishing keys is 
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defined as T. Since the proposed protocol differs from the DGK 
protocol by rekeying every time a new event is sensed, it is of 
interest to find how many events can occur per time period T to 
allow the proposed protocol to continue to be more energy 
efficient than the DGKM protocol. Several simulation 
networks of varying sizes were established where events 
periodically occurred within the network. The average energy 
for establishing a subnetwork key for these events was found. 
The results of these simulations can be found in Figure 5. 

Figure 4. Dropped packets 

Figure 5. Energy and number of events per T 

It can be seen that the average energy consumed to create 
the subnetwork key is less than the energy consumed in Figure 
2. The reason for this is two-fold. First, the initial key 
establishment phase of individual keys is not needed for a pre-
existing network. Additionally, many AODV routes are found 
in the first key establishment phase and need not be found 
again. Thus, more energy can be conserved since route 
discovery tasks are not required. 

In Figure 5, the line with circle markers represents the 
average energy in Joules needed to create a key for the 
subnetwork dynamically generated to monitor the event in the 
network. The line with x markers represents the number of 

events that could occur in time period T and have the proposed 
protocol continue to be more energy efficient than the DGKM 
protocol.  

As can be seen, the number of events that can occur in time 
period T is above 5 for all network sizes tested. It is proposed 
that events within a locale of a network will be both spatially 
and temporally related. Thus an event in a network will likely 
persist for sometime and then either propagate or disappear for 
a significant period of time. In this case, the ability to monitor 
more than 5 events in time period T with a consistent savings in 
energy is sufficient to conclude that the proposed protocol will 
conserve energy over the DGKM protocol in terms of key 
creation and distribution over the lifetime of the network. 

D. Node Failures 
In this section the proposed protocol is tested with random 

node failures in the network. The network size is set to 50 
nodes and the number of nodes within the network that 
randomly fail is varied. The energy consumed and the time-to-
complete the protocols are both measured. 

Figure 6. Energy cost of failed nodes 

Figure 7. Delay with failed nodes 
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As can be seen from Figures 6 and 7, while both protocols 
are similarly resilient to failed nodes, the proposed protocol is 
slightly more robust in the presence of node failures. This is 
due to the fact that not every node is involved in the key 
management process. Therefore, there is a chance that a node 
failure will not affect the performance of the protocol at all and 
the network will continue to function normally. Since the nodes 
that participate in the key management protocol are physically 
close to each other, when a node failure does affect the routing 
of a message, fewer modifications to the routing table need to 
be made. Due to the smaller numbers of participating nodes, 
there is a lesser chance that the failed node has many layers of 
routing table below itself. 

V. SECURITY

The following section discusses some salient aspects of the 
security of the proposed protocol. The security of a network 
can be measured in two ways. Assuming a secure encryption 
algorithm is paired with the key management algorithm, the 
main measurement of the security of a network will be the size 
of the network key. All other aspects of a network being 
equivalent, a network with a longer key size will remain secure 
for a longer duration of time interval than that with a smaller 
key size. The second measurement of the security of a key 
management scheme is the attacks to which the protocol is able 
to defend against and those that it is vulnerable to. This section 
attempts to discuss some of these attacks and the defenses the 
proposed protocol implements against them. 

A. Network-wide and Individual Keys 
This section of the paper describes the security of the static 

aspect of the proposed protocol. This aspect of the protocol 
includes a key common to all nodes in the network used for 
broadcasting messages as well as the node's individual keys 
used for localized communication. 

When a sensor node is compromised it is assumed that the 
adversary gains knowledge of all the keying materials present 
in that sensor node. For the proposed protocol this would 
include the broadcast key as well as the individual keys of the 
neighboring nodes and the unique key shared with the base 
station. The static aspect of this key management protocol 
limits the affected area of a compromised node to a very small 
portion of the network. A compromised node only gives the 
adversary the keys of nodes immediately neighboring the 
compromised node and the group key. In the case that this 
compromise goes undetected, only broadcast messages and 
local traffic will be compromised. For that reason, it is assumed 
that broadcast messages from the base station do not need to be 
confidential.  

In the case that a compromise of a node is detected, an 
efficient method of revoking the node from the network and 
changing the network key and individual keys of the 
neighboring nodes is needed. For our protocol a modification 
of the node revocation described in the LEAP protocol [4] is 
proposed.  

1) Node Revocation 
Changes in the group key may either be initiated by the 

base station either periodically or after notification that a node 

has been compromised. In either case, it is imperative that the 
group key change messages from the base station be 
authenticated to prevent forgery, replay and impersonation 
attacks. In this paper, we use the μTESLA broadcast 
authentication protocol proposed by Perrig et al. [6]. In the 
μTESLA protocol, the controller creates a key chain and 
preloads the last value of the key chain in the nodes before 
deployment. The controller periodically releases the keys in its 
key chain in the reverse order they were created in. The period 
between key disclosures is called a μTESLA interval period. 
The base station can then broadcast messages encrypted or 
signed with the next key to be released. Nodes receiving a 
μTESLA packet buffer the packets until the next key is 
disclosed. This key can be authenticated through the next 
μTESLA key to be released and the message can be 
authenticated by the current key. 

For this protocol, let n be the compromised node with set of 
neighbors N={m1, m2, … mi}. Once the base station has been 
notified of node n's compromise, it sends out a broadcast 
message, X, to revoke node N from the network. 

' 1 ':  * : ,  (0),  ( ,  || (0))k g i k gX Controller n f MAC k n f+→ (5) 

where k'g is the new group key that will be released in a future 
message, fk'g(0) is a pseudo random function based on k'g,
which all nodes possess and the value ki+1 is the next μTESLA 
key to be released. The MAC allows nodes to authenticate the 
message as originating from the base station when the 
subsequent μTESLA key is released. Once a node has 
authenticated the message, the value fk'g(0) is stored until the 
new group key is received. 

2) Secure Network Key Distribution 
Once the base station is confident that all nodes have 

received the node revocation message it broadcasts a new 
group key message. The new group key, k'g is encrypted using 
each node's individual key and broadcasted to its neighbors. 
The neighbors verify the authenticity of the new group key 
using the previously stored fk'g(0) then encrypt it using their 
individual key and broadcast it to their neighbors. This process 
continues except for nodes in the set N. Since node n has the 
individual keys for these nodes, these nodes do not pass the 
packet on immediately.  

Nodes in the set of N first create a random key to be their 
new individual key. They then wait a period of time, Tw, such 
that it is likely that the neighboring nodes that are also in set N 
have received the new group key. Tw could be set to be slightly 
greater than the average propagation delay between two 
arbitrary nodes in the network to allow the message to travel 
from a neighbor of the originating node to another node in N. 
Once this time has elapsed, the node broadcasts its new 
individual key encrypted using the new group key. Through 
this protocol the compromised node n is prevented from 
learning the new group key or the new individual keys of its 
neighboring nodes. Additionally, the base station can change 
the group key periodically by broadcasting the message X in 
the previous section without a node identifier. In this case, all 
nodes will get the new group key. Nodes are also free to 
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change their individual keys at any time by encrypting their 
new individual key with the group key and sending the new 
individual key to its neighbors. If a node receives a node 
revocation message and has changed its individual key since 
the last group update, it must update its individual key using 
the new group key as soon as the new key has been 
authenticated.  

B. Dynamic Key Management 
The integrity of the dynamic key management aspect of the 

proposed protocol depends on the security of the static aspect 
of the protocol since the partial keys and subnetwork keys are 
both encrypted using the individual keys of the nodes while the 
subnetwork key is being created. The subnetwork keys will be 
secure as long as the guidelines for maintaining the integrity of 
the individual keys are followed. Additionally, since the 
subnetwork key formation is localized, compromised nodes 
outside of radio communication range of the subnetwork will 
not be able to eavesdrop on the partial keys or the subnetwork 
key. In fact, these compromised nodes will not even be aware a 
subnetwork is being formed.  

Nodes only participate in the dynamic key management 
aspect of this protocol. Consequently, if they are actively 
involved in a subnetwork, a DOS attack is difficult to achieve 
in this network structure. Nodes can pretend to be sensing an 
event and attempt to create a subnetwork, but only other nodes 
that are sensing the attack will be become a part of the 
subnetwork. Nodes will also only reply to the start_algorithm 
messages during the creation of a subnetwork key so the 
subnetwork is safe from DOS attacks during that stage of the 
protocol. 

VI. CONCLUSIONS

In this paper a key management protocol was proposed 
which combined a static and dynamic key management 
approach to create a hybrid, energy-efficient, scalable key 
management scheme. The protocol utilizes the ability to group 
nodes into active subnetworks and passive groups and provide 
differing levels of security to the different groups. The active 
subnetworks utilize a dynamic key management approach 
while the passive or inactive nodes rely on static key 
management techniques. The use of dynamic key management 
protocols for only the active portions of the network decreases 
the amount of energy used and provides a more scalable 
approach to key management. Additionally a protocol for 
revoking a node from the network and for updating the network 
key and node's individual keys was proposed. 

The scheme was analyzed for complexity and simulated in 
Ns2. It was compared to two schemes proposed in previous 
literature and shown to be more energy efficient during key 
generation and incurs lower delay and fewer packet losses. The 
protocol was shown to be more scalable than other protocols as 
network sizes get larger and nodes begin to fail.  
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