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Computation-in-Memory (CIM) is an emerging computing paradigm to address memory bottleneck chal-

lenges in computer architecture. A CIM unit cannot fully replace a general-purpose processor. Still, it signifi-

cantly reduces the amount of data transfer between a traditional memory unit and the processor by enriching

the transferred information. Data transactions between processor and memory consist of memory access ad-

dresses and values. While the main focus in the field of in-memory computing is to apply computations on

the content of the memory (values), the importance of CPU-CIM address transactions and calculations for

generating the sequence of access addresses for data-dominated applications is generally overlooked. How-

ever, the amount of information transactions used for “address” can easily be even more than half of the total

transferred bits in many applications. In this article, we propose a circuit to perform the in-memory Address

Calculation Accelerator. Our simulation results showed that calculating address sequences inside the mem-

ory (instead of the CPU) can significantly reduce the CPU-CIM address transactions and therefore contribute

to considerable energy saving, latency, and bus traffic. For a chosen application of guided image filtering,

in-memory address calculation results in almost two orders of magnitude reduction in address transactions

over the memory bus.
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1 INTRODUCTION

The conventional von-Neumann architecture suffers from the memory access bottleneck as a re-
sult of the separation between memory, and the processor [8, 21, 30]. Additionally, access to a
distant memory from the processor costs a considerable amount of energy and time (10 to 100
times more than an ALU operation). This work proposes a solution to optimize memory access’s
energy/latency cost by reducing the non-negligible overheads of data communications.

In general for conventional systems, the communicated information between memory and the
processing units consists of three main parts: 1-Instruction or Control word, 2-Target word address,
and 3-Data Operand where the instruction and address are considered to be overheads for each
data transfer.1 Communication of these overheads (1-Instruction or Control word and 2-Target word

address) can account for more than half of the total amount of transferred bits. Therefore methods
to reduce this massive amount of overheads are worth investigating.

In many loop and data-dominated applications, it is required to access (near-)consecutive words
in the memory (burst access). In this case, it is more efficient to send the first address and number
of accesses and calculate the absolute addresses locally in the memory. Today this happens with
local address generation units, including Direct Memory Access (DMA) engines that are located
near the processor and outside of memories [1, 9, 24]. General DMA engines can perform some
simple address calculations (mostly consecutive burst access). Additionally, application-specific
Address Generation Units (AGUs) are also proposed that can perform more complex address
calculations for specific applications [12, 14, 16]. Some existing approaches have also proposed
to optimize the area footprint of such address calculation units for a large number of distributed
memories [19, 20]. However, since all the mentioned units are located outside of memory, none
can considerably reduce the overhead of address transactions over the memory bus (and therefore
latency and energy consumption). However, several prior arts that cover in-memory processing
have focused only on processing data inside the memory crossbar and sense amplifiers to reduce
data movement [5, 25] and ignored the overhead of address transactions. In Reference [12] the au-
thors introduced an in-memory pointer chasing accelerator to reduce inefficient and high-latency
data transfers between main memory and the CPU. Therefore, architectures with a focus on the
address calculation in the memory are yet to be explored.

To further facilitate this overhead, we propose to integrate Address Calculation Accelerator

(ACA) into the memory periphery as shown in Figure 1.2 By moving part of the functionality
of the DMA into the memory, only compressed high-level instructions need to travel over the
memory bus. ACA architecture is the result of a cross-layer optimization at the micro-architecture
and circuit level that replaces the conventional address decoders in the memory and can gener-
ate a non-consecutive pattern of target word addresses for the pre- and post-decoders selecting
the desired word- (respectively bit-) lines from the memory matrix. When needed, it can also ad-
dress multiple bit-lines and word lines simultaneously, which is essential for some in-memory
array computations (when multiple arguments are used in one cycle, like binary AND between
two words of memory). This disruptive approach allows us to potentially remove all the address-
related time and energy overhead, as shown in the experimental results. Our contributions are
as follows:

1For example, to write a value X into the memory with address Y , the instruction is write, the target word address is Y

and the data operand is X .
2In this article, CIM refers to Compute In Memory and Compute In Memory Periphery is a special kind of CIM architectures

where the computation is happening in the Periphery of the memory without the need to modify the memory cells in the

crossbar array (Figure 3) [6, 22, 29].
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Fig. 1. Position of ACA vs. the position of the traditional DMAs in the compute platform to optimize the
address transactions over the memory bus. ACA takes over part of the DMA’s tasks related to address gen-
eration and replaces the conventional address decoders in the memory block. The memory chips in this
figure are separated from the processor but may have some processing capabilities. CIM denotes Compute
In Memory, which in this figure performs computations on the data inside the memory die [6].

• Propose a first-of-its-kind in-situ ACA as a Compute In Memory Peripheral (CIM-P) ar-
chitecture, designed for embedded processor platforms, which removes the address decoder
and replaces it with a direct word- and bit-line activation engine.
• Design a compiler for the proposed ACA to find the pattern of target word addresses

automatically.
• Design a modular and plug-in hardware-aware simulator (nano-simulator) to include our

Compute In-Memory (CIM) solution in a larger-scale processing platform.
• Validating the performance improvement of ACA in a realistic image-processing application.

It is worth emphasizing that, unlike several other CIM-P accelerators, which are designed to be
used in the servers (e.g., References [3, 6, 17]), ACA is specially designed for embedded platforms.
In embedded applications, circuit energy and area consumption is very restricted, and therefore it
is not desirable to design complex processing blocks in the memory periphery.

This article starts with a brief background explanation in Section 2. Section 3 explains our ar-
chitectures for Address Calculation Accelerator. Section 4 explains our compiler to be able to
efficiently use ACA in a practical application and our nano-simulator platform to perform the
hardware-aware simulations. The experimental results for guided image filtering application are
presented in Section 5 and a brief conclusion follows it in Section 6.

2 BACKGROUND

Figure 2(a) shows a simplified computer architecture where the memory bus is the bottleneck for
memory-intensive applications. One suggested solution to relax this bottleneck is to use High

Bandwidth Memory (HBM) [2] technology. HBM uses a wide memory bus and places the mem-
ories as close as possible to the processing unit in the same package. However, since the mem-
ory is off-chip, it is yet far away (in the nanometer scale), and therefore each transaction is still
quite expensive from energy and latency point of view (about 7 pJ/bit [2] compared to less than
0.04 pJ/bit for ALU operations in the same technology [23]).

As shown in Figure 2(b), allocating small memories inside the processors in the form of cache
memory or Tightly Coupled Memory (TCM) is a widely used technique to reduce the number of
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Fig. 2. Simplified architectures of a multi-processor system where the memory bus connects the memories
to the processors (memory units are either off-chip or on-chip). (a) Traditionally separated memory and
processors. (b) Bringing memory closer to the processor by using Tightly Coupled Memories (TCM). TCM
is typically made from small blocks of on-chip SRAM next to the processor. (c) Bringing processor closer to
the memory by using CIM circuit.

transactions over the memory bus. This way, data are read once from the memory blocks and stored
in TCM to be reused several times. The performance increase by TCM depends on its size and the
application that is executing in the processor. Since TCM is typically built from SRAM (which is
not area efficient), the size of TCM has to remain relatively small. In addition, by increasing the
size of TCM, its access energy consumption grows further, which is also undesirable.

Figure 2(c) illustrates a more recent idea to further relax the memory bus bottleneck by incor-
porating a CIM [6, 7, 18]. CIM is a specific purpose computation unit that can reduce memory
bus transactions by performing the more common computations directly inside the memory. This
way, it is possible to reuse a value in the memory several times without the need to bring it inside
the processor [22]. When using CIM, the memory block can be considered as a co-processor and
receive high-level instructions. The most efficient type of in-memory computation is done directly
in the memory array, which is called Compute In Memory-Array (CIM-A) and possibly by
modifying the sense amplifiers. In this case, CIM only supports binary (bitwise) or low-resolution
computations [13, 15, 27]. However, these methods require delicate modification of the memory ar-
ray and are highly dependent on the target memory technology [7]. This work focuses on another
category of CIM by CIM-P. Therefore our proposed solution applies to any memory technology.
Additionally, the IP can be ported into different technologies with minimal effort, since it is digi-
tally designed.

As it is mentioned, the communicated information between memory and the processing units
consists of three main parts: 1-Instruction or Control word, 2-Target word address, and 3-Data

Operand. For example, in a conventional system to write in a memory line, the CPU should provide
the “target word address,” the instruction, which is the “write instruction,” and the operand, which
is the “write data.” When performing an in-memory process, it is possible to give higher-level in-
structions to the memory block. For example, an instruction can be accumulating the content of
the “target word address” with the “Operand” [33]. Since, in this case, the accumulation happens
inside the memory macro, it skips transferring the content of the “target word address” to the
processor and the accumulated result back to the memory. Therefore, it considerably reduces the
amount of memory-processor data transfer.

To the best of our knowledge, the majority of the previous CIM-P architectures are designed to
execute arithmetic operations on the content of the memory [6, 11, 17] while keeping the conven-
tional address decoder. Few other works [26, 28] tried to modify the address decoder to perform
particular optimizations. However, no previous work optimized the address communication over
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Fig. 3. Components of a simple memory block. Each crossing point in the crossbar may be one memory cell
(in a 2D memory) or multiple memory cells (in a 2.5D memory architecture). A memory cell may contain
1-bit of data (binary cell) or multiple bits (in a multi-level cell, required analog to digital conversion after a
sense amplifier).

the memory bus by replacing the conventional address decoder with a lower area-delay-energy
overhead pointer-based address calculator. In the previous example, imagine the processor should
repeat the same accumulate operation for 1,024 consecutive addresses. In this case, 1,024 transac-
tions with similar “instructions,” consecutive “target addresses,” and optionally different “operands”
need to be initiated from the processor. In this case, the overhead of the repeated “instructions”
and “target address word” in every transaction can be considerable (especially for small word sizes,
which is a new fashion in edge applications). For example, to access an 8-bit word in a relatively
small 1-MB memory, it is required to transmit a 20b address (the number of address bits scales
up with the number of words in the memory.). Moreover, new addresses have to be calculated for
every transaction.

Offloading the address calculations from the processor is possible by using DMA or AGU for
simple address calculations. However, as mentioned before, the raw addresses need to be commu-
nicated with the memory, which costs one to two orders of magnitude (depending on the location
and type of memory) more energy and latency than the address calculations.

As shown in Figure 3, a typical memory contains three main parts: (1) Memory crossbar (ar-
ray), (2) Input/Output interface for word-line/bit-line drivers, sense amplifiers, possibly analog-to-
digital converters for multi-level cells, and (3) Pre- and Post-Address decoders. Using a conven-
tional address decoding scheme would require continuous communication over the memory bus
to fetch subsequent addresses. In this article, we proposed to replace the address decoders with
a customized DMA circuit called ACA to remove the need for raw address transactions over the
memory bus. Section 3 explained the architecture of our proposed ACA circuit.

3 ARCHITECTURE OF ADDRESS CALCULATION ACCELERATOR

ACA allows for a reasonably regular access pattern to the memory, which is not only usable for
the purely consecutive burst access. This type of memory access is used in most loop nests and
tensor processing operations. An example of this type of access is 2D convolution. As illustrated
in Figure 4, applying a 3 × 3 kernel filter on a 2D image that is mapped linearly in the memory,
requires access to three separated consecutive addresses in the memory. But this is also directly
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Fig. 4. A 2D image (left) and its mapping in the memory (right). As it can be seen, to apply a 3 × 3 filter to
a region of the image, a repetitive (but non-consecutive) access pattern is required. It is more challenging
during filtering the edges of the image.

Fig. 5. Compression of address overhead by ACA. Please note that ACA only reduces the addressing overhead
for a list of data and does not compress the data itself.

applicable to, e.g., 2D image filter kernels that contain gaps in their mask (for example in Dilated-
Convolution [32]).

Our goal in designing the ACA is to provide higher-level instructions to the memory block
to compress the number of address transactions. When using ACA, the conventional format of
“Instruction, target word address, data” for processor-memory communications will be modified
to the compressed form of “ACA instruction, ACA operands, list of data” as shown in Figure 5.
Therefore, to use ACA, the processor should pack several memory access patterns in the form of
an ACA instruction. In our experiments, we assume this is happening offline during compile time;
however, this process can also happen dynamically during the runtime. In this case, the compiler is
aware of the ACA instructions. Therefore there is no runtime process required to pack the memory
accesses.

The main operands when using ACA are listed in Table 1. There is always only one “num_loops”
in each ACA transaction, and its value defines the number of nested loops to be executed by the
ACA controller. Then each individual loop will have its own row/col “Start(s),” “Stride,” and “Cy-
cles.”3 Therefore the size of “ACA Operands” in Figure 5 is variable. ACA nested loops execute

3Cycles in this figure are representing the number of iterations/repetitions through the rows/columns.
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Table 1. Main ACA Operands

ACA Operand Description

Num_Loops Number of nested loops

Row_Start(s) The start position(s) of the row shift register
Row_Stride The amount of shift on the row shift register
Row_Cycles The number of shift cycles for the row shift-register

Col_Start(s) The start position(s) of the column shift register
Col_Stride The amount of shift on the column shift register
Col_Cycles The number of shift cycles for the column shift-register

Fig. 6. An example of using ACA to generate memory address patterns. Each colored dot in the memory
cross-bar is a word of memory (can be a bit, a byte, etc.).

Fig. 7. Instructions and operands for ACA to access the 1-orange, 2-red, and 3-green words in Figure 6.

from the first defined loop in the instruction operands to the last one. In each loop, it iterates first
over columns and then over rows.

To explain more about ACA functionalities, imagine in Figure 6, we read the memory words
in the order of 1-orange words, 2-red words, and 3-green words. As it can be seen, the access
addresses would follow a pattern, but it is not a simple sequential pattern. To read all the words in
a conventional method, “35” address transactions are required. However, by using ACA, only one
transaction with three nested loops is enough. Figure 7 shows the ACA instruction and operands to
read the orange/red/green words in order. The number of loops at the beginning of the instruction
informs the Finite State Machine (FSM) in Figure 9 that it should expect three different sets of
row/column instructions (yellow, red, and green loops in Figure 7).

ACA is a low-overhead and useful replacement for the address decoders, as shown in Figure 8,
which can compute a complex pattern of addresses locally inside the memory. Figure 9 illustrates
the schematic of our proposed ACA architecture. ACA contains at least two shift registers (row and
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Fig. 8. Address Computation Accelerator replaces row/column address decoders in the full memory macro.

Fig. 9. In memory ACA block diagram.

column shift registers) and a control logic block implemented with a FSM. The FSM decodes high-
level ACA instructions to generate a list of “target word addresses.” Then the FSM initializes both
of the shift registers and commands them to shift left or right. The row and column shift registers
select one (or several if CIM-A functionality is implemented) words of the memory matrix at each
cycle and therefore ACA can generate address patterns in rows and columns simultaneously. Even
though we only used two shift registers (one for row dimension and one for column dimension),
it is possible to use multiple of them for each dimension to implement the nested loops more
efficiently.

In the current implementation, we have a single start position for rows and columns. When
selecting several row/columns, it is required to have several row_start/col_start operands. It is
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Fig. 10. ACA compiler receives the standard memory instructions and extract repetitive access pattern to
generate compressed ACA instructions.

also essential that the memory core can accept such a configuration. For example, to perform in-
memory binary operations between two rows of the memory, we should have two row_start active
bits.

4 COMPILER AND SIMULATOR

4.1 ACA Compiler

When using in-memory processing capability (for example, in a platform same as Figure 2(c)), the
processor can outsource some part of the computation to the CIM block. In this case, the CIM
block accepts higher-level instructions. To perform this kind of computation and processor-
CIM communication, the program compiler of the processor needs to be aware of the specific
CIM features.

As we introduced the ACA logic block in the CIM, we also needed to compile the application
with an ACA-aware compiler. Rather than directly modifying the existing compilers, we have made
a separate ACA compiler that operates as a post-processing stage after a conventional compiler
(Figure 10). This solution is more software maintenance friendly, and it broadens the applicability.
The responsibility of the ACA compiler is to detect the access patterns to the memory and packed
them by using ACA instructions.

Figure 10 shows an example of the input and output of the ACA compiler. In this example, we
only use read/write instructions, but ACA is not limited to these instructions. ACA compiler only
searches for memory access patterns and does not interfere with the instructions supposed to be
executed inside the memory. The current version of the ACA compiler is performing a simple
search. Therefore, it may be slow for big applications and may miss some more complex patterns.
Further optimization of this compiler should be done in future work.

4.2 Nano-Simulator

Hardware-aware simulation provides valuable insight for architectural exploration at differ-
ent abstraction levels. As part of the European Mnemosene project,4 we have developed a

4http://www.mnemosene.eu/.
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Fig. 11. Our nano-simulator receives a configuration file, instruction file (after being post-processed by the
ACA compiler), and the initial memory image. After the simulation, it updates the memory image file and
also provides consumed energy and time metrics as a result of the simulation.

Table 2. Input/outputs Files of Nano-simulator

Instruction file Input Contains the instruction
list (without ACA extension)

Configuration Input Contains the dimensions of the
file STT-MRAM memory, the path to

the memory image file,
instruction file, and result file

Memory image In/Out Stores the content of the memory
file before, after, and during the simulation.
Results file Output Contains the detailed results of

the simulation, including
energy/power/time consumption
of each element in the simulation

hardware-aware simulator with a close to technology focus. This simulator is called “nano-
simulator,” because it is part of a more extensive micro-instruction level system simulator in the
Mnemosene project (nano-simulator emulates a CIM memory block in a processing system in
Figure 2). We have used the nano-simulator in this article to report experimental results about the
performance of ACA.

This simulator abstracts the functionality of the memory array along with its peripherals (includ-
ing ACA). The nano-simulator mainly wraps the behavior of the memory cells, sense amplifiers,
row/column driver lines, ACA, or conventional address decoder. Our nano-simulator is accurate
and, at the same time, faster than low-level circuit simulations.

We can simulate the memory cells and peripherals with nano-simulation to explore metrics like
energy consumption and latency for any application. It is possible to add other relevant metrics if
it is required. We extract the data and equations from the low-level analog simulations to param-
eterize the memory cells and the sense amplifiers. Currently, those data are limited to read/write
instructions. In future works, we can also add energy/latency data for CIM-A instructions (like in-
memory binary operations). It is worth mentioning that ACA is categorized as a CIM-P technology
and therefore can be used with all types of memory arrays. Figure 11 shows the input/output files
of the nano-simulator. The Table 2 explains the input/out files.
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Fig. 12. Assumed widths of each field of the communication packet between the processor and the memory
in our experiments with/without using ACA. Some operations do not require a value (like reading). For our
results, we do not need to assume the size of the value field.

5 EXPERIMENTAL RESULTS

5.1 Setup

To illustrate the functionality with real memory technology and to provide quantitative numbers
for the delay, energy, and area, we have instantiated the realistic IMEC Spin-Torque-Transfer

Magnetic Random Access Memory (STT-MRAM) macro along with its peripherals (including
ACA) in the nano-simulator. STT-MRAM is an emerging non-volatile memory technology used
for efficient analog CIM-A. All the critical components are parameterized, and the delay, energy,
and area have been calibrated based on the measurement of fabricated test structures.

As mentioned before, ACA can reduce the number of individual transactions over the bus by
packing/unpacking the addresses. We run the application on the Nano-simulator, which provides
the energy consumption and latency for the read/write operations of the STT-MRAM memory
block. However, Nano-simulator cannot offer the absolute energy numbers for the memory bus,
since this number is dependent on the distance between the processor and the memory block.
Therefore the relative energy saving on bus based on the reduced number of bits is provided as a
metric in this article. As shown in Figure 12, we assume 8b for the instructions5 and 64b for the
target address. As shown in Table 1, for ACA operands in addition to row/col starts (64b for both),
we need row/col increment (each limited to 4b, which results in a maximum shift of “16” in one
cycle), and row/col cycles (each limited to 10b). In the current version of the ACA compiler, we did
not use the nested loops (Num_Loops = 1) and therefore did not allocate any bits for “Num_Loops.”
Therefore we have allocated 92b for ACA operands as shown in Figure 12. These numbers are based
on our assumption for a practical system and not yet based on any optimization.

5.2 Guided Image Filtering with ACA

It is always required to access regular or semi-regular repetitive accesses to one- or more-
dimensional arrays and other composite data types for the important domain of streaming ap-
plications. To obtain a realistic case study from the streaming data and signal processing domain,
we have chosen an image processing technique called “guided image filtering” [4, 10]. This appli-
cation uses two images as input and guide and performs repetitive operations on the input image
using the guided filter. In our case, the input image sizes, guided filter, and output are the same.
This application follows the pipeline shown in Figure 13 to process an input image.

Since the input image size affects the energy consumption and the rate of address compression,
we have used two input image sizes: 32 × 32 and 256 × 256. We have selected “RGB” images with
single-precision floating-point (FP32) format for each pixel’s color in the input images. “Guide”
image has the same size as input but with integer 8b format for each color of its pixels. All the
other variables are encoded in FP32.

Tables 3 and 4 reports our experimental results with 32× 32 and 256× 256 input image sizes. In
these tables, we reported the occupied memory area for each buffered matrix (input, guide, tmp0,
tmp1, tmp2, and output, as shown in Figure 13), the number of individual transactions, and the

5We assume that adding a few ACA instructions does not increase the size of instruction fields.
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Fig. 13. The pipeline of the guided image filtering application. JBF denotes “Joint Box Filter”.

number of transferred overhead bits (instructions and addresses/ACA operands).6 In our experi-
ments based on Figure 12 overhead size is 8+64 bits for each conventional transaction and 8+92 bits
for each compressed ACA transaction. before and after using ACA over the memory bus along with
their compression ratios, and total energy consumption in the memory array,7 ACA unit and the
time that is consumed by memory to finish the read/write operations for the corresponding matrix.
The compression ratio is the ratio of overhead bits after compression with ACA over the normal
one (lower is better).

As expected, ACA does not reduce the energy and time consumption of the memory array (STT-
MRAM in this case), because it does not focus on data access. However, the amount of overhead
bits reduces to 11% and 6.4% for small and big input image sizes. This reduction results in a high
amount of energy saving for off-chip memories.

When we scale up the memory sizes, the compression ratio increases; however, the energy con-
sumption by ACA also grows; since a bigger shift register consumes more energy (same as a bigger
address decoder). We have implemented a shift register that can do a single shift in one cycle (<<1).
As the digital peripheral speed is typically faster than the memory access time, it is possible to im-
plement an “N” bit shift instruction (Next address = (previous address) << N ) in several digital
clock cycles equal to one memory access cycle. For example, suppose the digital clock frequency
is 1 GHz and memory access time is 10 ns. In that case, in between two memory accesses, the shift
register has ten digital clock cycles to perform ten shifts. It is also possible to have a shift register
that can perform a shift with a variable amount. The optimum solution depends on the relative
speed of memory and peripherals. It may be somewhere between complete time-multiplexing (this
work) and full flexible shift registers (shift with an arbitrary amount in one digital clock cycle).

From Table 3, we can see that for a memory with 32× 32× 3 words, ACA consumes around 355 fJ
per memory access (12 nJ for 33,793 read access). From our analysis of another SRAM technology
(IMEC, 3-nm FinFET technology8) and considering the linear scaling factor (our reported results
is in TSMC40-nm technology), we calculated that a conventional address decoder with the same
size (32 × 32 × 3) consumes at least9 640 fJ per each access. So, all the savings on the memory bus
transferred bits are gained with little to no logic energy overhead. However, as mentioned before,
the bus interconnects related energies are the dominant energy consumption in practical systems,
and the ACA logic energy consumption is less significant.

6Overhead bits are defined as the non-data bits in each transaction.
7The simulation results for STT-MRAM energy varies a bit by changing the initial memory state (for example, input image

in this case), since the energy/time consumption is different when switching from “1” to “0” and from “0” to “1” in an

STT-MRAM memory cell.
8The reported energy report is just for the comparison purpose and cannot be considered accurate, since it is only covering

logic, not the wiring and interconnects.
9Linear scaling factor that is used results in the minimum energy consumption in 40-nm technology. In practice, it should

scale super linear and at most quadratic.
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Table 3. Results of Simulation “Guided Image Filtering” Application Using the Nano-simulator
for 32 × 32 Input Image Sizes

Kernel buffer size The normal number of Compressed number of Compression Ratio STT-MRAM ACA Total time
transactions - overhead bits transactions (ACA) - overhead bits (transactions - overhead bits) Energy (nJ) Energy (nJ) (μs)

Input 32 × 32 × 3–32b 33,793 T–2,376 kb 5,953 T–581 kb 18%–24% 496 nJ 12 nJ 109 μs

Guide 32 × 32 × 3–8b 36,865 T–2,592 kb 5,954 T–581 kb 16%–22% 289 nJ 13 nJ 118 μs

Tmp0 (Hor0) 32 × 32 × 12–32b 147,457 T–10,368 kb 5,954 T–581 kb 4.0%–6% 2,456 nJ 176 nJ 551 μs

Tmp1 (Ver0) 32 × 32 × 6–32b 73,729 T–5,184 kb 5,954 T–581 kb 8.0%–11% 1,228 nJ 46 nJ 275 μs

Tmp2 (Hor1) 32 × 32 × 6–32b 73,729 T–5,184 kb 5,954 T–581 kb 8.0%–11% 1,224 nJ 46 nJ 275 μs

Output (Ver1) 32 × 32 × 3–32b 3,073 T–216 kb 1 T–0.1 kb 0.03%–0.04% 118 nJ 1 nJ 30 μs

Total 368,646 T–25,920 kb 29,770 T–2,907 kb 8%–11% 5,811 nJ 294 nJ 1,358 μs

Overhead bits include instructions and target address/ACA operands.

Table 4. Results of Simulation “Guided Image Filtering” Application Using the Nano-simulator
for 256 × 256 Input Image Sizes

Kernel buffer size The normal number of Compressed number of Compression Ratio STT-MRAM ACA Total time
transactions - overhead bits transactions (ACA) - overhead bits (transactions - overhead bits) Energy (nJ) Energy (nJ) (μs)

Input 256 × 256 × 3–32b 2,162,689T–148 Mb 219,649T–21 Mb 10%–14% 31,738 nJ 5,615 nJ 6,910 μs

Guide 256 × 256 × 3–8b 2,359,297T–162 Mb 219,650T–21 Mb 10%–13% 18,482 nJ 6,069 nJ 7,539 μs

Tmp0 (Hor0) 256 × 256 × 12–32b 9,437,185T–648 Mb 219,650T–21 Mb 2.3%–3.2% 157,170 nJ 88,838 nJ 35,248 μs

Tmp1 (Ver0) 256 × 256 × 6–32b 4,818,593T–331 Mb 219,650T–21 Mb 4.5%–6.3% 78,584 nJ 22,762 nJ 17,624 μs

Tmp2 (Hor1) 256 × 256 × 6–32b 4,718,593T–324 Mb 219,650T–21 Mb 4.6%–6.4% 78,586 nJ 22,751 nJ 17,724 μs

Output (Ver1) 256 × 256 × 3–32b 196,609T–13 Mb 1T–0.1 kb 0%–0% 7,553 nJ 456 nJ 1,901 μs

Total 23,692,966T–1,627 Mb 109,8250T–105 Mb 4.6%–6.4% 372,113 nJ 14,6491 nJ 86,946 μs

Overhead bits including instructions and target address/ACA operands.

In our setup, we assumed that the address bitwidth is 64b. For smaller address widths, and if we
assume that other fields remain the same, ACA operands in Figure 12 will have higher overhead
bits. For example, for 32b address bitwidth, the compression ratio for overhead bits changes from
11% to 13.6% for an input image size of 32 × 32 (Table 3) and from 6.4% to 7.8% for an input image
size of 256 × 256 (Table 4).

5.3 Software Pipelining

For the guided image filtering application, we processed each kernel sequentially. However, as
it is clear from Figure 13, it is possible to run all filters in the pipeline in parallel by exploiting
a software-pipelining concept in memory with a long word line. In software pipelining, as all
the kernels execute simultaneously with the unique access pattern to the memory, we can use a
longer word line in the memory (200b in our experiments) to feed all the processes in parallel (as
illustrated in Figure 14). Processing one long word can take one or several cycles, dependent on
the target compute architecture and independent of the CIM unit. In this case, ACA only needs
to generate one address per line, which results in a reduced cycle count and energy efficiency for
the address generation and the address and data communication network. However, the energy
consumption for the memory access itself and the arithmetic instructions on the processor cores
mainly remains the same.

Table 5 shows that software pipelining with long word sizes results in almost two orders of
magnitude reductions in the number of overhead bits over the memory bus (skipping of almost
1.6 Gb data transfer).

A more conventional computing architecture like a GPU can easily exploit software-pipelining
due to a high level of parallelism with Single Instruction Multiple Data (SIMD) structures.
However, irregular memory access (same as most advanced image and video processing kernels)
will cause inefficiency in SIMD processing and reduces processor utilization. Hence, in the current
hardware and compiler support for the GPUs, an ACA-like address decoding scheme will address
this problem. We expect that compared to state-of-the-art GPUs, the guided filtering application
can have at least 10× fewer address instructions. This compression will hence increase perfor-
mance significantly. It also saves address instruction execution and bus communication energy.
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Fig. 14. Parallel read/write from a wide memory in guided image filtering. In the software-pipelining format,
one long word of the memory is read, processed, and written back to the memory. In our experiment, one
long word line consists of 6 × 32 + 8 bits.

Table 5. Results of Simulation “Guided Image Filtering” Application with Software Pipelining

Input Image size Total number of Compressed number of Compression Ratio
transactions - overhead bits (ACA) transactions - overhead bits (transactions - overhead bits)

32 × 32 368,646T–25.3 Mb 5,958T–0.57 Mb 1.6%–2.2%
256 × 256 23,692,966T–1627 Mb 219,654T–21 Mb 0.92%–1.3%

Still, we do not have access to a sufficiently detailed model of the entire GPU micro-architecture
to calculate that energy-saving accurately.

6 CONCLUSION AND OUTLOOK

This article has presented our methods and results in performing the in-memory process to reduce
data movements between memory blocks and processors in address transfers. Our nano-simulator
makes it feasible to run fast experiments with different memory technologies. Using our nano-
simulator, we have demonstrated that ACA can reduce address transactions when the application
uses a predictable addressing scheme. Besides, our ACA approach can be combined in a hybrid
CIM-P/CIM-A implementation by merging it with published analog and bit-level CIM-A concepts
from literature.

Evolving the new architectures by using compute in memory is a breakthrough in computer
architecture. As most of the energy in STOA computer systems is consumed by data movement,
computing in memory reduces total energy for a given performance target. Several previous art
architectures [6, 6, 11, 17, 27] are addressing the data processing inside the memory that are fully
complementary to our proposal. Combining those architectures with ACA makes sense to improve
saving on both data and address bandwidth in the memory bus.

ACA is developed as part of two European projects10 where we demonstrated a complete pro-
cessing platform to test several CIM-A and CIM-P accelerators and used in a RISC-V based neuro-
morphic processor [31]. Even though, as a digital CIM-P architecture, applications of ACA are not
limited to any specific CPU or memory technology, it should be emphasized that its main target
domain focuses on embedded processor platforms and not on high-performance server-oriented

10http://www.mnemosene.eu/, https://dais-project.eu/.
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processors. ACA is easier to use with scratchpad or software-controlled caches than for the HPC
type memory organizations. In this work we showed that ACA can reduce the amount of overhead
bits for data transfer between the processor and the memory by almost two orders of magnitude.
In future work, we will focus on the detailed micro-architecture level of CIM-A and CIM-P and the
more application demonstrators. In this way, we will explore different micro-architecture-circuit-
technology choices (STCO), including promising emerging memory options (especially MRAM
and IGZO-DRAM) and global design PPAC tradeoff exploration space.
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