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Machine Learning for Image Recognition 

“One of the neurons in the artificial neural network, trained from 

still frames from unlabeled YouTube videos, learned to detect cats.”  

“We took an artificial neural network and spread the computation 

across 16,000 of our CPU cores (in our data centers), and trained 

models with more than 1 billion connections.”  -- Google brain team 

A Cat Neuron 



Big-data Center at Exascale 

Bill Dally 

Power 

issue! 

Bandwidth issue! 

100Gbps bandwidth with 68MW power 

• 1 Core = Microprocessor (=6 Giga 

Flops @1.5GHz) 
•4 FPUs + RegFiles  

•1 Chip = 742 Cores (=4.5 Tera 

Flops/s) 
• 213 MB of L1 I&D + 93 MB of L2 

• 1 Node = 1 Chip + 16 DRAMs (16GB) 

• 1 Group = 12 Nodes + 12 Routers 

(=54Tera Flops/s) 

• 1 Rack = 32 Groups (=1.7 Peta 

Flops/s) 
• 384 nodes / rack 

•1 Data Center (=1 Exa Flops/s) 
•3.6EB of Disk Storage 

•3.6PB = 0.0036 bytes/flops 

•583 Racks 

Thousand cores in big memory 



Nonvolatile Memory Device 

1. No-volatile state 

2. No leakage power 

consumption 

3. Small overhead 

between on/off 

switching 

4. Universal memory 

for logic-in-memory 

Power issue 



In-memory Computing Architecture 
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Non-volatile In-memory Computing 
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Data array: non-volatile 

In-memory logic:  

non-volatile? 



NVM Device Modeling 

NVM In-memory Logic 

NVM In-memory Architecture for 
Machine Learning 

Outline 



State of STT-MTJ Devices 

 Macro-scale state of spintroinc device:  

 Magnetization angle  θ(t) between successive magnetic layers 

 State dynamics governed by Landau-Lifshitz-Gilbert equation 

 

 

 

 

  State θ(t) in terms of giant magnetization resistance: 

 

 

Resistance (R) 

Reference Layer Free Layer 

Id 

      2)(cos10 tRRR GMR  GMR Equation 



NVM SPICE for STT-MTJ 

http://www.nvmspice.org   

Array size Behavioral Macromodel 

(s) 

Physical model in 

NVM-SPICE (s) 

Speedup ratio 

8*8 2.522 0.257 10x 

16*16 98.131 1.87 52x 

32*32 1119.99 11.533 97x 

64*64 22188.8 189 117x 



From STT-MTJ to Domain-wall Nanowire 

Shifter, Write, Read operation: 

1. Apply shift current to select domain 

2. Apply write/read current through write/read port 

3. The state can be read out by detecting the MTJ resistance 

Iread 

Roff Ron 

Anti-parallel Parallel 

Ishift >0 Ishift <0



NVM Device Modeling 

NVM In-memory Logic 

NVM In-memory Architecture for 
Machine Learning 

Outline 



Domain-wall based XOR Logic  

•XOR gate is most complicated (16 

transistors each gate) among all 

logic gates  

•XOR is highly used for big-data 

applications such as comparison 

and addition 

• Power optimized XOR gate by DWL  

DWM Cell 1 

DWM Cell 2 

combine 

Domain-wall nanowire based XOR logic (DWL) 

Two domain-wall nanowire devices 

to build  one XOR gate: 
• Write A to left nanowire 

• Shift A to constructed port 

• Write B to right nanowire 

• Shift B to constructed port 

• Read resistance of constructed port 



Domain-wall based Full-adder and Multiplier  
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Domain-wall based LUT Logic 

Two 3-bit  operands multiplication 

Single 5-bit input multiplication  

with constant 

a0a1a2  a3a4 

a0a1a2 

b0b1b2 

•Any logic function y=f(x) can be mapped to 

look-up table (LUT) with specified inputs 

•DWM for LUT word-line and bit-line decoders 

take the input and find the target nanowire 

cell that stores results 



NVM Device Modeling 

NVM In-memory Logic 

NVM In-memory Architecture for 
Machine Learning 

Outline 



Neuron and Neuron Network  

 Neuron model  
 An assembly of interconnected nodes and weighted links 
 Output node sums up each of its input value according to weights of its links 
 Compare output node against some threshold t 

 Neuron network 
 A set of neurons with forwarded connection from inputs to outputs 
 Hidden layer weights are obtained from off-line training and updated from on-line 

learning 



Non-volatile In-Memory ELM-SR 
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• Extreme learning machine 
• Single hidden layer feed-forward 

neural networks  

• Tuning-free without expensive 

iterative training of parameters  

• ELM based image super-

resolution (ELM-SR) 
• Enhance resolution in image 

recognition for recognition  

• How to map ELM-SR to non-

volatile in-memory 

architecture?  
 



Extreme Learning Machine based  
Super-resolution 

ELM-SR flow:  

a) Input (offline memory) : feature vector P extracted 

from images 

b)Training (offline memory)  obtain output weight 

vector ow 

c)Randomly generated input weight iw bias b 

matrices (offline memory): parameters tuning free 

d)Testing (online logic) 

 1. input vectors times input weight vector P*iw 

 2. sigmoid function s = sigmoid(P*iw+b) 

 3. multiplication by output weight matrix s*ow 
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1. Weighted sum (inner product): 

(a) DW-ADDER and DW-MULTIPLIER 

 (b) MapReduce parallel computing   
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ELM-SR Operation Mapping: Weighted Sum 



ELM-SR Operation Mapping: Sigmoid 

2. Sigmoid function: 

 (a) DW-LUT (x meaningful around -

8 to 8, y ranges from -1 to 1, 

efficient by LUT) 

 (b) Tradeoff between LUT size and 

accuracy    
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Experimental Settings and Methodology 

gem5 

ELM-SR binary  

(C implementation) 

McPAT 

DW-CACTI NVM-SPICE 

In-memory  

behavioral simulator 

Timing Power Area 

Conventional general purpose 

processor platform 

Proposed in-memory domain-wall based 

neural network platform 

DW-ADDER/DW-MULTIPLIER 

performance 
DW-LUT 

performance 

Timing Power Area 

Execution 

statistics 

ELM-SR  

DW-LOGIC 

DW geometric and magnetic parameters1 

1 Technology node of 32nm is assumed with width of 32nm, length of 64nm per domain, and thickness of 2.2nm for one domain-wall nanowire; the Roff is set 

at 2600Ω, the Ron at 1000Ω, the writing current at 100μA, and the current density at 6×108A/cm2 for shift-operation. 



Preliminary Results and Conclusions 

Machine learning  for super-resolution imaging  Comparisons with conventional architecture 

1. All operations involved in machine learning on neural network can be mapped to a 

logic-in-memory architecture by non-volatile domain-wall nanowire. 

2. I/O traffic in proposed DW-NN is greatly alleviated with an energy efficiency 

improvement by 92x and throughput improvement by 11.6x compared to the 

conventional image processing system by general purpose processor.  



Thank you! 

Please send comments to haoyu@ntu.edu.sg 

http://www.ntucmosetgp.net 


