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Abstract—We consider the problem of using Wireless Sensor
Networks (WSNs) to measure the temporal-spatial field of some
scalar physical quantities. Our goal is to obtain a sufficiently
accurate approximation of the temporal-spatial field with as
little energy as possible. We propose an adaptive algorithm,
based on the recently developed theory of adaptive compressive
sensing, to collect information from WSNs in an energy efficient
manner. The key idea of the algorithm is to perform “projections”
iteratively to maximise the amount of information gain per energy
expenditure. We prove that this maximisation problem is NP-
hard and propose a number of heuristics to solve this problem.
We evaluate the performance of our proposed algorithms using
data from both simulation and an outdoor WSN testbed. The
results show that our proposed algorithms are able to give a
more accurate approximation of the temporal-spatial field for a
given energy expenditure.

I. INTRODUCTION

We consider the problem of using Wireless Sensor Networks
(WSNs) to measure the temporal-spatial field of some scalar
physical quantities, e.g. the variation of temperature over a
certain geographical area over a certain time. One method
of measuring such a temporal-spatial field (or data field for
short) is to have all the sensors in the WSNs return their
measurements to a sink (or data fusion centre) at regular
time intervals. This method gives the maximum amount of
information on the data field but at the same time requires
the maximum amount of energy to collect the information.
Instead, it may be possible to use a reduced amount of energy
to obtain a sufficiently accurate approximation of the data field.
This is possible if the sensor measurements are correlated,
which happens when the sensors are densely deployed. This
paper proposes an adaptive algorithm to obtain a sufficiently
accurate approximation of the data field with as little energy
as possible. Although there is a rich literature on adaptive
sampling for WSNs, e.g. [6], [11], [13], [16], to the best of
our knowledge, our algorithm is the first one that uses adaptive
compressive sensing.

Compressive sensing [2], [3], [7] is a collection of re-
cently proposed sampling methods in Information Theory.
The promise of compressive sensing is that it can obtain a
sufficiently accurate approximation of an unknown data field
by using a small number of generalised measurements, which
are known as projections in the compressive sensing literature.
(The concept of projections will be explained in Section II.)
In adaptive compressive sensing [10], [20], these projections
are iteratively computed in order to extract the maximum

amount of information from the unknown data field with as
few projections as possible.

Although the existing adaptive compressive sensing al-
gorithms can obtain good approximation of the data field
with a smaller number of projections than their non-adaptive
counterparts, these algorithms cannot be directly applied to
WSNs because they do not take into consideration the energy
required to acquire a projection in WSNs. For data collection
in WSNs, the goal is to collect as much information with
as little energy (rather than as few projections) as possible.
In this paper, we propose a method to iteratively compute
projections that maximises the ratio of information gain to the
energy required to acquire the information in order to realise
energy-efficient information collection in WSNs (Sections II
and III). We show that this maximisation problem is NP-hard
and propose a number of heuristics to solve this problem
(Section III). We evaluate the performance of our proposed
algorithms using simulation data and data collected from an
outdoor WSN (Section IV). Our evaluation shows that our
proposed algorithm gives a better accuracy for a given energy
expenditure.

II. INFORMATION COLLECTION FRAMEWORK

We model the WSN as a graph G = ({s} ∪ V, E) where
s is the sink node, V = {1, 2, ..., n} is the set of sensor
nodes and E is the set of edges where an edge exists between
two sensor nodes if they are within the communication range
of each other. (Note that the framework described here can
equally be applied to a cluster with n sensor nodes and a
cluster head, therefore the method is scalable.) We assume
that the sensors are synchronised. We consider a snapshot
of the temporal-spatial field where at a particular time t,
the sensors make a measurement. Let the noise-free sensor
reading of sensor node i (where i = 1, ..., n) be xi. The
actual (noisy or measured) sensor reading is assumed to be
corrupted by an independent and identically distributed zero
mean Gaussian noise of variance σ2. Let the sensor noise
at sensor i be ei, then the actual sensor reading at sensor
node i is yi = xi + ei. We will use x to denote the vector
[x1, x2, ..., xn]T where T denotes matrix transpose; the vectors
e and y are similarly defined. Our goal is to obtain an
approximation x̂ = [x̂1, x̂2, ..., x̂n]T of the true data field x.
We will measure the accuracy of the approximate data field
by using the relative error ‖x−x̂‖

‖x‖ where ‖x‖ =
√∑n

i=1 x2
i

denotes the 2 − norm of x.
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We assume that both sensing energy and energy required for
computation is negligible, which are fairly typical assump-
tions in WSNs [9]. The energy consumption in the WSNs
is dominated by radio communications in transmitting and
receiving data packets. In this paper, we will measure the
energy consumption by the total number of transmissions
required to collect the information on data field. The reference
scenario is when all nodes in the network send the data to the
sink which requires a number of transmissions of the order
of n2 in the multi-hop scenario. This work distinguishes itself
from other works in energy efficient adaptive sensing, e.g.
[6], [11], [13], [16], in that it uses recent works in adaptive
compressive sensing [10], [20]. However, existing work in
adaptive compressive sensing only takes into consideration
the accuracy of the approximate data field. In order to apply
adaptive compressive sensing to WSNs, our work in this paper
takes both accuracy and energy into consideration. In partic-
ular, we will show that there is a ”cross-layer” interaction in
using adaptive compressive sensing in WSNs where one needs
to take both accuracy (at the application layer) and routing
into consideration. In order to understand this ”cross-layer”
interaction, we will need to understand what a projection is in
compressive sensing.

A. Projections in compressive sensing

A distinctive feature of compressive sensing is that it uses
projections to collect information. For a snapshot of the noisy
data field {yi}, the projection of the vector y on a projection
vector p = [p1, p2, ..., pn]T is defined by the inner product
pT y =

∑n
i=1 piyi. Let us illustrate the concept of projection

vectors and how projections can be calculated in a WSN with
a few examples. Consider the network shown in Figure 1 with
4 sensor nodes {1, 2, 3, 4} and sink node s.

Example 1: If the projection vector p is [0.2, 0.3, 0.4, 0.1],
then the projected value pT y = 0.2y1 +0.3y2 +0.4y3 +0.1y4.
The sink can obtain this projected value without the sensors
sending their sensor readings to the sink. This can be achieved
by the sink passing a message along the tour S−1−2−3−4−S
using source routing in the WSN. The message contains the
entire projection vector p as well as a field in the message to
store the intermediate result of the projection calculation. As
the message travels through the tour, each sensor computes
its contribution to the projected value and adds it to the
intermediate result. After that, the sensor writes the new
intermediate result to the message and forwards the message
to the next hop. For example, sensor node 2 will receive from
sensor node 1 a message with 0.2y1 as the intermediate result;
sensor 2 will compute 0.3y2 and add this to 0.2y1, then it will
write the sum to the message and then pass it on to the next
hop. Note that the computation of this projection requires 5
wireless transmissions. �

Example 2: If the projection vector p is [0.1, 0.2, 0, 0]T ,
then the projected value pT y = 0.1y1 + 0.2y2. This can be
computed by passing a message along the tour S−1−2−1−S
since sensor readings from sensors 3 and 4 are not needed
to compute this projection. Therefore, the calculation of this
projection requires only 4 wireless transmissions. Note that

Fig. 1. Example WSN.

in general, the calculation of a projection only requires a
message to be passed along those sensor nodes with a non-
zero projection vector coefficient. From an energy efficiency
point of view, one would therefore aim to find the shortest
tour (or aggregation tree) which passes through all sensor node
required. �

Example 3: If the projection vector p is [0, 0, 1, 0]T , then
the projected value pT y = y3. Therefore, this projection vector
corresponds to collecting the noisy sensor reading from sensor
3. This example aims to show that a projection is a general
method of collecting data and collecting a sensor reading from
a sensor is in fact a special case of performing a projection.
�

B. Adaptive compressive sensing for WSNs

With the above example, we have explained what a projec-
tion is and how a projection can be computed in WSN. Assum-
ing that the sink has the projection vectors φj (j = 1, ..., k) and
their corresponding projected values zj = φT

j y (j = 1, ..., k),
then the sink can use compressive sensing to estimate the noise
free data field x. Most of the compressive sensing algorithms
proposed to date are non-adapative which means the projection
vectors are not chosen according to information collected
so far. Recent effort in adaptive compressive sensing [10],
[20] shows that by choosing the coefficients in the projection
vector to maximise the information content, it is possible to
collect more information (or achieve a smaller relative error
in estimating x) using a smaller number of projections. In this
paper, we will use the generic adaptive compressive sensing
algorithm outlined under Algorithm 0.

Algorithm 0 Generic adaptive compressive sensing
1: Each sensor randomly decides whether to send its reading to the

sink and if so, it sends its reading to the sink. Note that this
can be realised by a node having a probability to send data to
the sink and this probability can be determined by the sink and
change over time.

2: while The sink is not satisfied with the accuracy of the estimated
data field do

3: The sink determines a projection vector and the corresponding
tour to use.

4: The sink sends a message along the tour and waits for the
projected value to return.

5: The sink updates the estimate of the unknown data field and
determines its accuracy.

6: end while

The general idea of the generic adaptive compressive sens-
ing algorithm is as follows. In line 1, a small number of sensors
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randomly decide to return their sensor readings to the sink.
These random samples will allow the sink to estimate the data
field and decide whether it needs to use the iteration in lines
2–6 to collect further information from the sensor field. This
iteration continues until the sink is satisfied with the accuracy
of the estimated data field. Note that the rationale behind the
above adaptive compressive sensing is the same as that of
optimal experiment design in statistics [5] and active learning
in machine learning [14].

A key step in the above algorithm is line 3 where a good
projection vector has to be determined. This step is also studied
in the adaptive compressive sensing algorithms in [10], [20]
where a projection vector which maximises the amount of
information gain is determined. However, these earlier works
are not suitable for WSNs because they do not take into
consideration the energy required to acquire a projection. We
show in our earlier examples that the energy required to
acquire a projection depends on the length of the tour (or the
size of the aggregation tree) needed to obtain the projection,
which is in turn a function of the locations of the non-zero
coefficients in the projection vector. Therefore, the choice
of the coefficient of a projection vector can affect both the
information content and the energy expenses (via the choice
of route to obtain the projection). This means that a projection
vector should be chosen to collect as much information on
the unknown data field with as little energy as possible,
which is a design problem requiring information from both
the application and routing layers. In Section III, we propose
an optimisation problem to find a projection vector which
maximises the information gain per energy expenditure and
we prove that this optimisation problem is NP-hard. Because
of NP-hardness of the problem, we will propose a number of
heuristics in Section III to solve this problem.

We will measure the energy consumption in WSNs by
counting the number of packet transmissions, e.g. a node
which is k hops away from the sink will require k packet
transmissions to reach the sink. In line 1 of Algorithm 0,
energy is consumed to send packets to the sink, while in lines
2–6, energy is consumed to send packets along the tour. It
can be seen that if a good probability can be found in line
1, this can minimise the energy consumption in lines 2–6. A
possibility is to determine this probability from past history
of the data. In this paper, we assume a reasonable estimate
of this probability can be obtained and focus on the design
of a projection vector which balances information gain and
energy consumption. We would also like to remark that it is
possible to modify line 1 to have a random number of sensors
initiating a number of random projections towards the sink,
this will improve the information content at the sink and will
be studied in the future. We also assume that the sink (or
cluster head) knows the topology of the network (or cluster).

III. ADAPTIVE PROJECTION VECTORS

In this section, we show how a projection vector can
be computed to provide a high information gain on the
unknown data field with small energy expenditure, i.e. line
3 of Algorithm 0. In Section III-A, we derive an expression

on the expected information gain for a projection vector.
We then formulate an optimisation problem in Section III-B
which balances information gain against energy expenditure
and show that the problem is NP-hard. In Section III-C, we
will present a number of heuristics to solve the proposed
optimisation problem.

A. Expected information gain of a projection vector

In this section, we derive an expression for the expected
information gain of a projection vector. We assume that k
projections have already been measured over the data field.
Let φ1, φ2, ..., φk ∈ R

n denote these k projection vectors
and z1, ..., zk denote the corresponding projected values, i.e.
zi = φT

i y. The advantage of compressive sensing is that it can
estimate x even if k is less than n (= number of sensors =
number of data points in a snapshot) provided that we know
that the noise-free data field vector x is compressible [1], [2].

A vector x is said to be compressible in a basis [19]
B ∈ R

n×n (where the basis vectors are the columns of
B) if the coefficients w = B−1x of x in the basis B has
the following property: the �-th largest (in absolute value)
coefficient of w decays faster than �−

1
β for some β ∈ (0, 1)

[1]. Intuitively, a signal is compressible if the signal contains
redundancy. Therefore, for a sensor data field whose data
is correlated, it is reasonable to assume that the signal is
compressible. In this paper, we will make the assumption that
we know a priori the basis in which the signal is compressible.
This is by no means a restriction as preliminary experiments
can be carried out to determine this basis.

Assuming that the noise-free data field x is compressible in
the basis B and x = Bw where w are the coefficients of x in
the basis B. We can write the projections using the following
data equation:⎡

⎢⎣
z1

...
zk

⎤
⎥⎦

︸ ︷︷ ︸
z

=

⎡
⎢⎣

φT
1
...

φT
k

⎤
⎥⎦

︸ ︷︷ ︸
Φ

y=Φ(x + e)=ΦBw + Φe (1)

Note that most compressive sensing algorithms assume that
the noise on the projected values are independent. However,
since a noisy sensor reading may appear in multiple projec-
tions in Eq. (1), the noise on the projected values are corre-
lated. In order to de-correlate the noise in the projected values,
we compute the Cholesky factorisation [8] of ΦΦT = RT R
and pre-multiply Eq. (1) with R−T to obtain the revised data
equation:

R−T z︸ ︷︷ ︸
z̃

= R−T ΦB︸ ︷︷ ︸
Φ̃

w + R−T Φe (2)

We can now input Φ̃ and z̃ to the Bayesian compressive
sensing (BCS) algorithm [10] which returns the posteriori
probability distribution of the estimate of unknown vector w
and unknown noise variance σ2. Let us denote the estimate
of w by ŵ. The probability distribution of ŵ is Gaussian with
mean μ ∈ R

n and covariance matrix Σ ∈ R
n×n. (Note that μ

and Σ are the outputs of the BCS algorithm and are therefore
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functions of Φ̃ and z̃.) We can now obtain x̂ = Bŵ. Therefore,
the estimate of the data field x̂ is Gaussian distributed with
mean Bμ and covariance BΣBT . Lastly, we will use σ̂2

to denote the posteriori estimate of the measurement noise
variance σ2.

Since our goal is to obtain a sufficiently accurate estimate
of the unknown data field, this is equivalent to minimising the
uncertainty in the estimate x̂. Since x̂ is given by a continuous
probability distribution, we can measure the uncertainty in x̂
by using the differential entropy of x̂ where a small differential
entropy implies a small uncertainty. Thus, we can measure the
additional information provided by a new projection vector
p by the reduction in differential entropy in the estimate x̂
caused by using p together with {φi}i=1,...,k. The use of the
new data equation (2) means that the results in [10] on the
entropy reduction by an additional projection vector is no
longer applicable. We have the following new result.

Lemma 1: The reduction of differential entropy ΔH in the
estimate of the unknown data field by using an additional
projection vector p ∈ B ∩ {p ∈ R

n×1 : V T p �= 0} is given by

ΔH(p) = 1
2 log(1 +

1
σ̂2

pT V V T BΣBT V V T p

pT V V T p
) (3)

where B = {p ∈ R
n×1 : ‖p‖ = 1}, and, V satisfy ΦV = 0

and V T V = I where I denotes the identity matrix. (Note that
V is in fact an orthonormal basis of the null space of Φ.)
Proof: Using the same method in [10], it can be shown that the
reduction of entropy by using an additional projection vector
p when the data equation is given as in equation (2) is:

ΔH(p)= 1
2 log det(A +

1
σ̂2

BT Φ̆T (Φ̆Φ̆T )−1Φ̆B) −
1
2 log det(A +

1
σ̂2

BT ΦT (ΦΦT )−1ΦB) (4)

where det is the determinant of a matrix and

Φ̆ =
[

Φ
pT

]
. (5)

By applying the matrix inversion lemma [8, p.18] to the block-
structured matrix (Φ̆Φ̆T )−1 and after some extended matrix
manipulations, we arrive at Eq. (3). The details are omitted
for brevity. Complete proof can be found in [4] �

Note that there is no loss in generality in considering a
projection vector p with ‖p‖ = 1 (i.e. in the ball B), since any
non-zero projection vector can be re-scaled to have unit-norm
and this does not affect the compressive sensing estimation.

Let Θ1 and Θ2 denote, respectively, the matrices
V V T BΣBT V V T and V V T in Lemma 1. In the special case
that we use the projection operation to collect a measurement
from a single sensor, i.e. the projection vector p contains one
1 and all other elements are zeros, then the result in Lemma 1
says that we should collect from the sensor i if the

Θ1,(i,i)

Θ2,(i,i)
is

the biggest, where Θ1,(i,i) and Θ2,(i,i) are respectively the i-th
diagonal elements of Θ1 and Θ2. However, the collection of
a measurement from a single sensor in general does not give
the maximum information gain or reduction in entropy. By
using standard results in matrix theory, the projection vector p

that maximises entropy reduction is given by the generalised
eigenvector of the matrix pencil (Θ1, Θ2) that corresponds to
the largest generalised eignevalue [15]. Although this optimal
projection vector can be readily computed, this optimal projec-
tion vector generally contains many non-zero elements which
means that the energy cost to acquire this optimal projection
can be high. Since a WSN has limited energy reserve, it
is therefore important to consider both information gain and
energy consumption simultaneously.

B. Balancing information gain and energy consumption

In order to strike a balance between information gain and
energy consumption, we propose that in each iteration we
choose the projection vector p ∈ B to maximise the ratio

Q(p) =
ΔH(p)
E(p)

(6)

where E(p) is the minimum energy, measured in terms of
the number of wireless transmissions, needed to acquire the
projection pT y from the WSN. (Note: Adaptive compressive
sensing algorithms in [10], [20] seek to find a p to maximise
the information gain ΔH(p).) In other words, we choose the
projection vector that gives the maximum information gain
per energy cost needed to acquire it. Although the projection
vector that maximises ΔH(p) can readily be computed, the
problem of maximising Q(p) is in general NP-hard.

Theorem 1: Assuming that we measure E(p) by the num-
ber of packet transmissions needed to compute the projection
p in a WSN, then the optimisation problem maxp∈B

ΔH(p)
E(p) is

NP-hard.
Proof: We will show that the problem is NP-hard for a
particular instance of the problem. Consider the case where
the WSN is fully connected, then for a given projection
vector p, the minimum energy E(p) needed to acquire this
projection is to use the shortest tour to connect all the
sensors whose corresponding projection vector coefficients
are non-zero. The energy cost needed is equal to the length
of the tour and since the network is fully connected, it is
in turn equal to the number of non-zero elements in the
projection vector p. Let card(p) denote the number of non-
zero elements in p. The optimisation problem can equivalently
be written as maxk=1,..,n

1
k maxp∈B;card(p)=k ΔH(p). Since

log is a strictly increasing function, maximising ΔH(p) is
equivalent to maximising pT Θ1p

pT Θ2p . The optimisation problem

maxp∈B;card(p)=k
pT Θ1p
pT Θ2p

is an instance of the sparse Linear
Discriminant Analysis which is known to be NP-hard [15].
Hence the theorem. �

Since the problem of choosing a projection vector p to
maximise Q(p) is NP-hard, we propose a number of heuristics
to solve this problem. The aim of these heuristics is to
determine a good projection vector, which is equivalent to
solving the following two sub-problems: (1) The determination
of the locations of the non-zero coefficients of the projection
vector, which is in fact a routing problem as we argue in
Section II ; (2) The determination of the value of the non-
zero coefficients of the projection vector to maximise the
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information gain. However, once the locations of the non-
zero coefficients of a projection vector have been determined,
the value of the non-zero coefficients can be determined by
solving a generalised eigenvector problem. This means that the
key problem is to determine to the locations of the non-zero
coefficients of the projection vector.

C. Heuristics

In this section, we present a number of heuristics, of
increasing complexity, to solve the optimisation problem
maxp∈B

ΔH(p)
E(p) . In order to simplify the design of the heuris-

tics, we will approximate ΔH(p) by 1
2 log(1 + 1

σ̂2 pT Θ1p).
Note that this is not expected to affect the result much since
Θ2 is an idempotent matrix [8]. Note that the problem remains
NP-hard even with this approximation.
Algorithm 1 (Sensor with best information gain per
energy): In this algorithm, the sink will use a projection
to obtain a sensor measurement from a sensor. In other
words, the projection vector p is limited to have only one
non-zero element. The optimisation problem can be written
as maxi=1,...,n maxpi=1;p∈B

ΔH(p)
E(p) which can be solved by

computing the value of ΔH(p)
E(p) for each sensor, where for the

i-th sensor, ΔH(p) = 1
2 log(1 + Θ1,(i,i)) where Θ1,(i,i) is the

(i, i)-th element in the matrix Θ1 and E(p) is the number of
hops to sensor i via the least hop path times 2.

Algorithm 1 can be implemented by the sink sending a
query packet to the chosen sensor which will then return its
measurement to the sink. However, this algorithm only uses
the sensor measurement of the end-point of the path but it does
not use any information from the sensors along the path. It can
readily be shown that a projection vector that uses all sensors
along a path will always give a higher entropy reduction than
a projection vector that uses only a subset of sensors along
the same path; moreover, the energy consumption of these
two situations are equal, so it will be an advantage to use all
the sensors along the path too. Based on this discussion, we
propose the following algorithm.
Algorithm 2 (Shortest path with best information gain per
energy): Consider a sensor node i ∈ V , let Pi be the set of
sensor nodes along the least hop path from the sink to sensor
i excluding the sink. We abuse the notation and write p ∈ Pi

if the non-zero elements of the projection vector p correspond
only to the sensors in Pi. i.e. p ∈ Pi iff pm = 0 ∀ m /∈ Pi.
Algorithm 2 chooses the projection vector which maximises
maxi=1,...,n

maxp∈Pi;p∈B ΔH(p)

2|Pi| .
A shortcoming of Algorithm 2 is that the path calculation

does not take the entropy reduction into consideration when
it decides which nodes are to be included in the path. In
Algorithms 3 and 4, we present two heuristics where the
choice of nodes is determined by entropy reduction.
Algorithm 3: Greedy Path The key idea of Algorithm 3
is to find a path with a good ratio of entropy reduction to
path length. The following description refers to the symbolic
description of the algorithm. This algorithm loops n times
where in the i-th iteration, we determine a path Pi from
node i to the sink. After all Pi’s (i = 1, ..., n) have been

determined, we choose the projection vector p that maximises
maxi=1,...,n

maxp∈Pi;p∈B ΔH(p)

2|Pi| . The heart of the algorithm is
in the for-loop in lines 5–10 where Pi is determined. The
variable Pi, which is the set of nodes that are to be included
in the path, is initialised to contain the node i. Given that node
i is hi hops away from the sink, in the first iteration in lines
5–10, the algorithm finds all neighbours of node i which are
hi−1 hops away from the sink. These neighbours are put into
the set Nj (line 6). The algorithm then runs through all the
combinations {i, v} with v ∈ Nj to see which of them gives
the largest reduction in entropy (line 7) and this node is then
included in Pi (line 8). The process then repeats and in each
iteration, a node is added to Pi and the nodes in Pi become a
hop closer to the sink. The output of the algorithm (line 15)
is the path to be used where the nodes on the path are stored
in Pî and the corresponding projection vector p̂.

Algorithm 3 Algorithm 3
1: Input: [s, ΔH(p), G = (V, E)]
2: for i ∈ V = {1, ..., n} do
3: current node = i; Pi = {i}
4: hi = number of hops node i is from the sink
5: for j = hi − 1, hi − 2, ..., 1 do
6: Nj = the set of neighbours of current node that are j hops

away from the sink
7: m=arg maxv∈Nj maxp∈Pi∪{v};p∈B ΔH(p)
8: Pi ← Pi ∪ {m}
9: current node = m

10: end for
11: Qi =

maxp∈Pi;p∈B ΔH(p)

2hi
12: end for
13: î = arg maxi=1,..,n Qi

14: p̂ = arg maxp∈P
î
;p∈B ΔH(p)

15: Output: Pî and p̂

Algorithm 4: Greedy Tour A weakness of Algorithm 3 is
that the projection is computed along a path from the sink
to node i, which means the message will go through the
intermediate nodes in the path twice. It is possible to achieve
greater reduction in entropy if the nodes in the forward path
from the sink to node i are different from those in the reverse
path from node i to the sink. Therefore, Algorithm 4 finds a
tour through the node i (i = 1, ..., n) and chooses the tour that
gives the best entropy reduction to energy expenditure ratio.
The following exposition refers to the symbolic description of
Algorithm 4. Algorithm 4 aims to find two node-disjoint paths
from node i to the sink if possible. It finds the first path from
node i to the sink using Algorithm 3 (line 5 of Algorithm
4). It then runs another for-loop (lines 6-12) to find a node-
disjoint path from node i to the sink. Note that this for-loop is
essentially identical to that in lines 5-10 in Algorithm 3 except
that it considers only nodes that have not been chosen already
in order to achieve node-disjointness (line 7). The rest of the
Algorithm 4 is essentially the same as Algorithm 3.

IV. PERFORMANCE EVALUATION

We will illustrate the performance of our algorithms by
using simulation as well as data collected from an outdoor
WSN.
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Algorithm 4 Algorithm 4
1: Input: [s, ΔH(p), G = (V, E)]
2: for i ∈ V = {1, ..., n} do
3: current node = i; Pi = {i}
4: hi = number of hops node i is from the sink
5: Run lines 5–10 of Algorithm 3
6: for j = hi − 1, hi − 2, ..., 1 do
7: Nj = the set of neighbours of current node that are j hops away

from the sink and not in Pi

8: if Nj =∅, break the inner for-loop;else continue
9: m=argmaxv∈Nj maxp∈Pi∪{v};p∈B ΔH(p)

10: Pi ← Pi ∪ {m}
11: current node = m
12: end for
13: Qi =

maxp∈Pi;p∈B ΔH(p)

2hi
14: end for
15: î = arg maxi=1,..,n Qi

16: p̂ = arg maxp∈P
î
;p∈B ΔH(p)

17: Output: Pî and p̂

A. Simulation

We consider a WSN with 256 sensors arranged in a regular
square grid in a two-dimensional plane. We assume the sensors
are located at (i− 8− 1

2 , j− 8− 1
2 ) for i, j ∈ {1, 2, ..., 16} on

the (x, y)-plane. The sink is located at the centre of the square
grid at (0,0). Two nodes in the WSN are connected if they are
within a distance of 1.5 units of each other. Therefore a node
has a maximum of 8 neighbours. We assume that a shortest
path tree has already been built in the network.

We generate correlated data on the sensor network using
an algorithm similar to the one used in [16]. Let dij be the
distance between sensors i and j, then we assume that the
correlation of the data between them is given by exp(−0.5dij).
Let C be the resulting correlation matrix. We compute the
Cholesky factorisation of C = LLT and generate a realisation
of the noise-free data by Lz where z is a vector of i.i.d.
random numbers. Sensor noise with variance of 0.005 is then
added to the noise-free data. The data field can be shown to
be compressible in the Discrete Cosine Transform (DCT) [19]
basis, see [4] for details.

We apply the generic adaptive compressive sensing algo-
rithm (Algorithm 0) to the data. We assume that in the initial
part of the algorithm (in line 1), 80 random sensors return
their noisy readings to the sink and 80 additional projections
are performed in the loop between lines 2–6. Algorithms 1–4,
which are described in Section III-C, are used to determine
a good projection vector (line 3). In addition, we use the
following three algorithms as references:

• Algorithm MaxEnt: The sink uses the projection vector
that gives the maximum reduction in entropy, i.e solution
of maxp∈B ΔH(p). Note that this p is non-sparse, so we
expect high energy consumption but good accuracy.

• Algorithm MaxEntNode: The sink asks the sensor that
gives maximum reduction in entropy to return its reading.

• Algorithm Random: The sink randomly asks one of the
sensors that has not been queried before to return its
reading.

We choose two different metrics to measure the perfor-
mance. For accuracy, we use the relative reconstruction error
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Fig. 2. Performance of Algorithms 1–4 and reference algorithms MaxEntN-
ode and Random.

‖x−x̂‖
‖x‖ defined in Section II. For energy, we count the total

number of transmissions used up to each iteration. For exam-
ple, if 50 additional projections have been used, then the total
number of transmissions include those coming from the 80
initial sensor readings and the 50 additional projections. Let
J represent the number of transmissions then we express our
results as J

Jref
where Jref is the total number of transmissions

required by the sensors if they all send their data to the sink,
i.e. if J

Jref
≥ 1 then the method does no better than the sensor

nodes simply return all their data to the sink.
Figure 2 compares the performance of Algorithms 1–4

against that of the reference algorithms MaxEntNode and
Random. The results are obtained from the average of 100
simulation experiments. It can be seen that Algorithms 3 and
4 — which make use of a well chosen path or tour to balance
accuracy and energy consumption — give the best result in
the sense that, for a given energy consumption, these two
algorithms give the least relative error. Figure 3 compares
the performance of Algorithm 4 with the reference algorithm
MaxEnt. It shows that MaxEnt can give a lower relative error
after the same number of projections but it also requires
much more energy because the optimal projection vector for
MaxEnt is non-sparse. In fact, Figure 3 shows that the energy
consumption of MaxEnt is worse than simply having the
sensors return the data to the sink. This demonstrates that
the existing adaptive compressive sensing algorithms cannot
be applied directly to WSNs because they do not take energy
expenditure to acquire projections into consideration. Note that
we have elected to plot only the results for Algorithm 4 in
Figure 3 because of the horizontal scale needed to plot the
result of MaxEnt means that the results of Algorithms 1-4
will all be cluttered near the left-hand-side of the graph and
render them indistinguishable from each other.

B. Outdoor WSN

We evaluate the performance of our algorithms using the
sensor readings collected from the CSIRO sensor deployment
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Fig. 3. Performance of Algorithm 4 and reference algorithm MaxEnt.

in Belmont, Queensland, Australia. As shown in Fig. 4 that
there are 32 nodes in the Belmont deployment which are
arranged in a 4×8 grid. The sink node is located to the left of
this grid. Nodes in this deployment have similar connectivity
to those discussed in Sect. IV-A, i.e. each of them can have
maximum eight neighbors. We synchronized the nodes and
collected one month of temperature data with a sampling
interval of one minute. The number of snapshots used is
42,646.

Fig. 4. Sensor arrangement in Belmont, The sink node is neighbor to node
96,86 and 83.

1) Basis selection for microclimate Data: In order to find
an appropriate basis for the temperature signal, we compute
its representation in a number of bases, including DCT,
Fourier and a number of different wavelets bases (e.g. Haar,
Daubechies (D4), Symlets, Coiflets, and Splines etc.). For
a given spatial signal and a given basis, we compute the
relative reconstruction error between the original signal and
its approximation by retaining only the largest k (k = 1, 2, ...)
coefficients in that basis. This process is repeated for all the
temperature signals collected over the one month period and
for all the different bases mentioned above. Fig. 5 shows the
results for the DCT, Fourier and D4 bases. (Note that we have
presented the results from only the best three bases to avoid
cluttering the figure.) We observe that, for the same percentage
of coefficients, the representation in the DCT basis gives a
lower reconstruction error compared with the other bases.

From the above comparison, we identify that the tempera-
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Fig. 5. This figure shows the relative reconstruction error of the temperature
signal (y-axis) for a given percentage of largest coefficients that are being
retained (x-axis) when the signal is represented in a particular basis.
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Fig. 6. This figure shows the DCT coefficients of the temperature signal are
decaying faster than �−1/β with β = 1. In this (log-log) plot, the x-axis is
the index � and the y-axis is the absolute value of the coefficients.

ture signal has the most compressible representation in the
DCT basis. However, a question may be posed here that
whether the representation of the temperature signal in the
DCT basis satisfies the requirements of a compressible signal
discussed in Section II. To answer this question, we plot,
in Figure 6, the absolute value of the DCT coefficients in
descending order of magnitude along as well as the function
�−1/β with β = 1 (which appears as a straight line in a
log-log plot). We find that for β = 1, each of the ordered
coefficients decays quicker than �−1/β . This result implies that
the temperature signal is sufficiently compressible in the DCT
basis. Compressibility of the temperature signal in the DCT
basis can also be found intuitively from Figure 5. This figure
shows that it requires only 10% of the DCT coefficients to
keep the relative reconstruction error to within 0.1.

2) Applying adaptive compressive sensing: We apply the
generic adaptive compressive sensing algorithm (Algorithm 0)
to the 42,646 snapshots of temperature data using DCT as the
basis. We assume that in the initial part of the algorithm (line
1), 10 random sensors return their readings to the sink and
10 additional projections are performed in the loop between
lines 2 − 6. We use Algorithms 1–4 and MaxEntNode to
determine a projection vector. Fig. 7 compares the perfor-
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Fig. 7. Reconstruction accuracy and energy consumption trade-off the
reconstruction of the temperature signals.

mance of Algorithms 1 − 4 against that of the reference
algorithm MaxEntNode where the average relative error and
average energy consumption are plotted. Similar to the results
in Section IV-A, Algorithms 3 and 4 give the least relative
error for a given energy expenditure. These two algorithms
give 11% relative error in the estimated data field for an energy
saving of 40%.

V. RELATED WORK

There is a rich literature on adaptive sampling for WSNs,
see e.g. [6], [11], [13], [16]. Our work distinguishes from these
earlier works in that it uses adaptive compressive sensing. This
means that our focus is on computing a good projection, which
is a generalised form of measurements. However, the earlier
works use the traditional form of measurement which means
that they decide whether to collect sensing data from a specific
sensor at a specific time or not.

The paper [1] proposes to compute projections in WSNs by
using an additive MAC channel. This work is complementary
to ours in the sense that it proposes an alternative method to
compute projections. However, [1] does not use adaptation in
determining its projection. We expect that the work in [1] can
benefit from adaptation. The paper [17] proposes to obtain
projections in WSNs via gossiping; however, the paper does
not study energy consumption requirement.

Two recent papers [12], [18] studied how compressive
sensing can be applied to WSNs taking into account the
energy required to obtain the projections from the network.
The goal of both of these papers is similar to ours, which
is to obtain a sufficiently accurate snapshot of the data field
(estimated by using compressive compressing) by spending as
little energy as possible to acquire the necessary projections.
In particular, both papers [12], [18] demonstrate the important
connection between the computation of a projection in WSNs
and routing. (See also our discussion in Section II.) An
important distinction between our work and the work in [12],
[18] is that we use adaptive compressive sensing to iteratively
design good projection vectors. This iterative design involves

the determination of a good route as well as good projection
vector coefficients.

VI. CONCLUSIONS

This paper has proposed a framework to adaptively collect
information from a wireless sensor networks using adaptive
compressive sensing taking into account both energy con-
sumption and the amount of information in the sensing data.
We show that the problem of computing a projection in
adaptive compressive sensing that maximises information gain
to energy expenditure is NP-hard and we propose a number of
heuristics to solve this problem. Our performance evaluation
with simulated data and real sensor network data shows that
our algorithms give accurate estimation of the unknown data
for a given energy expenditure.
Acknowledgment: The authors would like to thank CSIRO for
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