
Energy Efficient Information Monitoring

Applications on Smartphones through
Communication Offloading

Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal

VU University Amsterdam,
De Boelelaan 1081A,

Amsterdam, The Netherlands
{rkemp,palmer,kielmann,bal}@cs.vu.nl

Abstract. People increasingly use a wide variety of applications on their
smartphones, thereby putting an ever higher burden on their phone’s bat-
tery. Unfortunately, battery capacity does not keep up with the energy
demand of these applications. Various solutions have been proposed to
get as much work as possible done with the scarcely available energy,
among which offloading heavy weight computation to cloud resources.

In addition to offloading computation to cloud resources for computa-
tion intensive applications, we propose to also offload communication to
cloud resources for communication intensive applications. In this paper
we show that applications that monitor information on the Internet can
offload the majority of their communication to cloud resources, thereby
saving a significant amount of energy.

Along with discussing the principle of communication offloading, we
detail the design and implementation of our communication offloading
component that is part of the Cuckoo Offloading Framework. We evaluate
this framework with an application monitoring a subsection of any given
website based on image comparison and that communication offloading
saves energy on the mobile device.

Keywords: communication, offloading, smartphone, energy efficiency.

1 Introduction

Today, smartphones have been widely accepted as primary personal communica-
tion devices. Key to this acceptance are improvements in phone hardware, such as
better processors, integration of various sensors and higher quality touchscreens,
together with improvements in mobile operating systems and networking tech-
nologies. These improvements have made the smartphone a compelling platform
for a wide spectrum of applications, ranging from web browsers and games, to
navigation and personal health applications, and much more. These applications
increase the phone’s energy consumption, while battery capacity remains limited
and is not expected to grow significantly [14,16].

To address this energy problem, various solutions have been proposed on dif-
ferent abstraction levels, from low level energy efficient hardware components,

J.Y. Zhang et al. (Eds.): MobiCASE 2011, LNICST 95, pp. 60–79, 2012.
� Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



Energy Efficient Monitoring through Communication Offloading 61

(e.g. modern low power smartphone processors) to increasing energy consump-
tion awareness at the user level. Many solutions are orthogonal and can be used
simultanuously. Ideally they will minimize the use of the scarcely available energy
without reducing the user experience.

In this paper we will focus on energy efficiency solutions on the middleware
level. One of the known solutions in this area is to offload intensive energy
consuming computations from a smartphone to another computation resource, a
technique known as computation offloading [12] or cyber foraging [3] and suitable
for applications containing heavy weight computing, such as object recognition
[10]. To ease the creation of these applications and to make intelligent run time
decisions about whether or not to offload we created an offloading framework,
called Cuckoo [8], which supports computation offloading. Although computation
offloading can significantly reduce the energy footprint of compute intensive
applications, those applications are not yet frequently used, and therefore the
total energy saving is limited.

We therefore identified a class of applications that are, in contrast to the com-
putation offloading applications, frequently used and involve significant commu-
nication, which is known to be very expensive in terms of energy consumption.
This class of applications comprises information monitoring applications. These
applications are typically continuously or periodically running, either as a home
screen widget or as a background service, and monitor some source of information
on the Internet. Examples are RSS readers, social network apps, sports score ser-
vices, weather information widgets, traffic information widgets, and many more.

To find out whether certain information has been changed on the World Wide
Web – inherently a pull -based architecture – these applications have to repeat-
edly pull a website to detect changes. Repeatedly pulling information – polling –
from sources with an unpredictable update behavior has disadvantages. It will
either cause unnecessary communication, in the case that information has not
changed between two polls, or cause information on the device to be out of date,
in case the information has changed, but no new poll has happened yet. Thus,
setting the polling rate involves a tradeoff between energy efficiency on the one
hand and accuracy on the other hand.

To avoid having this tradeoff, we introduce a new mechanism, Communica-
tion Offloading, that minimizes energy cost, while it maximizes the accuracy of
monitoring applications. With this mechanism, communication intensive polling
is offloaded to cloud resources, while communication between cloud and smart-
phone is done only when necessary with push communication.

To create a system that implements Communication Offloading several prob-
lems have to be addressed. In many cases, cloud initiated communication to a
phone is difficult because of Network Address Translation and firewalls. Further-
more, the use of cloud resources involves additional cost and incurs scalability
issues. Finally, having additional components in the cloud introduces end user
problems such as vendor lock-in and privacy problems [9].

In this paper we will discuss the principle of Communication Offloading and
how we added support for it into the Cuckoo offloading framework. We describe



62 R. Kemp et al.

the design and implementation of our Cloud Based Push Framework, a fun-
damental component needed for Communication Offloading, and evaluate the
framework using a real life example application that monitors images of arbi-
trary web pages.

The contributions of this paper are:

– We introduce a new mechanism for energy efficient information monitoring
applications on smartphones, called Communication Offloading.

– We discuss the requirements for and an implementation of a Communication
Offloading Framework, which enables developers to offload communication
to the cloud.

– We present a Communication Offloading framework that enables easy im-
plementation and execution of Communication Offloading applications and
addresses the problem of maintaining connectivity between cloud and phone.

– We evaluate the Communication Offloading Framework with a real life ap-
plication that does Image Based Website Monitoring and show that Commu-
nication Offloading is more energy efficient than the traditional approach.

This paper is organized as follows. Section 2 discusses the Communication Of-
floading principle. Section 3 details the background of our work. Next, in Section
4 we describe the requirements, design and implementation of our Communica-
tion Offloading Framework. In Section 5 we demonstrate the framework with a
real life application and in Section 6 we evaluate the framework with measure-
ments of example scenarios and provide insight in the energy saved by Commu-
nication Offloading. In Section 7 we discuss the related work and we give our
conclusions in Section 8.

2 Communication Offloading

2.1 Target: Polling Applications

Communication intensive applications contribute significantly to the total energy
consumed by applications. Depending on the type of network used for communi-
cation and the computation intensity of the associated pre and post processing
by the CPU, communication is costs more in terms of mJ per second than
heavy weight computation (see Figure 1). For example Google’s Nexus One can
scale its CPU clock frequency from 245 MHz to 1 GHz, where a higher clock
frequency results in more energy consumption. Any combination of communica-
tion in combination with computation, however, is at least 11%, but up to 177%,
more expensive than running the CPU at its highest frequency. Thus commu-
nication intensive applications are an even more interesting target for energy
saving measures than computation intensive applications. Reducing the amount
of communication and/or the complexity of the associated processing will lead
to less energy consumption.

Within the class of communication intensive applications one can identify two
subgroups, differing in whether the communication is predictable or not. On the



Energy Efficient Monitoring through Communication Offloading 63

Fig. 1. Average cost of computation and communication on the Nexus One. Even the
least energy consuming communication in combination with computation at the lowest
clock speed is more costly than heavy-weight computation without communication.
Values computed from an estimated fixed voltage of 3.8V and the manufacturer pro-
vided power profile which lists operations and the current they draw.

one hand there are the applications with unpredictable communication, such as
web browsers, for which it is unknown beforehand when and which page will be
requested to be retrieved, because this will be decided at run time by the user
of the application.

On the other hand there are applications that do have a predictable behavior,
typically monitoring a specific web resource with a fixed interval. These appli-
cations can be categorized as information monitoring applications (see Figure
2-i). Examples of such information monitoring applications are: weather noti-
fication, traffic monitoring, stock market monitoring, etc. and one can easily
imagine many more applications. Many of these applications run permanently,
for instance as a home screen widget.

In the remainder of this paper we will focus on permanently running infor-
mation monitoring applications, since these applications consume a significant
amount of energy and are therefore good candidates for energy saving techniques.

2.2 Pull versus Push

A naive energy reducing measure for information monitoring applications is to
reduce the polling rate of the application. This will reduce the number of web
requests and therefore the consumed energy. However, reducing the polling rate
will also affect the accuracy. Information updates will be discovered later. Thus,
using polling there exists a tradeoff between energy usage and accuracy of the
information displayed.

Information monitoring applications pull information from web resources and
then, when the data is locally available, inspect whether this data contains new
information. If so, the application updates its state accordingly.

Note that, if the data on the web resource did not change during the polling
interval, the energy spent on retrieving data from the resource does not af-
fect the application’s state and is thus effectively wasted. This energy waste is



64 R. Kemp et al.

Fig. 2. Examples of Different Phone-Web Interactions. At the points (a), (b) and (c) the
web resource updates its information. If the polling mechanism is used (i), updates are
received on the phone after some delay – the time between (a) and (2), (c) and (4). Some
updates are not received at all, e.g. (b). Using server based push notifications (ii), these
situations will not happen. Cloud based push notifications (iii) use an intermediate
cloud resource, that can poll the web resource at a much higher frequency and will
therefore have a much shorter delay and is less likely to miss updates. Furthermore,
the cloud based push mechanism moves energy expensive polling to the cloud.

unavoidable for phone based polling solutions, since in contrast to polling, infor-
mation updates are irregular and unpredictable.

To prevent this energy waste, the phone ideally should communicate with
the server only when data has changed. This can be done using a server based
technique called push notifications. Then the server informs clients when specific
data has changed (see Figure 2-ii). Push notifications are an excellent solution to
have energy efficient applications on mobile phones that show web information.

Implementing push notifications, however, requires server code modifications
and in many cases the application developer does not have the rights to alter
code on the web server.

2.3 Our Proposal: Cloud Based Push

We propose a new alternative mechanism for information monitoring applica-
tions that exploits the energy efficiency of push notifications, but does not require
any server code to be changed and thus can be used by third party developers.

We propose to add an intermediate cloud layer in between the client applica-
tion on the phone and the code on the server. This intermediate layer consists of
a small application that runs on a cloud resource. This cloud application com-
municates with the phone using the energy efficient push notification messages
(see Figure 2-iii), while it uses polling at a high rate to retrieve updates from the
web resource. Then, the energy is spent on the cloud, where energy is relatively
cheap and abundant, while accurate information is available on the phone. There
is no need to alter the code on the web server, instead a little extra code is put
on a cloud resource. We call such an architecture Cloud Based Push, to underline
the difference with existing server initiated push notification systems.



Energy Efficient Monitoring through Communication Offloading 65

2.4 Requirements for Cloud Based Push

While individual developers could employ the principle of cloud based push them-
selves, the complexity of implementing such a system requires additional skills
from developers and lengthens the development time in a market where rapid
time-to-market is essential. Therefore, we believe that there is a need for a simple
cloud based push framework. Furthermore, a single push framework allows multi-
ple applications on a single phone to share the same push notification connection.

A cloud based push framework should consist of:

– a push system that deals with the communication between the phone and
the cloud application.

– a component that maintains connectivity between cloud and phone
– a simple programming model where developers can plug in their monitoring

code.

Furthermore, we favor code bundling for distributed applications, such that com-
patibility between the components is ensured and vendor lock-in is prohibited,
thus we add a fourth requirement:

– a deployment system so that cloud code available on the phone and bundled
with the client application can be deployed on cloud resources.

3 Background

We believe that the current generation of smartphones is ready to run real smart
applications – applications that use personal, social and sensor information to
make smart decisions to enrich and simplify the life of the user. While we already
see some of these applications entering the markets today, there are still several
problems for developers to create such applications, among which energy usage
is a key problem. In order to ease the process of such applications we are building
a toolkit called Interdroid (see Figure 3).

Fig. 3. Abstract overview of the Interdroid project. We strive towards a layer that en-
ables application developers to use social and context information, intensive computing
and communication, and data services while keeping energy usage to a minimum.



66 R. Kemp et al.

In this toolkit we offer developers easy ways to access social information and
context information [19], to share, version and replicate information and to com-
pute in an energy efficient way on this data. We use offloading to solve part of
the energy problem in our toolkit.

3.1 Cuckoo

To encourage developers to use energy efficiency techniques, we strive towards
a simple, complete and uniform platform at the middleware layer that we can
offer to developers. This will maximize the probability that developers will re-
ally employ known energy saving techniques in their application, where time to
market is short. In this section we outline our earlier work on offloading in the
Cuckoo project [8], one of Interdroid’s sub-projects.

Our initial effort in the Cuckoo Offloading Framework is a computation
offloading component that can be used by developers to easily create energy
efficient applications that contain compute intensive parts. The computation of-
floading component allows developers to generate both local and remote imple-
mentations of compute intensive code. The offloading component can then at run
time decide tomove heavyweight computation to remote resources, such as clouds.

In the Cuckoo offloading project we believe in a user centric approach, where
the user experience should not degrade because of energy saving techniques.
Therefore Cuckoo supports both local and remote implementations to have a
fallback mechanism for the case when there is no network connectivity to the
remote resource and to allow for remote implementations that take advantage of
being different, for instance being implemented to use parallelism. Furthermore,
Cuckoo bundles local and remote code on the phone and installs remote code
when needed on the fly on remote resources, so that users are sure that their
local code is compatible with the remote code.

4 Cuckoo Communication Offloading

We developed a communication offloading component as part of the Cuckoo
Offloading Framework. The communication offloading component consists of:

– a Push Server that runs on cloud resources
– a Push Client library that handles the communication with this server
– a background application (service) that runs on the phone and manages the

incoming push notifications.

In this section we will detail the different components, the design decisions and
important implementation aspects.

We start with motivating our choice for Android as implementation platform,
describe the traditional approach of writing an information monitoring app and
explain what changes from a developers perspective.

4.1 Android: Implementation Platform

In order to make a real world implementation of the framework we have se-
lected Android as our underlying implementation platform, because it is widely



Energy Efficient Monitoring through Communication Offloading 67

adopted, has support for existing Java libraries, such as the Ibis communication
libraries [2] that we use for communication between the client and the server,
and has been used for the earlier Computation Offloading component of the
Cuckoo framework. Furthermore, Android supports multiple application types
that could be used for web based information monitoring applications, namely:

– home screen widgets : lightweight applications that are permanently visible
on one of the home screens.

– background services : applications with no UI that run in the background.
– broadcast receivers : lightweight applications that start when a particular

broadcast message (Intent) is sent to the system.
– activities : regular applications that have a UI and execute a particular task,

like listing email, capturing a photo, etc.

4.2 The Traditional Approach

When one writes a web based monitoring application for the Android platform,
one would in general take the following approach. Depending on the type of
application that wants to receive updates from the web resource, one creates
such an application, be it a home screen widget, a broadcast receiver, or even
an activity (although the latter is less likely, because of its short lived nature).

Then, to make sure polling happens in the background, one creates a service,
which does the polling. This service will be started by either the widget, the
receiver or an activity and then monitor the web resource. Once it finds an update
it will send this update via an Intent message to the appropriate destination.
The widget, broadcast receiver, or activity will receive this message and change
its behavior according to the message (e.g. display the new information, alert the
user, etc.). A schematic overview of this process is shown in Figure 4. Pseudocode
for it is shown in Figure 5.

Fig. 4. Schematic overview of a traditional implementation of a monitoring app. An
Android component (homescreen widget, broadcast receiver or activity) starts a service
on the phone that repeatedly fetches information from a web resource. Once an update
is found, an Intent message is sent back to the component.



68 R. Kemp et al.

/∗∗∗∗∗∗∗∗∗∗∗∗ Service Code ∗∗∗∗∗∗∗∗∗∗∗∗/
MyService extends Service
// (2), change to MyService extends PushService

while (true) {
info = poll(”http://...”);
if (changed(info)) {

sendIntent(...); // (3), change to push(...);
}
sleep(interval);

}

/∗∗∗∗∗∗∗∗∗∗∗∗ Widget Code ∗∗∗∗∗∗∗∗∗∗∗∗/
onCreate() {

startService(); // (1), change to startRemoteService();
}

onRemove() {
stopService(); // (1), change to stopRemoteService();

}

onReceiveIntent() {
updateUI();

}

Fig. 5. Pseudocode comparison between traditional and offloading code. The comment
numbering corresponds with Figure 6.

4.3 The Offloading Approach

To make it as simple as possible for developers to use communication offloading,
we retained the traditional approach as much as possible. Only a few parts
in the source code have to be changed (see comments (1) to (3) in Figure 5).
Furthermore the developer should add the Cuckoo libraries to the project.

Figure 6 shows the schematic overview of a web polling application that is
based on communication offloading. It differs on four points from the traditional
approach:

– (1) Starting and Stopping: Whereas in the traditional approach components
would start and stop a local service, they now have to start and stop remote
services.

– (2) Remote Service: Whereas the polling service was originally implemented
to be executed locally, it now has to be implemented to be executed remotely.
Although local code is compiled with the Android libraries and the remote
code is compiled against the standard Java libraries, polling code typically
does not involve Android specific code. Typically, the original local code and
the new remote code are largely the same.



Energy Efficient Monitoring through Communication Offloading 69

Fig. 6. Schematic overview of an implementation of a monitoring app using commu-
nication offloading. The same Android component as in Figure 4 starts and stops the
polling, however, the polling now runs in the cloud. Once an update is detected in the
cloud, the push listener service on the phone is notified.

– (3) Informing the Source: Traditionally, an Intent was sent to the source
upon an update. With the offloading approach a message is sent over the
network.

– (4) Transforming the Push Message: Once the push message is received by
the Cuckoo provided listener service, the push message is translated into an
Intent, which then as in the traditional approach is received by the corres-
ponding Widget, Broadcast Receiver or Activity.

Our framework provides libraries with base classes that can be extended to imple-
ment remote polling services. The framework also provides a server application
that can host the polling services, and both a push listener service application
and a resource manager application that run on the phone.

4.4 The Push Server

The Push Server is the component of the framework that runs in the cloud and
will poll the web resources. The Push Server has to be installed and started on
a cloud resource either by a user or by the application provider, or a third party
such as a network provider.

The requirements for the cloud resource to run a Push Server are minimal,
since the Push Server is a regular Java application and can therefore run on any
resource that has a Java Virtual Machine (JVM) installed. Furthermore, the
resource needs to be permanently connected to the Internet.

Multiple resources can be bound to a phone, and multiple phones can be
bound to a single resource. This allows users to use their own resources, such as
home servers, together with resources provided by application providers.

Once a Push Server is up and running it can execute polling services. Such
a service is the polling part of a phone application and will be implemented by
the application developer and bundled with a web based monitoring application



70 R. Kemp et al.

as a plugin for the Push Server. This code is thus available on the phone, while
it needs to be executed on the Push Server. However, this code can be installed
on the fly on the Push Server through Java’s dynamic class loading mechanisms.
Once installed and started, it will execute the polling code and each time an
update of the particular web resource is detected, a push message is sent to the
phone.

The Push Server maintains a bookkeeping of which devices are using which
service and what their actual address is. If a service wants to send a push mes-
sage to a phone, it will inform its hosting Push Server, which will take care
of the delivery of the message. Messages might be not deliverable because the
phone is temporarly unreachable, in such a case the Push Server informs the
polling service, which can for instance use an exponential backoff algorithm for
resending.

Scalability. Depending on who provides the resources that are used for com-
munication offloading, the server might experience scalability issues. When the
load on a Push Server becomes too high, one can use elastic computing such as
offered by Amazons EC2 [1] and start a new Push Server instance in the cloud.
To further improve scalability – in particular down-scaling – it is necessary to be
able to transparantly migrate monitoring code from one Push Server to another,
so that the number of instances and thus the cost can be kept at a minimum.
At the moment Cuckoo does not support migration of monitoring code between
Push Servers.

4.5 The Push Listener Service

Up to now we have seen that the phone application needs to be modified slightly
to start a remote service running on a Push Server. Once an update is detected
the service on the Push Server sends a push message back to the phone. In this
section we will outline what happens when such a message arrives at the phone.

Our communication offloading framework provides a Push Listener Service,
which runs in the background and waits for push messages to arrive. When
such a message comes in, the Push Listener Service analyzes the message and
transforms it into an Intent. Once this Intent is broadcast and subsequently
received by the application, the application can handle the update. Typically,
this will involve updating the UI or alarming the user through sound or vibration.

The Push Listener Service can temporarily be turned off by the user, because
users may want to temporarily sacrifice the possibility to receive push messages
to save energy.

4.6 Maintaining Connectivity

There is a distinct problem for cloud servers when it comes to sending push
messages to mobile phones. First of all, phones inherently are mobile devices,
they switch from network to network thereby often changing network address.



Energy Efficient Monitoring through Communication Offloading 71

In order to send push messages a cloud server has to know the current address
of a phone.

Even when this address is known, it is likely that cloud servers cannot reach
a mobile phone, because it has limited inbound connectivity due to Network
Address Translation (NAT), which is widely used for both Wi-Fi and 3G/4G
access points. Access points that use NAT will hand out private IP addresses to
connected devices. These addresses are only reachable in the local network and
cannot be used by cloud resources outside this private local network to set up
connections.

Although cloud resources cannot reach phones, phones can reach cloud re-
sources. A solution to the aforementioned problems is to maintain an open
bidirectional connection that is set up by the phone. To prevent such a con-
nection from being closed due to protocol time-outs, keep-alive messages keep
the connection active. In our framework we use the SmartSockets library [13]
that provides a socket-like library that operates on top of an internal overlay
network, which automatically keeps connections active.

Although we can keep connections active with keep-alive messages, eventually
a phone switches to another network, and then the active connection is inevitably
closed. Connection re-establishment therefore is an essential part of maintaining
connectivity. In our implementation the Push Listener Service registers with
the mobile OS to get notified of each network change and establishes a new
bidirectional connection if the previous one is closed.

With the combination of keeping open connections using SmartSockets and
reconnecting upon network changes, the cloud resource always has a means to
send messages to the phone as long as the phone is connected to the Internet. The
cost of maintaining an open connection through sending the keep-alive messages
is very small for Wi-Fi compared to having an idle connection (see Table 1), for
3G it is significantly costlier, but still acceptable since it is a one-time cost and
not a per app cost.

Table 1. battery cost of maintaining connectivity

idle open connection overhead

Wi-Fi 2.18 %/hr 2.36 %/hr 0.18 %/hr
3G 3.03 %/hr 4.61 %/hr 1.58 %/hr

5 Image Based Website Monitoring

In order to demonstrate the Cuckoo Offloading Framework we made a compelling
web based polling application. This application is called Web Page Widget and
can be used to have a live view of a specific area of a website in a homescreen
widget. Figure 7 shows screenshots of this widget.

The first screenshot shows one instance of the widget. This widget shows
the output of monitoring a Dutch news website with live traffic information,
weather information, the gas price and the stock exchange index value1. The

1 http://www.nu.nl

http://www.nu.nl


72 R. Kemp et al.

Fig. 7. Two screenshots of the Web Page Widget application. The first screenshot
shows a single instance of the widget, the second shows the same widget half an hour
later with updated values. Furthermore, a new instance of the same widget monitoring
a different web resource is added. The screenshots also show the user control to turn
delivery of push messages on or off.

second screenshot is taken about half an hour later and shows two instances of
the widget. One of these is the same widget as in the first screenshot, but now
with updated values. The other instance monitors weather information from the
BBC weather webpage2.

Each widget must be configured before it can be placed on a homescreen. The
configuration consists of three steps and is visualized in Figure 8:

– Select URL: Select the URL of the webpage that is going to be monitored.
– Select Area: Select a rectangle around the area of interest on the webpage.
– Select Scaling: Select how the website area will be scaled in the widget area.

Once configured, the widget is placed on the homescreen and updates the part
of the webpage in near real time whenever the contents of the website in that
specific area change.

5.1 Implementation

While for some monitoring applications it is arguable to have server based push
solution, that is the web site owner providing push support to mobile phones, it is

2 http://news.bbc.co.uk/weather/forecast/101

http://news.bbc.co.uk/weather/forecast/101


Energy Efficient Monitoring through Communication Offloading 73

Fig. 8. Configuration of a Web Page Widget. First a URL of a to be monitored website
is entered. Then this webpage gets rendered at the remote resource an image is sent
back to the phone. The user now selects the area of interest. Finally, the user can
specify how the image will be mapped onto the area on the screen.

clear that this application cannot be implemented with server based push. There
is no single authority of all websites, so polling is the only way to implement
such a monitoring application.

When we want to monitor websites we have to repeatedly execute HTTP re-
quests. The data we get back is in HTML format and we can use text comparison
to inspect whether it is the same as the previous value. Since we are interested
in only a subpart of the webpage and there is no clear mapping to a rectangle
on the screen and the HTML tags belonging to this rectangle, we render the
webpage and then use pixel by pixel image comparison to detect changes. If a
change is detected the widget is updated with a new image of the area of interest.

5.2 Traditional versus Offloading

When we implement this application in a traditional way, that is using polling
and rendering on the phone itself, it will either drain the battery very rapidly
or, when a low polling rate is used, have out of date information.

An offloading approach on the other hand will do polling, rendering and image
comparison on the cloud resource and will only send the resulting image when
it has changed. The size of the resulting image is significantly lower than the
size of the HTML, images and scripts that are sent as a result of HTTP request,
because it only covers the area of interest (AoI). Table 2 shows that for the
two example widgets from the screenshots the images of the AoI are about 160
times (nu.nl) and 3000 times (bbc) smaller than the size of the full webpage.
This alone will already save much of traffic to the phone. For instance, if the



74 R. Kemp et al.

AoI on the nu.nl webpage will change on average every 5 minutes, an offloading
implementation can run for 12.5 hours and use an equal amount of data traffic
as a single polling operation of a traditional implementation of this widget. Note
that not only for this application, but for many monitoring applications users are
interested in just a subsection of the overall information, however web resources
do not offer interfaces to query for updates of subsections.

6 Measurements

Measuring energy consumption of mobile phones is a complicated task. First
of all, there are many factors that influence the energy consumption. Some of
these factors cannot easily be controlled, for instance the interference on the
wireless network. Furthermore, measuring how much energy is consumed in a
given period requires either special hardware or fine grained information from
the hardware. Third, the resulting information is only valid for a specific phone
on a specific location on a specific network. Running the exact same experiment
from a different phone might give other results and going to another location
(for instance closer to a cell tower) might also influence the experiment.

Although measuring energy consumption is a difficult task and measurements
shouldbe interpretedwith care,wehave executed several experiments to get insight
in the energy cost of several operations related to communication offloading.

The phone we used for our experiments is a Nexus One, running on Android 2.2
with a 1.0 GHz CPU and a Li-Ion 1400mAh battery. In our Wi-Fi experiments we
used a 801.11n network, in the 3G experiments we used the Vodafone network in
The Netherlands which uses HSDPA with a bandwidth up to 3.6 Mbps.

For each measurement we use the Android BatteryManager API to query the
battery level, which runs from 100% (full) to 0% (empty). We execute our to be
measured operation until the battery level has dropped by 5% and measure how
long that takes.

In order to validate this methodology we have run a reference measurement
to verify that the battery level as returned by the Android BatteryManager
API indeed shows linear regression in time and is not merely a percentage of the
maximum voltage of the battery, which is known to be non-linear. We found that
the values reported by the BatteryManager indeed result in a linear correlation
between energy use over time and the battery level.

6.1 Polling vs. Other Activities

Figure 9 shows the results of energy usage measurements of several common
operations on smartphones. We found that video capture (720x480, H.264) is
the most energy consuming operation, followed by browsing, which intensively
uses the 3G radio, and navigation, which uses the GPS, the 3G connection and
Bluetooth to stream the audio. Computationally intensive operations, such as
playing a 3D racing game3 also consume much energy, giving a total battery
time of about 4 hours and 20 minutes for a user that just plays games.

3 We used Raging Thunder Lite 2 from PolarBit.



Energy Efficient Monitoring through Communication Offloading 75

Fig. 9. Energy usage of various common smartphone operations. This graph shows the
drop in the battery charge level and the Joules consumed for a particular operation in
one hour.

Table 2. web page size vs. image size

source web page size AoI size reduction

nu.nl 1.4 MB 9 kB 159x
bbc 0.9 MB 0.3 kB 3072x

When we look at the energy cost of polling, we see that using the 3G network
in our case consumes much more energy than using the Wi-Fi network. Note that
various network properties, such as distance to the access point, interference, etc.
influence the energy cost. We also see that, like we expected, the energy cost of
polling is reduced when the polling interval is reduced.

Although the energy cost of polling per hour is not that high compared to
the other tasks, polling happens continuously, while other activities, such as
video capture, browsing, navigation, mp3 playback happen only for a limited
time. Furthermore, we measured polling for just a single application. If multiple
applications are polling concurrently, the energy consumption will increase even
more. If the compound number of polls from the various applications is one
poll every 10 seconds and we use 3G, the phone will not last for longer than 6
hours and 15 minutes on a full battery. This is well below the lowest accepted
operation time of about 18 hours, where a phone is charged every night. Though



76 R. Kemp et al.

Wi-Fi gives better results, one cannot expect that a smartphone user will only
use Wi-Fi networks during an entire day.

6.2 Polling vs. Pushing

The amount of energy saved by switching from polling to cloud based push for a
given application depends on the characteristics of that application. In particular
the following variables influence the energy consumption:

– Average Update Rate (UR): The average time between two updates on the
web page.

– Polling Rate (PR): The rate at which the polling application checks for
updates.

– Data Reduction Factor: How many times bigger the data for a single poll
request is compared to a push message.

– Processing Reduction Factor: How much more processing has to be done for
a poll request compared to an incoming push message.

– Accepted Update Latency: The latency with which an update arrives on the
phone.

We performed experiments to compare the cost of polling to cloud based push
using our example Web Page Widget application monitoring the AoI on the
nu.nl web page as shown in Figure 8.

For this application, the data reduction factor is 159 times (see Table 2).
Processing using push notifications takes 0.072 seconds, which is updating an

Table 3. Polling vs. Pushing. This table shows how the important properties of mon-
itoring cost with varying polling rates (PR) as a multiple of the update rate (UR) and
for push. The values are based on a single widget running for 9h22m monitoring nu.nl.
Wi-Fi (W) bandwidth is 623 kB/s, 3G bandwidth is 100 kB/s. Energy consumption is
calculated based on the power profile. The lower the polling rate, the lower the energy
cost, but also the more updates missed and the longer of a delay until updates are
propagated to the phone. The push energy reduction factors include the one-time cost
for the open connection (conn), the values between parenthesis are the reduction fac-
tors for each subsequent widget. For instance, a single widget with push uses 1.5 times
less energy on 3G compared to polling with an PR of .57UR. A second push widget
will reuse the existing open connection and therefore the additional cost the energy
reduction is 241 times compared to an additional polling widget.

PR 2UR 1UR 0.57UR 0.1UR push conn

missed updates 69.3 % 52.9% 42.1% 18.6% 0.0% -
update latency 138s 103s 60s 12s 0s -
CPU time/hr 22s 44s 77s 443s 1s -
Data size/hr 10.3 MB 20.6 MB 36.1 MB 206.5 MB 133 kB -

batt. %/hr (W) .11% .23% .40% 2.27% .004% 0.18%
push energy reduction (W) 0.6x (28x) 1.3x (57x) 2.2x (100x) 12.3x (568x) - -

batt. %/hr (3G) .69% 1.38% 2.41% 13.78% 0.01% 1.58%
push energy reduction (3G) 0.4x (69x) 0.9x (138x) 1.5x (241x) 8.7x (1378x) - -



Energy Efficient Monitoring through Communication Offloading 77

image in a widget. The polling implementation has to do significantly more
work, since it has to render the full web page and then extract the subimage,
which takes in total approximately 3 seconds. The processing reduction factor
therefore is 41 times.

We collected an update trace for the AoI on the nu.nl web page. The total
trace time is 9 hours and 22 minutes, in which we detected a total of 140 updates,
giving an average UR of 4 min 4 sec.

In the experiments we varied the PR of the polling version, which influences
the accuracy and the energy consumption (see Table 3). If we apply a PR that
is equal to the UR, we only see 66 out of the 140 updates (47%) and the average
delay between the update and its appearance on the phone is 1:43 minutes, the
energy consumed with polling is 0.9 (3G) to 1.3 (Wi-Fi) times more than with
push.

Increasing the PR will decrease the average delay and the number of missed
updates at the cost of spending more energy. If our accepted update latency is 1
minute, we have to set our polling rate to 0.57 times the UR. Using this polling
rate, we will only see 58% of all updates and energy consumption goes further up
to 1.5 (3G) to 2.2 (Wi-Fi) times more than push. When we also want to increase
the number of updates we have to increase the polling rate even more. Polling
10 times during the average update interval results in only 18.6% of the updates
missed and gives an acceptable age of only 12 seconds when an update arrives on
the phone, but energy consumption is dramatic, especially when using 3G. In a
single hour, about 14% of the battery will be spent on monitoring this web page,
giving a maximum and unacceptable operation time of only 7 hours on a full
battery. If we would have more widgets monitoring other web pages the energy
consumption increases accordingly and operation time decreases even more.

Monitoring based on cloud based push however, has a much smaller energy
footprint. Most of the energy consumed is spent on maintaining the connectivity.
This cost however will not increase when multiple widgets are used on a single
phone. The cost of running a single instance of a web page widget will only use
0.01% (3G) or even 0.004% (Wi-Fi) of the battery for a full hour. Even if one
runs tens of web page widgets concurrently, the operation time of a full battery
will only be limited by the small cost of a single open connection, while not
missing any update and getting the updates instantly.

7 Related Work

Computation offloading is a well known technique in the field of distributed
computing. Already in the era of dumb terminals, resource constrained devices
used help from more powerful machines to execute certain tasks. With the intro-
duction of resource constrained mobile devices, computation offloading has been
used to allow compute intensive, memory intensive and energy intensive appli-
cations to run on mobile devices in such a way that the expensive part of the
operation gets executed on remote resources. Before the introduction of cloud
computing this technique was known as cyber foraging [17], where resource con-
strained mobile devices used nearby powerful machines – surrogates – to offload



78 R. Kemp et al.

computation to. Later work, such as CloneCloud [5], uses cloud resources to sup-
port computation offloading. In [11] Kumar et al. discuss whether computation
offloading can save energy for mobile devices. Some of the existing offloading
systems rely on annotations by the developers, while others do automatic parti-
tioning [7,6]. None of these systems support communication offloading and allow
remote implementations to send push messages to the mobile device.

In this paper we introduce a communication offloading framework. Recently,
we have seen a commercial company offering a push based app for Twitter up-
dates, called TweetHook [18], where they run an intermediate layer application
in the cloud to query the Twitter API. Google has also started a project called
PubSubHubbub [15], which uses intermediate applications (hubs) to periodically
query publishers of content. Once updates are found all subscribers are informed.
PubSubHubbub requires subscribers to be at a fixed location and to be able to
receive HTTP Post messages and is therefore not very suitable for communica-
tion offloading from mobile devices. PubSubHubbub hubs, however, are excel-
lent sources of information where a communication offloading app can retrieve
information from.

Whereas in this paper we use the Cuckoo Push framework, Google also offers
a push service called Cloud To Device Messaging (C2DM) [4]. In our future
work we will integrate Cuckoo and C2DM, and compare this to a pure Cuckoo
implementation.

8 Conclusions

In this paper we proposed a new offloading technique to reduce the energy usage
of information monitoring applications on smartphones. We offload expensive
polling of web based resources to a cloud resource, that in turn sends push mes-
sages to the smartphone only when the information has changed. We have built
an extension to the Cuckoo offloading framework to support this communication
offloading and drastically simplify the process of developing such an application.

We evaluated the technique and the framework with an example application
that does image based webpage monitoring and we showed that offloading polling
to the cloud can have significant impact on the operation time of a single battery
charge.

References

1. Amazon EC2, http://aws.amazon.com/ec2/
2. Bal, H.E., Maassen, J., van Nieuwpoort, R.V., Drost, N., Kemp, R., Palmer, N.,

Wrzesinska, G., Kielmann, T., Seinstra, F., Jacobs, C.: Real-World Distributed
Computing with Ibis. IEEE Computer 43, 54–62 (2010)

3. Balan, R., Flinn, J., Satyanarayanan, M., Sinnamohideen, S., Yang, H.-I.: The
case for cyber foraging. In: Proceedings of the 10th Workshop on ACM SIGOPS
European Workshop, EW 10, pp. 87–92 (2002)

4. Android Cloud to Device Messaging, http://code.google.com/android/c2dm/

http://aws.amazon.com/ec2/
http://code.google.com/android/c2dm/


Energy Efficient Monitoring through Communication Offloading 79

5. Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execu-
tion between mobile device and cloud. In: Proceedings of the Sixth Conference on
Computer Systems, EuroSys 2011, pp. 301–314 (2011)

6. Cuervo, E., Balasubramanian, A., Cho, D.-K., Wolman, A., Saroiu, S., Chandra,
R., Bahl, P.: Maui: making smartphones last longer with code offload. In: Proc. of
the 8th Int’l Conference on Mobile Systems, Applications, and Services, MobiSys
2010, pp. 49–62 (2010)

7. Giurgiu, I., Riva, O., Juric, D., Krivulev, I., Alonso, G.: Calling the Cloud: Enabling
Mobile Phones as Interfaces to Cloud Applications. In: Bacon, J.M., Cooper, B.F.
(eds.) Middleware 2009. LNCS, vol. 5896, pp. 83–102. Springer, Heidelberg (2009)

8. Kemp, R., Palmer, N., Kielmann, T., Bal, H.: Cuckoo: a Computation Offloading
Framework for Smartphones. In: MobiCASE 2010: Proc. of The 2nd International
Conference on Mobile Computing, Applications, and Services (2010)

9. Kemp, R., Palmer, N., Kielmann, T., Bal, H.: The Smartphone and the Cloud:
Power to the User. In: MobiCloud 2010: Proceedings of the First International
Workshop on Mobile Computing and Clouds (2010)

10. Kemp, R., Palmer, N., Kielmann, T., Seinstra, F., Drost, N., Maassen, J., Bal,
H.: eyeDentify: Multimedia Cyber Foraging from a Smartphone. In: International
Symposium on Multimedia, vol. 11, pp. 392–399 (2009)

11. Kumar, K., Lu, Y.H.: Cloud computing for mobile users: can offloading computa-
tion save energy? IEEE Computer 43(4), 51–56 (2010)

12. Li, Z., Wang, C., Xu, R.: Computation offloading to save energy on handheld
devices: a partition scheme. In: Proceedings of the 2001 International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, CASES 2001,
pp. 238–246 (2001)

13. Maassen, J., Bal, H.: Smartsockets: solving the connectivity problems in grid com-
puting. In: Proceedings of the 16th International Symposium on High Performance
Distributed Computing, pp. 1–10. ACM (2007)

14. Palaćın, M.: Recent advances in rechargeable battery materials: a chemists per-
spective. Chemical Society Reviews 38(9), 2565–2575 (2009)

15. PubSubHubbub, http://code.google.com/p/pubsubhubbub/
16. Robinson, S.: Cellphone Energy Gap: Desperately Seeking Solutions, Tech report,

Strategy Analytics (2009)
17. Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Personal

Communications 8(4), 10–17 (2001)
18. TweetHook, https://tweethook.com/
19. van Wissen, B., Palmer, N., Kemp, R., Kielmann, T., Bal, H.: ContextDroid: an

Expression-Based Context Framework for Android. In: International Workshop on
Sensing for App Phones, PhoneSense (2010)

http://code.google.com/p/pubsubhubbub/
https://tweethook.com/

	Energy Efficient Information Monitoring Applications on Smartphones through Communication Offloading
	Introduction
	Communication Offloading
	Target: Polling Applications
	Pull versus Push
	Our Proposal: Cloud Based Push
	Requirements for Cloud Based Push

	Background
	Cuckoo

	Cuckoo Communication Offloading
	Android: Implementation Platform
	The Traditional Approach
	The Offloading Approach
	The Push Server
	The Push Listener Service
	Maintaining Connectivity

	Image Based Website Monitoring
	Implementation
	Traditional versus Offloading

	Measurements
	Polling vs. Other Activities
	Polling vs. Pushing

	Related Work
	Conclusions
	References


