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Abstract—Mixed precision is a promising approach to save
energy in iterative refinement algorithms since it obtains speed-
up without necessitating additional cores and parallelisation.
However, conventional mixed precision methods utilise statically
defined precision in a loop, thus hindering further speed-up
and energy savings. We overcome this problem by proposing
novel methods which allow iterative refinement to utilise variable
precision arithmetic dynamically in a loop (i.e. a trans-precision
approach). Our methods restructure a numeric algorithm dy-
namically according to runtime numeric behaviour and remove
unnecessary accuracy checks. We implemented our methods by
extending one conventional mixed precision iterative refinement
algorithm on an Intel Xeon E5-2650 2GHz core with MKL 2017
and XBLAS 1.0. Our dynamic precision approach demonstrates
2.0–2.6× speed-up and 1.8–2.4× energy savings compared to
mixed precision iterative refinement when double precision so-
lution accuracy is required for forward error and with matrix
dimensions ranging from 4K to 32K.

Index Terms—transprecision, dynamic precision, dynamic al-
gorithm, iterative refinement, energy savings.

I. INTRODUCTION

M IXED precision arithmetic is a promising approach to

save energy when solving linear systems of equations

in the form of Ax=b using iterative refinement. The reason

is that mixed precision arithmetic can achieve substantial

acceleration of the algorithms without necessitating additional

cores for parallelisation. The idea behind mixed precision

methods is to utilise lower precision arithmetic for the compu-

tationally intensive O(n3) task that generate LU factors, while

attaining good solution accuracy through a higher precision

O(n2) refinement, where n is a matrix size [1]. The mixed

precision method of [1] utilises dual precisions (e.g, single and

double precision) to achieve speedup without losing accuracy

for backward error (see Section II-B for further details). To

achieve a working precision (i.e., the precision used for input

data A and b) accuracy for forward error, prior work proposed

to use three levels of precision (e.g., half precision, single

precision, and double precision) for iterative refinement [2].

However, most mixed precision methods (including iterative

refinement algorithms using three levels of precision) employ
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statically defined precision in a loop, which hinders perfor-

mance improvement.

Recent work has explored automated precision tuning tools

[3], [4]. Unfortunately, these tools have not proven practical

but several reasons. First, they customise precision tuning for a

particular input set. The numerical accuracy of most scientific

and machine learning applications depends highly on input

data. For example, the accuracy of a linear system solver

depends on a condition number of a matrix κ(A) and most

machine learning applications employ a regularisation param-

eter to minimise overfitting caused by tuning hyperparameters

too much to a training set [5]. Therefore, it would be highly

probable that the precision assigned from automated precision

tuning tools may not function properly for different input sets.

Second, tuned precision assignments do not consider runtime

numerical behaviour. For example, it is not feasible to employ

dynamic precision arithmetic in a loop with the tools and

this limitation causes performance loss. The authors in [3]

suggested that domain specific knowledge such as numeric

properties of an algorithm might be necessary to deal with the

limitations of automatic precision tuning tools.

All related work on mixed precision and automated preci-

sion tuning methods employs statically defined precision for

statically defined algorithms. That is, the precision or levels

of precision used by the algorithm are fixed at compile time

and do not vary at runtime. However, many algorithms can

be restructured at runtime to improve their performance. For

example, conventional iterative refinement refines a computed

solution by subtracting an error approximation per iteration.

However, it can be adapted to refine both a solution and

an error approximation according to runtime numerical be-

haviours. An alternative computing paradigm that exploits

runtime numerical behaviour can optimise the performance

of these algorithms and also maximise their potential energy

savings.

In this paper we propose dynamic precision techniques

which we refer to as Transprecision Techniques (TTs). TTs

allow a mixed precision iterative refinement algorithm to

utilise dynamically varying precision in a loop (a capability we

refer to as TT1), to restructure a numerical algorithm dynam-

ically according to runtime numeric behaviour (a capability

we refer to as TT2), and to remove unnecessary accuracy

checks (a capability that we refer to as TT3). These capabilities
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combined achieve significant performance improvement and

energy savings over standard mixed precision iterative refine-

ment algorithms. TTs are precision utilisation techniques that

aggressively exploit numerical properties of an algorithm. To

validate the proposed TTs, we use a case study with a mixed

precision iterative refinement algorithm employing LU decom-

position with Partial Pivoting (LUPP) and producing double

precision solution accuracy for forward error. To the best of

our knowledge this is the first work that explores both dynamic

precision arithmetic and dynamic algorithm optimisation to

minimise runtime and maximise energy savings.

II. MIXED PRECISION ITERATIVE REFINEMENT

In this section, we describe a mixed precision iterative

refinement algorithm and its basic numeric properties such as

successful condition and achievable accuracy. A conventional

iterative refinement algorithm to solve Ax = b is described

in Algorithm I. We use ψ to indicate any approximator for

a linear system such as a direct solver (e.g., LUPP, QR, and

Cholesky), Conjugate Gradient (CG), or Generalized Minimal

Residual (GMRES). We also use ǫS,D,DD for single, double

and double-double precision machine epsilon respectively,

εS,D,DD for single, double and double-double precision

arithmetic respectively and likewise, ǫ1,2,3,ψ and ε1,2,3,ψ
for a precision machine epsilon and a precision arithmetic

applied for step 1, 2, 3 and generating a ψ respectively in

this paper. For reference, the numeric analyses for mixed

precision iterative refinement are described in Appendix A.

Algorithm I

for i = 1, 2, 3,..

step 1: compute the residual :

r(i) = Ax(i) − b with ε1
step 2: seek the approx of the previous solution error :

Az(i) = r(i) using ψ with ε2
step 3: deduct the approximated error :

x(i+1) = x(i) − z(i) with ε3

In step 1, the residual r(i) is sought as precisely as

possible. In step 2, the approximation of the solution error is

sought using ψ. In step 3, the approximated error is deducted.

Since the approximated error contains the rounding error

of the previous computed solution error and the error from

the approximator ψ, the residual of the corrected solution is

sought again at next step 1. The iterative procedures continues

until the accuracy of solution meets prescribed accuracy.

Assuming that ψ is a perfect solver and there are no rounding

errors for all steps, just one iteration is required to find out

the correct solution. The computed solution converges to

an exact solution with a convergence rate (i.e., a relative

accuracy quality of ψ). For example, if the relative error of a

ψ approximator is smaller, the computed solution approaches

the exact solution quicker.

We refer to Algorithm I as a mixed precision algorithm if

ψ is generated by lower precision arithmetic than a working

precision. For example, if A and b are double precision data,

but single precision arithmetic is used for LUPP to generate

a ψ, Algorithm I is a mixed precision iterative refinement

algorithm. The computational complexity is O(n2) for steps 1

and 2, O(n) for step 3, and O(n3) to generate ψ with LUPP.

The mixed precision iterative refinement employing LUPP for

a ψ minimises runtime by using lower precision arithmetic

to generate ψ and higher precision arithmetic to refine the

approximated solution.

A. Successful Condition

The mixed precision iterative refinement converges suc-

cessfully once the relative error of ψ is less than 1 [6].

For example, the relative error of a LUPP approximator is

in proportion to κ(A) and the precision applied for matrix

decomposition [7]. Therefore, the successful condition for

the mixed precision iterative refinement employing a LUPP

approximator requires the relative error of ψ in step 2 less

than unity :

||z− z̃||/||z||≤ qψ := c1κ(A)ǫψ < 1 (1)

where z̃ for the computed result of z and c1 is a bounded

constant depending on a matrix size, where k = 1, 2, 3, ...
and ‖·‖ is an infinity norm, which is the maximum absolute

vector component value [7]. Based on Eq. (1), using a LUPP

approximator for an ill-conditioned system requires higher

precision arithmetic for the matrix decomposition to make

the mixed precision iterative refinement converge successfully.

Therefore, εψ should be determined according to the condition

number of a matrix. (i.e., εψ < 1/(c1κ(A).))

B. Achievable Accuracies

There are two types of accuracies for linear system solvers:

the accuracy for forward error and the accuracy for backward

error [7]. Some applications, e.g. the GPS application [8]

focus on forward error, while others such as linear regression

(e.g., an interpolation problem) focus on backward error. The

forward error indicates the error in the computed solution

x̃ caused by finite precision arithmetic (i.e., ||x − x̃||/||x||)
while the backward error indicates the smallest η satisfying

both η ≤ ||∆A||/||A|| and η ≤ ||δb||/||b|| to make x̃ =
(A+∆A)

−1
(b+ δb) hold. (i.e., the computed solution x̃ is

the exact solution y for a perturbed system (A + ∆A)y =
b+ δb.)

An algorithm is called backward stable if it produces a

small backward error for any input data (e.g., A and b).

The definition of “small” depends on circumstances of the

problem that the algorithm solves. There is a rule of thumb

for a backward stable algorithm [7]:

forward error . κ(A) · backward error (2)

Based on Eq. (2), backward stability is an important concept

for numerical linear algebra, since it can tell if a computed

solution is reliable for either forward or backward error. If an

algorithm is backward stable, the algorithm is also “forward

stable” because a forward error is bounded at most by a

condition number times a backward error. If an algorithm

produces a forward error as small as an backward stable

algorithm, the algorithm is called forward stable. Therefore,
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seeking residual

step 1 r(i) =A x(i) – b

seeking the error at the previous iteration

step 2 A z(i) = r(i)
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Fig. 1. Numeric Property of Cancellation Error

a backward stable algorithm always implies a forward stable

algorithm, but not the other way round [7].

A conventional mixed precision iterative refinement is back-

ward stable (conseqently, also forward stable) since it produces

c2κ(A)ǫ1 for forward error and c3ǫ1 for backward error as long

as the successful condition is met and ǫ3 = ǫ1 [6]. Therefore,

satisfying the condition of Eq. (1), a mixed precision iterative

refinement can achieve double precision solution accuracy for

forward error by employing ǫ1 . ǫD/κ(A) and ǫ3 = ǫ1.

An approximated intermidiate accuracy can be measured

either for forward error or backward error per iteration. An

intermediate accuacy for forward error can be approximated

by measuring ||z(i)||/||x(i)|| right after step 2 in Algorithm I

[9] and a backward error can be approximated by measuring

||r(i)||/(||A||·||x(i)||+||b||) right after step 1 [7].

III. NUMERICAL PROPERTIES AND TRANSPRECISION

TECHNIQUES

Exploiting numerical properties aggressively in terms of

precision utilisation can minimise overall runtime for solving

linear systems with iterative refinement. In this section, we

describe three numerical properties (NPs) exploitable by TTs.

The three TTs are integrated into our baseline mixed precision

iterative refinement in section IV. NP 1 was presented previ-

ously in [10] and in this work, we present two additional NPs

to minimise runtime and energy consumption further.

A. Numeric Property 1 and Transprecision Technique 1

Iterative refinement minimises a solution error gradually

per iteration in proportion to a convergence rate. The

convergence rate is directly related to the increased number

of cancellation bits per iteration as shown in Fig. 1. In Fig. 1,

if we add the mantissa bits for step 1 as many as the number

of cancellation bits, there does not exist truncation error,

since the truncated bits are represented as all 0s after shift

left operations according to the resultant exponent. Therefore,

adding as many bits as the number of cancellation bits leaves

the resultant residual value for step 2 unaffected by truncation

after a shift left operation.

Numeric Property of Cancellation Error

NP1: Adding as many as cancellation bits per iteration in

step 1 does not affect the quality of the resultant residual.
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Fig. 2. Number of Bits for Cancellation Error for One Component of the
Residual According to the Number of Iterations [10]

Figure 2 describes the numbers of cancellation bits according

to the number of iterations i at the x axis for a random

matrix of n = 1K. A residual component is used to

measure the number of cancellation bits. The single precision

arithmetic is used for step 2 (i.e., precision to generate

ψ) and double-double precision arithmetic for steps 1 and

3. Please refer to Appendix B for the information of the

measurements for the numbers of cancellation bits. The

number of component wise cancellation bits increases in

proportion to the number of iterations. At the 5th iteration,

the number of cancellation bits exceeds the mantissa width

of double precision arithmetic. This breaks NP1 when double

precision arithmetic is employed for step 1. The NP1 is

preserved as long as the mantissa bit width of a precision

arithmetic used for step 1 is equal or higher than the number

of cancellation bits.

If NP1 is exploited for FPGAs, an arbitrary precision can be

chosen every iteration according to the number of cancellation

bits per iteration [10]. In [10], it was not recommended to

support arbitrary precisions per iteration based on the numbers

of component-wise cancellation bits, since arithmetic circuit

supporting n types of precisions according to n components

may cause overhead. Therefore, it was recommended to choose

one representative precision arithmetic per iteration for FPGAs

by utilising “the number of norm-wise cancellation bits (e.g.,

≈ log2(‖b(i)‖/‖r(i)‖))” instead of the number of component-

wise cancellation bits (e.g., ≈ log2(|b(i)j |/|r(i)j |)).
Exploiting NP1 generates TT1 as follows:

TT1: Start with a lower precision arithmetic for step 1 and

switch to a higher precision arithmetic when the convergence

is saturated.

B. Numeric Property 2 and Transprecision Technique 2

The accuracy for z(i) in step 2 depends on the quality of

the approximator ψ (i.e., qψ) and can be improved by using

an inner-loop iterative refinement. An iterative refinement

with an inner loop is described in Algorithm II.
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Algorithm II

for i = 1, 2, 3,..

step 1: compute the residual :

r(i) = Ax(i) − b

step 2: seek the approx of previous solution error :

Az(i) = r(i) using ψ ,

for j = 1, 2, 3, ..

d(1) = z(i)

sub-step 1: r
(j)
in = Ad(j) − r(i)

sub-step 2: Az
(j)
in = r

(j)
in using ψ ,

if(z
(j)
in is small enough) z(i) = d(j); exit;

sub-step 3: d(j+1) = d(j) − z
(j)
in

step 3: deduct the approximated error :

x(i+1) = x(i) − z(i)

The basic structure of Algorithm II is the same as Algorithm

I, except Algorithm II refines the approximated error z prior

to step 3. We notice a trade-off between the accuracy of z(i)

and overall runtime. For example, an inner loop refinement

can improve the convergence rate of iterative refinement

with an extra time cost of inner loop iterations. In order to

minimise the overall runtime using an inner-loop refinement,

we employ it when the following two conditions are met.

First, consider an inner loop refinement if the rounding error

in step 1 ||δr(i)|| is relatively small compared to the accuracy

of ψ. In this case, a convergence rate mainly depends on the

accuracy of ψ, so it would be worth improving the convergence

rate by employing an inner loop refinement. In other words,

it is not worth seeking an inaccurate residual accurately. As

discussed in Eq. (6) in Appendix A, ||δr(i)|| is proportional

to ||r(i)|| and ǫ1. Therefore, it would be desirable to employ

an inner loop refinement dynamically when ||r(i)|| becomes

small enough. For the detailed information of ||δr(i)||, please

refer to Appendix A.

Second, improving the convergence rate by using an inner

loop is worth it if it contributes to minimising overall runtime.

Employing an inner loop refinement minimises the number

of outer-loop iterations by improving the convergence rate,

but the time cost per outer loop iteration increases due to the

additional time cost of inner-loop iterations. Please refer to

Appendix C for the trade-off analyses between the improved

convergence rate and extra time cost for inner-loop iterations.

We propose NP2 exploitable by TT2 as follows:

Numeric Property of Residual Accuracy

NP2: Exact arithmetic in step 2 yields z(i) = A−1r̃(i) =
A−1(r(i) + δr(i)). Therefore, ||A−1δr(i)|| is an irreducible

error quantity in step 2.

Exploiting NP2 generates TT 2 as follows:

TT 2: Refine z(i) with an inner-loop refinement using the

least sufficient precision satisfying ǫsub1 < ǫ22 for sub-

step 1 when ǫ
(i)
1 << ǫ2 and T (ε

(i)
1 ) >> T (εsub1), where

T (ε) is the theoretical time cost for an arithmetic operation

depending on a precision arithmetic ε.
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Fig. 3. Impact of Nested Loop Refinement on Accuracy and Runtime

Figure 3 represents the impact of nested loop refinement

in terms of accuracy and runtime by TT2 for a matrix of

n = 16K. The TT1 is applied in Fig 3. The dashed line

represents the accuracies according to runtimes without TT2

and the solid line with TT2. Notice that the two iterative

refinements are identical upto 100 seconds, thereafter TT2

becomes active for one of the two iterative refinements. The

TT2 improves convergence rate by refining z(i) with some

minor time cost due to the nested loop refinement in the figure.

C. Numeric Property 3 and Transprecision Technique 3

We propose NP3 exploitable by TT3 as follows:

Numeric Property of Final Accuracy Guarantee

NP3: If a ψ is a backward stable algorithm and lets a

mixed precision iterative refinement converge, the maximum

allowable condition number is bounded to a positive constant

times the reciprocal of the precision applied to generate ψ.

(e.g., κ(A) < (c2ǫψ)
−1 : refer to Eq. (1))

NP3 can lead to guaranteed accuracy of the mixed precision

iterative refinement at a certain iteration as long as successful

convergence occurs during runtime. Therefore, NP3 can

remove an unnecessary accuracy check for the mixed

precision iterative refinement.

Exploiting NP3 generates TT3 as follows:

TT3: If ψ is a LUPP approximator using single precision for

the matrix decomposition, ǫ
(1 to (s−1))
1 = ǫD, and ǫ

(s)
1 = ǫDD

by TT1, and single precision accuracy of z(s) is achieved

through an inner-loop refinement by TT2 with ǫsub1 = ǫD,

then double precision solution accuracy for x is guaranteed

in step 3 at the sth iteration. Therefore, we can skip the final

accuracy check if the above conditions are met. This can save

the time cost of one double-double precision matrix-vector

multiplication.

Please refer to Appendix D for numeric accuracy proof

for TT3. Although we exemplify TT3 for a particular case

using a LUPP approximator for a ψ, TT3 can be used for
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other backward stable ψs. Our proof employed NP3 twice at

Eq. (16) and Eq. (18) in Appendix D, where κ(A)s appears.

Therefore, NP3 can also be exploited where κ(A)s appears in

any numeric analysis for iterative refinements satisfying Eq.

(1).

IV. A CASE STUDY

In this section, we discuss TTs with a case study of the

mixed precision iterative refinement producing double preci-

sion accuracy for forward error with single precision LUPP

approximator. The mixed precision iterative refinement used

for the case study utilises precision arithmetic with ǫ1,3 = ǫDD
and ǫ2 = ǫS and is implemented on an Intel Xeon E5-

2650 2GHz core with MKL 2017 and XBLAS 1.0 [11]. All

iterative refinements are single thread implementations. TTs

are integrated into the mixed precision iterative refinement as

shown in Algorithm III (Transprecision iterative refinement).

Transprecision iterative refinement algorithm for double

precision accuracy for forward error is described in Algorithm

III. By TT1, double precision arithmetic is initially used for

step 1 (i.e., ǫ1 = ǫD in Algorithm III) until convergence sat-

urates (i.e., ||z(i)||/||z(i−1)||> 1/2). If convergence saturates

and the solution achieves a desirable intermediate accuracy,

the precision arithmetic for step 1 is switched to double-

double precision arithmetic (i.e., ǫ1 = ǫDD). If double-double

arithmetic is used for step 1 and the latency gab between

double-double precision arithemtic and sub-step1 arithmetic is

larger than p, the inner-loop refinement is activated to refine

the error from the previous solution until single precision

accuracy is achieved. Finally, the refined error is deducted

from the solution x(i) and this update guarantees double

precision solution accuracy by TT3. Therefore, the program

terminates without final accuracy check.

We employed uniformly distributed dense matrices for tests

and took averages of 10 test cases for both the runtime

and the energy consumption measurements. The test matrices

were generated using the drand48() functions in C. Therefore,

the elements of the test matrices were uniformly distributed

over the interval [0.0, 1.0). The distribution of κ(A)s for

the standard normal distributed matrices were explored in

[12]. Based on the distribution results, the distribution of the

condition numbers of the uniformly distributed matrices for a

large n was predicted in [12] :

lim
n→∞

P (
2√
3
κ(A)/n1.5 < x) = e−

2

x
(1+ 1

x
) (3)

For example, if x = 1, the probability of a scaled condition

number (i.e., 2√
3
κ(A)/n1.5) being less than 1 is around 2%

and if x = 100, the probability of a scaled condition number

being less than 100 is around 98%.

Algorithm III: Transprecision Iterative Refinement : Double

Precision Accuracy for Forward Error

v = 0; //success exit from an inner loop

for i = 1, 2, 3, ...

step 1: r(i) = Ax(i) − b (TT1) ǫ1 = ǫD to ǫDD
step 2: Az(i) = r(i) using ψ ǫ2 = ǫS

(Opt) Accuracy Chk: if(||z(i)||/||x(i)||< ǫD and i > 1)

exit(success);

(TT2) if(T(ǫ1)>p·T(ǫsub−step1) and ǫ1 == ǫDD) {
for j = 1, 2, 3, ...

d(1) = z(i)

sub-step 1: r
(j)
in = Ad(j) − r(i) ǫsub1 = ǫD

sub-step 2: Az
(j)
in = r

(j)
in using ψ ǫsub2 = ǫS

if(||z(j)in ||/||d(j)||< ǫS) { z(i) = d(j); v=1; exit(for);}
sub-step 3: d(j+1) = d(j) − z

(j)
in ǫsub3 = ǫD

}

if(||z(i)||/||z(i−1)||> 1/2 and i > 1) {
(TT1) if(||z(i)||/||x(i)||< ǫD/ǫS) ǫ1 = ǫDD;

else exit(failure); }

step 3: x(i+1) = x(i) − z(i) ǫ3 = ǫDD

(TT3) if(ǫ1 == ǫDD and v == 1) exit(success);

In this case study, we refer to an iterative refinement as Uni-

precision Iterative Refinement (Uni-IR) if it employs double

precision arithmetic (i.e., the same precision to the data) for a

LUPP approximator and double-double precision for residual

calculation, Mixed precision Iterative Refinement (Mixed-IR)

if it employs single precision arithmetic for LUPP approxima-

tor and double-double precision for residual calculation, and

Transprecision Iterative Refinement (Trans-IR) for a Mixed-

IR integrated with TTs. Notice that Uni-IR employs double

precision for step 2, since ψ for Uni-IR is generated by double

precision matrix decomposition. Hence, Uni-IR requires a

larger storage than either Mixed-IR or Trans-IR to store double

precision L and U matrices instead of single precision. The

p in Algorithm III is an empirical parameter considering the

trade-off between an improved convergence rate by an inner

loop and an increased time cost per outer loop iteration. Please

refer to Appendix C for the analyses for the choice of p. We

currently set p = 10. For example, T (ǫDD) ≈ 15 · T (ǫD)
for step 1 in our case study. It takes around 3.9 seconds for a

double precision arithmetic step 1 and 60 seconds for a double-

double precision arithmetic step 1 for n = 32K (refer to Fig.

12.)

We measure the required number of iterations, accuracy,

runtime and energy consumption for Uni-IR, Mixed-IR, and

Trans-IR respectively under the same accuracy requirement of

double precision accuracy for forward error when the matrix

sizes range from 4K to 32K. The x(1) in Algorithm III is a

computed solution using a LUPP approximator ψ for Ax = b.
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Fig. 4. Accuracies for ψ according to κ(A) [10]

A. Precision choices for ψ generation

As discussed in section I, the accuracy of a linear solver ψ
depends on κ(A) and ǫψ . The accuracies of LUPP ψs were

explored in [10] as described in Fig. 4. The LUPP ψs were

generated for 10,000 64x64 normal distributed matrices each

with ǫψ = 2−16, 2−21 and 2−26. Fig. 4 shows the relative

accuracies of ψs (i.e., qψ in Eq (1)) according to various

ǫψs. The green, red and blue dots represent the accuracies of

ψs for ǫψ = 2−16, 2−21 and 2−26 respectively. The x axis

represents the condition numbers of matrices and the y axis

the accuracies of ǫψs. The accuracies of ψs of ǫψ = 2−26

is 25 times better than ψs of ǫψ = 2−21. Based on Fig. 4,

the accuracies have a linear relation with ǫψs. The accuracies

also linearly depend on the κ(A)s. A precision can be chosen

as long as the relative accuracy is less than 1. For example, in

Fig. 4, ǫψ = 2−16 can be chosen for matrices of κ(A) ≤ 105

for 7.7×10−5−10−1 accuracies (i.e., convergence rates). An

ǫψ is generally recommended to be lower than a reciprocoal

of condition number (i.e., ǫψ < 1/κ(A)) [1], [2].

B. Number of Iterations

The number of iterations taken for an iterative refine-

ment directly depends on the convergence rate which mainly

depends on the quality of ψ. (i.e., qψ in Eq. (4)) The

LUPP approximator generated by double precision matrix

decomposition has a much lower value for qψ (i.e., a better

convergence rate) compared to the one with single precision

matrix decomposition based on Eq. (1).

Figure 5 shows the number of iterations taken for the iter-

ative refinements with respect to various matrix sizes. Notice

that Trans-IR requires inner-loop iterations as shown in Fig. 6.

As discussed, Uni-IR requires the least number of iterations.

However, notice that it takes much longer to generate a ψ
for Uni-IR than Mixed-IR (or Trans-IR) due to a higher

precision arithmetic for O(n3) matrix decomposition. Trans-

IR generally requires a few of additional outer-loop iterations

compared to Mixed-IR (except n = 32K) due to supporting

less number of bits than the number of cancellation bits in

Fig. 1 when convergence becomes saturated and detecting

convergence saturation prior to switching to a higher precision

for step 1. Trans-IR also requires additional iterations for
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an inner-loop refinement by TT2 as shown in Fig. 6. TT2

improves the convergence rate with an additional time cost

of the inner loop. An improved convergence rate by TT2 can

minimise the number of outer-loop iterations as shown in

n = 32K in Fig. 5. In this case study, TT2 restricts the number

of double-double precision arithmetic step 1 to 1 with using

TT3. Therefore, the overall runtime for a linear solver with

Mixed-IR is significantly reduced by minimising software-

emulated arithmetic with TTs as discussed in the next section.

C. Runtime

The overall runtime for solving a linear system consists

of two parts: the runtime for generating an approximator ψ
and the runtime taken for refinement. Figure 7 represents

the runtimes for LUPP approximator generation according to

various matrix sizes. Both Mixed-IR and Trans-IR minimize

the runtimes to generate approximators by employing single

precision arithmetic.

Figure 8 shows the overall runtimes (including LU) for the

iterative refinements with respect to matrix sizes. First, Trans-

IR always shows the shortest runtimes compared to the other

two iterative refinements for all matrix sizes. Trans-IR also

requires only once for double-double precision arithmetic step

1 as equal as Uni-IR, while the time cost for generating a

ψ with single precision matrix decomposition for Trans-IR is
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much less than double precision matrix decomposition for Uni-

IR. Second, Mixed-IR runtime becomes less than Uni-IR when

N=16K thanks to the reduced runtime portion of refinement

in proportion to a matrix size. When a matrix size increases,

the runtimes for both Mixed-IR and Trans-IR approach to the

runtime for generating a LUPP approximator, decreasing the

runtime portion of refinement as long as successful condition

of Eq. (1) is met.

D. Refinement Portion of Overall Runtime

As a matrix size increases, the time cost to generate a ψ
becomes dominant, since it requires O(n3) computation while

refinement requires O(n2). Figure 9 shows the refinement

portions of the overall runtimes for the iterative refinements

with respect to the matrix sizes. As discussed, the refinement

runtime portions decrease for all iterative refinements in pro-

portion to matrix size. This pattern appears since generating

a ψ requires O(n3) computation while refinement requires

O(n2). If generating a ψ requires less or equal to O(n2)
computation (e.g, iterative methods such as GMRES and CG),

this pattern is unlikely.

TTs are universally beneficial independent of a ψ, because

TTs can minimize the refinement runtime portions given a ψ.

In Fig. 9, Trans-IR shows less refinement runtime portions than

Mixed-IR given the same ψ as Mixed-IR. It is the reduced
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runtime for refinement by TTs that produces the speed-ups

over Mixed-IR. The software emulated precision arithmetic

(double-double precision) for step 1 causes larger runtime

portions for refinements for Mixed-IR in Fig. 9. Uni-IR has

the least refinement runtime portions because Uni-IR employs

a double precision LUPP approximator.

E. Energy Consumption Estimations

The minimized runtime by TTs brings further energy reduc-

tion over Mixed-IR. For energy consumption estimations, we

used the ALEA tool employing constant power model which

profiles with Intel Running Average Power Limit (RAPL) and

then estimates total energy consumption for the processor [15],

[16]. ALEA provides user interface for RAPL to measure fine-

grained code blocks by energy profiling. To use ALEA for

energy estimation, we first set up the environmental variables

for ALEA such as the number of sockets and the number of

cores per socket. In our setting, we use 2 for the number of

sockets and 8 for the number cores per socket for an Intel

E2650, even though we use 1 core out of 16 cores on an

Intel E2650 for computation. Once the environmental variables

are set, ALEA profiles power consumption for code blocks.

Based on profiling information, ALEA builds energy estima-

tion for each code block. We estimate energy consumption

using ALEA by running the 10 test cases used for runtime

measurements per each size and take the average of them

Figure 10 shows the energy consumption estimations for

the iterative refinements measured by the ALEA tool. Energy

savings are proportional to time savings. Almost all computing

kernels occupying more than 99% of energy require the

power ranged from 20 to 25 Watts. Therefore, the energy

reduction mainly comes from the minimized runtime by TTs.

As expected, Trans-IR shows the least energy consumption

compared to the two other iterative refinements for all matrix

sizes thanks to the minimised runtimes by TTs.

F. Impact of Individual Transprecision Techniques on Accu-

racy, Runtime, Energy Consumption and Convergence Rate

The accuracy of a computed solution becomes higher per

iteration according to the convergence rate of a ψ. Figure
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11 shows the accuracy variation with respect to the runtimes

for the iterative refinements for a matrix of n=32K and the

detailed information of Trans-IR is described in Figure 12.

Figure 13 describes the accuracy variation according to energy

consumption.

The horizontal axes represent the runtimes in Fig. 11 and

energy consumption estimations in Fig. 13. The vertical axes

represent the log10 based relative errors in the solutions for

both Fig. 11 and Fig. 13. Each marker represents an accuracy
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of a solution per iteration and it is measured by calculating

||z(i)||/||x(i)|| at the (Opt) Accuracy Chk in Algorithm III.

Therefore, the runtime and the energy for generating a ψ for

Mixed- and Trans-IR can be roughly estimated by the runtime

and the energy at the top most mark of Trans-IR in Fig. 11

and 13. The runtime and the energy for generating a ψ for

Uni-IR can be roughly estimated by the runtime at the top

most mark of Uni-IR. Notice that the characteristic curves in

Fig. 11 and 13 depend on a κ(A). For example, for a smaller

κ(A), the accuracy gap between the two adjacent marks in the

curve becomes larger, implying a better convergence rate.

TT1 allows Mixed-IR to achieve an intermediate accuracy

faster. The “vertical” accuracy and energy variations for Trans-

IR in Fig. 11 and 13 indicate minimised runtime and energy

per iteration by TT1. In Fig. 12, double precision arithmetic is

applied for steps 1 and 3 until the convergence rate is saturated

at around 10−12 accuracy line. The saturation is detected

at 645.5 seconds and double-double precision arithmetic is

applied at next step 1 to improve a residual accuracy. The

measured accuracies at 645.5 seconds and 705.6 seconds are

equivalent, since the error vector (e.g., ‖z‖) sought from a

highly accurate residual is not deducted yet at the measured

point (e.g, (Opt) in Algorithm III). For around 10−12 accuracy,

Trans-IR requires 705.6 while Mixed-IR 975.3 secs, deducting

around 270 secs. Likewise, Trans-IR requires 16,917.2 Joules,

while Mixed-IR 22,088.7 Joules, deducting around 5,172

Joules in Fig. 13.

TT2 initiates refinement of the error vector z at around

618.3 seconds in Fig. 12 to seek a high accuracy of the

previous solution error. TT2 enables the accuracy to leap from

10−12 to 10−16 thanks to the improved convergence rate by

refining an error vector z in Figs 11 and 13. As a result, TT2

saves around 120 seconds and around 2, 980 Joules (e.g., 1,490

Joules required per iteration on average) by removing the

two double-double precision residual calculations compared

Mixed-IR. Mixed-IR requires three further iterations from

10−12 accuracy, two for refining the solution and one for the

final accuracy check.

TT3 can remove a double-double precision residual calcu-
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lation for an unnecessary final accuracy check. In Fig. 11 and

Fig. 13, the two double-double precision residual calculations

appear for Trans-IR at “horizontal” runtime movement around

the 10−12 accuracy line for a necessary residual calculation

and at the accuracy variation from 10−12 to 10−16 due

to an unnecessary accuracy check. TT3 affirms the double

precision accuracy without an accuracy check and removes

the time cost for the second double-double precision residual

calculation. Consequently TT3 can save around 60 seconds

and 1, 490 Joules (e.g., in Fig 12, the time cost for double-

double precision arithmetic for step 1 is: 705.6−645.5 ≈ 60).

The final accuracy of Trans-IR in Fig. 11 and Fig. 13 empir-

ically supports the numeric proof for TT 3 in Section II-B.

Therefore, the overall runtime of Mixed-IR is deducted by

∼23% (≈ 270/1156) by TT1, ∼10% by TT2, ∼5% by TT3

for the matrix n = 32K in Fig 11. Consequently, TTs bring

∼38% deduction for overall runtime to Mixed-IR in this case

study. Likewise, the overall energy consumption of Mixed-

IR is deducted by ∼19% (≈ 5, 172/27, 890) by TT1, ∼11%
by TT2, ∼5% by TT3 for the matrix n = 32K in Fig 13.

TTs bring ∼35% deduction for overall energy consumption to

Mixed-IR in this case study.

The overall convergence rate mainly depends of qψ in Eq.

(1). The convergence rate of either Trans-IR or Mixed-IR is

around 10−2, which also corresponds to the initial accuracy

by the ψ (i.e., the first convergence rate). Based on Eq. (1),

the convergence rate of Uni-IR should be higher by a factor of

10−8 (≈ qUni−IR

qMixed−IR

) compared to either Mixed-IR or Trans-

IR and this is shown by
initial accuracy for double precision LUPP

initial accuracy for single precision LUPP
in the

figure. Therefore, the convergence rate of Uni-IR is superior,

since it directly depends on ǫψ in Eq. (1) [14].

For a larger matrix size, the runtime gab between single

and double precision LU factors generation will become larger

in Fig. 11 and Fig. 13 due to O(n3) computation, implying

overall runtime and energy of Mixed-IR less than Uni-IR. For

a smaller matrix size, the gab becomes smaller and the overall

runtime and energy of Uni-IR can be less than Mixed-IR.

Trans-IR will show the least runtime and energy regardless

of a matrix size, as long as the successful condition of Eq. (1)

is met.

Given an energy budget, Trans-IR produces the best accu-

racy of the solution compared to other IRs. For example, given

18,633 Joules in Fig. 13, Trans-IR produces 10−16 solution

accuracy while Mixed-IR produces 10−6 accuracy and Uni-

IR does not produce any meaningful accuracy yet. Likewise,

given a prescribed accuracy, Trans-IR requires the minimum

energy budget. For example, for an initial accuracy for double

precision LUPP ψ, Trans-IR requires 16,917 Joules, Mixed-IR

22,088 Joules, and Uni-IR 35,757 Joules.

G. Speed-ups and Energy Savings over Mixed Precision

We finally compare runtimes and energy consumption esti-

mations of Trans-IR to Mixed-IR to see how much impact of

TTs on speed-ups and energy savings for this case study.

We choose the mixed precision iterative refinement employ-

ing single precision arithmetic for step 2 and double-double

precision for step 1 and 3 for our baseline. The reasons are
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Fig. 14. Speed-ups and Energy Savings by Transprecison Techniques

followings. First, it is desirable to assign the precision for step

2 with the precision applied for generating a ψ considering the

trade-off between numeric accuracies and runtime. A higher

precision arithmetic can be applied for step 2, but it does not

improve the numeric accuracies in practice [10], [14], [17],

while requiring another storage to store higher precision LU

factors. Therefore, the precision of step 2 is generally assigned

with the precision for generating a LUPP approximator [1],

[17]. Second, the precision for step 1 is mostly related to

accuracy as mentioned in section II-B and the accuracy for

forward error is bounded as c2κ(A)ǫ1. Therefore, double-

double precision arithmetic is applied for ǫ1 to produce double

precision solution accuracy. Finally, the precision for step

3 can be applied with double precision arithmetic, however

the computational complexity for step 3 is O(n), which is

negligible compared to step 1 and 2 each having O(n2). Also,

a higher precision arithmetic for step 3 can improve final

solution accuracy [9].

Figure 14 shows the speed-ups and the energy savings

over Mixed-IR by TTs and Figure 15 shows the percentages

for the runtimes and the energy consumption estimations

by TTs. TTs bring further 2.0-2.6× speedups (i.e., 38% to

51% of runtimes) and 1.8-2.4× energy savings (i.e., 41% to

57% of energy consumptions) to Mixed IR in the figures.

In this paper TTs gave rise to significant speedups and

energy savings by minimising software-emulated precision

arithmetic operations. The impact of TTs is significant if they

are used for some applications requiring software-emulated

high precision arithmetic discussed in [18]. Notice that TTs

are moreover promising when hardware provides multiple

precisions. For example, in case a mixed precision iterative

refinement employs a half precision arithmetic for ψ for an

NVidia P100 GPU to produce single precision accuracy for

forward error, TTs can significantly reduce double precision

arithmetic step 1 operations for a low condition number matrix

(i.e., κ(A) ≤ ǫ−1
half ). In this case, single precision arithmetic

can be applied for early iterations for step 1 and switch to

double precision by TT1. We plan to utilise MAGMA library

kernels [19] for the implementation for future work.
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V. RELATED WORK

In this section we discuss related work for precision utiliza-

tion to minimize runtime time and energy consumption.

A. Precision Utilization for Iterative Refinement

Linear solvers using iterative refinements are in majority

of the applications utilising precisions [1], [2], [6], [10],

[18], [20]–[22]. Wilkinson firstly proposed iterative refine-

ment to improve a solution accuracy for forward error [17].

Wilkinson presented his correctness proof using fixed point

arithmetic. Moler further investigated the iterative refinement

using floating point arithmetic [14]. Since then, Jankowski and

Wozniakowski proposed that any method to solve a system

of equations (e.g., ψ) could be numerically stable and well

behaved with an iterative refinement as long as the relative

error in step 2 is less than unity and the system is not ill-

conditioned [6]. Extending from the work of [6], Wozni-

akowski suggested employing an arbitrary lower precision for

a matrix decomposition (i.e., computationally intensive task,

O(n3)) [20]. Based on his suggestion, Kielbasinski proposed

employing an arbitrary lower precision for LU decomposition

and intermediate arbitrary precisions for an iterative refinement

in 1981 [20]. He named his algorithm Binary Cascade Iterative

Refinement (BCIR). The BCIR algorithm has a unique struc-

ture unlike a conventional iterative refinement algorithm, but

it is not practically feasible for real applications since a κ(A)
should be known prior to computation. In 2003, Geddes and

Zeng pointed out that increasing a precision for steps 1 and 3

per iteration could achieve a prescribed accuracy effectively by

exploiting fast hardware-supported precision arithmetic [22],

but it does not provide with specific methods for the sugges-

tion. Since then, Lanjou et al. proposed an iterative refinement

employing single precision for matrix decomposition and dou-

ble precision for steps 1 and 3 to minimize runtime to obtain

double precision accuracy for backward error [1]. Sun et al.

suggested employing an arbitrary lower precision for a matrix

decomposition on FPGAs and a higher precision refinement

on CPU [21]. In [21], Cray XD-1 reconfigurable computing

platform was used for the implementation. Iterative refinement

employing arbitrary precisions dynamically for steps 1 and 3

was explored on Xilinx XC6VSX475T FPGAs in [10]. In [10],

NP1 was proposed to employ adaptive precisions dynamically

for step 1 on a FPGA. Recently, iterative refinements utilising

three types of precisions were explored in [2].

B. Automated Precision Tuning

Automated precision tuning for an application was inves-

tigated in [3], [4]. The algorithm of [3] adapts the delta

debugging based search algorithm to seek 1-minimal test

case (e.g., for 1-minimal test case, replacing any variable

with a lower precision violates either accuracy constraint or

performance constraint). Another automated precision tuning

research was proposed in [4] to investigate precision tuning

for a lower level implementation.

C. Discussions

The papers of [3], [4] discussed the limitation of the

automated precision tools. First, the precisions are assigned

statically only for a particular input set. Second, it is not

feasible to employ variable precision arithmetic in a loop

dynamically according to runtime numeric behaviours. There-

fore, the automated precision tuning tools are currently not

feasible to be used in practice due to the limited applicability

and performance loss. In order to deal with such limitations,

domain specific knowledge such as numerical linear algebra

can be used to improve the performance of automated preci-

sion tuning tools [3]. We hope that this work can contribute

to improving the performance of current automated precision

tuning tools.

Most works related to utilising precision for iterative re-

finement discussed statically defined precisions in a loop. Even

though we exemplify TTs utilising the three types of precisions

for the case study, TTs can be expanded to multiple types of

precisions to bring further speed-ups and energy savings.

VI. CONCLUSION

In this paper, we proposed TTs for iterative refinement

which utilise variable precision arithmetic dynamically in

a loop (TT1), restructure a numeric algorithm dynamically

according to runtime numeric behaviour (TT2), and remove

unnecessary accuracy checks (TT3) in order to achieve further

speed-ups and energy savings over a conventional mixed

precision iterative refinement. To validate our proposed TTs,

we performed a case study with an iterative refinement em-

ploying a LUPP approximator for a ψ and producing a double

precision solution accuracy for forward error. Through the

case study, TTs brought further 2.0-2.6X speed-ups and 1.8-

2.4X energy savings to conventional mixed precision iterative

refinements for n = 4K-32K. The significant improvement

on speed-ups and energy savings was possible by exploiting

numeric properties of iterative refinement aggressively.

Regarding exploitation of this work, we expect that perfor-

mance of automated precision tuning tools can be improved

by exploiting domain specific knowledge with adapting this

work. Future work includes developing TTs for parallel im-

plementation on Multi cores and GPUs with runtime system



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 11

supporting a dynamic precision programming model. To adapt

this work for the trend towards large size matrices (e.g., sparse

matrices), we will investigate another approximator for ψ such

as either CG or GMRES for our future work.

In this paper, utilising dynamic precisions and dynamic

algorithm brings further speed-ups to conventional mixed

precision iterative refinements without increasing the number

of cores. Therefore, moving from mixed precision paradigm to

dynamic precision (including dynamic algorithm) is promising

to maximize energy savings for linear system solvers.
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APPENDIX A

NUMERIC ANALYSIS FOR EACH STEP OF MIXED

PRECISION ITERATIVE REFINEMENT

In this section, we describe numeric analyses for a mixed

precision iterative refinement of Algorithm I by utilising

the work of [6]. We consider the mixed precision iterative

refinement utilising two levels of precision in Algorithm I

(e.g., lower precision arithmetic for step 2 and higher precision

arithmetic for steps 1 and 3, ε3 = ε1) and producing a working

precision accuracy for forward error for our baseline [9], [23].

We assume the following condition for an approximator ψ
solving Ax = b:

||z− z̃||/||z||≤ qψ (4)

, where ||·|| represents an infinity norm.

In step 1, the computed residual can be represented as:

r̃(i) = r(i) + δr(i) = (I + δI(i))[Ax̃(i) + δw(i) − b] (5)

where I is an identity matrix, δI(i) is a truncation error

diagonal matrix to make Eq. (5) hold and δw(i) represents

a rounding error vector caused by the matrix vector multipli-

cation Ax̃(i) with a finite precision arithmetic ǫ1. Therefore,

δr(i) = δw(i) + δI(i)(r(i) + δw(i)) (6)

where ||δI(i)||≤ ǫ2 (e.g., truncation), ||δw(i)||≤
c1ǫ1||A||·||x̃(i)||, and ck represents a bounded constant

depending on a matrix size from this point forward

(k = 1, 2, 3, ...).
In step 2, let us define a new residual of z as follows:

h(i) = Az̃(i) − r̃(i) (7)

where z̃(i) is a computed solution of z(i) for Az(i) = r̃(i) using

an approximator ψ. (e.g., z̃(i) = z(i)+δz(i)) An approximator

ψ satisfying Eq. (4) produces a norm bound of the error of

z(i) (i.e., ||δz(i)||) as follows:

||δz(i)||= ||A−1h(i)||= ||z̃(i)−A−1r̃(i)||≤ qψ||A−1r̃(i)|| (8)

In step 3, the approximate solution x̃(i) is updated by

subtracting the approximation of the error at the previous
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iteration. The updated solution x̃(i+1) can be represented as

follows:

x̃(i+1) = x̃(i) − z̃(i) − δ
(i) (9)

where ||δ(i)||≤ ǫ3(||x̃(i)||+||z̃(i)||).

APPENDIX B

ERROR BOUND FOR THE MEASUREMENT FOR THE

NUMBER OF THE CANCELLATION BITS

We used floor(log2(|bj |/|r(i)j |)) for the measurement for

the number of the cancellation bits at the iteration i, where

bj is the jth component for a vector b and r
(i)
j is the jth

component for a vector r at the iteration i. The bj and r
(i)
j

can be represented as follows: bj = 1.xx.. × 2expb−bias and

r
(i)
j = 1.yy..× 2expr−bias. The number of cancellation bits is

represented as expb − expr as described in Fig. 1.

log2(|bj |/|r(i)j |) = log2(|bj |)− log2(|r(i)j |)
= expb − expr + log2(1.xx../1.yy..)

Therefore,

log2(|bj |/|r(i)j |) − 1 < expb − expr < log2(|bj |/|r(i)j |) + 1
Considering the number of cancellation is a integer,

⌊log2(|bj |/|r(i)j |)⌋ ≤ expb − expr ≤ ⌊log2(|bj |/|r(i)j |)⌋+ 1

expb − expr − 1 ≤ ⌊log2(|bj |/|r(i)j |)⌋ ≤ expb − expr
Therefore, our measurement has 1 bit error at most for the

number of cancellation bits.

APPENDIX C

ANALYSES FOR INNER SOLVER ACTIVATION

The main time cost occurs in steps 1 and 2 since steps 1

and 2 require O(n2) for each, while step 3 requires O(n).
For time cost analyses, we use T (εk) for a theoretical time

cost for an arithmetic operation depending on a precision,

where k = {S(single), D(double), DD(double-double)}.

For the mixed precision iterative refinement with ε1,3 = εDD
and ε2 = εS , the matrix vector multiplication in step 1

requires 2n2 arithmetic operations, so Tstep1 ≈ 2n2T (εDD)
for the time cost for step 1. Assuming that LUPP is em-

ployed for ψ and double precision arithmetic is employed

for sub-step 1, the time cost for step 2 including the nested

loop is approximately Tstep2 ≈ 2n2T (εS) + Tin, where

Tin = Nin(2n
2T (εD)(sub-step1) + 2n2T (εS)(sub-step2))

is a required time cost for an inner-loop refinement and

Nin is a required number of the inner-loop iterations. The

approximated overall time cost for the iterative refinement can

be represented as follows :

Titer-ref -without-in ≈ Nout-without-in(Tstep1 + Tstep2)
= 2n2Nout-without-in(T (εDD) + T (εS))
Titer-ref -with-in ≈ Nout-with-in(Tstep1 + Tstep2)

= 2n2Nout-with-in(T (εDD)+T (εS)+Nin(T (εD)+T (εS)))
, where Nout-without-in is a required number of iterations

for out-loop refinement without employing an inner-loop and

Nout-with-in is a required number of iterations for out-loop

refinement with employing an inner-loop. Notice that the

common starting point for Nout-with-in and Nout-without-in is

at the initial iteration considering TT2. With an improved con-

vergence rate using an inner-loop refinement, Nout-with-in ≤

Nout-without-in, while the time cost per out-loop iteration is

increased. Therefore, it is worthy to employ an inner loop

when

Titer-ref -with-in ≤ Titer-ref -without-in. (10)

The value of p in Algorithm III can be determined based

on Eq. (10) as follows :

Titer-ref -with-in ≤ Titer-ref -without-in

2n2Nout-with-in(T (εDD) + T (εS) +Nin(T (εD) + T (εS)))

≤ 2n2Nout-without-in(T (εDD) + T (εS))

Nout-with-in

Nout-without-in
(1 +Nin

T (εD) + T (εS)

T (εDD) + T (εS)
) ≤ 1

Nin
T (εD) + T (εS)

T (εDD) + T (εS)
≤ Nout-without-in

Nout-with-in
− 1

T (εD)

T (εDD)
≈ T (εD) + T (εS)

T (εDD) + T (εS)
≤ N−1

in · (Nout-without-in
Nout-with-in

− 1)

T (εDD)

T (εD)
&

NinNout-with-in

Nout-without-in −Nout-with-in
= p∗

(11)

Based on Eq. (11), the optimal p, p∗ is :
NinNout-with-in

Nout-without-in−Nout-with-in
. However, the variables contain

some dynamic variables determined at the end of program,

so it is hard to apply automated process for p choices.

We recommend p = [6, 10] based on our experiments. A

p less than p∗ makes the nested loop activation highly

probable, however, the nested loop might degrade overall

performance. A p higher than p∗ makes the inner loop

activation always bring performance improvement, but some

of desirable activations might be killed. We chose p = 10 in

this paper. Therefore, if T (εDD) > 10 · T (εD), the nested

loop refinement will be operated. For example, in Fig. 3,

applying TT2 reduces 2 double-double arithmetic out-loop

iterations to 1 double-double arithmetic out-loop iteration.

(i.e., Nout-with-in = 1 and Nout-without-in = 2.) If the number

of iterations for nested loop Nin is less than 10, the nested

loop refinement is beneficial when p = 10. For example, in

Fig. 6 the averages of Nins are less than 5. Therefore, p∗

is around 6 and our choice for p is a bit strict so that the

activation of inner loop refinement by TT2 always can bring

performance improvement. For our case, if a machine has

been changed and the latency gab T (ε1)/T (sub − step1)
is still larger than p, the inner loop refinement will still be

activated. If it is smaller than p, the nested loop will not be

operated.

APPENDIX D

PROOF FOR NUMERIC ACCURACY USING TT3

The proof for TT3 is as follows. When the convergence is

saturated at the (s−1)th iteration in Algorithm III, the solution

accuracy in step 3 using double precison arithemtic for step 1

is bounded as follows [6], [14] (refer to section II-B):

||x̃(s) − x||/||x||= ||δx(s)||/||x||≤ c3κ(A)ǫD (12)

The computed solution x̃(s) becomes an input for double-

double precision arithmetic for step 1 at the sth iteration. The

residual at the sth iteration becomes [6] :

r̃(s) = (I + δI(s))[Ax̃(s) + δw(s) − b] (13)
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where ||δw(s)||≤ c2||A||·||x̃(s)||ǫDD and ||δI(s)||≤ ǫS .

In step 2, the computed z̃(s) satisfies :

(A+∆A)z̃(s) = (A+∆A)(z(s) + δz(s)) = r̃(s). [14]

The z(s) can be represented as follows using Eq. (5):

z(s) = A−1r̃(s)

= (δx(s) +A−1δw(s)) +A−1δI(s)(Aδx(s) + δw(s))
(14)

and ||δz(s)||≤ qψ||z(s)|| using Eq. (4). The z̃(s) becomes an

input for the inner loop. The difference between δx(s) and z(s)

is represented as follows:

z(s) − δx(s) = A−1δw(s) +A−1δI(s)(Aδx(s) + δw(s))
Therefore, the norm of the difference can be represented as

follows :

||z(s) − δx(s)||≤ c1κ(A)ǫDD||x̃(s)||+κ(A)ǫSǫD||δx(s)||
+c1κ(A)ǫSǫDD||x̃(s)||

(15)

Since ψ converges, we exploit NP3. (i.e., κ(A) < 1/(c2ǫS))
Therefore, Eq. (15) can be represented:

||z(s) − δx(s)||< c1ǫDD(1 + 1/(c2ǫS))||x̃(s)||+(ǫD/c2)||δx(s)||
≈ c1ǫDD/(c2ǫS)||x̃(s)||+(ǫD/c2)||δx(s)||

(16)

We ignore the first value “1” in (1+1/(c2ǫS)) in Eq. (16) since

1 << (c2ǫS)
−1. Based on Eq. (16), ||z(s)|| can be bounded

as:

||z(s)||< ||δx(s)||+c1ǫDD/(c2ǫS)||x̃(s)||+(ǫD/c2)||δx(s)||
(17)

In step 3 at the sth iteration, the updated computed solution

can be represented as follows :

x̃(s+1) = x̃(s)− z̃(s)−δ(s) = x+δx(s)−z(s)−δz(s)−δ(s)

= x + δx(s+1), where δx(s+1) = δx(s) − z(s) − δz(s) − δ(s)

and ||δ(s)||≤ ||x+ δx(s) − z(s) − δz(s)||ǫDD
≤ ||x||ǫDD + ||δx(s) − z(s) − δz(s)||ǫDD.

Therefore, the norm bound for δx(s+1) is :

||δx(s+1)||≤ ||δx(s) − z(s) − δz(s)||+||δ(s)||
≤ ||x||ǫDD + (1 + ǫDD)||δx(s) − z(s) − δz(s)||
≤ ||x||ǫDD + (1 + ǫDD)||δx(s) − z(s)||+(1 + ǫDD)||δz(s)||
≈ ||x||ǫDD + ||δx(s) − z(s)||+||δz(s)||
We ignore ǫDD in (1 + ǫDD) since 1 >> ǫDD. Employing

the properties of ||δz(s)||/||z(s)||≤ ǫS , Eq. (12), Eq. (16), and

Eq. (17) yields:

||x̃(s+1) − x||
< ||x||ǫDD+c1ǫDD/(c2ǫS)||x̃(s)||+(ǫD/c2)||δx(s)||+ǫS ||z(s)||
< ||x||ǫDD + 2(c1ǫDD/(c2ǫS)||x̃(s)||+(ǫD/c2)||δx(s)||) +
ǫS ||δx(s)||
= ||x||ǫDD+2c5ǫDD/ǫS ||x+ δx(s)||+(ǫS +2ǫD/c2)||δx(s)||
≤ (ǫDD+2c5ǫDD/S)||x||+(ǫS+2ǫD/c2+2c5ǫDD/S)||δx(s)||
≤ (ǫDD + 2c5ǫDD/S)||x||+(ǫS + 2ǫD/c2 +
2c5ǫDD/S)c3κ(A)ǫD||x||
= (ǫDD + 2c5ǫDD/S + c3κ(A)ǫD(ǫS + 2ǫD/c2 +
2c5ǫDD/S))||x||
where ǫDD/SS = ǫDD/ǫS . Therefore, exploiting NP3 once

again (i.e., κ(A) < 1/(c2ǫS)) proves that the accuracy of the

solution at the sth iteration in step 3 is subject to produce

double precision accuracy for forward error:

||x̃(s+1) − x||/||x||
< ǫDD + 2c5ǫDD/S + (c6 + 2c7ǫD/S + 2c8ǫDD/SS)ǫD

(18)

We also verified that the final accuracy satisfies the condition

||x̃(s+1)−x||/||x||< 10ǫD for all test cases in our case study.


