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ABSTRACT
A typical wireless sensor node has little protection against
radio jamming. The situation becomes worse if energy-
efficient jamming can be achieved by exploiting knowledge
of the data link layer. Encrypting the packets may help
prevent the jammer from taking actions based on the con-
tent of the packets, but the temporal arrangement of the
packets induced by the nature of the protocol might un-
ravel patterns that the jammer can take advantage of even
when the packets are encrypted. By looking at the packet
interarrival times in three representative MAC protocols,
S-MAC, LMAC and B-MAC, we derive several jamming at-
tacks that allow the jammer to jam S-MAC, LMAC and
B-MAC energy-efficiently. The jamming attacks are based
on realistic assumptions. The algorithms are described in
detail and simulated. The effectiveness and efficiency of the
attacks are examined. Careful analysis of other protocols
belonging to the respective categories of S-MAC, LMAC
and B-MAC reveal that those protocols are, to some extent,
also susceptible to our attacks. The result of this investiga-
tion provides new insights into the security considerations
of MAC protocols.

Categories and Subject Descriptors: C.2.0 Computer-
Communication Networks: General – Security and Protec-
tion

General Terms: Security, algorithms.

Keywords: MAC protocols, security, denial-of-service at-
tacks, jamming, clustering.

1. INTRODUCTION
Jamming-style DoS attacks on the physical and data link

layer of WSNs have in these few years attracted some atten-
tion [20, 40, 44, 45]. In particular, Xu et al. [44] propose 4
generic jammer models, namely (1) the constant jammer, (2)
the deceptive jammer, (3) the random jammer and (4) the
reactive jammer. A constant jammer emits a constant noise;
a deceptive jammer either fabricates or replays valid signals
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on the channel incessantly; a random jammer sleeps for a
random time and jams for a random time; and lastly, a re-
active jammer listens for activity on the channel, and in case
of activity, immediately sends out a random signal to collide
with the existing signal on the channel. According to Xu et
al. [44], the constant jammers, deceptive jammers and reac-
tive jammers are effective jammers in that they can cause
the packet delivery ratio to fall to zero or almost zero, if they
are placed within a suitable distance from the the victims.
However these jammers are also energy-inefficient, meaning
they would exhaust their energy sooner than their victims
would if given comparable energy budgets. Although ran-
dom jammers save energy by sleeping, they are less effective.

Our contribution is to develop jamming attacks that (1)
work on encrypted packets, (2) are as effective as constant
/deceptive/reactive jamming, and (3) at the same time more
energy-efficient than random jamming or reactive jamming.
We implement such jamming attacks by exploiting the se-
mantics of the data link layer and show the results quanti-
tatively. The fact that our attacks are applicable to three
representative MAC protocols suggests the same attacks are
applicable to a wide range of other protocols belonging to
the same categories as these protocols’. Our analysis of the
attacks provides new insights into the timing considerations
of MAC protocols with regards to security, and provides
hints on which category of protocols provides the best pro-
tection against our attacks so far, in the absence of effective
countermeasures. The motivation of this work stems from
the concern that if an attacker can program and deploy a
general-purpose link-layer jamming network that is able to
jam any WSN effectively and energy-efficiently, and if a high
entry barrier is not maintained for such a low cost attack, a
WSN can never in any practical sense be secure. A counter-
argument might be that energy efficiency is no concern to
powerful attackers, but even powerful jammers come with a
finite energy supply and they would advertise their presence
and location if they simply blast away with an exorbitant
amount of radio waves – this is something a sensible attacker
would avoid.

The paper is organized as follows. We start by stating the
assumptions on which our attacks are based in Section 2. We
then describe the attack algorithms in Section 3. Section 4
describes how the protocols and the corresponding attacks
are simulated, and how the results are evaluated. The re-
sults are given in Section 6. Implications of our work to
other protocols are discussed in Section 7. Section 8 explores
some potential countermeasures. Related work is discussed
in Section 9. Finally Section 10 concludes.



2. ASSUMPTIONS
We assume an attacker has two goals: the primary goal is

to disrupt the network by preventing messages from arriv-
ing at the sink node, and the secondary goal is to increase
the energy wastage of the sensors. A sink node is a node
that requests for, and hence sinks, information. Our at-
tacks depend on three assumptions: (1) the jammer motes
know the preamble used by the victim nodes, (2) the jam-
mer motes can measure the length of a packet, and (3) the
jammer motes know what MAC protocol that victim notes
are running. A preamble is a bit sequence, usually consist-
ing of alternating 1’s and 0’s, for training the receiver, and
its length depends on the data coding scheme used [34]. Re-
quirement (1) and (2) should be easy to satisfy in practice.
Requirement (3) is more demanding but not impractical to
satisfy – as our future work, a strategy will be devised to
map observed traffic to specific classes of protocols. Note
that the jammer motes do not need to know the content
of the packets, so our attacks work even if the packets are
encrypted. Adding to the significance of our attacks is that
the attacker does not need to capture and compromise any
existing sensor nodes.

Jammer motes

Sensor nodes

Interceptor
informs motes
of estimated
frequencies

Figure 1: Distributed jamming.

We now describe a concrete set of circumstances under
which our attack scenario is applicable.

• When there are no fixed sink nodes to attack, e.g. in
directed diffusion [12] where ID-less interests propa-
gate through the network, there is no way for a node
to tell where the real sinks are,

• or when it is infeasible for the attacker to deploy its
nodes strategically, except perhaps to air-drop them
on top of the target network,

• or when the attacker can only estimate where and not
how the target network is or would be deployed,

• or when the target network is protected with a link-
layer authentication (and optionally encryption) scheme
like TinySec [15],

the attacker would find it appealing to distribute its jam-
mer motes among the target WSN and apply our jamming
attacks. We are in fact not alone in suggesting this attack
scenario [27]. One note of caution though, is that if the tar-
get network employs frequency-hopping spread spectrum [1],
the attacker would find it necessary to deploy an interceptor
to discover the hopping frequencies first before its network
of jammer motes can start jamming (Figure 1).

Naturally, our attacks are affected by the choice of values
assigned to the protocol parameters. Throughout the paper,
we pick values for the protocol parameters that are either

as realistic or as faithful to what the creators of the proto-
cols recommend as possible, in the absence of a universal
consensus and a scientifically rigorous way of deriving these
values.

3. MAC PROTOCOLS FOR WSNS
Before we describe our attacks, a brief overview of MAC

protocols for WSNs is in order. Despite the number of pro-
tocols proposed so far, there is still no clear indication of
the mechanisms the proposals are converging to [19]. How-
ever, since different applications require optimizing different
parameters, there will most likely not be a single solution
that fits all types of applications. According to Langendoen
et al.’s survey [19], WSN MAC protocols can be classified
according to (1) the number of channels used, (2) how the in-
tended receiver of a message is notified, and (3) how medium
accesses are temporally organized.

In terms of channels, most protocols use only a single
channel, e.g. S-MAC [46, 47], LMAC [38] and B-MAC [29].

In terms of message notification, in some protocols, a
scheduling algorithm determines when a node listens for
messages to minimize energy consumed by idle listening.
These type of protocols are typically either more resource-
demanding or require architectural support [17, 21, 30]. In
other protocols, a node has to determine on its own when to
listen for messages. To reduce energy spent on idle listen-
ing, they typically employ some form of sleep-listen schedule.
Since these protocols are more lightweight and hence more
viable for current WSNs, we concentrate on this type of
protocols, of which S-MAC, LMAC and B-MAC are, again,
well-known examples.

In terms of temporal organization of medium accesses,
S-MAC, LMAC and B-MAC belong to different categories.
S-MAC divides time into slots, and nodes contend for slots
to send packets. LMAC divides time into frames, and each
node is allocated a slot in the frame to send packets. B-
MAC uses random accesses to the communication medium,
i.e. no slots and no frames, to send packets.

Based on the above analysis, S-MAC, LMAC and B-MAC
are representative of current WSN MAC protocols, and our
jamming analysis in the following will hence be targeted at
these protocols. What follows is a brief introduction to each
of the protocls.

3.1 S-MAC
The design of S-MAC revolves around a periodic sleep-

listen schedule. A period is divided into a listen interval
and a sleep interval. The listen interval in turn consists of
a SYNC interval and a CTRL interval. The sleep interval
allows the nodes to sleep in order to reduce the amount of
energy spent on idle listening. The ratio of the length of the
listen interval to the length of the period is the duty cycle.
Lowering the duty cycle based on a fixed period reduces
energy usage.

We now describe the operation of S-MAC. When a node
A first joins a network, it listens for a whole period. If the
channel is clear, A broadcasts its schedule in a SYNC packet,
telling its neighbors that it will sleep ts seconds later, mark-
ing the end of A’s listen interval. If a node B receives A’s
schedule before choosing its own, B will adopt A’s schedule
and after a random delay of td seconds, broadcast to tell
A and other neighbors that it will sleep at ts − td seconds
later. Should B receive A’s schedule after broadcasting its



own, it adopts both schedules [47]. In this way, A, B and
their neighbors are able to synchronize their schedules.

Data packets are mainly sent in the CTRL interval, and
may extend into the sleep interval. When broadcast, data
packets are sent without the exchange of RTS/CTS packets
(RTS = Request-To-Send, CTS = Clear-To-Send). When
unicast, RTS/CTS packets are exchanged. Collision avoid-
ance depends solely on carrier sense and the use of network
allocation vectors [47].

3.2 LMAC
LMAC is a TDMA protocol. In LMAC, time is divided

into frames, which are further divided into time slots. In
each frame, a sensor node takes control of one time slot
(or more, for instance in a variant of LMAC called AI-
LMAC [7]). A time slot is further divided into two parts of
unequal length: (1) a control part for transmitting a control
packet, and (2) a data part for transmitting a data packet.
In the time slot it controls, a node always starts by sending
out a control packet even if it does not have any data to
send. Besides addressing other nodes, the control packet is
also necessary for maintaining synchronization. When the
neighbors of the node discover by listening to the control
packet that they are not the intended receivers, or that the
node simply has no data to send, they immediately turn off
their receivers and sleep until the next slot. The neighbor
addressed by the control packet stays listening. The data
packet is transmitted right after the control packet. The
absence of RTS/CTS signalling makes LMAC a particularly
energy-efficient protocol, however tight time synchronization
is required.

3.3 B-MAC
The central feature of B-MAC is its preamble sampling

scheme, called low power listening (LPL), which is a con-
tinuation of a tradition set by El-Hoiydi [9], and Hill and
Culler [11]. As one of the main sources of energy wastage in
WSNs is idle listening, a simple solution is to listen and sleep
periodically according to some duty cycle. The requirement
for monitoring-type applications [23] to reduce the duty cy-
cle to 1% (i.e. listen for 1% of an entire cycle) means that
the sensor nodes should listen for the briefest time possible.
Preamble sampling achieves this by delegating to the trans-
mitter the responsibility of making sure the receiver receives
the packet, in that the transmitter must transmit a pream-
ble that is long enough to be sensed by the receiver which
only wakes up for the briefest moment and sleeps most of
the time (Figure 2). Note that this is different from S-MAC
in that the sender and receiver are not synchronized.

Preamble
Listen

Sleep Receiver 1

Receiver 2

Tlpl-preamble Tnormal-preamble

Figure 2: Preambles should be long enough such
that a receiver listening at the very beginning of
the cycle, or at the very end of the cycle would be
able to detect the preamble.

Unlike S-MAC or LMAC, B-MAC is only a link proto-
col, in that it does not stipulate how the communication

medium is shared between nodes. However it is reasonable
to assume RTS/CTS signalling is used. When RTS/CTS
signalling is used, the sender sends an RTS packet with an
LPL preamble. Upon detecting this long preamble, the re-
ceiver snaps out of the LPL mode, and replies with a CTS
packet that has a normal preamble, since the sender is al-
ready listening and waiting. The ensuing data packet and
acknowledgement packet exhanged between the sender and
receiver are all transmitted with a normal preamble. After
sending the acknowledgement packet, the receiver returns to
the LPL mode.

4. DESCRIPTION OF ATTACKS
Imagine we are the attacker, the question now is how do

we attack a protocol without knowing the content of the
packets? Since the attacker is solely interested in jamming
data packets, our first observation is that since data packets
are longer than control packets, we can focus on jamming
long packets. We can do this by sorting packets accord-
ing to their length and predict when long packets would
arrive. This strategy might not work however because (1)
data packets might be generated spontaneously, rendering
our prediction inaccurate, and (2) data packets are sparse,
e.g. 1 packet every 5 minutes from each node [23]. Sparse
packets require us to observe for a long time before we get
a working prediction model, and offer us little opportunities
to readjust our prediction.

A more promising approach is to look at the probability
distribution of the interarrival times between packets, i.e.
packets of all types. We look at S-MAC, LMAC and B-
MAC in turn.

4.1 S-MAC
Figure 3 shows the probability distribution of the packet

interarrival times observed by a node having 6 neighbors
that send data to a sink multiple hops away every 5 sec-
onds, in a static network using S-MAC with a period of 930
ms and a duty cycle of 10% (i.e. default values that come
with the original S-MAC source code). There are 2 clus-
ters in the graph. Let us call them Cluster1 and Cluster2.
Although using different data packet lengths results in dif-
ferent shapes of the clusters (e.g. distinct spikes in Cluster1
in Figure 3(a) in contrast to Figure 3(b)), the clear sepa-
ration between the clusters still stands. These two clusters
can also be observed even if the nodes are mobile. In spite
of suspicion, these clusters are not due to the periodic na-
ture of data reporting by the nodes, in fact they are solely
the result of the periodic nature of the protocol, in this case
S-MAC itself. The explanation is as follows. In S-MAC,
packets within a period are closely spaced in time, account-
ing for the interarrival times in Cluster1. Two packets from
two different periods are more widely spaced because of the
sleep interval, and the interarrival time between these two
packets falls in Cluster2. Unless the nodes insist on sending
only 1 packet every period, which is improbable, it is only
natural that Cluster1 has a larger weight, or higher prob-
ability, than Cluster2. Observe that Cluster2 has a larger
variance than Cluster1. One way to understand this is to
compare two Cluster2 interarrival times: the time separa-
tion between two SYNC packets of two consecutive periods
is large, but the time separation between an acknowledge-
ment packet and a SYNC packet of the subsequent period
is small, and yet these two time separations belong to Clus-



ter2. Actually, there are other clusters at the further end
of the time axis, but their probability is negligible. They
have to be filtered out in order for clustering to work. It is
reasonable, for example, to expect S-MAC to have a maxi-
mum period of 1 s (otherwise the latency would be large),
thus filtering all interarrival times larger than 1.5 s should
eliminate these unwanted clusters.
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Figure 3: Probability distribution of packet interar-
rival times for S-MAC with a period of 930 ms and
a duty cycle of 10%. Choices of packet lengths and
reporting frequency are detailed in Section 5.
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Figure 4: Jamming strategy for S-MAC: (a) actual
timing, (b) naive version, (c) periodic clustering-
based jamming (PCJ).

Our S-MAC attack strategy follows from the following de-
duction. If according to observation, for every Cluster2 in-
terarrival time, there are c Cluster1 interarrival times, then
right after observing a Cluster2 interarrival time, we should
expect around c Cluster1 interarrival times (Figure 4(a)).
Denote the means of Cluster1 and Cluster2 interarrival times
as µ1 and µ2 respectively. A straightforward strategy is to
first collect a reasonable number (e.g. 64) of consecutive in-
terarrival times, and then perform clustering on them. The
result of clustering gives us µ1 and µ2. The next steps are
then to (Figure 4(b)):

1. Wait until a single Cluster2 interarrival time, T1, is
observed.

2. Jam with c packets, with a space of µ1 seconds in
between.

3. Sleep for µ2 seconds.

4. Repeat the cycle starting from step 2.

This strategy however does not work in practice because µ2

is often not a good approximation of T2 due to the large
variance of Cluster2. An improvement is to estimate Tp

instead. Since Tp is a sum of several Cluster1 interarrival
times and T2, and since the variance of Cluster1 is smaller,
Tp can be predicted more accurately. Our improved strategy
is thus to (Figure 4(c)):

1. Wait until a single Cluster2 interarrival time is ob-
served and record arrival time as t1.

2. Wait for another Cluster2 interarrival time and record
arrival time as t2. Calculate the period Tp = t2 − t1.
Record length of packet in time (not in bytes, as with
all packet lengths that appear hereafter) just received
as Lp.

3. Set tmarker = current time - Lp. Jam with c−1 packets,
with a space of µ1 seconds in between. (Notice where
this step starts in Figure 4(c).)

4. Sleep until tmarker + Tp.

5. Set tmarker = current time. Jam with c packets, with
a space of µ1 seconds in between.

6. Repeat the cycle starting from step 4.

Periodic re-estimation is done by repeating the cycle starting
from step (1) instead of step (4). We call this approach
periodic clustering-based jamming (PCJ), and depending on
the context we also use PCJ to mean a periodic clustering-
based jammer.

Additionally, we propose RPCJ, a reactive version of PCJ,
by modifying step (3) of PCJ. In step (3) of RPCJ, the
jammer records current time tmarker as before, but instead
of jamming proactively, the jammer listens for a preamble
by setting a timer that expires max(TCluster1) seconds later,
where max(TCluster1) is the maximum interarrival time in
Cluster1. If a preamble is detected, it jams the ensuing
frame, otherwise if the timer expires, that is, if no preamble
is detected, the jammer sleeps until tmarker + Tp seconds,
before waking up to listen for preambles again. Note that
the jammer transmits only random packets, without any
preamble.

4.1.1 Clustering
The above attack relies on data clustering. A simple al-

gorithm like K-means [24] is sufficient, because of the clear
separation between the clusters, and the distinctness of each
of the clusters. K-means involves only simple multiplica-
tions. A 32-bit floating-point hardware-accelerated multi-
plication (or division) consumes only 9 CPU cycles on a
MSP430F149 [36]. A K-means iteration consists of an as-
signment step and an update step [24]. Denote the number
of clusters as K and the number of data samples as N . The
assignment step takes KN multiplications, whereas the up-
date step takes KN multiplications and K divisions (having
the same cost as multiplications). Assuming multiplication
is the most expensive operation, then the computational
complexity of a K-means iteration is K(2N + 1) ≈ 4N mul-
tiplications, taking K as 2. According to simulations, only 2
iterations are usually required, 3 and above are rare. So for
example, if N = 64, the energy required for 2 iterations is at
least 4.4 µJ, or 60% of the energy required to transmit one
bit (7.4 µJ) on a CC1000 radio [42] (both MSP430F149 and
CC1000 are common components in existing sensor nodes).
From the jammer’s perspective, the computational cost is
likely justified, since the jammer has nothing else to do apart
from jamming.

4.2 LMAC
Figure 5 shows clusters that are clearly spaced out at inte-

gral multiples of the slot size – typical of a TDMA protocol.



However there might be one or more clusters before the clus-
ter centered on the slot size, depending on the distribution
of the data packet length. And unlike S-MAC, the clusters
at the higher end of the time scale are not negligible, so the
jamming algorithm suggested for S-MAC cannot be applied.
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Figure 5: Probability distribution of packet interar-
rival times for LMAC with a slot size of 20 ms and
20 slots in a frame.
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The jammer’s objective is to estimate the slot size by cal-
culating the mean of TS (Figure 6), µs, and to jam the
beginning of every slot. The algorithm is based on two as-
sumptions. The first assumption is that TS can indeed
be observed, i.e. the probability that at least two occupied
slots are consecutive is at least larger than 0.5. Using ele-
mentary combinatorics, it can be shown (in the Appendix)
that

Pr{at least two occupied slots are consecutive}

=

8>>>>>><>>>>>>:

0 if 0 ≤ n < 2

1− (s−n
n )

(s−1
n )

if 2 ≤ n ≤ s−1
2

1−
2(s−n−1

n−1 )
(s

n)
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2
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2
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(1)

In Equation 1, s (s ≥ 4) is the total number of slots in a
frame, and n (0 ≤ n ≤ s) is the number of occupied slots
in a frame. When s is even and n = s

2
, the probability is

always larger than 0.5. In other words, for a given s, a node
is more likely than not to observe at least two consecutive
occupied slots, if n, the number of occupied slots, at least
satisfies Equation 2:`

s−n
n

´`
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„
1− n

s− j

«
< 0.5 (2)

For example, if s = 20, the least n that satisfies Equation 2
is n = 4. Given that most practical WSNs are dense [3],
this requirement is almost certainly satisfied.

The second assumption is that the shortest data packet
might be shorter than a control packet, but the longest data
packet must be longer than a control packet, i.e.

min(Lpkt) ≤ lctrl < max(Lpkt) (3)

where Lpkt is the random variable representing packet lengths
(regardless of packet type), and lctrl is the fixed length of a
control packet. For example, a control packet takes 15 bytes
in an optimized implementation (or 23 bytes in our unopti-
mized implementation), a data packet header takes 7 bytes,
a message authentication code takes 4 bytes, so if a data
packet payload is less than 15− 7− 4 = 4 bytes (or 12 bytes
in our unoptimized implementation), the corresponding data
packet would be shorter than a control packet. The control
packets in LMAC are longer than those in S-MAC because
they contain more information like the slot occupancy vec-
tor, the number of hops to the gateway etc. This assumption
unfortunately bars us from estimating TS by just measuring
the interarrival time between two neighboring shortest pack-
ets, since we can no longer be sure if the two neighboring
shortest packets are both control packets.

The algorithm itself consists of the following steps:

1. Suppose the observed packets are P0, P1, .... Denote
the interarrival time between packet Pi and packet
Pi+1 as ti, and the length of packet Pi as li (i =
1, 2, . . .). Store t1, t2, . . . in the ordered set T , and
l1, l2, . . . in the ordered set L. Had there only been
data packets and no control packets, the jammer’s job
would have been easier, since the slot size is then sim-
ply

µS = ti − li+1 + li (4)

But there are control packets, so the jammer has to
continue as follows.

2. This step is based on two observations. The first ob-
servation is that TS has to be large enough to accom-
modate both a control packet and a data packet, i.e.

TS > Lctrl +max(Lpkt) ≥ min(Lpkt)+max(Lpkt) (5)

The last inequality is the result of Equation 3. Equa-
tion 5 gives a lower bound for the slot size. The second
observation is that a slot can accommodate at most 2
packets, so it is always smaller than the sum of 3 con-
tiguous interarrival times, i.e.

TS < min(ti + ti+1 + ti+2) where 0 ≤ i ≤ |T | − 2
(6)

Equation 6 gives an upper bound for the slot size. De-
note the lower bound and the upper bound respec-
tively as a0 and am. Set a0 = min(L) + max(L) and
am = min(ti + ti+1 + ti+2).

3. Compute the probability mass function of the inter-
arrival times in the interval [a0, am). For this pur-
pose, we can quantize the time interval [a0, am) into
m millisecond-strips, [a0, a1), . . ., [am−1, am), as prac-
tical values for the slot size are in milliseconds, and
count the number of interarrival times that fall within
each strip. Denote the strip with the highest count, i.e.
the highest probability mass, as [ai, ai+1) (0 ≤ i < m).

4. If a higher accuracy is desired, set a0 = ai and am =
ai+1 and repeat the previous step with a finer time
resolution. If not, set µS , the estimated slot size, as
the mean of the interarrival times that lie in [ai, ai+1).
If ti is the time closest to µS , set µL, the estimated



control packet length, as li. Cautionary note: this esti-
mate might be wrong if the probability given by Equa-
tion 1 is not high enough. For example, if in Figure 5,
the probability density at 40 ms (twice the slot size)
is higher than the probability density at 20 ms (the
slot size), i.e. two occupied slots are more likely to be
separated by an unoccupied slot than to be consecu-
tive, the estimate is double the real slot size. However
this tends to happen only at the fringe of the network,
where the network density is lower. Furthermore, if
two occupied slots are indeed more likely to be sep-
arated than consecutive, the jammer would not miss
much by jamming every two slots instead of every slot.

5. Listen for a packet that is of size µL. Once received,
transmit a jamming packet, and sleep until time =
current time - µL + µS . It is true that a packet of
size µL might or might not be a control packet, in
view of Equation 3. If the received packet is indeed a
control packet, then the jammer is able to synchronize
neatly with the LMAC schedule, allowing it to jam the
control packet of every slot. If the received packet is
not a control packet however, the jammer’s schedule is
offset by at least Lctrl + µL, but it is still able to jam
the data packet, if there is any, of every slot.

6. Wake up, transmit a jamming packet, and sleep until
µS seconds later. Repeat this step until when periodic
re-estimation is required, in which case go to step (1).

We call this algorithm periodic slot-based jamming (PSJ).
In the reactive version of the algorithm (RPSJ), the jammer
listens for a preamble before jamming, instead of jamming
proactively.

4.3 B-MAC
The probability distribution of packet interarrival times

of B-MAC does show some clusters but they cannot be
taken advantage of because B-MAC uses a periodic cycle
only for listening, and not sending – we cannot periodically
jam something that is not periodically sent. However it is
exactly this periodic listening that the jammer can take ad-
vantage of to save energy. Since a B-MAC has to listen
every, say 10 ms, for a valid preamble, the jammer can be
sure that if it samples the RSSI every 10 ms, it would be
able to hear whatever preamble is being sent. The jamming
strategy is hence to find out the check interval the victim
nodes are using. This can be achieved by finding out the
length of the longest observed preamble. Assuming this ob-
served LPL preamble is Tlpl-preamble seconds long, and the
length of the normal preamble is Tnormal-preamble, according
to Figure 2, the jammer should sample the channel every
(Tlpl-preamble−Tnormal-preamble) seconds. The jammer can ei-
ther guess a value for Tnormal-preamble, or listen to the chan-
nel for the shortest preamble used. If the jammer chooses
to guess, to be on the safe side, the jammer should choose
a value that is slightly larger than the typical value, which
is three to four bytes [34], so that the jammer would sample
the channel slightly more frequently than the victim nodes
do. We call this approach LPL-based jamming (LPLJ).

In the next two sections, we will explain how the attacks
are simulated before presenting the results. Then we will
explore some potential countermeasures.

5. SIMULATION AND EVALUATION MODEL
All protocols, attacks and countermeasures are simulated

using the OMNeT++ framework (www.omnetpp.org). A sim-
ulation consists of a sink node, (Nr − 1) router nodes, Ns

source nodes and Nj jammer motes, all capable of a radio
range of r, and located in a square l × l area. The sink
is positioned in the middle of the area, whereas the router
nodes are pseudorandomly placed at most r from the sink.
Both the source nodes and the jammer motes are pseudoran-
domly placed more than r away – this is to avoid the jammer
motes having direct effect on the sink, giving the jammer
motes an unfair advantage and to allow us to investigate
the effect of jamming on the routing of information from the
sources to the sink. We require the node density to be uni-
form across the simulation area, i.e. 1+Nr−1

πr2 = Nr+Ns
l2

, or

l = r

r“
1 + Ns

Nr

”
π, to avoid the peculiarities of any specific

non-uniform topology having an effect on jamming. In the
absense of jammer motes, the network density [48] is then

D = (1+Nr−1+NS)πr2

l2
= Nr, i.e. equivalent to the number

of sink and router nodes. To simulate attacks, the jam-
mer motes are activated 10 seconds after the sensor network
starts operating, to allow the sensor nodes to finish discov-
ering their neighbors and settle down into a steady state
before the jamming starts, thereby simulating the attack
scenario described in Section 2. The total simulation time
is Tsim virtual seconds. Every experiment is run I times,
with different seeds each time. The network topologies are
simulated as static. The values of the parameters are sum-
marized in Table 1 and are chosen to satisfy the constraints
of memory and time available for simulations (maximum 900
MB of RAM and 2 actual minutes per run).

Table 1: Simulation parameters and notations.

MAC Ns Tsim I
S-MAC 40 600 10
LMAC 20 200 10
B-MAC 20 200 10

Ns = number of source sensor nodes
Tsim = simulated time in seconds
I = number of runs
Nj = number of jammer motes (set to

0.75Ns or Ns)
D = network density (set to 15 or 20)
Nr = number of sink and one-hop neigh-

bors of the sink

On the application layer, the sink node broadcasts an
interest once it found a neighbor but it only broadcasts
the interest once throughout the simulation. The source
nodes each broadcast a matching data every 5 seconds, as an
approximation of a network with moderately fast-changing
data [7]. The data packet payload ranges uniformly from
16 bytes to 100 bytes. The minimum payload corresponds
to a TinyDiffision [25] payload of 2 attributes (the least
number of attributes). The maximum payload is a popu-
lar choice [29, 37], and it corresponds to a TinyDiffusion
payload of 23 attributes. While a uniform distribution of
packet sizes is not realistic, it serves as a ‘base case’ that al-
lows us to investigate the capability of jammers in reaction
to a wide range of packet lengths.

On the network layer, TinyDiffusion [25], faithfully ported
from TinyOS (tinyos.sf.net), is used for S-MAC and B-
MAC. LMAC has a simple built-in routing algorithm, and
so LMAC interfaces directly with the application layer.

On the data link layer, S-MAC is simulated with adaptive
listening [47], with a period of 930 ms and a duty cycle

www.omnetpp.org
tinyos.sf.net


of 10%. The code is also faithfully ported from TinyOS.
LMAC is simulated with a fixed slot size of 20 ms (a little
more than enough to fit 100-byte payloads) and 20 time slots
per frame (suitable for a network density of 20), using the
same codebase from our previous work [38]. The B-MAC
code is built on top of the LPL code from TU Delft’s MAC
simulator [19]. Following Polastre et al.’s choice [29], we use
an RSSI sampling time of 350 µs and a check interval of 100
ms for B-MAC. We also implement RTS/CTS signalling on
top of the core B-MAC protocol. Both S-MAC and B-MAC
use a contention time of 41 ms (the default given by the
original S-MAC source code).

On the physical layer, the radio characteristics follow those
of RFM TR1001 [33]. The ratio between the power con-
sumption in sleep, Rx and Tx mode is 1:960:2400. Switch-
ing times are taken into account. 8-to-12 bit data encoding
scheme [32] is assumed, so an encoded data is 1.5 times the
size of the original raw data. Denote Tpreamble as the time
required to transmit a preamble, Tbyte the time required to
transmit one byte and Lpkt the number of bytes in a packet
on the data link layer. The total length of a frame (i.e.
packet on the physical layer) in time is then given by

Tframe = Tpreamble + (1 + 1.5Lpkt)Tbyte (7)

The extra 1 byte in the parenthesis is to account for the
start byte. In the simulation, Tpreamble = 5Tbyte and Tbyte =
10/115200. The extra 2 bits in Tbyte is to account for 1 start
bit and 1 stop bit at the beginning and at the end of a byte.

To simulate jamming, the jammer emits a random packet
that is at least Tpreamble seconds long if the jamming starts
from the start of the preamble. If the jamming starts from
the end of the preamble as is the case with all types of re-
active jamming, the jamming packet is only Tbyte seconds
long. It is assumed that the integrity of a packet is pro-
tected by a message authentication code, and a corrupted
bit is enough to nullify the validify of the packet, therefore
corrupting one byte, or 8 bits, should be sufficient to cor-
rupt the whole packet. The width of the jamming pulse has
a large impact on the simulation outcomes.

Some aspects of the jammers are as follows. The random
jammer is simulated to sleep, and jam for a time uniformly
distributed between 1 ms and 500 ms. There are several
tunable parameters for PCJ, RPCJ, PSJ and RPSJ. For
example, all PCJ and RPCJ implementations start with a
minimum sample size of 64 interarrival times, and readjust
their estimation every 8 periods. Tuning these parameters
allows the attacker to dynamically adjust its behavior, but
the effect of such tunings are left to future investigation. The
fact that jammer motes have limited buffer for storing inter-
arrival times and packet lengths is realistically reflected in
the implementations. The clustering operations are directly
translatable to hardware implementations.

Among the things that are not simulated are (1) process-
ing delays, (2) interference and (3) the gray area effect [49].
We will discuss processing delays in relation to our results
later. As for interference, ideally the SNR model of Reijer et
al. [31] should be used. However since the model takes into
consideration all nodes in the network other than the sender
for every transmission, it demands far greater computational
resources than what is required of the conventional, circular
model that only considers all nodes in the radio range of the
sender. To see how we can implement the more accurate
SNR model efficiently is our future work. As for the gray

area effect, so far there is still no comprehensive theoret-
ical model for simulating it. All in all, these are some of
the many simplifications that are conventionally applied in
simulations, as is the case that simulated radio ranges are
circular/spherical by convention – a departure from actual
measurements [31].

5.1 Metrics
Following our previous work [20], we evaluate how effec-

tive an attack is by measuring primarily the censorship rate
Rc and secondarily the attrition rate Ra. Rc measures the
fraction of messages blocked. Let M be the number of mes-
sages arriving at the sink in the absence of attacks, and
M ′ be the number of messages arriving at the sink in the
presence of attacks, then

Rc = (M −M ′)/M (8)

Ra measures the fraction of additional energy the sensor
network has to spend in the presence of attacks. Let E be
the amount of energy spent when there is no attack, and E′

be the amount of energy spent when there is attack, then

Ra = (E′ − E)/E (9)
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P = power consumed by a sensor node when not under attack
P ′ = power consumed by a sensor node when under attack
Patt = power consumed by a jammer mote when attacking
P ′

att = power consumed by a jammer mote when not attacking
Tatt = duration of a jammer mote’s attack
T ′

att = remaining lifetime a jammer mote after finishing attack
Tstart = time between when the sensor node starts operating and

when jamming begins
Tend = time between when jamming ends and when sensor node

dies

Figure 7: Calculation of lifetime advantage: (a) if
the jammer mote dies before the sensor node, or
(b) otherwise.

To evaluate how energy-efficient an attack is, we use the
effort ratio Re, defined as the ratio of the attacker’s per-
node energy expenditure to the sensor network’s per-node
energy expenditure when not under attack. We can compare
the effort ratio of a random jammer and the effort ratio of a
reactive jammer as follows. Given the same target protocol,
if the power consumption ratio between the sleep, Rx and
Tx mode is 1 : ρ : τ , a reactive jammer that jams j (j < 1)
of the time has a higher effort ratio than a random jammer
only when Equation 10 is satisfied:

j >
1

2

„
1 +

1− ρ

τ − ρ

«
(10)

Plugging in the values ρ = 960 and τ = 2400 as given in
Section 5, we get j > 17%. This relation will be used later.

Using Ra and Re, we can calculate the lifetime advantage
Rl of a jammer mote over a sensor node, that is how long a
jammer mote can live compared to a sensor node. To derive



an expression for Rl, the following assumptions are used:
(1) a jammer mote has the same total amount of energy as
a sensor node, and (2) the power usage is constant. There
are two scenarios. Equation 11 is for the scenario where the
jammer mote dies first (Figure 7(a)).

Rl =
Tatt

Tatt + Tstart + Tend
=

P

P − P ′ + Patt
=

1

Re −Ra

(11)
Equation 12 is for the scenario where the sensor node dies
first (Figure 7(b)).

Rl =
Tatt + T ′

att

Tstart + Tatt
=

P

P ′
att

+

„
1 +

P ′ − Patt − P

P ′
att

«
Tatt

Tstart + Tatt

≈ 1 +
P ′ − Patt

P ′
att

≥ 1 +
P ′ − Patt

Patt
=

1 + Ra

Re

(12)

In Equation 12, the ≈ relation is because Tstart ≪ Tatt; the
≥ relation is because P ′

att ≤ Patt for a jammer mote that has
nothing more to jam, consistent with our assumptions of the
attack model. Equation 12 gives only the lower bound but
in cases where the jammer mote outlives the sensor node,
knowing the lower bound is good enough.

6. RESULTS
The censorship rates and lifetime advantages of the var-

ious attacks are given in Table 2. For readability’s sake,
the figures for attrition rate and effort ratio are omitted.
We start by making some general observations of the re-
sults. First, the censorship rates, both the means and the
standard deviations, improve with Nj/Ns and D (defined in
Table 1). This is inline with intuition: more jammer motes
have greater jamming effect, and the more sensor nodes a
jammer mote has as neighbors, the sooner the jammer mote
can synchronize with the S-MAC/LMAC schedule, or deter-
mine the preamble length in B-MAC’s case. Note that in all
simulated cases, Nj < Ns +Nr = Ns +D. Therefore further
increase in censorhip rate can be expected if we increase the
number of jammer motes, Nj , to the total number of sensor
nodes, Ns + Nr.

The second general observation is that our jamming algo-
rithms outperform random jamming and reactive jamming
in lifetime advantage as expected since random jamming is
not a targeted effort, and reactive jamming consumes energy
constantly in listening.

Thirdly, although it appears in Table 2 that random jam-
ming is not as effective against LMAC and B-MAC as it is
against S-MAC, the results are to be interpreted with cau-
tion. In LMAC’s case for example, the jammer’s random
sleep interval, uniformly distributed between 1 ms and 500
ms (25 times the slot size), is most of the time wide enough
to allow many data packets to pass through. By reducing
the jammer’s random sleep interval, we can get the cen-
sorhip rates equally close to 100% for all S-MAC, LMAC
and B-MAC. We do not customize the random sleep inter-
val for each of the protocol in our simulations however, be-
cause as the random sleep interval gets smaller, the jammer
consumes more energy switching between the sleep mode
and the transmission mode – this switching energy becomes
a dominant component of the overall energy consumption,
increasing the jammer’s effort ratio. This is to say that al-
though we know higher censorship rates can be achieved by
customizing the random jam/sleep interval according to the

target protocol, we do not, because the result only makes
random jamming more effective than it already is now and
not any more efficient. Finishing our general observations,
we now analyze the results in more detail below.

6.1 S-MAC
We compare random jamming, reactive jamming with the

following energy-efficient attacks: listen interval jamming
(LIJ), control interval jamming (CIJ), data packet jamming
(DPJ), periodic cluster-based jamming (PCJ) and reactive
periodic cluster-based jamming (RPCJ). LIJ, CIJ and DPJ
are three jamming algorithms we introduce in our previous
work [20] that work on unencrypted packets. As their names
imply, LIJ jams the listen interval of a S-MAC schedule;
CIJ jams the control interval; DPJ waits for a CTS packet
and jams the ensuing data packet. We classify LIJ, CIJ
and DPJ as detailed knowledge attacks, PCJ and RPCJ
as minimal knowledge attacks. It should be interesting to
compare the latest minimal knowledge attacks with existing
detailed knowledge attacks.

Censorship rate Random jamming and reactive jam-
ming have the highest censorhip rates. Among the energy-
efficient attacks, CIJ has the highest censorship rate. LIJ
has large standard deviations because in LIJ, the SYNC
packets are jammed – jammer motes that have too few sen-
sor nodes or too many fellow jammer motes as neighbors
would take a long time, if at all, to get hold of two SYNC
packets to synchronize with the S-MAC schedule – mak-
ing the censorship rate of LIJ highly topology-dependent.
The censorship rate of DPJ is lower than CIJ’s because of
the adaptive listening mechanism in S-MAC [20]. PCJ and
RPCJ are not as effective as the detailed knowledge attacks
(LIJ etc.), but their censorship rates are still substantial, at
83% and 76% respectively when Nj/Ns = 1 and D = 20.
RPCJ is worse than PCJ because in the proactive approach
of PCJ, the victim nodes go to sleep when they fail to access
the jammed medium, whereas RPCJ misses more packets as
a result of misalignment with the S-MAC schedule.

Lifetime advantage Table 2 agrees with the result of
our previous work [20] that among the detailed knowledge
attacks, CIJ has the highest lifetime advantage, followed by
LIJ. The minimal knowledge attacks, PCJ and RPCJ, have,
not surprisingly, lower lifetime advantages. DPJ, Random
jamming and reactive jamming have the lowest. This means,
in the absence of detailed knowledge, PCJ and RPCJ are
genuine threats.

At high network density, the lifetime advantages of PCJ
and RPCJ are comparable. The lifetime advantage of PCJ
however decreases with network density, because as a jam-
mer gets more neighbors, it fakes more transmissions, incur-
ring a higher effort ratio. The lifetime advantage of RPCJ
on the other hand hardly changes with network density, be-
cause an RPCJ jammer spends more time listening than
transmitting, but the time spent on listening is roughly the
duration of the listen interval, which does not change with
network density.

A random jammer transmits for half of the time, and
sleeps for half of the time. A reactive jammer transmits
at most 10% of the time, and listens for at least 90% of
the time, due to the 10% duty cycle. Based on these values
alone, comparing the the energy consumptions using Equa-
tion 10 tells us that reactive jamming has a lower effort
ratio. However, random jamming has a far higher attrition



Table 2: Average censorship rates and lifetime advantages of jamming attacks against S-MAC, LMAC and
B-MAC (results are rounded, standard deviations in parenthesis).

D Nj/Ns
S-MAC LMAC B-MAC

Rand. React. LIJ CIJ DPJ PCJ RPCJ Rand. React. PSJ RPSJ Rand. React. LPLJ

Censorship rate Rc (%)

15
0.75 92 (15) 93 (22) 48 (101) 93 ( 5) 79 (17) 75 (17) 59 (17) 78 (13) 94 (5) 96 (3) 80 ( 9) 85 (19) 93 (9) 93 ( 9)

1.00 99 ( 1) 100 ( 0) 75 ( 36) 94 ( 5) 87 ( 8) 83 ( 8) 71 ( 8) 86 (10) 96 (5) 95 (4) 88 ( 8) 97 ( 9) 99 (2) 99 ( 2)

20
0.75 99 ( 2) 95 (14) 64 ( 63) 91 ( 6) 83 (13) 83 ( 9) 69 (11) 70 (18) 97 (4) 94 (5) 82 (15) 93 (11) 97 (5) 97 ( 5)

1.00 100 ( 0) 100 ( 0) 89 ( 22) 94 ( 5) 91 ( 6) 83 ( 7) 76 (10) 91 ( 7) 97 (5) 97 (1) 91 ( 9) 97 ( 5) 99 (3) 99 ( 3)

Lifetime advantage Rl (%)

15
0.75 35 ( 2) 17 ( 1) 124 ( 45) 188 ( 8) 35 ( 3) 50 ( 3) 43 ( 4) 14 ( 1) 17 (1) 32 (6) 41 ( 7) 24 ( 5) 22 (4) 161 (50)

1.00 37 ( 2) 17 ( 1) 116 ( 28) 196 (11) 35 ( 2) 47 ( 3) 43 ( 2) 14 ( 1) 17 (1) 31 (4) 35 ( 3) 24 ( 5) 22 (3) 139 (31)

20
0.75 35 ( 1) 17 ( 1) 124 ( 31) 169 (11) 35 ( 4) 46 ( 3) 42 ( 3) 14 ( 1) 16 (1) 32 (5) 37 ( 4) 20 ( 3) 20 (3) 134 (37)

1.00 37 ( 1) 17 ( 1) 113 ( 27) 173 (11) 34 ( 2) 44 ( 3) 43 ( 3) 14 ( 1) 15 (1) 29 (5) 34 ( 4) 20 ( 3) 19 (3) 126 (29)

rate, because it makes some victim nodes stay in the back-
off state in the listening mode throughout the sleep interval,
and therefore has a higher lifetime advantage than reactive
jamming does.

To summarize, the high censorhip rate and high lifetime
advantage of CIJ indicates the importance of link-layer en-
cryption. However encryption alone is insufficient as the
temporal arrangement of the packets induced by the nature
of the protocol still allows PCJ and RPCJ to be effective
and energy-efficient.

6.2 LMAC
We compare random jamming, reactive jamming with PSJ

and RPSJ.
Censorship rate The censorship rates of PSJ are im-

pressively close to those of random and reactive jamming.
RPSJ is worse than PSJ, but both PSJ and RPSJ are more
effective against LMAC than PCJ and RPCJ are against
S-MAC, because the slot size can be estimated more accu-
rately than the period of an S-MAC schedule.

Lifetime advantage Both PSJ and RPSJ have twice
the lifetime advantages of random jamming and reactive
jamming. Looking more carefully, RPSJ has a higher life-
time advantage than PSJ. This is because not all slots in a
frame are necessarily occupied, and when a slot is unoccu-
pied, the energy RPSJ spends on listening is lower than the
energy PSJ spends on transmitting.

As the network becomes denser, more slots in a frame are
occupied, the effort ratios of both PSJ and RPSJ become
higher, hence their lifetime advantages decrease with net-
work density. This trend should stop when all the slots in a
frame are occupied.

Random jamming does not make LMAC nodes monitor
the channel more than it usually does, unlike the case with
S-MAC – the sensor nodes only listen for at most a small
fraction of the slot size, and as packets are jammed, less en-
ergy is used on propagating the packets to the sink, result-
ing in a negative attrition rate. One note of caution though:
had the jamming been allowed to start before the LMAC
nodes synchronize with each other, the results would have
been different, because then the LMAC nodes would have
had to constantly listen for broadcast schedules, and this
would have resulted in a large positive attrition rate, and
hence lifetime advantage. Since reactive jamming transmits
at most 2 bytes (one byte to jam a control packet, another
byte to jam a data packet), or 174 µs per 20 ms slot, it does
not satisfy Equation 10 and hence has a lower effort ratio

than random jamming. In fact, reactive jamming will only
have a higher effort ratio when the slot size is 1 ms accord-
ing to Equation 10 which is unrealistic. With their attrition
effect being similar, reactive jamming has a higher lifetime
advantage than random jamming.

To summarize, PSJ and RPSJ have high censorship rates
and lifetime advantages. Coupled with ease of implemen-
tation, they are genuine threats to LMAC even when the
packets are encrypted.

6.3 B-MAC
We compare random jamming, reactive jamming with LPLJ.

LPLJ is by design reactive jamming with optimized listen-
ing, so it is only intuitive that LPLJ has similar censorship
rates as reactive jamming’s, but far higher lifetime advan-
tages than reactive jamming’s. The lifetime advantage of
LPLJ however decreases with network density due to the fol-
lowing reason. As the network gets denser, a jammer mote
gets not only more sensor nodes but also more jammer motes
as its neighbors. More neighboring sensor nodes means more
packets to jam. More neighboring jammer motes means
staying awake more often because whenever a signal is de-
tected on the channel, a jammer mote always stays awake
for a while to listen for a valid preamble. Consequently, a
jammer mote has a higher effort ratio in a denser network,
and according to Equation 11 and Equation 12, the life-
time advantage becomes lower. The lifetime advantages of
random jamming are comparable to reactive jamming’s, i.e.
significantly lower than those of LPLJ.

To summarize, since LPLJ is trivial to implement and yet
allows the jammer motes to live as long as, or longer than
the victim nodes, it is a devastating threat to B-MAC even
when the packets are encrypted.

7. IMPLICATIONS TO OTHER PROTOCOLS
We now look at the implications of the above findings to

other protocols. As explained in Section 3, we only con-
centrate on the MAC protocols that (1) use a single chan-
nel, and (2) listen instead of follow some schedule to receive
messages. Among these protocols, there are protocols that
use (1) slots, (2) frames or (3) random access to organize
medium accesses, using Langendoen et al.’s taxonomy [19].
Examples that use slots, frames and random access are S-
MAC, LMAC and B-MAC respectively, which we have just
investigated. We now look at other protocols that belong
to each of the three categories, starting with slot-based pro-
tocols. We pick these protocols from Langendoen et al.’s



extensive survey [19].
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Figure 8: Medium access organization in (a) DMAC,
(b) BMA, and (c) Arisha.

7.1 Slot-Based Protocols
Slot-based protocols include T-MAC [37] and DMAC [22].

Since T-MAC is derived from S-MAC, PCJ and RPCJ are
applicable to T-MAC. The fact that T-MAC has a dynamic
duty cycle offers some relief because even though PCJ and
RPCJ are able to adapt to the dynamic duty cycle through
periodic readjustments, they would be less effective and less
efficient against T-MAC than against S-MAC due to the
need for more frequent readjustments.

Like T-MAC, DMAC is a slotted protocol that uses a dy-
namic duty cycle, but unlike T-MAC, it offsets the schedule
of a node depending on the number of hops the node is away
from the sink, in order to minimize latency (Figure 8(a)).
For example, if the node is i hops away, its schedule is off-
set by +TRx compared with the schedule of a node i + 1
hops away. The following cluster pattern should emerge on
the probability distribution of the packet interarrival times:
Cluster1 has a mean of TTx and Cluster2 has a mean of
Tsleep. Based on these clusters, PCJ and RPCJ can then be
applied.

7.2 Frame-Based Protocols
Frame-based protocols include PACT [28], Arisha [4], TRA-

MA [30], BMA [21] and SS-TDMA [17]. These are TDMA
protocols. The primary means of jamming these protocols
is by way of estimating the slot size. To estimate the slot
size, the jammer needs to be able to observe two consecu-
tive slots, that is, the number of slots and the number of
occupied slots in a frame need to satisfy Equation 2. This
requirement is typically satisfied as explained in Section 4.2
and will not be mentioned again in the discussion below.

We start with SS-TDMA. SS-TDMA relies on the nodes
being arranged in a rectangular or hexagonal rid. Due to the
lack of control packets, SS-TDMA is easier to attack than
LMAC since Equation 4 alone allows us to estimate the slot
size.

Since both PACT and BMA use clustering to distribute
TDMA schedules and both use similar frame structures,
we only discuss BMA and extend our findings for BMA to
PACT. In BMA, the network is partitioned into clusters.
Every network starts with the cluster setup phase, where
every node decides whether to become a clusterhead. At
the end of this phase, clusters are formed and the network
enters the steady state phase. By this time, every cluster-
head already knows the number of members in its cluster.

The steady state phase is a sequence of sessions or frames.
A session in turn consists of a contention period, a data
transmission period and an idle period, and each of these
periods are slotted (Figure 8(b)). The so-called contention
period allows the nodes to tell the clusterhead, in their as-
signed slot, their transmission schedules. Since the cluster-
head already knows the number of nodes in the cluster, n,
the number of slots in the contention period is exactly n.
The data transmission period and idle period have a vari-
able number of slots, but each session has a fixed length
so that when there are more data to send, the number of
data transmission slots is increased while the number of idle
slots is decreased accordingly. Since the control packets and
the data packets occupy a separate slot of their own, Equa-
tion 4 can be applied to estimate Tcontention and Tdata. In the
contention period, interarrival times are shorter than those
in the data transmission period. This is how the jammer
can tell whether it is in the contention period or the data
transmission period. PSJ and RPSJ can now be applied to
jam the contention period and the data transmission period,
each with a different estimated slot size.

Arisha partitions the network into clusters, and in each
cluster there is a gateway that arbitrates medium access
among sensors and sets routes for sensor data. Arisha di-
vides time into phases, the most important of which are
the data transfer phase and reroute phase (Figure 8(c)). A
phase is in turn made of frames. A data transfer frame has
a bigger slot size than a reroute frame, i.e. Tdata > Treroute.
A similar approach to jamming BMA, as explained before,
can be applied to jamming Arisha.

TRAMA divides time into alternating periods of random
access and scheduled access. Both periods are slotted. A
slot in the random access period is called a signaling slot,
while a slot in the scheduled access period is called a trans-
mission slot. Denote the size of a signaling slot as Tsignaling,
and the size of a transmission slot as TTx, then for ease
of synchronization, TTx is typically a multiple Tsignaling, e.g.
TTx = 7Tsignaling [30]. Again, a similar approach to jamming
BMA can be applied to jamming TRAMA.

7.3 Random Access-Based Protocols
Random access-based protocols include low power listen-

ing [11], PCM [14], Sift [13] and WiseMAC [10].
Low power listening is for all our intents and purposes

equivalent to B-MAC, so we will not discuss it any further.
PCM is an improvement to IEEE 802.11 by exercising power
control on a per-packet basis. Sift is a contention window-
based MAC protocol. Since they do not specify any duty
cycle, they offer no obvious exploits to PCJ, RPCJ, PSJ,
RPSJ or LPLJ. But since they do not have any duty cycle,
it remains to be seen how suitable they are, or how they can
be adapted for WSNs.

WiseMAC uses the same preamble sampling scheme as
B-MAC, with the difference being if the sender knows the
schedule of the receiver, it waits until when the receiver
is about to wake up and sends its packet with a normal,
shorter preamble, instead of an LPL preamble. However
for broadcasting packets, the sender often has to stretch
the preamble to the full length of the LPL preamble [19].
Therefore given enough broadcast traffic, the jammer is still
able to figure out the check interval and apply LPLJ.

7.4 Discussion



Summing up, all protocols from Langendoen et al.’s au-
thoritative survey [19] that we have discussed have weak-
nesses due to their organization of medium accesses. Among
these protocols, frame-based protocols have better resistance
to energy-efficient jamming because they spread out trans-
missions in time. Fortunately, there are more frame-based
protocols than any other type of protocols that have been
proposed. In the next section, we explore some countermea-
sures.

8. COUNTERMEASURES
Since our attacks against S-MAC are based on clustering,

a countermeasure would naturally be to prevent clustering-
based analysis from being feasible. This can be done by nar-
rowing the distance between Cluster1 and Cluster2. Assum-
ing no packet is transmitted in the sleep interval, the biggest
possible Cluster1 interarrival time is the length of the listen
interval, whereas the smallest possible Cluster2 interarrival
time is the length of the sleep interval. We can ‘stick’ Clus-
ter1 and Cluster2 together by equating the biggest Cluster1
interarrival time to the smallest Cluster2 interarrival time,
which is tantamount to setting the duty cycle to 50%. Ac-
cording to simulations with Nj/Ns = 1 and D = 20, this
defense is modestly effective against PCJ if K-means is used
as the clustering algorithm. The resultant censorship rate
is reduced to 38% (with standard error 17%). However if
expectation maximization (EM) [8] is used as the clustering
algorithm, the censorship rate can only be reduced to 75%
(with standard error 4%). Relief can be found in the fact
that a jammer using EM would considerably deteriorate its
own lifetime advantage because EM is a computationally
expensive, and hence energy-consuming algorithm that in-
volves multiple exponentiations. On the other hand, a duty
cycle of 50% may not be energy-efficient enough for most
WSNs that are characterized by low data rate [29]. All in
all, using a high duty cycle is a partial countermeasure to
energy-efficient link-layer jamming.

In the case of LMAC, we mentioned that it is advanta-
geous to spread transmissions out in time, but as long as
we transmit at fixed slot sizes, spikes would manifest on
the probability distribution graph of the packet interarrival
times. The strategy of flattening the spikes to increase the
difficulty in estimating the slot size can be served by chang-
ing the slot size pseudorandomly as a function of time and a
hidden seed. However due to the adaptibility of the jamming
algorithm, this countermeasure is less than satisfactory. For
example, if the sensor nodes change their slot size every sec-
ond, by pseudorandomly picking a value from the range [20
ms, 30 ms], then according to simulations, a jammer using
PSJ can still achieve a censorship rate of 80% (with standard
error 12%) and a lifetime advantage of 47% (with standard
error 5%) when Nj/Ns = 1 and D = 20. However we may
take comfort in knowing that against LMAC, the most ef-
fective energy-efficient attack, PSJ, has a lifetime advantage
that is considerably lower than that of the most effective
energy-efficient attack against S-MAC, PCJ.

For B-MAC, the situation cannot be helped, because B-
MAC relies on the preamble being long enough for the re-
ceivers to detect. Shortening the preamble any further than
what we have simulated, 10 ms, which is the minimum con-
sidered by Polastre et al. [29], defeats the purpose of B-
MAC.

From the above discussion, it appears for now that an

effective countermeasure is lacking, but by comparing the
censorship rate and lifetime advantage of the best attack on
the respective protocols, LMAC emerges as a better choice
than S-MAC and B-MAC in terms of resistance against link-
layer jamming. Generalizing this observation, TDMA pro-
tocols are potentially a better choice than other types of
protocols.

9. RELATED WORK
Wood et al. wrote in 2002 that no effective defense was yet

known against link-layer jamming [43]. Both St̊ahlberg [35]
and Wood et al. [43] quote how an attacker might keep send-
ing RTS packets to elicit CTS packets from its victims.

Negi and Perrig [26] investigate the attack of a jammer
that detects and jams RTS packets, as well as sends RTS
packets to reserve the largest time interval possible, using
the Poisson arrival model. This type of jammer needs to be
an insider of the network, in order to know the content of
the packets, and also send RTS packets that can pass the
integrity check by the normal sensor nodes. Our attackers
are not bound by such an assumption. Moreover, if the RTS
packet is short enough, the jammer may not have enough
time to respond [44]. Jamming the ensuing CTS or data
packets might be a more successful attack [20].

Konorski [16] proposes a scheduling policy that addresses
the selfish behavior of using small or no contention time (also
called random backoff time) in contention-based protocols,
in the context of single-hop networks. We are only inter-
ested in multi-hop networks. Kyasanur et al. [18] propose
that instead of letting the sender set the contention time,
the receiver sets and sends the time in the CTS and ACK
packets to the sender. The sender uses this assigned con-
tention time in the subsequent transmission to the receiver.
The receiver can then tell if the sender is being selfish, i.e.
using a value smaller than the assigned value, by observing
the number of idle slots between consecutive transmissions
from the sender. The problem with this approach is that if
the receiver misbehaves, the sender is penalized. Cárdenas
et al. [6] propose using Blum’s coin flipping protocol [5] to
ensure that the sender and the receiver choose a random
backoff time, such that if either the sender or the receiver
deviates from the random backoff, the other party would
know. Čagalj et al. [41] investigate the effect of a group of
selfish cheaters from a game-theoretic viewpoint. We focus
on DoS attacks, in which the purpose of the misbehaving
party lies in disruption instead of getting more bandwidth.
Different countermeasures are thus required.

Xu et al. [45] propose two evasion strategies against con-
stant jammers: (1) channel surfing and (2) spatial retreat.
Channel surfing is essentially an adaptive form of frequency
hopping. Instead of continuously hopping from frequency to
frequency, a node only switches to a different frequency when
it discovers the current frequency is being jammed. Spatial
retreat is an algorithm according to which two nodes move
in Manhattan distances to escape from a jammed region.
The algorithm is more suitable for wireless sensor and actor
networks (WSANs) [2] than conventional WSNs. The al-
gorithms are effective against constant jammers but we are
motivated to look at jammers who are more intelligent than
constant jammers.

We mentioned the 4 generic jammer models by Xu et
al. [44] earlier. Based on the models, Xu et al. show that
either received signal strength indication (RSSI) or carrier



sensing time alone is not sufficient in detecting all the 4 types
of jammers. Instead, attacks can be detected by measuring
(1) both the packet delivery ratio and the signal strength,
or (2) both the packet delivery ratio and the location. In
our previous work [20], we look at potential attacks on one
particular MAC protocol, which is S-MAC, and provide a
countermeasure. Instead of looking at the packet delivery
ratio of individual nodes, we look at the effect of distributed
jammer motes on the WSN as a whole. In our opinion, apart
from jamming effectiveness, a jammer cares about jamming
efficiency. For this reason, while Xu et al. provide metrics
for measuring the quality of service of individual nodes, we
provide metrics for measuring the jamming effectiveness and
efficiency of the jammers. Xu et al.’s and our work are com-
plementary in the sense that Xu et al. target jammers at
the physical layer, while we target jammers that aim to gain
more edge by exploiting the data link layer. This work ex-
tends our previous work [20] to more protocols and in a more
general setting (the latest attacks work even on encrypted
traffic, while the earlier attacks do not).

10. CONCLUSION
In earlier work we investigate link-layer jamming based on

detailed knowledge of the MAC protocols. In the present pa-
per we propose new link-layer jamming algorithms that are
based on minimal knowledge of the target protocols. The ef-
fectiveness and energy-efficiency of the minimal knowledge
attacks is almost as good as the effectiveness and energy-
efficiency of the detailed knowledge attacks. In addition, the
minimal knowledge attacks are effective when data packets
are encrypted. We propose new metrics (censorship rate,
attrition rate, effort ratio and lifetime advantage) and a
method to quantify the effect of link-layer jamming. With
typical WSN systems in use today no effective measures
against link-layer jamming are possible. For WSNs that
require high security against link-layer jamming we recom-
mend (1) encrypting link-layer packets to ensure a high entry
barrier for jammers, (2) the use of spread spectrum hard-
ware, and (3) the use of a TDMA protocol. It is our future
work to establish analytically the desirable characteristics of
MAC protocols that are secure against link-layer jamming
attacks.

Acknowledgements
This work is partially sponsored by the Smart Surroundings
project. The authors would like to thank Jerry den Hartog,
Gertjan Halkes, Koen Langendoen, Shea Ming Oon, Haohui
Liao, Tjerk Hofmeijer, Stefan Dulman, and Ferdy Hanssen
for the help they have provided, and the anonymous review-
ers for their inspiring comments.

11. REFERENCES
[1] D. L. Adamy and D. Adamy. EW 102: A Second Course in

Electronic Warfare. Artech House Publishers, 2004.

[2] I. Akyildiz and I. Kasimoglu. Wireless sensor and actor
networks: Research challenges. Elsevier Ad Hoc Networks,
2(4):351–367, Oct. 2004.

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.
Wireless sensor networks: a survey. Computer Networks,
38(4):393–422, 2002.

[4] K. Arisha, M. Youssef, and M. Younis. Energy-aware TDMA
based MAC for sensor networks. In IEEE Workshop on
Integrated Management of Power Aware Communications
Computing and Networking (IMPACCT 2002), May 2002.

[5] M. Blum. Coin flipping by telephone a protocol for solving
impossible problems. SIGACT News, 15(1):23–27, 1983.

[6] A. A. Cárdenas, S. Radosavac, and J. S. Baras. Detection and
prevention of MAC layer misbehavior in ad hoc networks. In
SASN ’04: Proceedings of the 2nd ACM workshop on
Security of ad hoc and sensor networks, pages 17–22, New
York, NY, USA, 2004. ACM Press.

[7] S. Chatterjea, L. van Hoesel, and P. Havinga. AI-LMAC: An
Adaptive, Information-centric and Lightweight MAC Protocol
for Wireless Sensor Networks. In Proceedings of the DEST
International Workshop on Signal Processing for Sensor
Networks. IEEE Computer Society Press, 2004.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
Likelihood from Incomplete Data via the EM Algorithm.
Journal of the Royal Statistical Society, Series B
(Methodological), 39(1):1–38, 1977.

[9] A. El-Hoiydi. Aloha with preamble sampling for sporadic traffic
in ad hoc wireless sensor networks. In IEEE International
Conference on Communications. IEEE Press, Apr. 2000.

[10] A. El-Hoiydi, J.-D. Decotignie, C. Enz, and E. L. Roux. Poster
abstract: WiseMAC, an ultra low power MAC protocol for the
WiseNET wireless sensor network. In SenSys ’03: Proceedings
of the 1st international conference on Embedded networked
sensor systems, pages 302–303, New York, NY, USA, 2003.
ACM Press.

[11] J. Hill and D. Culler. Mica: a wireless platform for deeply
embedded networks. IEEE Micro, 22(6):12–24, Nov. 2002.

[12] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann,
and F. Silva. Directed diffusion for wireless sensor networking.
IEEE/ACM Trans. Netw., 11(1):2–16, 2003.

[13] K. Jamieson, H. Balakrishnan, and Y. Tay. Sift: A MAC
protocol for event-driven wireless sensor networks. Technical
Report MIT-LCS-TR-894, Massachusetts Institute of
Technology, May 2003.

[14] E.-S. Jung and N. H. Vaidya. A power control MAC protocol
for ad hoc networks. In MobiCom ’02: Proceedings of the 8th
annual international conference on Mobile computing and
networking, pages 36–47, New York, NY, USA, 2002. ACM
Press.

[15] C. Karlof, N. Sastry, and D. Wagner. TinySec: a link layer
security architecture for wireless sensor networks. In SenSys
’04: Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 162–175, New
York, NY, USA, 2004. ACM Press.

[16] J. Konorski. Multiple Access in Ad-Hoc Wireless LANs with
Noncooperative Stations. In NETWORKING 2002:
Proceedings of the Second International IFIP-TC6
Networking Conference on Networking Technologies,
Services, and Protocols; Performance of Computer and
Communication Networks; and Mobile and Wireless
Communications, volume 2345 of LNCS, pages 1141–1146.
Springer-Verlag, 2002.

[17] S. S. Kulkarni and U. Arumugam. TDMA Service for Sensor
Networks. Proceedings of the Third International Workshop
on Assurance in Distributed Systems and Networks (ADSN),
Mar. 2004.

[18] P. Kyasanur and N. Vaidya. Detection and Handling of MAC
Layer Misbehavior in Wireless Networks. In Int. Conf. on
Dependable Systems and Networks (DSN’03), pages 173–182.
IEEE Computer Society Press, 2003.

[19] K. Langendoen and G. Halkes. Embedded Systems Handbook,
chapter Energy-Efficient Medium Access Control. CRC Press,
2005. To appear.

[20] Y. Law, P. Hartel, J. den Hartog, and P. Havinga. Link-layer
jamming attacks on S-MAC. In 2nd European Workshop on
Wireless Sensor Networks (EWSN 2005), pages 217–225.
IEEE, 2005.

[21] J. Li and G. Y. Lazarou. A bit-map-assisted energy-efficient
MAC scheme for wireless sensor networks. In IPSN’04:
Proceedings of the third international symposium on
Information processing in sensor networks, pages 55–60, New
York, NY, USA, 2004. ACM Press.

[22] G. Lu, B. Krishnamachari, and C. S. Raghavendra. An
Adaptive Energy-Efficient and Low-Latency MAC for Data
Gathering in Wireless Sensor Networks. 18th International
Parallel and Distributed Processing Symposium (IPDPS’04)
- Workshop 12, 13(13), 2004.

[23] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and
J. Anderson. Wireless sensor networks for habitat monitoring.
In Proceedings of the 1st ACM international workshop on



Wireless sensor networks and applications, pages 88–97.
ACM Press, 2002.

[24] D. McKay. Information Theory, Inference, and Learning
Algorithms. Cambridge University Press, 2003.

[25] M. Mysore, M. Golan, E. Osterweil, D. Estrin, and M. Rahimi.
TinyDiffusion in the Extensible Sensing System at the James
Reserve. http://www.cens.ucla.edu/~mmysore/Design/OPP, May
2003.

[26] R. Negi and A. Perrig. Jamming analysis of MAC protocols.
Carnegie Mellon Technical Memo, 2003.

[27] G. Noubir. On connectivity in ad hoc networks under jamming
using directional antennas and mobility. In Wired/Wireless
Internet Communications, volume 2957 of LNCS, pages
186–200. Springer-Verlag, 2004.

[28] G. Pei and C. Chien. Low power TDMA in large wireless
sensor networks. In Military Communications Conference
(MILCOM 2001), volume 1, pages 347–351. IEEE, 2001.

[29] J. Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networks. In SenSys ’04:
Proceedings of the 2nd international conference on Embedded
networked sensor systems, pages 95–107. ACM Press, 2004.

[30] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves.
Energy-efficient collision-free medium access control for
wireless sensor networks. In SenSys ’03: Proceedings of the
1st international conference on Embedded networked sensor
systems, pages 181–192. ACM Press, 2003.

[31] N. Reijers, G. Halkes, and K. Langendoen. Link layer
measurements in sensor networks. In 1st IEEE Int. Conf. on
Mobile Ad hoc and Sensor Systems (MASS ’04). IEEE
Computer Society Press, 2004.

[32] RF Monolithics, Inc. ASH Transceiver Software Designers
Guide, 2002.

[33] RF Monolithics, Inc. TR1001: 868.35 MHz Hybrid Transceiver.
Datasheet, 2002.

[34] RF Monolithics, Inc. ASH Transceiver Designers Guide, 2004.

[35] M. St̊ahlberg. Radio jamming attacks against two popular
mobile networks. In H. Lipmaa and H. Pehu-Lehtonen, editors,
Proceedings of the Helsinki University of Technology.
Seminar on Network Security. Mobile Security. Helsinki
University of Technology, Fall 2000.

[36] Texas Instruments, Inc. MSP430x13x, MSP430x14x Mixed
Signal Microcontroller. Datasheet, 2001.

[37] T. van Dam and K. Langendoen. An adaptive energy-efficient
MAC protocol for wireless sensor networks. In Proceedings of
the first international conference on Embedded networked
sensor systems, pages 171–180. ACM Press, 2003.

[38] L. van Hoesel and P. Havinga. A Lightweight Medium Access
Protocol (LMAC) for Wireless Sensor Networks: Reducing
Preamble Transmissions and Transceiver State Switches. In
INSS, June 2004.

[39] J. van Lint and R. Wilson. A course in combinatorics.
Cambridge University Press, 2nd edition, 2001.

[40] K. Vantran. WolfPack Proves Strength in Numbers.
DefenseLINK News, Aug. 2003.
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APPENDIX

= one or more unoccupied slots
= exactly one occupied slot

Case 1:
Case 2:
Case 3:

Figure 9: Three cases of slot distribution with no
consecutive occupied slots.

Proof of Equation 1: Given s (s ≥ 4) total number of
slots and n (0 ≤ n ≤ s) occupied slots in a frame, we want
to find the probability that at least two occupied slots are
consecutive (denoted as event A), which is equivalent to 1
minus the probability that there is at least one unoccupied
slot between any two occupied slots (denoted as event B).
When 0 ≤ n < 2, Pr{A} = 0, since there is either no oc-
cupied slot, or there is always one unoccupied slot between
two occupied slots. When s

2
< n ≤ s, Pr{A} = 0, since

more than half of the slots are occupied and at least two of
them are consecutive. For the other values of n, we refer to
Figure 9 where one white box represents one or more un-
occupied slots, and one shaded box represents exactly one
occupied slot. Denote xi (xi ≥ 1) as the number of un-
occupied slots in the i-th white box. There are 3 cases to
consider:

Case 1: x1 + . . . + xn+1 = s − n, s ≥ 2n + 1, and the
number of positive integer solutions for x1, . . . , xn+1 is`

s−n−1
n

´
[39].

Case 2: x1 + . . . + xn = s− n, s ≥ 2n, and the number of
solutions for x1, . . . , xn is

`
s−n−1

n−1

´
.

Case 3: Similar to Case 2, the number of solutions for x1,
. . ., xn is

`
s−n−1

n−1

´
.

Therefore, when 2 ≤ n ≤ s−1
2

,

Pr{A} = 1−Pr{B} = 1−
`

s−n−1
n

´
+ 2

`
s−n−1

n−1

´`
s
n

´ = 1−
`

s−n
n

´`
s−1

n

´
And when s−1

2
< n ≤ s

2
, i.e. when n = s

2
and s is even,

Pr{A} = 1− Pr{B} = 1−
2

`
s−n−1

n−1

´`
s
n

´
�
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