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Abstract—Energy-efficiency (EE) is critical for device-to-device
(D2D) enabled cellular networks due to limited battery capacity
and severe co-channel interference. In this paper, we address
the EE optimization problem by adopting a stable matching
approach. The NP-hard joint resource allocation problem is
formulated as a one-to-one matching problem under two-sided
preferences, which vary dynamically with channel states and
interference levels. A game-theoretic approach is employed to
analyze the interactions and correlations among user equipments
(UEs), and an iterative power allocation algorithm is developed
to establish mutual preferences based on nonlinear fractional
programming. We then employ the Gale-Shapley (GS) algorithm
to match D2D pairs with cellular UEs (CUs), which is proved to
be stable and weak Pareto optimal. We provide a theoretical anal-
ysis and description for implementation details and algorithmic
complexity. We also extend the algorithm to address scalability
issues in large-scale networks by developing tie-breaking and
preference deletion based matching rules. Simulation results
validate the theoretical analysis and demonstrate that significant
performance gains of average EE and matching satisfactions can
be achieved by the proposed algorithm.

Index Terms—energy-efficient matching, resource allocation,
nonconvex optimization, D2D communications, game-theoretical
approach.

I. INTRODUCTION

DUE to the explosive growth of Internet of things (IoT)

and cellular technology, it is predicted that billions of

devices will be interconnected and the corresponding data

traffic will grow more than 1000 times by 2020 [1]–[4].

Device-to-device (D2D) communication that enables ubiqui-

tous information acquisition and exchange among devices over

a direct link [5], is a key enabler to facilitate future 5G

mobile systems [6]. D2D communications can be operated as

an underlay to cellular networks through spectrum reusing [5],

which brings numerous benefits and significant performance
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improvements to network capacity and user experience [7],

[8].

The operation of distributed D2D communications within

centralized cellular networks does give rise to new challenges

in resource allocation optimization due to limited spectrum and

battery capacity. One major line of works aims at maximizing

the spectrum efficiency (SE) through resource allocation. A

three-stage joint optimization of admission control, power

allocation, and link selection was studied in [9]. An evaluation

of SE performance under various resource sharing modes was

performed in [10]. Resource allocation problems with queuing

models and delay constraints were considered in [11]. In [12],

the authors employed reverse iterative combinatorial auction

(ICA) to solve the system sum-rate optimization problem.

Spectrum-efficient resource allocation algorithms have been

proposed to address problems under different scenarios such

as relay-aided transmission [13], [14], constrained network

capacity [15], wireless video networks [16], software-defined

multi-tier cellular networks [17], [18], and energy harvesting

[19], etc. Comprehensive surveys and overviews of spectrum-

efficient resource management for D2D communications were

provided in [13], [20].

Although the above works are able to achieve significant SE

performance gains, energy consumption of user equipments

(UEs) is completely ignored during the optimization process.

Without energy-efficient resource allocation design, UEs have

to continually increase transmission power to satisfy stringent

quality of service (QoS) requirements in an interference-

limited environment, which in turn causes more interference

to other UEs and leads to rapid depletion of battery energy.

By exploiting the centralized architecture of cellular networks

and distributed locations of UEs, energy-efficient resource

allocation problems have been addressed in both centralized

and distributed ways. Centralized schemes for device-to-multi-

device (D2MD) and device-cluster scenarios were studied in

[21] and [22], respectively. In [23]–[25], the authors pro-

posed auction based power allocation, channel selection, and

cooperative relay selection algorithms for energy efficiency

(EE) optimization, respectively. A fractional frequency reuse

(FFR) based two-stage channel selection and power allocation

algorithm was proposed in [26]. A joint optimization algorithm

for mode selection and resource scheduling was proposed by

employing a coalition game modeling approach [27]. Theoret-

ical analysis of the tradeoff between EE and SE was developed

in [28], [29], and was extended to multi-hop scenarios in [30].

However, most of the previous studies have ignored mutual

preferences and satisfactions of both D2D pairs and cellular
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UEs (CUs). A common assumption is that every UE is willing

to accept and obey a resource allocation decision even though

it can achieve a better performance by disrupting this decision.

Detailed modeling of preference from the perspective of EE is

missing. Several significant challenges arise when UEs’ prefer-

ences and satisfactions are taken into consideration. First of all,

it is difficult to model preferences of UEs because they vary

dynamically with channel states and aggregate interference

levels. Second, it is impossible to make every UE always feel

satisfied with the same resource allocation decision because

UEs may have different or even conflicting preferences. Last

but not least, communication overhead and transmission delay

caused by obtaining the complete knowledge of every UE’s

preference may lead to infeasibility and scalability issues with

two-sided preferences.

To address these challenges, we propose an energy-efficient

stable matching algorithm to solve the NP-hard resource

allocation problem by combining advantages of game theory,

matching theory, and nonlinear fractional programming. In

computational complexity theory, NP-hard problem represents

that the problem is at least as hard as any NP-complete

problem, which cannot be solved by using polynomial-time

algorithms [31]. Game theory that enables in-depth analysis

of UEs with conflicting objectives has been widely applied for

optimizing resource allocation in D2D communications [13],

[20], [32]. Despite its popularity and potential benefits, most

game-theory based approaches such as the Nash equilibrium,

only validate unilateral stability notions per player by showing

that any strategy deviating from the equilibrium cannot achieve

better performance [33]. Such one-sided stability may be

impractical when performing resource allocation between two

disjoint sets of players with individualized mutual preferences.

In comparison, matching theory provides a distributed self-

organizing and self-optimizing approach for solving combi-

natorial problems of matching resources in two disjoint sets

[34]–[36]. In particular, it is suitable for wireless resource

management due to its ability to handle complex objective

functions related to heterogeneous UEs through generally

defined preferences. Matching theory based resource allocation

algorithms have been developed for cellular networks [33],

[37], cognitive radios [38], D2D communications [33], and

mobile energy-harvesting networks [39], etc.

Related works that employ matching theory to solve re-

source allocation problems for D2D communications are sum-

marized and compared as follows. In [40], matching theory

was exploited to solve the resource allocation problem in

a multi-tier heterogeneous network which consists of macro

UEs, small cell UEs, and D2D UEs. The work was then

extended to the scenario of relay-aided D2D communications

under channel uncertainties, which were modeled as ellipsoidal

uncertainty sets by exploiting robust optimization theory [41].

In [42], matching theory was used for solving the relay

selection problem in full duplex D2D communications. The

interactions and interconnections between D2D UEs and CUs

were not taken into consideration. In [43], cheating was

introduced into the matching process to further improve UEs’

satisfactions by falsifying certain UEs’ preference profiles.

However, we believe that the energy-efficient joint partner

selection and power allocation problem with UEs’ preferences

and satisfactions considered in this paper has not been well

addressed in the above mentioned works.

The main contributions of this paper are summarized as

follows:

• A problem formulation for optimizing energy efficiency

of any D2D pair or CU under transmission power, channel

reusing, and QoS constraints is derived. The formulation

obtained is an mixed integer nonlinear programming

(MINLP) problem, which uses a binary variable to in-

dicate partner selection (which UE should be selected

to form a channel-reusing partnership), and a continuous

variable for power allocation (how much transmission

power should be allocated for the potential D2D-CU

pair). To solve the MINLP problem, we introduce a

one-to-one matching model which matches D2D pairs

with CUs according to mutual preferences. In this way,

the original NP-hard joint partner selection and power

allocation problem can be decoupled into two separate

subproblems and solved in a tractable manner.

• One main focus of this work is how to establish mutual

preferences from the perspectives of EE. We model a

D2D pair (or CU)’s preference over a CU (or D2D

pair) as the maximum achievable EE under the specified

matching. The power allocation problem developed for

obtaining UE preference is modeled as a noncooperative

game, in which each UE aims at optimizing its indi-

vidual EE given the transmission power strategies of its

channel-reusing partner. A nonlinear fractional program-

ming and Lagrange dual decomposition based iterative

algorithm is developed for establishing preference profiles

of both D2D pairs and CUs [44], [45]. The existence

and uniqueness properties of the Nash equilibrium and

its relationships with optimum power allocation strategies

are analyzed theoretically via mathematical proofs.

• Finally, we propose to advocate the Gale-Shapley (GS)

algorithm to solve the formulated energy-efficient match-

ing problem under established two-sided preferences and

corresponding power allocation strategies. The proposed

matching algorithm is also extended to address scala-

bility issues encountered in large-scale networks. De-

tailed discussion and in-depth analysis of matching sta-

bility, distributed/centralized implementation, and com-

putational complexity are presented. Simulation results

show that the proposed algorithm can obtain significant

EE performance gains and remarkably improve matching

satisfactions for a wide range of satisfaction threshold

values.

The remaining parts of this paper are outlined as follows.

Section II provides a detailed description of the objective

functions and preference modeling for the formulated resource

allocation problems. Section III develops the proposed energy-

efficient matching algorithm. Simulation results are presented

and discussed in section IV. Section V concludes the paper

and presents future research directions.
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II. ENERGY-EFFICIENT RESOURCE ALLOCATION

PROBLEM FORMULATION

In this section, we firstly provide a detailed description

of the system model of D2D communications underlaying

cellular networks with UE preferences, and then present the

formulation of the energy-efficient resource allocation prob-

lem.

A. System Model

We consider uplink spectrum sharing in D2D communica-

tions underlaying cellular networks, which is shown in Fig. 1.

Uplink spectrum sharing is considered in particularly because

firstly, uplink spectrum resources are usually under-utilized

compared to the downlink in frequency division duplexing

(FDD) based cellular systems [27]; secondly, co-channel inter-

ference caused by D2D UEs can be handled more easily by a

powerful base station (BS) than CUs. We assume that each CU

is allocated with an orthogonal channel (e.g., an orthogonal

resource block in LTE), i.e., K active CUs occupy a total of

K orthogonal channels and there is no co-channel interference

among CUs. A pair of D2D transmitter and receiver that meet

D2D communication requirements form a D2D pair, and are

allowed to reuse at most one CU’s channel for transmission.

The scenario that each D2D pair reuses more than one channel

is equivalent to a one-to-many matching problem, which is out

of the scope of this paper and left to future works.

As a result, all of active D2D transmitters cause co-

channel interference to the BS, and a CU causes co-channel

interference to the D2D receiver that operates in the same

channel. QoS requirements are imposed for both CUs and D2D

pairs. In this paper, we assume that the D2D mode and peer

selection process has already been finished, and we mainly

focus on the resource allocation part. The joint optimization

of mode selection, peer selection, and resource allocation is a

completely new problem, which is out of the scope of this

paper and will be treated in our future works. Regarding

how to perform mode selection and peer selection, interested

readers may refer to [7], [11], [46] and references therein for

more details.

There are a total of N D2D pairs and K CUs. Through-

out the paper, the index sets of active D2D pairs and

CUs are denoted as D = {d1, · · · , di, · · · , dN}, and C
={c1, · · · , ck, · · · , cK}, respectively.

Definition 1. The partner selection matrix of D2D pairs is

denoted as XN×K , where the (i, k)-th element xi,k ∈ {0, 1}
indicates the selection decision of the D2D-CU partnership

(di, ck) for the D2D pair di, ∀di ∈ D, ∀ck ∈ C. If xi,k = 1,

di prefers to forming a partnership with ck, and if xi,k = 0,

otherwise.

Definition 2. The partner selection matrix of CUs is denoted

as YK×N , where the (k, i)-th element yk,i ∈ {0, 1} indicates

the selection decision of the D2D-CU partnership (ck, di) for

the CU ck, ∀ck ∈ C, ∀di ∈ D. If yk,i = 1, ck prefers to

forming a partnership with di, and if yk,i = 0, otherwise.

Remark 1. Due to the individualized and differentiated

preferences of di and ck, it is very possible to have conflicting

Fig. 1. Practical implementation and resource allocation design for D2D
communications underlaying cellular networks with UE preferences.

partner selection decisions, i.e., xi,k 6= yk,i. A D2D-CU part-

nership (di, ck) can be formed if and only if xi,k = yk,i = 1.

Regarding channel models, both fast fading and slow fading

which are caused by multi-path propagation, shadowing, and

pathloss are taken into consideration [9]. The channel gain of

the interference from ck to di is given by

gck,i = ̟βc
k,iζ

c
k,id

−α
k,i , (1)

where ̟ is the pathloss constant, βc
k,i is the fast-fading gain

with exponential distribution, ζck,i is the slow-fading gain with

log-normal distribution, α is the pathloss exponent, and dk,i
is the transmission distance. In a similar way, we can define

the channel gain of di as gdi , the interference channel gain

between the transmitter of di and the BS as gdi,B , and define

the channel gain between ck and the BS as gck,B .

The achievable SE (defined as bits/s/Hz) of di is given by

Ud
i =

∑

ck∈C

log2

(

1 +
xi,kyk,ip

d
i g

d
i

N0 + xi,kyk,ipckg
c
k,i

)

, (2)

where pdi and pck represent the transmission power of di and

ck, respectively. N0 is the noise power on each channel. The

achievable SE of ck is given by

U c
k = log2

(

1 +
pckg

c
k,B

N0 +
∑

di∈D xi,kyk,ipdi g
d
i,B

)

. (3)

The total power consumptions of di and ck are given by

Ed
i =

∑

ck∈C

1

η
xi,kyk,ip

d
i + 2pcir, (4)

Ec
k =

1

η
pck + pcir. (5)

pcir is the total circuit power consumption which includes

values of mixer, frequency synthesizer, digital-to-analog con-

verter (DAC)/analog-to-digital converter (ADC), etc. η is the

power amplifier (PA) efficiency, i.e., 0 < η < 1. The power
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consumption of the BS is not considered because it is powered

by external grid power.

B. Problem Formulation

Eventually better channel conditions and proper transmis-

sion power strategies can improve the EE performance more

efficiently. Therefore, for any D2D pair or CU, the following

questions need to be answered before reaching a decision:

• How to select a partner to form a D2D-CU channel-

reusing pair for optimizing EE performance?

• How to perform power allocation for the expected D2D-

CU pair?

• How to satisfy various practical resource allocation con-

straints such as maximum transmission power levels, QoS

requirements, and channel-reusing rules, etc?

• How to avoid disruptions from other D2D pairs or CUs

which also wish to be matched with the preferred D2D

pair or CU?

The above questions indicate that the optimization

of EE involves solving a joint partner selection

and power allocation problem. To be more general,

denoting xi = {xi,1, · · · , xi,k, · · · , xi,K} and

yk = {yk,1, · · · , yk,i, · · · , yk,N} as di’s and ck’s binary

partner selection strategy sets, respectively, and denoting pdi
and pck as di’s and ck’s continuous power allocation strategies,

respectively, the objective function in terms of EE (bits/J/Hz)

is defined as the SE (bits/s/Hz) divided by the total power

consumption (W) [47]. The EE objective functions of di
(including both the transmitter and receiver) and ck are given

by

Ud
i,EE(xi, p

d
i ) =

Ud
i (xi, p

d
i )

Ed
i (xi, pdi )

=

∑

ck∈C log2

(

1 +
xi,kyk,ip

d
i g

d
i

N0+xi,kyk,ip
c
k
gc
k,i

)

∑

ck∈C
1
η
xi,kyk,ipdi + 2pcir

, (6)

U c
k,EE(yk, p

c
k) =

U c
k(yk, p

c
k)

Ec
k(p

c
k)

=

log2

(

1 +
pc
kg

c
k,B

N0+
∑

di∈D
xi,kyk,ip

d
i
gd
i,B

)

1
η
pck + pcir

. (7)

The joint partner selection and power allocation problem

for di can be formulated as

max
(xi,p

d
i
)

Ud
i,EE(xi, p

d
i )

s.t. Cd
i,1 : 0 ≤ pdi ≤ pdi,max,

Cd
i,2 : Ud

i (xi, p
d
i ) ≥ Ud

i,min,

Cd
i,3 : xi,k = {0, 1}, ∀ck ∈ C,

Cd
i,4 :

∑

ck∈C

xi,k ≤ 1. (8)

Cd
i,1 ensures that the power allocation of di should not exceed

the maximum allowed transmission power pdi,max. Cd
i,2 speci-

fies the QoS requirement which represents that the minimum

SE should not fall below Ud
i,min. Cd

i,3 and Cd
i,4 are the channel-

reusing constraints which make sure that at most one channel

can be shared simultaneously by di and one existing CU.

The problem formulation for ck is given by

max
(yk,p

c
k
)

U c
k,EE(yk, p

c
k)

s.t. Cc
k,1 : 0 ≤ pck ≤ pck,max,

Cc
k,2 : U c

k(yk, p
c
k) ≥ U c

k,min,

Cc
k,3 : yk,i = {0, 1}, ∀di ∈ D,

Cc
k,4 :

∑

di∈D

yk,i ≤ 1. (9)

Cc
k,1 and Cc

k,2 specify the transmission power and QoS con-

straints. Cc
k,3 and Cc

k,4 ensure that at most one D2D pair can

share the same channel with ck simultaneously.

Remark 2. By observing (8) and (9), we find that the

partner selection problem is coupled with the power allocation

problem. The formulation obtained is an NP-hard MINLP

problem, which involves both binary and continuous variables

for resource allocation optimization. Thus, the formulations

obtained in neither (8) nor (9) cannot be solved directly

by using either nonlinear fractional programming or integer

programming. Furthermore, neither of the two programming

approaches has taken UEs’ preferences and satisfactions into

consideration, which may lead to unstable and unsatisfied

resource allocation decision.

To solve (8) and (9), we introduce a one-to-one matching

model to match D2D pairs with CUs according to their mutual

preferences. In this fashion, the original NP-hard MINLP

problem can be decoupled into two separate subproblems and

solved in a tractable manner. We use the triple (C,D,P) to

denote the formulated matching problem, i.e., D, C represent

the two finite and distinct sets of D2D pairs and CUs, respec-

tively, and P is the set of mutual preferences. Both D2D pairs

and CUs seek to form proper channel-reusing partnerships

to maximize EE under constraints of QoS and transmission

power. The definition of a matching µ is given by [35]:

Definition 3. For the matching problem (C,D,P), µ is a

point-by-point mapping from C∪D onto itself under preference

P . This is, for any ck ∈ C and di ∈ D, µ(ck) ∈ D∪{ck} and

µ(di) ∈ C ∪ {dk}. µ(ck) = di if and only if µ(di) = ck.

If µ(di) = di or µ(ck) = ck, di or ck stays single. Either

di or ck can send a request for forming a partnership with

its preferred partner based on its preference (which is the

partner selection subproblem), and demonstrate the allocated

transmission power for the formed partnership (which is the

power allocation subproblem). Both di and ck are assumed

to only care about their own matched partners and show

little concerns to matching results of others. This assumption

is valid because UEs are privately owned and operated by

independent individuals.

III. ENERGY-EFFICIENT STABLE MATCHING FOR D2D

COMMUNICATIONS

In this section, we introduce the proposed energy-efficient

stable matching approach. First, we develop an iterative al-

gorithm for preference establishment based on noncoopera-

tive game theory and nonlinear fractional programming in
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Subsection III-A. Then, the derivation of the energy-efficient

matching based on the GS algorithm is presented in Subsection

III-B. Finally, in-depth discussions and theoretical analysis of

matching stability, distributed/centralized implementation, and

computational complexity are provided in Subsection III-C.

A. Preference Establishment

1) Noncooperative Game based Preference Modeling: The

set of UEs’ preferences P is necessary for developing the

energy-efficient matching. We model di’s preference over ck
as the maximum achievable EE under the matching µ(di) = ck
(xi,k = yk,i = 1). Thus, the partner selection decision of di
has been already fixed, and only the power allocation strat-

egy needs to be optimized. The formulated power allocation

problem is given by

max
pd
i

Ud
i,EE(p

d
i )
∣

∣

∣

µ(di)=ck

s.t. Cd
i,1, C

d
i,2. (10)

The power allocation problem for ck under the matching

µ(ck) = di is given by

max
pc
k

U c
k,EE(p

c
k)
∣

∣

∣

µ(ck)=di

s.t. Cc
k,1, C

c
k,2. (11)

There are two challenges when solving the above optimiza-

tion problems. First, from (6) and (7), Ud
i,EE and U c

k,EE are

inter-correlated through the interference terms, i.e., pckg
c
k,i and

pdi g
d
i,B . Second, the problems formulated in (10) and (11) are

still nonconvex due to the fractional form of Ud
i,EE and U c

k,EE .

In order to study the inter-connections between D2D pairs

and CUs (to solve the first challenge), we adopt a game-

theoretic approach to model the distributed power allocation

problem as a noncooperative game G. UEs are assumed as

rational and selfish [48], i.e., each di ∈ D (or ck ∈ C)

cares about its individual objective Ud
i,EE (or U c

k,EE), but

is not otherwise concerned with Ud
j,EE , ∀dj ∈ D\{di} (or

U c
m,EE , ∀cm ∈ C\{ck}). The game G can be described as

G = (C,D,A,U), wherein A = {Ad
1, · · · , A

d
N , Ac

1, · · · , A
d
K}

is the set of possible strategies that a UE can take, and

U = {Ud
1,EE , · · · , U

d
N,EE , U

c
1,EE , · · · , U

c
K,EE} is the set of

UEs’ utilities. For example, if Ad
i = {[0, pdi,max]}, then di is

allowed to select pdi from the interval [0, pdi,max].
2) Objective Function Transformation: To overcome the

second challenge, nonlinear fractional programming is em-

ployed to transform the nonconvex problem in the fractional

form to equivalent convex ones. The optimum result of (10)

is defined as

qd∗i = max
pd
i

Ud
i,EE(p

d
i )
∣

∣

∣

µ(di)=ck
=

Ud
i (p

d∗
i )

Ed
i (p

d∗
i )

, (12)

where pd∗i is the optimum power allocation strategy of di.
Based on [44], we have

Theorem 1: qd∗i is achieved if and only if

max
pd
i

Ud
i (p

d
i )− qd∗i Ed

i (p
d
i ) = Ud

i (p
d∗
i )− qd∗i Ed

i (p
d∗
i ) = 0.

(13)

Fig. 2. The relationship between inner loop and outer loop iterations of the
iterative power allocation algorithm.

Theorem 1 reveals that there exists an equivalent trans-

formed problem with an objective function in subtractive

form, which leads to the same maximum EE obtained by

directly solving (10). The equivalent optimization problem in

subtractive form is given by

max
pd
i

Ud
i (p

d
i )− qd∗i Ed

i (p
d
i )

s.t. Cd
i,1, C

d
i,2. (14)

(14) is actually a multi-objective convex optimization problem

where the variable qd∗i can be regarded as a negative weight

of Ed
i . In the same way, defining qc∗k and pc∗k as the optimum

EE and the corresponding strategy of ck, respectively, the

transformed problem that is equivalent to (11) is given by

max
pc
k

U c
k(p

c
k)− qc∗k Ec

k(p
c
k)

s.t. Cc
k,1, C

c
k,2. (15)

3) Distributed Iterative Power Allocation: Both (14) and

(15) are standard convex optimization problems and can be

solved efficiently. However, the specific values of qd∗i and qc∗k
are required to solve (14) and (15), respectively. In order to

obtain qd∗i and qc∗k , an iterative algorithm is developed based

on Dinkelbach’s method and is given in Algorithm 1 [44]. The

iterative Algorithm 1 consists of two loops: the outer loop with

the iteration index l represents iterations of the noncooperative

game, and the inner loop with the iteration index n represents

iterations of Dinkelbach’s algorithm. The relationship between

inner loop and outer loop iterations is shown in Fig. 2. For

each round of the game, the inner loop is executed to find

the corresponding optimum power allocation strategy for each

player, which stops if either the iteration stopping criteria

or the maximum loop number Nmax is reached. The game

iteration continues until the achieved power allocation strategy

converges to a Nash equilibrium, i.e., none player is capable

of unilaterally achieving better performance by deviating from

it.
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Algorithm 1 Distributed Iterative Power Allocation Algorithm

for Obtaining qd∗i and qc∗k

1: Input: gdi , p̂di g
d
i,B , gck,B , p̂ckg

c
k,i, p

d
i,max, pdk,max, Cd

i,min,

Cc
k,min.

2: Output: qd∗i , qc∗k , pd∗i , pc∗k .

3: Initialize: qdi , qck, Nmax, ∆g , ∆d, ∆c, p̂ck, p̂di
4: while | qd∗

i (l)− qd∗
i (l − 1) |≤ ∆g ,

& | qc∗
k (l)− qc∗

k (l − 1) |≤ ∆g do

5: while n < Nmax do

6: obtain p̂di (n) using (20)

7: if Ud
i [p̂

d
i (n)]− qdi (n)E

d
i [p̂

d
i (n)] > ∆d then

8: Update: qdi (n+ 1) = Ud
i [p̂

d
i (n)]/E

d
i [p̂

d
i (n)]

9: else

10: pd∗i = p̂di (n), and qd∗i = Ud
i (p

d∗
i )/Ed

i (p
d∗
i )

11: end if

12: obtain p̂ck(n) using (23)

13: if U c
k [p̂

c
k(n)]− qck(n)E

c
k[p̂

c
k(n)] > ∆c then

14: Update: qck(n+ 1) = U c
k [p̂

c
k(n)]/E

c
k[p̂

c
k(n)]

15: else

16: pc∗k = p̂ck(n), and qc∗k = U c
k(p

c∗
k )/Ec

k(p
c∗
k )

17: end if

18: Update the Dinkelbach iteration index: n → n+1
19: end while

20: Update: qd
i (l) = qd∗i , qc∗

k (l) = qc∗k
21: Update the game iteration index : l → l + 1
22: end while

At the n-th iteration of the l-th round game, pdi (n) and

pck(n) are obtained by solving the following problems with

qdi (n) and qck(n) obtained from the (n− 1)-th iteration:

max
pd
i

Ud
i [p

d
i (n)]− qdi (n)E

d
i [p

d
i (n)]

s.t. Cd
i,1, C

d
i,2. (16)

max
pc
k

U c
k [p

c
k(n)]− qck(n)E

c
k[p

c
k(n)]

s.t. Cc
k,1, C

c
k,2. (17)

The augmented Lagrangian of (16) is given by

LEE
i (pdi , δ

d
i , θ

d
i ) = Ud

i [p
d
i (n)]− qdi (n)E

d
i [p

d
i (n)]

−δdi (n)[p
d
i (n)− pdi,max] + θdi (n)

(

Ud
i [p

d
i (n)]− Ud

i,min

)

,
(18)

where δdi and θdi are the Lagrange multipliers for constraints

Cd
i,1 and Cd

i,2, respectively. By using Lagrange dual decom-

position, (18) is decomposed as [45]

min
(δdi , θ

d
i ≥ 0)

max
(pdi )

LEE
i (pdi , δ

d
i , θ

d
i ). (19)

By exploiting Karush-Kuhn-Tucker (KKT) conditions, the

optimal value p̂di (n) corresponding to qdi (n) is given by

p̂di (n) =

[

η[1 + θdi (n)] log2 e

qdi (n) + ηδdi (n)
−

p̂ckg
c
k,i(n) +N0

gdi

]+

, (20)

Algorithm 2 Iterative Preference Establishment Algorithm for

Obtaining P

1: Input: the set of CUs and D2D pairs, C, D.

2: Output: the set of preference profiles P .

3: for di ∈ D do

4: for ck ∈ C do

5: calculate maximum achievable qd∗i

∣

∣

∣

µ(di)=ck
and

qc∗k

∣

∣

∣

µ(ck)=di

for the D2D-CU pair (di, ck) by em-

ploying Algorithm 1.

6: end for

7: end for

8: for di ∈ D do

9: sort all of CUs ck ∈ C in a descending order according

to qd∗i

∣

∣

∣

µ(di)=ck
.

10: end for

11: for ck ∈ C do

12: sort all of D2D pairs di ∈ D in a descending order

according to qc∗k

∣

∣

∣

µ(ck)=di

.

13: end for

where [x]+ = max{0, x}. Then, by employing the gradient

method [49], we update the Lagrange multipliers as

δdi (n, τ + 1) =
[

δdi (n, τ) + ǫi,δ(n, τ)
(

p̂di (n, τ)− pdi,max

)]+
,

(21)

θdi (n, τ + 1) =
[

θdi (n, τ)− ǫi,θ(n, τ)
(

Ud
i (n, τ)− Ud

i,min

)]+
,

(22)

where τ is the iteration index of Lagrange multiplier updating,

ǫi,δ and ǫi,θ are the step sizes. The step sizes should be

carefully chosen to guarantee convergence and optimality.

Then, p̂di (n) obtained in (20) is used to update qdi (n+1) for

the (n+1)-th iteration as qdi (n+1) = Ud
i [p̂

d
i (n)]/E

d
i [p̂

d
i (n)]. In

the final iteration of the inner loop, setting pd∗i = p̂di , qd∗i can

be obtained by using (12) and saved as the l-th element of the

vector qd
i , i.e., qd

i (l) = qd∗i . The optimization problem (17) is

solved in the same way. The optimal value p̂ck(n) corresponds

to qck(n) is given by

p̂ck(n) =

[

η[1 + ξck(n)] log2 e

qck(n) + ηρck(n)
−

p̂di (n)g
d
i,B +N0

gck,B

]+

. (23)

Details for how to obtain qc∗k are omitted due to space

restrictions. The outer loop stops if the maximum EE (qd∗i , qc∗k )
obtained in the l-th round of the game varies little from the

optimization result achieved in the previous round, where the

corresponding optimum strategy set (pd∗i , pc∗k ) has converged

to a Nash equilibrium.

4) Preference Profile Establishment: Algorithm 2 presents

how to establish the set of preference profiles P . For every

di ∈ D, the maximum achievable qd∗i under the matching

µ(di) = ck, ∀ck ∈ C, is denoted as qd∗i

∣

∣

∣

µ(di)=ck
, and can be

obtained by using Algorithm 1. We write ck ≻di
cm to mean

di prefers ck to cm, which is defined as

ck ≻di
cm ⇔ qd∗i

∣

∣

∣

µ(di)=ck
> qd∗i

∣

∣

∣

µ(di)=cm
, (24)
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where ≻ is a complete, reflexive, and transitive binary prefer-

ence relation [35]. In addition, we write ck �di
cm to mean

di likes ck at least as well as cm, which is defined as

ck �di
cm ⇔ qd∗i

∣

∣

∣

µ(di)=ck
≥ qd∗i

∣

∣

∣

µ(di)=cm
. (25)

Similarly, we write di ≻ck dj to mean ck prefers di to dj ,

which is defined as

di ≻ck dj ⇔ qc∗k

∣

∣

∣

µ(ck)=di

> qc∗k

∣

∣

∣

µ(ck)=dj

. (26)

After obtaining qd∗i

∣

∣

∣

µ(di)=ck
, ∀ck ∈ C, the preference profile

P (di) = {· · · , ck, cm · · · } is obtained by sorting all of CUs in

a descending order according to the criteria of qd∗i

∣

∣

∣

µ(di)=ck
,

∀ck ∈ C. The preference profile of ck is denoted as P (ck),
which is obtained by sorting all of available D2D pairs accord-

ing to qc∗k

∣

∣

∣

µ(ck)=di

, ∀di ∈ D. The total set P is constructed as

P = {P (d1), · · · , P (dN ), P (c1), · · · , P (cK)}.

B. Energy-Efficient Stable Matching

After obtaining P (di) and P (ck) for each di ∈ D and ck ∈
C, we propose Algorithm 3 to match D2D pairs with CUs

by employing the GS algorithm [34]. In the first iteration,

every di ∈ D sends a partner request to its most preferred CU

max{qd∗i

∣

∣

∣

µ(di)=ck
, ∀ck ∈ C}. Then, every ck ∈ C receives the

request and rejects the D2D pair if it already holds a better

candidate. Any di ∈ D that is not rejected by the CUs at

this step is held as a candidate. In the next step, any di ∈ D
that has been already rejected sends a new request to its most

preferred choice from the set of CUs that have not yet issued

a rejection. If a D2D pair is rejected by all of its preferred

CUs, it will give up and send no further request. Each ck ∈ C
compares all of the received requests including the candidate

that was held from previous steps and only accepts the most

preferred D2D pair. The request sending and rejection process

finishes when every di ∈ D has already found a partner or

has been rejected by all of CUs to which it has sent requests.

Algorithm 3 has the property of deferred acceptance due to

the fact that the best candidate kept at any step can be rejected

later on if a better candidate appears.

C. Discussion and Analysis

In this subsection, we provide an in-depth theoretical anal-

ysis for the proposed energy-efficient matching algorithm.

1) Nash Equilibrium Analysis: Theorem 2: Under the

matching µ(di) = ck, ∀i ∈ N , ∀k ∈ K, the power allocation

strategy set (pd∗i , pc∗k ) obtained by the iterative algorithm

constitutes a Nash equilibrium, which exists but is not unique.

Furthermore, none individual UE is able to unilaterally get

better performance by deviating from the Nash equilibrium.

Proof: Please see Appendix A.

Algorithm 3 Energy-Efficient Stable Matching Algorithm

1: Input: C,D,P .

2: Output: µ.

3: Initialize: µ = φ, Φ = D.

4: while Φ 6= φ do

5: for di ∈ Φ do

6: di chooses the CU with the highest ranking from

P (di).
7: end for

8: for ck ∈ C do

9: if ck receives a request from di, and prefers di to its

current candidate dj held from previous steps, i.e.,

di ≻ck dj then

10: di is held as a new candidate, while ck issues a

rejection to dj , i.e., µ(ck) = di;
11: add dj into Φ, remove di from Φ, and remove ck

from P (dj).
12: else

13: ck issues a rejection to di, and holds dj continually

as its candidate, i.e., µ(ck) = dj .

14: remove ck from P (di).
15: end if

16: end for

17: end while

2) Stability and Optimality: The stability and optimality

properties can be easily proved due to the structures of the

GS algorithm. A short version of proofs are provided here for

reference and more details can be found in [35], [50].

Assuming that di and ck are not matched with each other

under µ, i.e., µ(di) 6= ck and µ(ck) 6= di, (di, ck) can form a

blocking pair that blocks µ if di ≻ck µ(ck), and ck ≻di
µ(di).

µ is said to be unstable if there exists a blocking pair [35].

Theorem 3: The proposed energy-efficient matching µ is

stable for every di ∈ D and ck ∈ C.

Proof: Please see Appendix B.

Theorem 4: For every di ∈ D and ck ∈ C under µ(di) =

ck, q̂di

∣

∣

∣

µ(di)=ck
and q̂ck

∣

∣

∣

µ(di)=ck
obtained by Algorithm 1

converges to unique qd∗i

∣

∣

∣

µ(di)=ck
and qc∗k

∣

∣

∣

µ(di)=ck
in finite

iterations, respectively [44], [49].

Theorem 5: The obtained energy-efficient stable matching

µ is weak Pareto optimal for every di ∈ D.

Proof: Please see Appendix C.

3) Scalability: Implementing the proposed algorithm in

cellular networks with a large number of UEs will encounter

scalability problems. For example, it becomes difficult to

have channel state information (CSI) of every link due to

limited processing capability, increasing signalling overhead,

and strict QoS requirement, etc. If di and ck only have

limited information about each other, Algorithm 1 is not be

able to produce qd∗i

∣

∣

∣

µ(di)=ck
and qc∗k

∣

∣

∣

µ(ck)=di

, which leads to

the matching problem under incomplete preference lists. To

address such challenges, we modify Algorithm 3 to handle

this problem by deleting di and ck from P (ck) and P (di),
respectively, if they cannot be involved in a stable matching.
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P (di) and P (ck) are consistent if deleting ck from P (di)
represents that di is also removed from P (ck) [36]. For every

di ∈ D and ck ∈ C, P (di) and P (ck) are assumed to be

consistent. With consistent preference profiles, the modified

algorithm is able to proceed in the same fashion as Algorithm

3 and obtain a matching in polynomial time. The new matching

may be partial stable due to the fact that some UEs that are

deleted from preference profiles may be left unmatched.

Another frequent scalability problem is that some D2D pair

or CU may have more than one best potential matching part-

ners, e.g., a tie exists such that qd∗i

∣

∣

∣

µ(di)=ck
= qd∗i

∣

∣

∣

µ(di)=cm
.

To break the tie, we propose some tie-breaking rules to

force di to choose between ck and cm at any step by

comparing new criteria such as the optimum SE Ud
i , or the

total power consumption Ed
i . The modified algorithm can

handle situations such as qd∗i

∣

∣

∣

µ(di)=ck
= qd∗i

∣

∣

∣

µ(di)=cm
and

qc∗k

∣

∣

∣

µ(ck)=di

= qc∗k

∣

∣

∣

µ(ck)=dj

, ∀di, dj ∈ D, ∀ck, cm ∈ C,

etc. In the following, we assumes that any ck ∈ C does

not care which D2D pair would reuse its spectrum, that

is, qc∗k

∣

∣

∣

µ(ck)=di

= qc∗k

∣

∣

∣

µ(ck)=dj ,∀dj 6=di

. This scenario can be

considered as a special case of the preference tie scenario,

where any potential matching partner is the best candidate.

In this case, some tie-breaking rules such as “first come first

serve” can be proposed to force CUs to make a decision at any

step based on the new criteria. Furthermore, the time-breaking

rules can be flexibly designed not only to optimize EE or

SE, but also to improve miscellaneous performance metrics

including reliability, security, fairness, and coverage, etc.

4) Implementation: In the distributed resource allocation

algorithm, each D2D pair only needs to estimate the received

interference rather than knowing the specific power allocation

or partner selection strategies of interferers. The reason is that

the sufficient information of strategies are contained in the

form of interference. CUs also need to know the knowledge

of interference, which can be estimated firstly by centralized

powerful BSs and then fed back to CUs. Although the energy-

efficient matching is designed in a distributed way, it is also

suitable for centralized implementation to comply with the

centralized architecture of existing cellular networks. A BS

equipped with advanced signal processing and computation ca-

pability can operate as a matchmaker to organize the matching

(C,D,P). The details are given as follows.

First, the BS sends requests to every di ∈ D and ck ∈ C
to obtain required information for building preference profiles

P (di) and P (ck). CSI of some links such as gck,B , ∀ck ∈ C,

can be directly obtained by performing channel estimation in

the BS using pilot signals. CSI of D2D links such as gdi has to

be estimated by D2D receivers and then is fed back to the BS.

CSI of interference links such as gdi,B and gdk,i, ∀di ∈ D, ∀ck ∈
C is not required. After collecting enough information, the BS

establishes the preference profile P (di) for each di ∈ D and

P (ck) for each ck ∈ C based on Algorithm 2. Then Algorithm

3 is employed (with D2D pairs sending requests to CUs) to

produce µ under the established preference profiles.

The advantages of centralized implementation can be fully

exploited by future cloud radio access network (C-RAN) based

TABLE I
SIMULATION PARAMETERS.

Simulation Parameter Value

Cell radius 500 m

Max D2D transmission distance ddmax 20 ∼ 100 m

Pathloss exponent α 4

Pathloss constant ̟ 10
−2

Shadowing ζc
k,i

(standard deviation of 8 dB

a log-normal distribution)

Multi-path fading βc
i,k

(the mean of 1

an exponential distribution)

Max Tx power pdi,max, p
c
k,max 23 dBm

Constant circuit power pcir 20 dBm

Noise power N0 -114 dBm

Number of D2D pairs N 5 ∼ 50

Number of cellular UEs K 5 ∼ 50

PA efficiency η 35%

QoS requirement Cc
k,min

, Cd
i,min 0.5 ∼ 1

(uniform distribution) bit/s/Hz

mobile communication systems [51]. Preference establishment

and D2D-CU matching can be realized by the powerful base

band unit (BBU) pool which exploits cell cooperation and

coordination among densely distributed remote radio heads

(RRHs).

5) Complexity: For a pair of (di, ck), the computational

complexity for establishing P (di) and P (ck) mainly depends

on Algorithm 1. qdi and qck produced by Algorithm 1 increases

at each iteration and converges to qd∗i and qc∗k at a super-

linear rate [49]. With N D2D pairs and K CUs, the computa-

tional complexity of Algorithm 1 is O(NKLloopLdual), where

Lloop and Ldual are the numbers of iterations required for

converging to the optimum EE and optimal power allocation

strategies, respectively. In Algorithm 2, sorting N D2D pairs

and K CUs in a descending order leads to a complexity of

O
(

NK log(NK)
)

. In Algorithm 3, under the rule that every

di ∈ D has only one chance to send requests to CUs in P (di),
the matching µ can be obtained with a complexity of O(KN)
[36].

IV. NUMERICAL RESULTS

In this section, the proposed energy-efficient matching

algorithm, labeled as “energy-efficient stable matching”, is

compared with several heuristic algorithms. The first is the

power greedy algorithm, which always allocates the maximum

transmission power pdi,max (or pck,max). The second is the

random power allocation algorithm, which allocates power

uniformly distributed in the range [0, pdi,max] (or [0, pck,max]).
The third is the spectrum-efficient algorithm based on the

water-filling power allocation (SINR maximization) [32], [52],

[53]. The first two heuristic algorithms employ random match-

ing which matches D2D pairs with CUs in a random way,

while the third one adopts maximum-SINR based association.

The values of simulation parameters are based on [9], [23],

[32], and are summarized in Table I. A single cellular network

is considered and the cell radius is 500 m. In each time of

simulation, locations of CUs and D2D pairs are generated in

a random way as shown in Fig. 3. QoS requirements in terms
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Fig. 3. A snapshot of locations of K CUs and N D2D pairs in a single
cellular network (K = N = 50, the cell radius is 500 m).
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Fig. 4. Average EE of D2D pairs versus maximum D2D transmission distance
(K = N = 5, ddmax = 20 ∼ 100 m).

of SE are generated randomly from a uniform distribution in

the range [0.5, 1] bit/s/Hz. We average the simulation results

over 103 times.

The average EE performance and UE satisfactions of the

obtained energy-efficient stable matching is evaluated and

verified. We adopt a statistical model to define a UE’s satis-

faction as the cumulative distribution functions (CDFs) of the

matching result that is higher than its satisfaction threshold.

For example, defining di’s satisfaction threshold as cm, the

matching result µ(di) is compared with the threshold cm to

evaluate whether di is satisfied with µ(di). di is said to be

satisfied with µ(di) if di prefers µ(di) at least as well as cm,

i.e., µ(di) �di
cm. Otherwise, di is said to be unsatisfied

with µ(di) if it is matched to a partner that is less preferred

to the threshold, i.e., cm ≻di
µ(di). The CDF is denoted as

Pr{µ(di) �di
cm}, which is the probability that di is matched

with a partner that is more preferred to the threshold cm.
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Fig. 5. Average EE of D2D pairs versus numbers of active D2D pairs and
CUs (ddmax = 20 m, K = N = 5 ∼ 15).
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Fig. 6. CDF of D2D pairs’ satisfactions versus satisfaction threshold (N =

K = 20, 50, ddmax = 20 m).

Fig. 4 shows the average EE performance of D2D pairs

versus the maximum D2D transmission distance ddmax with

K = 5 CUs and N = 5 D2D pairs. Simulation results

demonstrate that the proposed algorithm achieves the best EE

performance in the whole regime. The proposed algorithm

outperforms the random power allocation algorithm, the power

greedy algorithm, and the spectrum-efficient algorithm by

132%, 206%, and 248% for ddmax = 20 m, respectively.

Random allocation achieves the second best performance since

there is a large probability to have a higher EE than the

spectrum-efficient and power greedy algorithms which always

take full advantage of any available power. It is clear that

the SE gain achieved by increasing transmission power is

not able to compensate for the corresponding EE loss. The

power greedy algorithm has the worst EE performance among

the four due to two reasons. First, power consumption is

completely ignored in the resource allocation process. Second,
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Fig. 7. Average EE versus the number of game iterations (ddmax = 20 m,
K = N = 5, 10, 15).

increasing transmission power beyond the point for optimum

SE not only brings no SE improvement in an interference-

limited environment but also causes significant EE loss.

Note that, as the D2D transmission distance increases, the

EE performance of all algorithms decreases because higher

transmission power is required to maintain the same QoS

performance than in the scenario of short distance.

Fig. 5 shows the average EE performance of D2D pairs

versus the number of active CUs K and D2D pairs N with

ddmax = 20 m. The average EE performance of all algorithms

increases linearly as the active number of CUs and D2D pairs

increases. The reason is that as the number of CUs increases,

not only the total number of available orthogonal channels

increases, but also each D2D pair has a wider variety of choice

in the expanded matching market than in the original one.

The probability for a D2D pair to be matched with a better

partner becomes higher in the expanded matching market. The

proposed algorithm has the steepest slope among the four,

which indicates that it can exploit more benefits from the

diversity of choices than the heuristic algorithms could. Both

the spectrum-efficient and the power greedy algorithms have

the flattest slope since the value of choice diversity is not

fully exploited and power consumption is also ignored in the

resource allocation process.

Fig. 6 shows the CDF of D2D pairs’ satisfactions versus

various satisfaction thresholds with K = N = 20, 50 and

ddmax = 20 m. We adopt the Monte-Carlo method to calculate

the CDF that uses repeated matching results (104 times) to

obtain the numerical results. In the case of K = N = 20,

the probability of being matched to the first three choices for

D2D pairs is 66.4%. In contrast, the corresponding probability

under random matching is only 15.4%. When the number of

D2D pairs and CUs is increased from 20 to 50, there is still

as high as 56.9% of D2D pairs that have been matched to the

first three choices, while the corresponding probability under

random matching is decreased dramatically from 15.4% to

only 6.4%. Significant UE satisfaction gains can be achieved

by the proposed algorithm compared to the random matching.

In addition, the simulation results also reveal the fact that the

proposed algorithm is able to outperform the random matching

for a wide range of satisfaction values.

Fig. 7 shows the convergence of the iterative algorithm

(Algorithm 1) versus the number of game iterations. It is

shown that the proposed algorithm only requires 3 ∼ 4
iterations to converge to the equilibrium. In the first game

iteration, higher EE performance can be achieved because CUs

are not aware of the D2D pairs and transmit in lower power

levels. With the entry of D2D pairs into the game, CUs have to

increase their transmission power to satisfy QoS requirements,

which in turn causes co-channel interference to D2D pairs

and reduce their achievable EE performance until they reach

a Nash equilibrium.

V. CONCLUSIONS AND FUTURE WORK

In this paper, an energy-efficient stable matching algorithm

was proposed for the resource allocation problem in D2D

communications. Taking into account UEs’ preferences and

satisfactions, the joint partner selection and power allocation

problem was formulated to maximize the achievable EE under

maximum transmission power and QoS constraints. The re-

sulting problem is nonconvex and computationally intractable.

Inspired by the matching theory and game theory, the NP-hard

problem was transformed into a one-to-one matching problem

with UEs’ preferences modeled as the optimum EE under

a specific matching. A noncooperative game based iterative

algorithm was proposed to establish mutual preferences by

exploiting nonlinear fractional programming. The proposed

matching algorithm was proved to be stable and weak Pareto

optimal. Extensive simulation results validate the effectiveness

and superiority of the proposed algorithm. The present match-

ing approach sheds new light on the research directions for

resource allocation problems in green D2D communications.

Potential future works include the extension of one-to-many

matching, the modeling of UE preference from a big-data

perspective, and the consideration of context-aware content

caching, etc.

APPENDIX A

Proof of Theorem 2

Proof: First, if the strategy pd∗i obtained by the iterative

algorithm is not the Nash equilibrium, the D2D transmitter

can choose the Nash equilibrium p̂di to obtain the maximum

EE qd∗im . However, by Theorem 1 and Theorem 4, qd∗i can also

be achieved by choosing pd∗i , and qd∗i is unique. As a result,

pd∗i is also part of a Nash equilibrium. A similar proof holds

for pd∗k .

Second, according to [48], a Nash equilibrium exists if

the utility function is continuous and quasiconcave, and the

set of strategies is a nonempty compact convex subset of a

Euclidean space. Taking the EE objection function defined

in (6) as an example, under the matching µ(di) = ck, the

numerator Ud
i defined in (2) is a concave function of pdi ,

∀i ∈ N . The denominator defined in (4) is an affine function

of pdi . Therefore, Ud
i,EE is quasiconcave (Problem 4.7 in [45]).



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 11

The set of the strategies {[0, pdi,max]} is a nonempty compact

convex subset of the Euclidean space. Similarly, it is easily

proved that the above conditions also hold for the cellular

UE. Therefore, a Nash equilibrium exists in the noncooperative

game.

Third, there may be multiple equilibria that satisfy the

optimality condition. This conclusion can be directly drawn

from the properties of nonlinear fractional programming as

shown in page 4 of [44], which shows that the solutions

pd∗i of the equation Ud
i (p

d∗
i ) − qd∗i Ed

i (p
d∗
i ) = 0, and pc∗k of

the equation U c
k(p

c∗
k ) − qc∗k Ec

k(p
c∗
k ) = 0 may not be unique.

Therefore, if there exists multiple solutions, the combination

of these solutions may generate multiple Nash equilibria.

However, despite that there may be multiple equilibria, the

maximum EE obtained by the iterative algorithm is unique.

The proof is similar to the proof of Lemma 4 in [44], which

proves that the optimum result obtained by nonlinear fractional

programming is unique.

Finally, given a Nash equilibrium {pd∗i , pc∗k }, the corre-

sponding EE {qd∗i , qc∗k } produced by Algorithm 1 is unique

according to Theorem 1 and Theorem 4. If di chooses p̃di
rather than pd∗i (p̃di 6= pd∗i ) as its transmission strategy, the

corresponding CU ck will also choose p̃ck rather than pc∗k
(p̃ck 6= pc∗k ) to improve its individual EE. The iteration process

in Algorithm 1 will continue until the strategy set {p̃di , p̃
c
k}

converges to a new Nash equilibrium, and the corresponding

EE is denoted as {q̃di , q̃
c
k}. Then, we must have q̃di = qd∗i , and

q̃ck = qc∗k , which otherwise contradicts with Theorem 1 and

Theorem 4. Therefore, this proves that either di or ck is able

to unilaterally achieve better performance by deviating from

the Nash equilibrium. This completes the proof.

APPENDIX B

Proof of Theorem 3

Proof: For any di ∈ D and any ck ∈ C that are not matched

with each other, µ is stable if (di, ck) do not form a blocking

pair, i.e., di ≻ck µ(ck), ck ≻di
µ(di). We prove the theorem

by showing that the two necessary conditions di ≻ck µ(ck)
and ck ≻di

µ(di) cannot hold at the same time.

Let us begin from the assumption that ck ≻di
µ(di), then a

request must have already been sent by di to µ(di) based on

the defined matching rules. With the matching result µ(di) 6=
ck, it means that di is less preferred by ck compared to µ(ck),
i.e., µ(ck) ≻ck di. Thus, although ck is more preferred by di
than µ(di), ck has no incentive to be matched with di, i.e.,

the condition di ≻ck µ(ck) does not hold. The same proving

process can be repeated with minor revision to show that the

condition ck ≻di
µ(di) does not hold if di ≻ck µ(ck). As

a result, di and ck do not form a blocking pair for µ since

di ≻ck µ(ck) and ck ≻di
µ(di) cannot hold at the same time,

which proves that µ is stable.

APPENDIX C

Proof of Theorem 5

Proof: ∀di ∈ D, we assume that there is a better matching

µ
′

such that µ
′

(di) ≻di
µ(di). In other words, every di ∈ D

is matched to a better partner under µ
′

compared to µ, that

is, every di ∈ D is matched to some CU under µ
′

which

has rejected its request under µ. Thus, every CU in the set of

µ
′

(D) must have issued a rejection under µ. However, any CU

which receives a request in the final step of Algorithm 3 has

not issued a rejection to any D2D pair due to the matching

rule. Otherwise, at least one more iteration is required to match

the rejected D2D pairs with some CU. This contradicts the

assumption of existing µ
′

and proves that µ is weak Pareto

optimal for D2D pairs.
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