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So	ware de
ned wireless networks (SDWNs) present an innovative framework for virtualized network control and �exible
architecture design of wireless sensor networks (WSNs). However, the decoupled control and data planes and the logically
centralized control in SDWNs may cause high energy consumption and resource waste during system operation, hindering their
application in WSNs. In this paper, we propose a so	ware de
ned WSN (SDWSN) prototype to improve the energy e�ciency
and adaptability of WSNs for environmental monitoring applications, taking into account the constraints of WSNs in terms of
energy, radio resources, and computational capabilities, and the value redundancy and distributed nature of data �ows in periodic
transmissions for monitoring applications. Particularly, we design a reinforcement learning based mechanism to perform value-
redundancy 
ltering and load-balancing routing according to the values and distribution of data �ows, respectively, in order to
improve the energy e�ciency and self-adaptability to environmental changes for WSNs. �e optimal matching rules in �ow table
are designed to curb the control signaling overhead and balance the distribution of data �ows for achieving in-network fusion in
data plane with guaranteed quality of service (QoS). Experiment results show that the proposed SDWSN prototype can e
ectively
improve the energy e�ciency and self-adaptability of environmental monitoring WSNs with QoS.

1. Introduction

Wireless sensor networks (WSNs) are application-oriented
information-centric networks, which are characterized by
limited energy and constrained radio resources [1]. One
typical application of WSNs is environmental monitoring,
where data-gathering based environmental monitoring tasks
are executed by nodes with heterogeneous sensing and
programmable functions. Each node in WSNs could be
equipped with multiple sensors for di
erent sensing pur-
poses, for example, temperature, humidity, light, and vibra-
tion. In WSNs, the time-varying wireless communication
environment and random interferencemay lead to unreliable
communication links, while switching on/o
 of network
nodes due to energy constraints can cause unpredictable
topology changes,making it di�cult to guarantee reliable and
adaptive data-gathering for monitoring applications.

So	ware de
ned wireless networks (SDWNs) enable
programmable control in network and virtualization of net-
work equipment by decoupling control plane and data plane
[2]. �e logic centralization and simpli
ed abstraction of
control plane can improve the scalability and multitasking
e�ciency [3].�e combination of SDWNs based architecture
and WSNs, that is, so	ware de
ned wireless sensor network
(SDWSN), would bring the following advantages:

(i) SDWNs based abstraction of network control plane
can e
ectively reduce the cost of WSN expansion and
operation.

(ii) SDWNs based virtualization of network equipment
and programmable control of common hardware
and so	ware enabled �exible task con
guration, high
resource utilization, and simpli
ed network manage-
ment in WSNs.
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However, to realize the above advantages of SDWSN
for monitoring applications is not without di�culties. �e
control-data decoupled structure of SDWNs relies on cross-
plane control tra�c, whichmay result in excessive communi-
cation overhead and transmission delay. In SDWSN, although
di
erent virtual networks can work together on top of the
same physical infrastructure, the centralized control plane
may lead to high energy costs due to information collection
for reaching a global view, and the multiple virtual networks
may compete for common physical network resources. If
a large number of �ows simultaneously request a switch
to forward data, network congestion or even crash may
occur. Furthermore, energy- and resource-constrainedWSNs
might not have the su�cient network resources to realize the
dynamic resource allocation and QoS of SDWNs. �erefore,
the energy and resource utilization of SDWSN need to be
carefully designed for resource-constrained and application-
oriented WSNs.

Most existing works on SDWSN focus on providing QoS
guarantee or optimizing network management for monitor-
ing applications. �e so	ware de
ned information centric
network (SDN-IC) [4] �oods the network with packets so
as to leave reverse path information at routers, but that
method will cause frequent duplication of packets and lead
to huge communication loads, which increase not only end-
to-end delay but also energy consumption. �e resource
allocation in a so	ware-driven wide-area network (SWAN)
was optimized by an agent-based tra�c engineering scheme
[5], which requires excessive information exchange between
the controller and switches for tracking network topology
and tra�c distribution changes.With the increase of network
density, the SWAN would be plagued by large overhead
caused by collisions between candidate relays contending
for media. �e so	ware de
ned vehicular ad hoc network
(SDV) [6] uses network virtualization to allocate network
tra�c in a programmable fashion, where surveillance pack-
ets are delivered following a position-aided data-gathering
mechanism with greedy perimeter stateless routing (GPRS)
[7] in case of controller failure. However, the SDV controller
needs to gather and maintain a large amount of information
for transmission power control, which is not practical for
large-scale monitoring WSNs. In [8], the energy consump-
tion of a multitask SDWSN was minimized for monitoring
applications with guaranteed quality-of-sensing by solving a
mixed integer linear programming problem at a high com-
putation complexity. In [9, 10], the load-balancing routing
algorithms for WSNs construct an optimal routing tree by
minimizing the total weight of routing paths, where the path
weights are modeled as a function of energy consumption.
However, none of these works has adequately considered the
application-oriented features of �ows and in-network data
fusion in complex and dynamicmonitoring environments for
SDWSN, thereby signi
cantly limiting their energy e�ciency
and environmental adaptability.

In this paper, we develop an energy-e�cient cognitive
SDWSN prototype for environmental monitoring applica-
tion, where high computational complexity management of
data fusion and data routing are centralized in control plane,
while low computational complexity execution of algorithms

is implemented in data plane.�e cognitivemechanismbased
on reinforcement learning (RL) [11] is embedded in control
plane for information processing, where the interactions
(in terms of reward or punishment) between agents and
the environment are utilized to enhance the intelligence in
policy decision making and to improve the self-adaptability
of the energy-saving mechanisms in dynamic environments.
Particularly, we propose to mine the application-speci
c
value redundancy of �ows in periodic transmissions ofmoni-
toring data using an autoregressive moving average (ARMA)
[12] based time series forecast model. We design RL based
mechanisms to perform value-redundancy 
ltering and load-
balancing routing according to the values and distribution of
�ows, respectively, in order to improve the energy e�ciency
and self-adaptability to environmental changes of WSNs.
Furthermore, the actions of control plane are mapped to low-
complexity vector calculations and rule matching in switch’s
�ow table. �e rules in �ow table are designed to curb the
control signaling overhead and balance the distribution of
data �ows for achieving in-network fusion in data plane.

�e novel aspects of the proposed energy-e�cient
SDWSN prototype are

(i) energy saving with guaranteed QoS is achieved by
mining the application-speci
c value redundancy
and distribution of data �ows in SDWSN, taking
into account the inherent constraints of WSNs in
terms of energy, radio resources, and computational
capabilities;

(ii) the RL based mechanisms for value-redundancy

ltering and load-balancing routing can adapt to
the varying environment and network status, thus
improving the self-adaptability of SDWSN for mon-
itoring applications.

�e rest of the paper is organized as follows. Section 2
elaborates the cognitive SDWSN prototype and its functional
architecture. Section 3 presents a speci
c implementation of
the proposed prototype. In Section 4, performance of the
proposed SDWSN prototype in terms of energy e�ciency
and self-adaptability is evaluated through experiments in
comparison with existing WSN approaches for monitoring.
Finally, conclusion is drawn in Section 5.

2. Functional Architecture of
SDWSN Prototype

In this section, we propose a cognitive SDWSN prototype,
where RL is incorporated into the network information
process for an integrated consideration of the energy-
and resource-constrained trait of WSNs, complex features
of monitoring applications, and dynamic nature of WSN
deployment environments.

As shown in Figure 1, the fundamental functionalities
of SDWSN prototype include an information QoS setting
module, cognitive information middleware (CIM), and an
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Figure 1: Cognitive SDWSN prototype.

information processing module. Following the design prin-
ciples of SDWNs, the application plane of SDWSN proto-
type is designed to meet the QoS requirements of moni-
toring applications, supported by the hardware of sensors.
Application plane interacts with control plane through an
application programming interface (API).�e functionalities
of data plane are dynamically con
gured using Over-the-
Air Programming (OTAP) technique [13], which can run
multiple tasks simultaneously with QoS and can reduce the
energy consumption in online task scheduling.

�e data plane is abstracted into a weighted directed
graph, G = (V, L,E), which forms a reverse multicast tree
with V being the set of vertexes, L being the set of links,
and E being the set of link weights. Each node in the vertex
set V maintains a hierarchical cluster, where a switch acts
as the cluster leader and other programmable nodes become
cluster members constituting the monitoring information
generating (IG) module. �e data �ows generated by mem-
bers of the same cluster form a programmable set of packets
that share certain properties, because the packets of a �ow
are handled by matching “Field” and “Rules” in a switch’s
�ow table (see Figure 1) and by imposing the “Action” set to
execute the preset policy.�eweight of each link indicates the
status of �ow property distribution and frequency bandwidth
allocation during a certain data-gathering round and is
de
ned as the function of link bandwidth utilization (BWU)
(see Section 3).

In the control plane, CIM is a part of the controller that
performs adaptive data mining of network information using
machine learning schemes with QoS guarantee. Information
mapping (IM) module in CIM is responsible for preprocess-
ing information received from data plane (i.e., information
mining). It has twomain duties: to perform online evaluation
of the value of current monitoring data �ow using an ARMA
model and to build a �ow distribution map and a network
interconnection map in G. Information Q-learning (IQ)
module utilizes the results from IM module to produce
optimal strategies, which are then transformed by policy
de
ning (PD) module into a set of policies to be inserted into
switch’s �ow table for a lightweight implementation of data
plane.

Routing decisions are made by CIM in the controller and
then translated into rules and actions to be deployed in �ow
tables. APIs are used to con
gure �ow tables for routing, in
conjunction with a �oodless service discovery mechanism.
As part of the operating system, Sensor OpenFlow (SOF)
[14] channel is used to establish an end-to-end connection
between the controller and a switch. SOF also supports
queries on packet streams and automatically splits queries
between the data plane and the control plane, thus avoiding
the increase of tra�c in the data plane due to queries. Value
matching and path matching are designed by CIM and exe-
cuted by lightweight actions of �ow tables in an on-demand
driven energy-saving mode. �is reduces the amount of
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information exchange between the operating system and the
data plane. A	er data-gathering routing has been established,
data packets can be forwarded and processed in the data
plane. Subsequent (follow-up) packets in a �ow are forwarded
in the data plane based on the con
gured routing in �ow
tables without any further participation from the control
plane. �is can reduce the data-gathering tra�c in the data
plane and decrease control overhead in the control plane.�e
features speci
ed in the MAC layer (as part of the operating
system) are logically partitioned into two di
erent modules:
the lower MAC module, which depends on the proprietary
Hardware Abstraction Layer (HAL) and controls time critical
functions to achieve value-redundancy fusing in the data
plane based on service di
erentiation access control; and the
upper MAC module, which is responsible for delay-tolerant
control plane functions.

�e proposed cognitive SDWSN prototype takes into
account the inherent constraints of WSNs in terms of energy,
radio resources, and computational capabilities. Energy sav-
ing is achieved through the design of value-redundancy data
fusing and load-balancing data routing technologies in CIM.
By using machine learning schemes for energy saving in
control plane and by incorporating lightweight execution
using a �ow table at each switch in data plane, intelligence and
controllability can be achieved in all stages of the information
operation chain in SDWSN. �e introduction of in-network
processing with low computational complexity in data plane
facilitates the centralization of QoS management in control
plane, thus reducing the total amount of overheads for cross-
plane communications.Moreover, low-complexity numerical
operations of the �ow entries are enabled by IM module,
which matches CIM’s outputs to vector constant parameters.

Based on the proposed SDWSN prototype, programma-
bility and resource reutilization in data plane can be improved
through OTAP. �e overhead for cross-plane control signal-
ing can be reduced by introducing a data fusion mechanism
into data plane, which also improves the controllability of
packet routing and the e�ciency of resource utilization.

3. Design of RL Based
Energy-Saving Mechanisms

In this section, the implementation of the proposed SDWSN
prototype for environmental monitoring applications will be
discussed with a focus on RL based energy-saving mecha-
nisms.

3.1. Design of Energy-Saving Mechanisms in Control Plane. In
event-detection based monitoring applications, the periodic
transmissions ofmonitoring data usually have lowduty cycles
and high time-domain correlation, resulting in data value
redundancy. In the following, we exploit the data value
redundancy to achieve transmission energy saving.

RL is an agent based learning approach, which uses the
trial and error method to 
nd a reward maximizing behavior
in a dynamic environment. RL can adapt to the dynamic
environment with a relatively low complexity, rendering itself

perfectly applicable toWSNswith limited resources and oper-
ating in unpredictable environments. �erefore, we design
the energy-saving policy Γ (see (4)) in control plane based
on RL. �e key design of Γ is the utilization of contention
window (CW) in QoS-aware media access control (MAC),
which exploits the concept of service di
erentiation MAC
[15]. CW introduces a MAC back-o
 counter, called Failed
Times (FT), to count the number of failures before winning
the contention, which can avoid long time occupancy of
media caused by a largeCW.�e threshold of FT sets the retry
limit in MAC and can be considered as CW size. According
to Γ, we propose the value-redundancy 
ltering mechanism
�1 and the load-balancing routing mechanism �2, where �1
performs online estimation of �ow values and implements an
optimal in-network fusion strategy, and �2 performs online
analysis of �ow distribution and adaptive optimization of
path weights.

During a speci
c data-gathering round � (� ∈ Z
+), the

monitoring data �ow generated by node � can be modeled as

a limited time series X = {���}, � ∈ T�, T� = {�, � + 1, . . . , � +� − 1}, � ∈ V, � ∈ Z
+, where � = (� − 1)� + 1 denotes

the sampling time instant and � denotes the learning queue
length. �e time span of each data-gathering round is �	�,
where 	� is the sampling period.

Since the ARMA model captures the statistical charac-
teristics of a time series, which can be used to mine the
sampled data value redundancy and to perform real-time
value evaluation of data �ows, we adopt ARMA to predicate
the value �̂�� and calculate the corresponding prediction error‖��� − �̂��‖�, where ‖ ⋅ ‖� denotes the normalized Frobenius

norm [16], for example, ‖
‖�=2 = [Tr(
∗
)]1/2. Note that if
some important events occur, the distribution of monitoring
data �ows among nodes would become uneven. According to
the information entropy theory [17], greater variations in data
�ow values indicate a larger average amount of information
contained in the data �ows and the higher probability of
important events occurring under the premise of no external

interference/in�uence. �us, we de
ne the value factor ��� to
estimate the underlying value of data �ow X generated by
node � in the �th data-gathering round as follows:

��� = ��� ∗ ���
s.t. ��� = ∑

�+	−1
�=�

�������� − �̂��������� ;
��� =

����������(∑� �
�
� − �th)

+����������� ;

��� = {{{
1, �������� − �̂�������� > ���0, otherwise;

(⋅)+ = max (⋅, 0) ;
� ∈ T�, � ∈ V, ∀��� ∈ X, � ∈ Z+, �th ∈ Z+, � = 2,

(1)

where ��� is the mean of prediction errors, ��� is an anti-
interference factor designed to avoid misjudgment of values
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caused by environmental disturbance, and ��� = 1 if the

prediction error at time instant � is larger than ���; otherwise��� = 0. If the number of signi
cant prediction errors in data

�owX reaches the threshold �th, that is,∑� ��� ≥ �th, thenX is
considered as a high value level; otherwise, those signi
cant
prediction errors are considered as the result of external
interference. �e anti-interference capability increases with
the value of �th.

A	er the value of data �ow X having been predicted,
the historical forwarding record of X during the �th data-
gathering round needs to be extracted based on link statistics
obtained from the counter 
eld in switch’s �ow table, in
order to analyze the link state information and calculate the
BWU. Accordingly, the real-time state element for RL can be
obtained as

��� =
����������(
���!
�� )

�����������
s.t. !
�� = #


�
�$
�� ;

$
�� = 1%%%%&(�)%%%% ∑ℎ $
⟨�,ℎ⟩
�

∀� ∈ V, �� = ⟨�, ℎ⟩ ∈ L, ℎ ∈ &(�) ⊂ V, � ∈ T�, !
�� ∈ E, � = 2.

(2)

In (2), ��� re�ects the local status of �ow value and �ow

allocation used for resource utilization in SDWSN, where !
��
is the BWU and #
�� denotes the tra�c throughput of node� on link �� in the �th data-gathering round, which can be
calculated as the incremental number of “transmitted bytes”

from node � on link �� in the �th data-gathering round. $
��
indicates the mean bandwidth of links in set {⟨�, ℎ⟩}ℎ, where
node ℎ belongs to &(�), which denotes the neighborhood

of node � with size |&(�)|. �en, the threshold of FT in
CW is set as an inversely proportional function of ��� using

service di
erentiation based MAC retransmission protocol
[15]. �erefore, the value of data �ow X and its historical
forwarding records can be mapped to the corresponding
probability of channel access in MAC layer. �e adaptive
optimization of CW can be formulated as an average reward
Markov decision process (ARMDP) [18]. Accordingly, we
design an ARMDP based RL mechanism to optimize CW
for the purpose of 
nding the optimal energy-e�cient policy.
�e RL mechanism is executed by CIM, which adaptively
adjusts the channel access probability to inhibit the transmis-
sion of value-redundant loads and balance the distribution of
transmission loads among nodes while guaranteeing QoS.

In the RL mechanism, the dynamic environment is
characterized by a 4-tuple (S,A,P,R), where S is the set of
network states updated in each data-gathering round and

consisting of value factors��� and BWU !
�� stored in the status
table embedded in CIM; that is,

s� = (���, !
�� ) ∈ S,
∀� ∈ V, �� = ⟨�, ℎ⟩ ∈ L, ℎ ∈ &(�) ⊂ V, !
�� ∈ E, � ∈ Z+,

(3)

thereby providing a real-time observation of the environment
for Q-learning; A is the action set produced by PD module
and injected into the “Match Field” of �ow table in the switch
(see Figure 1); P : S × A × S denotes the state transition
probability; and the reward function R : S × A → R

indicates the environmental reward to the corresponding
action for improving energy e�ciency. �e global reward is
accumulated by maximizing the local reward in each data-
gathering round by CIM. For a given QoS, the local reward

calculated by (4) increases with a higher value ��� of the data
�ow and a lower value of the BWU !
�� . Conversely, if the
current value of data �ow is low and/or the bandwidth is
overutilized, then RLmechanism will generate a zero income
or a negative reward as punishment.

�e CW optimization strategy is shown in Algorithm 1,

where Γ optimizes the size of CW |W�| by maximizing the
accumulated local reward and amending the criteria of action
evaluation in an iterative manner:

Γ : Ψ� = {{{
Ψ�−1 + 7, 8� (<�, ?�) ≥ 8� (<�−1, ?�−1) + A
Ψ�−1 − 7, 8� (<�, ?�) < 8� (<�−1, ?�−1) − A

s.t Ψ1 = ��1;
8� (<�−1, ?�−1) = 8�−1 (<�−1, ?�−1) + � ∗ [D� + E ∗max��

8�−1 (<�, ?�) − 8�−1 (<�−1, ?�−1)] ;

D� = ���!
�� ;
∃A > 0, ∃7 ≥ 0, � ∈ (0, 1] , E ∈ (0, 1] , � ∈ Z+, <� ∈ S, D� ∈ R, ?� ∈ A,

(4)
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A Initialize 8 table entry for each (<, ?) pair and reward D
Setting parameters �, E, <, ?, � = 0, 8(<�, ?�) = 0, � = 1;
B Perform the following steps during each round:{Do calculate the QoS factor of �ow

Observe the current state s� ∈ S according to (3)
While (the current run < iteration threshold){Adjust Γ with given 8 according to (4);

Select action ?� according to state transition probability according to (6);
Execute the adjustment of window’s size according to (5);
Maximize per-round local reward D�;
Observe the new state <�+1;
Learn <, ?, D
Execute the iterative process of 8
Select next step action ?�+1;
Update Status <� ← <�+1;

End while loop}
Get the reward from the current run� ← � + 1;
If � is lower than the iteration threshold, then go to StepB
End do loop}

C Obtain the optimal policy Γ, which is inputted into �ow-table based on 8(<, ?) and historical behavior rewarding.

Algorithm 1: Contention window optimization strategy based on RL.

where � and E denote the learning factor and the discount
factor, respectively, <� and ?� are the state and the action
in the �th data-gathering round, and A and 7 represent the
tuning step sizes for updating values of Ψ� and 8 function
[19], respectively.

Status table in CIM tracks how the operational envi-
ronment evolves with time, where new states can be mined
and new actions should be discovered. Policy Γ needs to be
constantly updated to match the state-event pairs with the
optimal actions. RL mechanism uses a random strategy to
fully explore the state space at the beginning and adopts a
greedy strategy to ensure convergence later on. According to
Γ outputted by CIM, controller executes the optimal action
with local maximum 8-value as follows:

Action: ?�

=
{{{{{{{{{

%%%%%W��%%%%% ←K %%%%%W��%%%%% + Δ %%%%%W�%%%%% ; ��� < ����Ψ������%%%%%W��%%%%% ←K %%%%%W��%%%%% ; ��� = ����Ψ������%%%%%W��%%%%% ←K %%%%%W��%%%%% − Δ %%%%%W�%%%%% ; ��� > ����Ψ������
s.t. Δ %%%%%W�%%%%% = 1��� ∗ MQos

;
MQos ∈ [0, 1] , � = 2,

(5)

where Δ|W�| indicates the adjustable size of CW. A	er the�th iteration, Ψ� is obtained according to the comparison
of 8 value between the �th and the (� − 1)th rounds, and
QoS factor MQoS represents the QoS requirement of a given
monitoring application.�e value of MQoS can be adjusted by

the information QoS setting module in application plane and
then be fed into the “Match Rules” in switch’s �ow table (see
Figure 1) via API to realize programmable network control.
Accordingly, the size of CW is adjusted by node � executing
action ?� based on the following transfer function:

� (?�) = N��Γ (?�)∑��∈� N��Γ (?�) ,
� (?�) ∈ P, ?� ∈ A, <� ∈ S,

(6)

where N��Γ (?�) = 8�(<�, ?�)/[∑�8�(<�, ?�)] denotes the state
assessment for action ?� under state <� using Γ. �us, CW

size, that is, |W�|, can be adaptively adjusted according to
dynamic environment status and application QoS, with the

vibration amplitudeΔ|W�| given by the inverse of ���. Accord-
ing to the MAC protocol for di
erentiated services [20], the
probability of packet forwarding is inversely proportional to|W�|.

Based on the above analysis, we design �1 and �2 as
follows:

(i) �1 reduces the total energy consumption in SDWSN
by inhibiting the transmission of value-redundant

loads. In �1, ��� is used as one important element

to control |W�|. According to (5), a low-value �ow
will be con
gured with a high medium access delay
caused by the corresponding large number of retries
set by MAC back-o
 counter. �is would lead to
a low forwarding probability. �e low-value �ow
will be discarded when the medium access delay
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goes beyond a preset threshold of FT. �erefore, the
probability of tra�c forwarding can be adaptively
controlled according to the �ow value. Suppressing
the transmission of low-value �ows greatly decreases
the amount of in-network tra�c for data-gathering
and thus achieves energy saving.

(ii) �2 balances the energy distribution across SDWSN
by minimizing the total weight of routing paths in

G, that is, min{∑ !
�� }, ∃�� ∈ Tree
optim
� ⊂ L, to

construct an optimal routing tree, Tree
optim
� = {��},�� ∈ L, � ∈ V, where the average link BWU !
��

is used as the link weight for controlling the size of
CW. According to (2) and (5), a link with a higher
BWU will be con
gured with a larger CW size,
leading to a lower probability of tra�c forwarding.
�erefore, the distribution of network tra�c can be
balanced by adaptively adjusting the link weights,
thereby optimizing the routing selection in SDWSN.

4. Implementation of
Flow-Table Based Policy in Data Plane

SDWSN are characterized by the decoupled control and data
planes. Although the energy-e�cient mechanisms �1 and �2
require a high computational complexity in control plane,
they are executed by the information processing module of
data plane at a low computational complexity. Based on Γ
in (4), �1 and �2 are mapped to the parameter vector � of
the value-redundancy 
lter and the path matrix Π of the
load-balancing routing mechanism, respectively. �e value-
redundancy 
ltering parameter vector � = (‖Ψ�‖�, MQos)2×1,
where Ψ� is the value-redundancy 
lter threshold calculated
in (4) for use in (5) to curb CW size. Π consists of the
identities of nodes belonging to the optimal routing tree

Tree
optim
� found by�2. In data plane, the speci
c implementa-

tion of energy-e�cient mechanisms �1 and �2 involves only
lightweight vector product and numerical comparison, which
are both low-complexity matching operations, following the
corresponding rules in the “Match Field” (i.e., Rule (1) to
Rule (4) in Figure 2) of �ow table. Figure 2 shows the detailed
implementation of �ow table at each switch. Flow table
contains a prioritized list of rules to instruct the correspond-
ing actions. Particularly, task scheduling has the highest
priority, followed by value matching (i.e., value-redundancy

ltering), and path matching (i.e., load-balancing routing)
has the lowest priority. Each input �ow will be matched to
the prioritized rules. When multiple rules match an input
�ow, the rule with the highest priority will be selected 
rst
to execute the corresponding action set. If no rule matches
an input �ow, then the switch will request the controller
to update its �ow table, and the default-action set will
automatically forward the �ow to CIM in the controller for
developing new energy-e�cient policies.

When the current �ow matching process ends and the
next �ow arrives, if the newly arrived �ow contains the
same contents as the previous one, it will be considered as
redundant. In this case, �ow table does not need to be updated

for value-redundancy 
ltering or forwarding path.�erefore,
cross-plane communications and task recon
guration can
be greatly reduced, thus improving the energy e�ciency
in application-oriented SDWSN. When the real-time status
(e.g., QoS and throughput) of SDWSN notably changes, the
value-redundancy 
ltering parameters and routing paths can
be dynamically adjusted by �, thus improving the environ-
mental adaptability SDWSN.

In the proposed SDWSN-RL prototype, the control tra�c
from the controller to the data plane (i.e., downstream
tra�c) contains Packet-Out, Modify-State (con
guration),
and Read-State (request or query); the control tra�c from the
data plane to the controller (i.e., upstream tra�c) contains
Packet-In and Read-State (reply or report). �e control
tra�c �ow can be described as follows. Once a source host
generates a query message, the controller responds with a
reply message if the source host and the destination host
are on the same island. Otherwise, the controller drops
this query message. When network status changes, Packet-
In event will be triggered by a request message in the data
plane. Each switch sends a reply message containing the
switch status to the controller via a secure channel supported
by SOF. Meanwhile, Modify-State con
guration messages
are exchanged between the controller and switches via the
secure channel as well. A Packet-Out message is generated
by PD module and sent to switch to validate an entry in
�ow table. If no response is returned within a speci
ed time,
the potentially invalid entry will be deleted. �e amount of
Packet-In/Outmessages for handling requests grows with the
number of switches in the network.

5. Experiment Results

We perform experiments to evaluate the performance of
the proposed RL based SDWSN prototype (SDWSN-RL)
for environmental monitoring applications. �e network
simulator NS2 [21] is used to build the experiment envi-
ronment. �e parameter values used for the experiment
setup are given in Table 1. We adopt the event radius (ER)
model [22] to simulate the impulsive tra�c triggered by
temporally and spatially correlated monitoring events in a
disk area. Following the ER model, the monitoring area
of SDWSN is divided into an event gathering region, a
data relaying region, and a decision making region. �e

rst two regions belong to data plane, and the third one
belongs to control plane. �e monitoring center, that is, BS,
is placed at the top right corner of the monitoring area with
the coordinate (128m, 162m). �e event center is located
at the coordinate (48m, 82m) inside the event gathering
area. �e arrival of events follows a Poisson distribution in
the time domain. Note that all the experiment results in
Figures 3–8 include the energy consumptions of both data-
gathering and control tra�c. In the energy consumption
calculation, we consider the energy consumptionPdata-gathering
for data-gathering (including data fusion and processing) and
the energy consumption Pcontrol-tra�c for control overhead
(including the control tra�c for con
guration, request-query,
and reply-report). �e evaluation for energy consumption in
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Figures 3, 4, 6, and 7 and for network lifetime in Figure 5 has
all taken into account both Pdata-gathering and Pcontrol-tra�c.

Figure 3 shows the comparison of energy consump-
tion rate between SDWSN-RL and a WSN without SDN
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(called NonSD-WSN-RL). NonSD-WSN-RL is di
erent from
SDWSN-RL mainly in that there is no SDN architecture or
SOF support. In NonSD-WSN-RL, each switch uses hybrid
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Table 1: Experiment parameters.

Monitoring networks deployment RL algorithm parameters Communication parameters

Application ER model Learning factor � 0.5 MAC 802.11 edcf

Monitoring area radius 150m Discount factor E 0.4 MAC frame 272 bits

Event area radius 80m QoS factor MQoS (0, 1] Frame interval 50 Qs
Mini detecting radius 10m Anti-interference threshold �th [1,∞) Payload 1500 bits

Max detecting radius 50m Tuning step A 0.002 Carrier sense 30

Base station coordinates (128m, 162m) Tuning step 7 0.018 PHY layer rate 46∼512 kbit/s
Poisson arrival rate 5∼15 packets/s Round � 1∼1800 Channel coding 16 bit

Number of nodes 90∼580 CW initial size 10 PHY frame 128 bits

Deployment type Random Maximum back-o
 stage 7 Energy model First-order

Antenna Omni FT upper limit 15 Transmit power 34.2mW

Path loss exponent 2.4 � [10, 80] Receive power 22.1mW

Network architecture Homogeneous Iteration threshold 2500 Sensitivity 20 dbm
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energy-e�cient distributed clustering routing (HEED) with
a back-pressure mode [23], periodically computes the utility
based on current queue gradients, and decides the next hop
for each �ow accordingly. �e energy consumption rate is
de
ned as the ratio of the energy consumption of SDWSN-RL
(or NonSD-WSN-RL) to that of single-hop communication
(without clustering or aggregation). Figure 3 shows that the
average energy consumption rate of SDWSN-RL is much
lower than that of NonSD-WSN-RL for each considered
density of network nodes. �e energy consumption rate of
NonSD-WSN-RL increases faster with the increase of data-
gathering rounds than SDWSN-RL. Furthermore, when the
network node density increases from U1 = 0.7 to U2 =1.2U1, NonSD-WSN-RL has amuch higher increase in energy
consumption rate than SDWSN-RL.�is is because the SDN-
based controller can obtain real-time statistics on granular
control and link status (which are not available in Non-
SDN networks) for use in energy-e�cient routing. Routing
decisions made by CIM in SDWSN-RL are translated into
rules and lightweight actions in �ow tables to realize a
�oodless service discovery mechanism, thus limiting the
amount of control messages. Without the support of SDN,
routing tables are created (or reconstructed) in a collaborative
way based on local exchanges of neighborhood information,
which may require a lot of iterations before convergence.

Figure 4 shows the experiment results in terms of the
normalized link BWU of 10 randomly selected links. For
performance comparison with SDWSN-RL, we include three
classic data-gathering schemes, SDN-IC, SDV+GPRS, and
SWAN, which are content-centric, position-aided, and agent-
based, respectively. We calculate the normalized variance of
BWU (W�) based on the 10 randomly selected links during
data-gathering round � as follows:

W� = ‖var (Y)‖�
s.t. var (Y) = P {[Y − P (Y)]2} ;

Y = {!
�� }� ;
∀� ∈ V, �� ∈ L, � = 2,

(7)

where the 10 × 1 vector Y contains the BWU of the 10
randomly selected links. Our calculations using the results
in Figure 4 show that SDWSN-RL reduces the normalized
variance of BWU by 8.9%, 12.8%, and 6.7% as compared to
SDN-IC, SDV+GPRS, and SWSN, respectively, thus achiev-
ing improved load-balancing performance in SDWSN. �e
gap between the lowest and highest BWU across the 10 links
of SDWSN-RL is 0.1357, which is the minimal among the

ve schemes. �e results show that SDWSN-RL outperforms
the other four schemes in terms of more balanced �ow
distribution in SDWSN by optimizing the weight of each link
in the routing tree.

Figure 4 also includes NonSD-WSN-RL in the load-
balancing performance comparison.We can see that the load-
balancing performance of NonSD-WSN-RL is much worse
than that of SDWSN-RL and the other SD based schemes.
�is is because the load-balancing routing mechanism in

SDWSN-RL utilizes global network information to construct
optimal routing paths in a centralized manner. More specif-
ically, SOF in SDWSN-RL provides a lightweight control
protocol between the central controller and the switches in
the data plane. �e controller uses information in �ow tables
to calculate the load-balancing routes among all switches and
sends the �ow tables back to the switches to indicate the next
hop towards each destination. SOF provides simple APIs at
switches and allows the controller to program the switches
through the APIs, which provide �exible lookup mode for
deploying routing protocols. �e SDN controller can obtain
information about granular control, network topology, and
link statistics, which is used in the centralized load-balancing
routing, while such information is not available or di�cult to
obtain in traditional WSNs without SDN. NonSD-WSN-RL
relies on a distributed neighbor discovery approach, which is
not e�cient in load balancing. Moreover, frequent next-hop
neighbor discoveries and data packet forwarding based on
distributed communications would lead to a sharp increase
in control tra�c with the increase of node density.

Figure 5 plots the average survival rate of nodes versus
the number of data-gathering rounds for the four considered
schemes. �e survival rate of nodes in a network can be
used to evaluate the total energy consumption of a data-
gatheringmechanism [24].�e lifetime of SDWSN is de
ned
as the duration of normal network operations (e.g., data-
gathering) while the survival rate of nodes is maintained
above a threshold (SRth ∈ [0.4, 0.9]). In Figure 4, we set
SRth = 0.45 and denote the network lifetime achieved by
SWAN, SDN-IC, SDV+GPRS, and SDWSN-RL schemes as
R1, R2, R3, and R4, respectively. We can see that R1 < R2 < R3< R4, with SDWSN-RL achieving the highest average node
survival rate among the four schemes.�is is mainly because
the value-redundancy 
ltering and load-balance routing of
SDWSN-RL e
ectively inhibit the transmission of low-value
�ows and balance the distribution of loads across nodes,
leading to a longer network lifetime of SDWSN as compared
to other three schemes.

Figure 6 indicates the remaining energy level of a node
a	er 80 data-gathering rounds normalized with respect to
its initial energy level (which is 
xed at 2mJ for all nodes),
for 36 di
erent nodes randomly selected in an annular area
centered at the coordinate (48m, 82m) (i.e., the event center)
with the inner and outer radiuses of 10 meters and 20 meters,
respectively. �e experiment results show that for almost all
the selected nodes, SDWSN-RL achieves the highest residual
energy level among the four considered schemes. �is would
e
ectively prolong the lifetime of SDWSN.With each scheme,
the normalized residual energy level varies across di
erent
nodes. A higher (lower) level of the remaining energy is due
to the smaller (larger) amount of data �ows that the node
has forwarded. Compared with the three existing schemes,
SDWSN-RL o
ers a more balanced distribution of energy
consumption across the network nodes. �is is mainly due
to the proposed load-balancing routing mechanism, which
utilizes global network information to construct optimal
routing paths in a centralized manner.

Figure 7 plots the average energy consumed by the four
considered schemes for forwarding a single bit of data
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(mJ/bit) while meeting the sameQoS requirement, versus the
number of sensor nodes deployed in SDWSN. We can see
that the energy consumption per bit of SDWSN-RL increases
with the number of sensor nodes at a much slower rate
than the three existing schemes, leading to a much lower
energy consumption per bit of SDWSN-RL for large numbers
of sensor nodes than the existing schemes. �is is because
the application-oriented in-network fusion in data plane of
SDWSN-RL inhibits the transmission of value-redundant
�ows, and meanwhile the �ow value determined by (1) is
not notably a
ected by the number of tra�c sources (i.e.,
nodes in the event gathering area), while the other three
schemes would generate excessive tra�c loads due to the
large amount of local information exchange for executing
distributed algorithms in data plane and the large amount of
control overhead for cross-layer interaction, which degrade
the energy e�ciency especially for SDWSN with a large
number of sensor nodes.

Figure 8 shows the comparison of control tra�c cost
between our proposed SDWSN-RL and the other three
schemes (SWAN, SDV+GPRS, and SDN-IC), where the con-
trol tra�c cost is de
ned as the ratio of control overhead to
network throughout, and the network throughput is de
ned
as the rate of successful bit delivery from the IGmodule to the
monitor center. Figure 8 plots the normalized control tra�c
cost versus the time interval between two successive updates
of the parameter Dupdate, which is de
ned as

Dupdate = �����Dtopology������ ∗ ����Devent�����
s.t. Dtopology = Δdensitynodes;

Devent = Δrateevent arrive;
Dtopology ∈ [0.05, 0.1] , Devent ∈ [5, 15] , � = 2,

(8)

where Dtopology denotes the change in network node density
and Devent represents the variation in Poisson event arrival
rate. Since Dtopology and Devent are the two major factors
in�uencing the network status, the update interval of Dupdate
indicates the frequency of network status change. When the
WSNs status in monitoring applications frequently changes
(e.g., the redistribution of data tra�c caused by changes in
topology or event arrival rate), the control overhead will
increase due to frequent recon
guration processes.

We can see from Figure 8 that the control tra�c cost
decreases with the increasing update interval of Dupdate for
all the considered schemes. �e control tra�c cost of the
proposed SDWSN-RL is much lower than the other three
schemes for all considered values of Dupdate update interval.
�is is because the value-redundancy 
ltering in SDWSN-RL
inhibits the transmission of value redundant loads, thereby
avoiding generating control tra�c between CIM and IM
when the changes in network topology and/or event arrival
rate do not signi
cantly a
ect the monitoring data value.
Routing decisions aremade byCIM in the controller and then
translated into rules and actions to be deployed in �ow tables.
Network APIs are used to con
gure �ow tables for routing,
in conjunction with a �oodless service discoverymechanism.
A	er the controller has con
gured routing, data packets can

be forwarded and processed in the data plane. Subsequent
(follow-up) packets in a �ow are forwarded in the data plane
based on the con
gured routing in �ow tables without any
further participation from the control plane. Such reductions
in control tra�c free up radio resources for more data
packets to be successfully delivered, thus further lowering the
control tra�c cost. However, the other three schemes (i.e.,
SWAN, SDN-IC, and SDV+GPRS) adopt broadcast based
service discovery mechanisms, where distributed systems
collaboratively create the routing table and the amount of
control messages grows while network throughput declines
with the increase of network node density or event arrival
rate.

Since the throughput is inversely proportional to the
control tra�c cost for given control overhead, the results in
Figure 8 also indicate that SDWSN-RL achieves the highest
throughput among the four schemes considered, because
it signi
cantly reduces local control message exchanges,
thereby freeing up radio resources for more data packets to
be successfully delivered. �e other three schemes (SWAN,
SDN-IC, and SDV+GPRS) use broadcast-based service dis-
covery mechanisms and distributed protocol, where switches
need to wait for the wireless medium to be free to send their
packets and many data packets may have to be dropped due
to the wait, thereby limiting the throughput. Moreover, the
broadcast based service discovery mechanisms require high
volumes of controlmessages to be exchanged and high packet
processing overhead.

6. Conclusion

In this paper, we have proposed a SOF-based SDWSN pro-
totype for improving the energy e�ciency and adaptability
of WSNs in environmental monitoring applications, taking
into account the inherent constraints of WSNs in terms
of energy, radio resources and computational capabilities,
and the distributed data �ows of monitoring applications.
Experiments results have shown that the proposed SDWSN
prototype can greatly improve energy e�ciency by e
ec-
tively inhibiting the transmission of value-redundant loads,
reducing the amount of cross-plane communications and
enhancing the load balance in SDWSN.

In our future work, we will improve the scalability of
control-plane mechanisms using decentralized coordination
to overcome the bottleneck of a single logical controller and
develop an adaptive anti-interference mechanism to improve
the robustness of SDWSN for diversemonitoring applications
in wireless environments with severe interference.
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