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1 Introduction

�e rapid growth of innovation applications such as smart agriculture, smart factories, 

and intelligent traffic monitoring system has triggered an explosive growth of internet-

of-things (IoT) devices [1, 2]. Nevertheless, IoT devices are usually limited by batteries 

and computing power, or even no computing power, which makes IoT devices unable 

to process data. To solve these problems, mobile edge computing (MEC) has been pro-

posed as a promising solution [3–6]. �e main idea of MEC is to complete the computa-

tion-intensive and energy-intensive tasks of IoT devices at the edge nodes, such as access 

points (APs) or base stations, through task offloading. After the MEC node completes 
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the data processing, the calculation results (e.g., working or operation instructions to the 

IoT terminals) will be returned to the devices. In this regard, the energy consumption of 

the devices can be significantly reduced, which can reduce the device maintenance costs 

in actual IoT usage scenarios. MEC enabled mission-critical IoT system has been taken 

as a key enabler for the sustainability of wireless cellular networks.

Extensive work has been done to study the joint task offloading and radio resource 

optimization for MEC-enabled IoT systems [7–9]. Specifically, in [7], the total summa-

tion of the hovering energy and the computation energy minimization problem for the 

MEC system assisted by unmanned aerial vehicle (UAV) was studied. �erein, the hov-

ering time, scheduling and resource allocation for IoT users are jointly optimized. In 

addition, the authors in [8] solved the problem of offloading decision for multiple users 

from the perspective of game theory. By designing the optimal response algorithm, it is 

proved that there is a Nash equilibrium among users. In addition, in the literature [9], 

the offloading of the MEC network supporting Orthogonal Frequency Division Multiple 

Access (OFDMA) and the joint uplink and downlink resource allocation problems were 

studied. �erein, several sub-optimal solutions that achieve different leverages between 

the system performance and the time complexity are explored. Recently, machine learn-

ing aware methods have been widely utilized to make task offloading decisions on MEC 

networks [10–12]. More precisely, Yang et al. studied the joint communication and com-

putation resource allocation for non-orthogonal multiple access (NOMA) assisted MEC 

systems in [10]. A multi-agent Q-learning empowered algorithm is developed to make 

offloading decisions for multiple NOMA users. Moreover, Huang et al. in [11] explored 

a deep reinforcement learning algorithm to perform the online computation offloading 

for wireless powered MEC systems. It was explicitly shown that the designed learning 

assisted scheme makes the real-time and optimal offloading become a reality. Further-

more, Wu et al. [12] investigated the combination between the optimization method and 

the Q-learning strategy to optimize the joint offloading and resource allocation problem 

in MEC systems, while considering the time-varying channel and unknown users’ chan-

nel state information.

However, the aforementioned work [7–12] mainly focused on the conventional packet 

transmission scheme, in which the Shannon capacity formula was applied. Nevertheless, 

for mission-critical IoT, enabling the transmission mechanism of the conventional block 

length mechanism may cause a longer delay, which further shortens the battery life of 

IoT devices [13]. To meet the stringent requirements of latency-sensitive applications, 

a MEC network assisted by short packet transmission is proposed. For which, several 

remarkable attempts are worth to be introduced [14–16]. More specifically, the authors 

in [14] studied the offloading decision for MEC systems supporting single-carrier time 

division multiple access. Meanwhile, in [15, 16], the resource allocation for MEC systems 

supporting OFDMA was analyzed with short packet transmission consideration. In par-

ticular, a deep learning based approach was utilized in [15] to allocate online resources 

for MEC users to minimize the maximum normalized energy consumption of each user. 

In addition, the optimal resource management of OFDMA-MEC system for ultra-reli-

able low-latency communication (URLLC) was studied in [16]. �e goal in [16] was to 

minimize the end-to-end latency of the network. �ereof, the optimal joint optimiza-

tion solution based on branch and bound method and two time-efficient suboptimal 
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solutions are designed, respectively. Furthermore, the interplay between URLLC and 

enhanced mobile broadband (eMBB) has been studied by Yang et al. in [17], where the 

energy efficiency and the sum of received SNRs are maximized for eMBB users and 

URLLC users, respectively. �e formulated multiple timescales problem has been solved 

by a sample average approximation (SAA) oriented technique. Similar models to that 

in [17] have been investigated by Tang et al. [18] and Anand et al. [19] to minimize the 

URLLC users’ latency.

Since the next generation of wireless cellular networks has strict requirements on the 

energy efficiency and transmission efficiency (low latency) [20–23], in this paper, we 

investigate the short-packet transmission enabled data offloading between IoT devices 

and access points, aiming at minimizing the total energy consumption. Our main contri-

butions are summarized as follows:

• We formulated the energy cost minimization problem for the short packets transmis-

sion for mission-critical IoT in MEC system, and revealed the effect of short packet 

transmission on radio resource management. �e minimization problem is a mixed 

integer non-linear programming (MINLP) problem, and it is challenging to solve this 

problem in the best way. �e difficulty is essentially derived from the coupling of off-

loading strategy and resource optimization.

• For ease of tractability, we decoupled the original MINLP problems into two sub-

problems: 1) the offloading decision-making sub-problem and 2) the resource alloca-

tion sub-problem. It clearly demonstrated that the resource allocation sub-problem 

of IoT devices under the fixed offloading policy is a convex optimization problem, 

and its optimal solution can be realized by various convex optimization tools.

• �rough the previous analysis, a time-saving algorithm that works in an iterative 

manner is developed to jointly optimize the offloading strategy and the resource (i.e., 

computation, power and bandwidth), so as to have a provable convergence guaran-

tee.

Apart from the above contributions, Monte-Carlo simulations were also conducted to 

verify the effiectiveness of our proposed joint optimization scheme from various aspects, 

such as the convergence and the energy consumption, under extensive and comprehen-

sive system settings.

�e rest of this paper is summarized as follows: in Sect. 2, we introduce the consid-

ered MEC-enabled mission-critical IoT system model and discuss the total energy con-

sumption of the system. In Sect. 3, the problem of minimizing energy cost is formulated, 

which considers the joint optimization of the offloading decision, bandwidth, and trans-

mit power. In Sect. 4, we propose a time-efficient near optimal algorithm to solve the 

non-tractable MINLP problem. Monte-Carlo simulation is performed in Sect. 5 to eval-

uate the performance of our developed strategy in terms of convergence performance 

and total energy consumption. Finally, we conclude this paper and reveal the future 

research direction.
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2  System description and energy consumption

In this section, we first introduce the system model of the mobile edge computing (MEC) 

enabled mission-critical internet of things (IoT) network. Whereafter, we elaborate on 

the achievable data rate of each IoT device and the system’s energy cost.

2.1  System model

We consider the MEC based IoT network that consists of N APs serving K devices, as 

illustrated by Fig. 1. Let N = {1, 2, . . . ,N } and K = {1, 2, . . . ,K } be the index sets of all 

the APs and the IoT devices, respectively. Each of the IoT devices has a latency-criti-

cal task to process. Denote by Tk the delay requirement of the kth IoT terminal, where 

k ∈ K . �e APs provide computing services to all the devices as the IoT devices have no 

data processing capability in the context of this article.

In addition, it is assumed that both the APs and the devices are equipped with a single 

antenna. For k ∈ K , we use a three-dimension tuple to characterize the task of the kth 

device, referred to as (Uk ,Fk ,Dk) . Specifically, Uk indicates the data volume of device k 

that needs to be offloaded/computed. In addition, Fk (in CPU cycles) denotes the com-

putation resource required by the kth device to execute its data. Moreover, Dk represents 

the output data size of device k after the processing is completed at its selected AP.

We stipulate that each device chooses one of the APs to offload its task for further 

process.1 To characterize this feature, we define an auxiliary variable, referred to as 

ak ,n ∈ {0, 1} , as the indicator to show whether the kth device uploads its data to AP n 

or not, where k ∈ K and n ∈ N  . In detail, ak ,n = 1 if device k is associated with the nth 

AP and ak ,n = 0 otherwise. With aforementioned definitions, we have the following 

constraint,

where k ∈ K . Before ending this subsection, we define τU and τD as the offloading trans-

mission time and the downloading transmission time of IoT devices, respectively.

(1)

∑

n∈N

ak ,n = 1,

Fig. 1 MEC-enabled mission-critical IoT system model

1 In this paper, the security and privacy issues are not considered. Namely, it is stipulated that all the processes of data 
sharing are in the case of information security.
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2.2  Achievable capacity

As mentioned, we focus on the short packet transmission between the IoT devices and 

the APs. �e upload and download transmission rates of the kth device are denoted 

by RU
k ,n

 and RD
k ,n

 , respectively, therein we assume that device k is associated with AP n. 

In addition, for k ∈ K and n ∈ N  , define gk ,n as the channel gain between IoT device k 

and AP n. Based on [24, 25], the maximum achievable rate in short packet regime can 

be accurately approximated by

where WU
k ,n

 and pUk ,n indicate the assigned bandwidth and transmit power to device k for 

offloading data to AP n, respectively. δ represents the signal-to-noise-ratio (SNR) loss 

due to imperfect channel state information (CSI) at the transmitter [26], N0 depicts the 

single-side noise power spectrum density. Moreover, εk is the decoding error probability 

of device k. Furthermore, Q−1

G (·) expresses the inverse of Gaussian Q-function and VU
k ,n

 is 

the channel dispersion of device k [27], which is quoted as follows:

Note that VU
k ,n

 is approximated to 1 in the following. Such an approximation is very accu-

racy, when the received SNR is higher than 5 dB, which has been precisely validated by 

the authors in [25]. Details are omitted here to avoid redundancy.

2.3  Energy consumption analysis

In this subsection, we elaborate on the energy consumption induced by the IoT 

devices’ data offloading and the computation results downloading, as well as the data 

processing at the APs, respectively.

2.3.1  Energy consumption of o�oading and downloading

We assume that device k selects AP n to do the data offloading. With aforementioned 

definitions, we have

Substituting (2) into (4), the transmit power of device k, i.e., pUk ,n , should satisfy

(2)RU
k ,n ≈

WU
k ,n

ln 2



ln(1 +
gk ,np

U
k ,n

δN0W
U
k ,n

) −

�

�

�

�

VU
k ,n

τUW
U
k ,n

Q−1
G (εk)



,

(3)
VU
k ,n = 1 −

1

(1 +
gk ,np

U
k ,n

δN0W
U
k ,n

)2
.

(4)R
U
k ,n

τU ≥ Uk .

(5)
pUk ,n ≥

δN0W
U
k ,n

gk ,n







exp(
Uk ln 2

τUW
U
k ,n

+
Q−1
G (εk)

�

τUW
U
k ,n

) − 1







= f Uk (WU
k ,n).
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For simplicity, we use f Uk (WU
k ,n) to represent the lower bound of pUk ,n . It is noteworthy 

that f Uk (WU
k ,n) is non-convex with respect to (w.r.t.) WU

k ,n
 [25]. In a similar way, the con-

straint for the downlink phase can be expressed as follows:

from which the allocated transmission power to device k in the download phase can be 

obtained, namely,

where WD
k ,n

 and pDk ,n express the allocated bandwidth and transmit power for device k to 

download the computation results from AP n, respectively. It is not hard to check that 

f Dk (WD
k ,n) is also a non-convex function w.r.t. WD

k ,n
.

Although f Uk (WU
k ,n) and f Dk (WD

k ,n) are non-convex w.r.t. WU
k ,n

 and WD
k ,n

 , they have 

some interesting properties as quoted below [13]:

Property 1 �ere is a unique solution W̃U

k ,n
 ( W̃D

k ,n
 ) that minimizes f Uk (WU

k ,n) 

( f Dk (WD
k ,n) ). In addition, f Uk (WU

k ,n) ( f
D
k (WD

k ,n) ) is strictly convex w.r.t. WU

k ,n
 ( WD

k ,n
 ) when 

0 < W
U

k ,n
≤ W̃

U

k ,n
 ( 0 < W

D

k ,n
≤ W̃

D

k ,n
).

Based on the foregoing property, we have the following Lemma:

Lemma 1 �e global optimal solution of problem:

with constraints (3), (4) andWm
k ,n > 0, pmk ,n > 0, m ∈ {U ,D} , can be obtained via solving 

the optimization problem with objective function

subjecting to

given that the objective function F is increases with bandwidth Wm

k ,n
 and transmit power 

pmk ,n , where m ∈ {U ,D}.

�e aforementioned conclusions have been proved by [13]. Details are omitted here 

for brevity. Denote by EU
k ,n

 the energy cost of device k in terms of offloading data to 

the nth AP. In addition, let ED
k ,n

 be the energy consumption of the nth AP to feedback 

the computation results to device k. As a consequence, we have

(6)R
D
k ,nτD ≥ Dk ,

(7)
pDk ,n ≥

δN0W
D
k ,n

gk ,n







exp(
Dk ln 2

τDW
D
k ,n

+
Q−1
G (εk)

�

τDW
D
k ,n

) − 1







= f Dk (WD
k ,n),

min
WU

k ,n,W
D
k ,n,p

U
k ,n,p

D
k ,n

F (WU
k ,n,W

D
k ,n, p

U
k ,n, p

D
k ,n)

min
WU

k ,n,W
D
k ,n,p

U
k ,n,p

D
k ,n

F (WU
k ,n,W

D
k ,n, p

U
k ,n, p

D
k ,n),

(3), (4), Wm
k ,n > 0, pmk ,n > 0, Wm

k ,n ≤ W̃m
k ,n, m ∈ {U ,D},
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and

2.3.2  Energy cost of APs for data processing

Define Lk ,n as the assigned computation resource for IoT device k by AP n. �ereby, the 

execution delay of device k, denoted by τk ,n , is obtained as follows:

It is assumed that the AP executes its associated devices’ tasks in a sequential manner.2 

�ereby, the following latency requirement should be met:

In addition, define Ln (in cycles) as the computation capacity of AP n, where n ∈ N  . 

With aforementioned definitions, we have

�e energy consumed by data processing for device k at AP n, denoted by EP
k ,n

 , can be 

expressed as follows:

where αn indicates the effective switched capacitance, which is a hardware architecture 

dependent parameter [7]. Following the system setup in [7], we let αn = 10
−27 for n ∈ N

.

Define ETotal as the total energy expenditure of the whole system. With the foregoing 

analysis, we have

where EU
k ,n

 , ED
k ,n

 , and EP
k ,n

 have been given in (8), (9), and (13), respectively.

3  Problem formulation

In this section, we discuss the considered optimization problem formulation. Some defi-

nitions are given at first. Denote by W = (WU
k ,n

,WD
k ,n

)k∈K,n∈N  the bandwidth allocation 

for all the devices. In addition, define p = (pUk ,n, p
D
k ,n)k∈K,n∈N  as the power allocation 

for all the IoT devices. Besides, denote L = (Lk ,n)k∈K,n∈N  as the computation resource 

allocation strategy of the system. Moreover, let ak = (ak ,n)n∈N  and a = (ak)k∈K be the 

(8)EU
k ,n = ak ,np

U
k ,nτU, k ∈ K,

(9)ED
k ,n = ak ,np

D
k ,nτD, k ∈ K.

(10)τk ,n = Fk/Lk ,n, k ∈ K.

(11)
ak ,n(τU + τD +

∑

k∈K

τk ,n) ≤ Tk , n ∈ N , k ∈ K.

(12)

∑

k∈K

ak ,nLk ,n ≤ Ln, n ∈ N .

(13)E
P
k ,n = ak ,nαnFk(Lk ,n)

2
,

(14)
ETotal =

∑

k∈K

∑

n∈N

(EU
k ,n

+ E
D
k ,n + E

P
k ,n),

2 It is worth mentioning that we follow this data processing model of APs by [8, 9].
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offloading decision vector of device k and the system, respectively. Furthermore, denote 

by W the total system bandwidth, while let Pn be the transmit power budget of AP n, 

where n ∈ N  . In this work, we aim to minimize the total energy cost via jointly optimiz-

ing the offloading decision, computation resource, bandwidth, as well as the transmit 

power, taking into account the total computation capability, bandwidth and power con-

straints. �e minimization problem, referred to as P(0) , is mathematically formulated as 

follows:

s.t.

where C1 and C2 indicate the power constraints of the offloading and the downloading 

phases, respectively. C3 represents the latency requirement of each IoT device. C4 as 

well as C5, and C6 express the total bandwidth requirement and the power budget of 

each AP, respectively. C7 gives the computation resource constraint of each AP. C8–C9 

and C10–C11 depict the non-negativity of the transmit power and the allocated band-

width, respectively. C12 illustrates the binarity of the offloading decision. Moreover, C13 

indicates that each device can only select one AP to do the task offloading. �e energy 

minimization problem P(0) is a mixed-integer non-linear programming (MINLP) prob-

lem, which is in general NP-hard and is difficult to solve [7]. For ease of tractability, in 

the following section, a time-efficient sub-optimal algorithm with ensured convergence 

performance is proposed to do the joint offloading and resource management for IoT 

devices.

(15)P(0) : min
W ,p,L,a

ETotal

C1 : pUk ,n ≥ ak ,nf
U
k (WU

k ,n), k ∈ K, n ∈ N ,

C2 : pDk ,n ≥ ak ,nf
D
k (WD

k ,n), k ∈ K, n ∈ N ,

C3 : ak ,n(τU + τD +
∑

k∈K

τk ,n) ≤ Tk , n ∈ N , k ∈ K,

C4 :
∑

k∈K

ak ,nW
U
k ,n ≤ W , n ∈ N

C5 :
∑

k∈K

ak ,nW
D
k ,n ≤ W , n ∈ N

C6 :
∑

k∈K

ak ,np
D
k ,n ≤ Pn, n ∈ N ,

C7 :
∑

k∈K

ak ,nLk ,n ≤ Ln, n ∈ N ,

C8 : pUk ,n ≥ 0, k ∈ K, n ∈ N ,

C9 : pDk ,n ≥ 0, k ∈ K, n ∈ N ,

C10 : WU
k ,n ≥ 0, k ∈ K, n ∈ N ,

C11 : WD
k ,n ≥ 0, k ∈ K, n ∈ N ,

C12 : ak ,n ∈ {0, 1}, k ∈ K, n ∈ N ,

C13 :
∑

n∈N

ak ,n = 1, k ∈ K,
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4  Methodology of resource management

In this section, we first demonstrate that the resultant resource allocation problem 

under given offloading decision is convex. With which, we show that the optimal solu-

tion of P(0) can be obtained via an exhaustive search oriented method, which suffers 

from a worst-case exponentially increased time complexity. Subsequently, a time-effi-

cient joint offloading decision and resource allocation algorithm is proposed, which 

works in an iterative manner and has ensured convergence performance.

4.1  Resource allocation with �xed o�oading decision

Given the offloading strategy of each IoT device, the original energy minimization 

problem P(0) , can be re-written as a resource management problem, denoted by P(1) , 

and it is given as follows:

subject to C1 to C11.

Lemma 2 P(1) is a convex optimization problem.

Proof To show that problem P(1) is convex, we only need to clarify the convexity of the 

objective function as well as the constraints C1 and C2 since the convexity of the other 

constraints is obvious.

According to (8), (9), and (13), it is easy to check that EU
k ,n

 , ED
k ,n

 and EP
k ,n

 are all con-

vex w.r.t. the variables (W ,p,L) . Namely, the objective function is convex. In addition, 

it increases with W  and p , which means C1 and C2 are equivalent to the constraints C1, 

C2 and Wm

k ,n
≤ W̃

m

k ,n
 , where m ∈ {U,D} , according to Lemma 2. Together with Property 

1, the proof is completed. □

With aforementioned analysis, P(0) can be optimally solved by various existing convex 

optimization tools. In other words, the optimal joint offloading decision and resource 

allocation method for problem P(0) can be obtained via a full search methodology.

Lemma 3 �e optimal solution for P(0) suffers an exponentially increased time 

complexity.

Proof �e computation complexity of the full-search enabled optimal solution relies 

on the size of the strategy space, which is exponentially increased by K. �e proof is 

completed. □

Since the exhaustive search scheme suffers from an exponentially increased compu-

tation complexity, which is not affordable for practical IoT systems, especially when 

the number of the devices is large. In the following subsection, a time-efficient algo-

rithm is developed, which is implemented in an iterative manner and has ensured 

convergence property.

(16)P(1) : min
W ,p,L

ETotal
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4.2  Time-e�cient joint o�oading strategy and resource management algorithm

In this subsection, we investigate a sub-optimal joint offloading decision and resource 

allocation method. Define en as a N-dimension vector, whose items are all zeros except 

the nth component, which is set to be 1. In addition, denote by E = {en|n ∈ N } . Obvi-

ously, we have ak ⊂ E . Moreover, define at
k
 and at = (at

k
)k∈K as the offloading decision 

of IoT device k and the offloading strategy of the system in the tth iteration, respectively. 

�e joint optimization algorithm is conducted in an iterative manner. In the tth itera-

tion, we first determine the optimal offloading scheme for device k, denoted by āt
k
 and it 

is given below

where ETotal represents the system energy consumption under the optimal resource 

mangement.3 In addition, at
−k

 is defined as follows:

Moreover, we denote by

Furthermore, let k∗ be the user that satisfies

With aforementioned definitions, we renew the offloading decision of the system in tth 

iteration as follows:

until the stopping criteria are satisfied. For brevity, we summarize the pseudo-code of 

our sub-optimal joint offloading and resource allocation scheme in Algorithm 1.

(17)
ā
t

k
= argmin

a
t

k
⊂E

ETotal(a
t

−k
),

a
t

−k
= (a

t−1
1

,a
t−1
2

, . . . ,a
t−1

k−1
,a

t

k
,a

t−1

k+1
, . . . ,a

t−1
K

).

(18)ā
t

−k
= (a

t−1
1

,a
t−1
2

, . . . ,a
t−1

k−1
, ā

t

k
,a

t−1

k+1
, . . . ,a

t−1
K

).

(19)k
∗ � argmin

k∈K

ETotal(ā
t

−k
).

(20)a
t
= ā

t

−k∗ ,

3 Given the offloading decision strategy of the system, the energy minimization problem becomes convex and can be 
solve via any kind of convex optimization tools. In this work, the MATLAB CVX tool is applied.
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�e convergence performance of our designed joint optimization approach is dis-

cussed below:

Lemma 4 �e convergence of the objective function in our developed joint offloading 

and resource management algorithm is ensured.

Proof �e proof for the convergence performance is obvious since the system’s energy 

consumption is degraded with the iterations. In addition, the total energy cost is lower 

bounded by zero. �e proof is completed. □

Before ending this section, we analyze the computational complexity of our developed 

algorithm. Details are expressed in the following lemma:

Lemma 5 �e time complexity of Algorithm 1 is O(KN ).

Proof Based on Algorithm 1, to update the system’s offloading strategy, we need to cal-

culate the energy consumption under all the possible offloading policies for each IoT 

device, i.e., (17). �e maximum number of the offloading schemes per device is N. In 

total, we have K IoT terminals, which completes the proof. □

5  Simulation results

In this section, Monte-Carlo simulation is conducted to evaluate the performance of 

our designed joint offloading decision and resource allocation algorithm for mission-

critical IoT enabled MEC systems. We assume that the IoT devices are randomly and 

uniformly distributed within a disk with radius setting to be 250 m. In total, we have 

three APs, i.e., N = 3. In addition, we assume that the data size of each device is ran-

domly selected from a given interval, namely, Uk ∈ [60, 100] bytes for k ∈ K . Mean-

while, we stipulate that the output size for the task of IoT device k to be Dk ∈ [30, 50] 



Page 12 of 16Fu et al. J Wireless Com Network         (2021) 2021:26 

bytes, where k ∈ K . Besides, the computation capacity per AP is set to be 1 G CPU 

cycles per second. Moreover, the latency requirement of device k, referred to as Tk , 

is assumed to be 5  s. �e SNR loss and the noise power spectral density are set as 

δ = 1.5 and N0 = −130  dBm/Hz, respectively. Furthermore, we assume the system 

bandwidth and the transmit power per AP to be W = 1 MHz and Pn = 1 watt, respec-

tively. At last, we declare that the applied small scale fading follows the Rayleigh fad-

ing with unit variance. Meanwhile, the distance dependent path loss is expressed 

as 128.1 + 37.6 log10 d , in which d is in Km and represents the Euclidean distance 

between IoT devices and the APs. For brevity, we summarize the simulation param-

eters in Table 1.

Table 1 Simulation parameters

Parameters Value

Cell radius 250 m

 IoT device number, K [4, 24]

Number of APs, N 3

Data volume, Uk Uk ∈ [60, 100] bytes

Output data size, Dk Dk ∈ [30, 50] bytes

Required computation resource Fk Fk ∈ [1 × 103 , 1 × 104] CPU cycles

AP computation capacity, Ln 1 G CPU cycles per second

Effective switched capacitance, αn 10
−27

Short packet transmission time, τU, τD 20 ms

Latency requirement of device k, Tk, 5 s

SNR loss, δ 1.5

Decoding error probability, εk 2 × 10
−8

IoT devices distribution Randomly uniform distribution

APs distribution Uniformly distributed over the circle diameter

Noise power spectral density, N0 − 130 dBm/Hz

System bandwidth, W 1 MHz

AP transmit power budget, Pn 1 W

Small scale fading Rayleigh fading with unit variance

Distance dependent path loss 128.1 + 37.6 log10 d , d is in Km

Fig. 2 Convergence performance
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Two baseline schemes are taken into account for performance comparison, and 

they are listed below:

• Baseline 1: In this scheme, different IoT devices select the nearest AP to do the 

task offloading.

• Baseline 2: In this strategy, each device chooses its associated AP randomly.

Note that in foregoing mentioned two benchmark schemes, the resource manage-

ment strategy is identical to that used in our explored scheme. In addition, to provide 

a comprehensive evaluation, a pair of system performance metrics are considered in 

this section, i.e., the convergence performance and the total energy consumption, 

respectively.

Figure  2 shows the convergence performance of our proposed joint offloading deci-

sion and resource allocation algorithm, i.e., Algorithm 1. We use the system energy con-

sumption during different iterations to represent this performance. It can be seen from 

Fig. 2 that, for any given K, the designed method can converge rapidly, illustrating the 

efficiency of our joint optimization approach. In addition, as expected, a larger number 

of IoT devices, namely, K, induces a higher total energy consumption.
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Figure  3 depicts the energy consumption of four schemes with varying number of 

devices, where the x-axis is the number of IoT devices, while the y-axis expresses the 

total energy consumption. We claim that the optimal method in Fig. 3 is the exhaustive 

search oriented approach as stated in Sect. 4.1. Due to the limited workspace capacity of 

MATLAB, the values of the optimal scheme when K is larger than 12 are omitted. Each 

point on these two figures is obtained via averaging over 300 feasible instances. In addi-

tion, two baselines as mentioned before are taken into account to do the comparison 

with our devised algorithm. From Fig. 3, we can observe that, the energy consumption 

gap between Algorithm 1 and the optimal scheme is tiny, showing the energy efficiency 

of our proposed joint optimization approach. In addition, for any given K, Algorithm 1 

outperforms the other two baselines, demonstrating the significance of offloading deci-

sion optimization in terms of saving total energy costs. More specific, when K  =  24, 

Algorithm 1 saves energy by 15.8% and 63.3% when compared to Baseline 1 and Baseline 

2, respectively. Moreover, it is worth noting that for any given K, Baseline 1 requires a 

less total energy than that of Baseline 2.

Figure  4 expresses the energy consumption of our devised algorithm compared to 

two baseline schemes, wherein the x-axis depicts the offloading time of the IoT devices, 

referred to as τU , while the y-axis represents the total energy cost of each approach. In 

addition, it is stipulated that τD = 30 ms. From which, we see that the explored algo-

rithm outperforms the benchmark strategies significantly, especially when τU is large. 

For instance, when τU = 280  ms, our developed method saves energy by 70.9% and 

80.1% compared to Baseline 1 and Baseline 2, respectively. Unsurprisingly, for any given 

τU , Baseline 1 always needs less total energy compared to Baseline 2.

At last, we investigate the effect of the downloading transmission time, i.e., τD , on the 

total energy consumption of each schemes, as illustrated in Fig.  5. �erein, the total 

offloading time is set to be τU = 30 ms. As expected, the proposed joint optimization 

strategy has the best energy efficiency among all the three schemes due to the sophis-

ticatedly designed offloading decision as well as the resource management. Details are 

not repeated here to avoid redundancy. Comparing Fig. 4 with Fig. 5, we observe that 

increase the download time of all the IoT devices results in a fast-growing total energy 

consumption, i.e., the slope of the curves in Fig. 5 is larger than that of Fig. 4. �is is 
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Page 15 of 16Fu et al. J Wireless Com Network         (2021) 2021:26  

because the data sizes of computing results at APs are smaller than that of the offloaded 

tasks. Increasing the transmission time for downloading phase degrades the time for 

tasks’ offloading and computing as the total latency, i.e., Tk , is fixed for IoT device k, 

where k ∈ K.

6  Conclusion and future work

In this paper, the energy cost minimization for mission-critical IoT in MEC system was 

studied. �e formulated minimization problem is a MINLP problem, which has been 

decomposed into two sub-problems for analytical tractability, i.e., the task offloading 

decision-making sub-problem and the resource optimization sub-problem. We demon-

strated that the resource management sub-problem of IoT devices under the fixed off-

loading strategy are convex and can be best solved by the existing convex optimization 

tools. On this basis, we showed that the optimal solution to the original optimization 

problem was attainable by an exhaustive search enabled approach, which suffered an 

exponentially increased time complexity. �ereafter, a time-efficient sub-optimal algo-

rithm was designed, which was conducted in an iterative manner and had a provable 

convergence guarantee compared with a wide range of benchmark schemes, the simula-

tion results show the effectiveness of our algorithm in terms of convergence and energy 

consumption. In the future, we will investigate the joint offloading decision and radio 

resource management for MEC-enabled IoT networks with ultra-low latency considera-

tion. Besides, the optimization for AP deployment will be another important direction.
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