
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2011 1

Energy Efficient Opportunistic Routing in
Wireless Sensor Networks

Xufei Mao, Member, IEEE, Shaojie Tang, Student Member, IEEE, Xiahua Xu, Student Member, IEEE,
Xiang-Yang Li, Senior Member, IEEE, Huadong Ma, Member, IEEE,

Abstract—Opportunistic routing [2], [3] has been shown to improve the network throughput, by allowing nodes that overhear the
transmission and closer to the destination to participate in forwarding the packet, i.e., in forwarder list. The nodes in forwarder list are
prioritized and the lower priority forwarder will discard the packet if the packet has been forwarded by a higher priority forwarder. One
challenging problem is to select and prioritize forwarder list such that a certain network performance is optimized. In this paper, we focus
on selecting and prioritizing forwarder list to minimize energy consumptions by all nodes. We study both cases where the transmission
power of each node is fixed or dynamically adjustable. We present an energy efficient opportunistic routing strategy, denoted as EEOR.
Our extensive simulations in TOSSIM show that our protocol EEOR performs better than the well-known ExOR protocol (when adapted
in sensor networks) in terms of the energy consumption, the packet loss ratio, the average delivery delay.

Index Terms—Sensor networks, opportunistic routing, energy.

F

1 INTRODUCTION

Routing protocol design for wireless networks are often guided
by two essential requirements: minimize energy cost or maxi-
mize network throughput. The traditional routing protocols in
wired networks choose the best sequence of nodes between the
source and destination, and forward each packet through that
sequence. The majority routing protocols designed for multi-
hop wireless networks have typically followed this convention,
including those multi-path routing protocols. However, this
did not take advantages of the broadcast nature of wireless
communications: a node’s transmission could be heard by
any node within its transmission range. On the other hand,
the lossy and dynamic wireless links make it difficult for
traditional routing protocols to achieve stable performances.

In wireless networks, various factors, like fading, interfer-
ence, and multi-path effects, can lead to temporary heavy
packet losses [11] in a pre-selected good path. In contrast,
opportunistic routing, like ExOR [2] and MORE [3], allows
any node that overhears the transmission to participate in
forwarding the packet. The routing path is selected on the fly
and completely opportunistic based on the current link quality
situations. However, this new design paradigm introduces
several challenges. One challenge is that multiple nodes may
hear a packet and unnecessarily forward the same packet.

• The research of authors is partially supported by NSF CNS-0832120, NSF
CNS-1035894, program for Zhejiang Provincial Key Innovative Research
Team, program for Zhejiang Provincial Overseas High-Level Talents (One-
hundred Talents Program), the National Basic Research Program of China
(973 Program) under Grant No.2011CB302701, the National Natural Sci-
ence Foundation of China under Grant No.60833009, the National Science
Funds for Distinguished Young Scientists under Grant No.60925010.

• Mao and Ma are with Beijing Key Lab of Intelligent Telecommunications
Software and Multimedia, Beijing University of Posts and Telecommu-
nications, Beijing China. Tang, Xu, and Li are with Department of
Computer Science, Illinois Institute of Technology, Chicago. Emails:
maoxufei@bupt.edu.cn, stang7@iit.edu, xxu23@iit.edu, xli@cs.iit.edu,
mhd@bupt.edu.cn

ExOR deals with this challenge by tying the MAC to the
routing, imposing a strict scheduler on routers access to the
medium. The scheduler goes in rounds. Forwarders transmit in
order such that only one forwarder is allowed to transmit at any
time. The other forwarders listen to the transmissions to learn
which packets were overheard by each node. In contrast to
ExOR’s highly structured scheduler, MORE [3] addresses this
challenge with randomness. MORE randomly mixes packets
before forwarding them. This ensures that routers which hear
the same transmission do not forward the same packet. As
a result, MORE does not need a special scheduler; it runs
directly on top of 802.11. Both ExOR and MORE showed
that this kind of opportunistic routing strategy can improve
the wireless network’s performance.

In this paper, we study how to select and prioritize the
forwarding list to minimize the total energy cost of forwarding
data to the sink node in a wireless sensor network. Observe that
previous protocols, i.e., ExOR and MORE, did not explore the
benefit of selecting the appropriate forwarding list to minimize
the energy cost. We will investigate this problem through
rigorous theoretical analysis as well as extensive simulations.
We study two complementary cases (1) the transmission power
of each node is fixed (known as non-adjustable transmission
model) and (2) each node can adjust its transmission power for
each transmission (known as adjustable transmission model).
Optimum algorithms to select and prioritize forwarder list in
both cases are presented and analyzed. It is worth to mention
that our analysis does not assume any special energy models.
We conducted extensive simulations in TOSSIM to study the
performance of proposed algorithms by comparing it with
ExOR [2] and traditional routing protocols. It shows that the
energy consumption of routing using EEOR is significantly
lower than ExOR with random forwarder list and traditional
distance vector routing protocols.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2011 2

2 NETWORK MODEL AND PRELIMINARY

We consider a wireless sensor network and assume that all
wireless nodes have distinctive identities, i.e., i ∈ [1, n]. In
Section 3 we first assume that every wireless node u has
fixed transmission power W . In Section 4, we assume that
each node can adjust its transmission power to any value
between 0 and W . Let w denote such adjusted transmission
power. The multihop wireless network is then modeled by a
communication graph G = (V, E), where V is a set of n = |V |
wireless nodes and E is a set of directed links. Each directed
link (u, v) has a non-negative weight, denoted by w(u, v),
which is the minimum transmission power required by node u
to send a packet to node v successfully. It is worth to mention
that our methods work with any weight function w().

Since the number of neighboring nodes of a node u may
change when different transmission power is used, we define
Nw(u) as the neighboring nodes of a node u when u transmits
with the power w. For simplicity, when the subscript w is
not mentioned, we mean that the node is using its maximum
transmission power, i.e., N(u) = NW (u). In addition, each
link (u, v) has an error probability, denoted by e(u, v), which
is the probability that a transmission over link (u, v) is not
successful, i.e., node u must consume at least w(u, v) power
to have a chance of 1 − e(u, v) to transmit a packet to node
v. No transmission is possible if less power is used.

To illustrate how we can take advantage of wireless broad-
cast advantage (WBA), let us consider a network example in
Figure 1 (a). The error probability from the source node to
each node vi is e and the error probability from each node vi

to the target node is 0. Traditional routing would route all data
packets through the same node, say vi. The expected number
of transmissions will be 1

1−e for the intended node vi to receive
the packet correctly. On the other hand, by taking advantage of
WBA property, by letting every intermediate node vj to listen
to the transmissions, the expected number of transmissions is
reduced to 1

1−en for at least one node to receive the packet
correctly. This difference will be more noticeable when e is
close to 1 and n is a big number.

v1

v2

vn

source target u
e=50%,c=1.5

v1

v3

v2
e=

50%,c=
1

e=50%,c=3

(a) (b)

Fig. 1. (a) Wireless Broadcast Advantage. (b) Calculating
the expected cost.

The advantage of WBA is more obvious in a multi-hop
wireless network, especially when a source node and the
destination node are far way, i.e., the packet from the source
node to a target node must be routed through a multi-hop
path. As proposed in ExOR [2], the source node selects
a subset of its neighboring nodes as forwarder list. The
forwarder list is prioritized to indicate which nodes have higher
priority to forward the packet. Then one or more nodes in

the forwarder list, which received the packet successfully, will
opportunistically act as new source nodes and route the packet
to the target node.

In summary, the main idea of opportunistic routing are as
follows. We let Cu(Fwd) denote the expected cost needed
by the node u using opportunistic routing strategy to send a
packet to the target node when the forwarder list chosen by u
is Fwd. For simplicity, we use Cu to denote the expected cost
of node u if there are no confusions. Initially, the expected
cost of the target node is set to be 0 and the costs of all
other nodes are set to be ∞. Using the similar mechanism
of distance vector routing, the calculations of the expect cost
for each node will be carried out periodically and every node
updates its expected cost and forwarder list periodically. When
a node needs to send or relay a packet to some destination
node, it will simply broadcast the packet and let some node(s)
in its forwarder list (constructed according to the destination
node) to recursively forward the data packet. In the next two
sections, we will focus on how to compute the expect cost
and choose the forwarder list for each wireless node: Section
3 focuses on the fixed transmission power case and Section
4 focuses on the case when nodes can dynamically adjust the
transmission power.

3 NON-ADJUSTABLE POWER MODEL
We consider the case when each node uses a fixed transmission
power. One may think that the best forwarder list for a node
u in this case is N(u). Surprisingly, this is not always true.
At the end of this section, we will show an example, based
on the Figure 1, that the best forwarder list may be a subset
of N(u).

3.1 Compute the expected cost
Now we present the main idea on calculating the expected
cost for each node and selecting the forwarder list. Consider a
node u and its neighbors. We will compute the expected cost
of and the forwarder list of node u based on the expected cost
of its neighbors whose expected cost of sending data to the
given target node has already been computed. In other words,
here we want to choose a subset of neighboring nodes N(u)
as forwarder list of node u such that the expected cost for u
to send a packet to the target is minimized. To understand our
method better, we introduce some definitions first. Consider
a fixed target. Given a set of nodes S, let S∗ denote the
increasingly sorted list of S based on the expected cost by
each node in S to send data (via possible relay) to this given
target node. Let Fwd(u) denote the forwarder list of node u.

To find the expected cost at node u, we first sort the
forwarder list Fwd∗(u) in increasing order by the expected
cost, i.e., Fwd∗(u) = {v1, v2, ..., v|Fwd(u)|}, where i < j ⇒
Cvi ≤ Cvj . Let α denote the probability that a packet sent by
node u is not received by any node in Fwd∗(u). Clearly,

α =
|Fwd∗(u)|∏

i=1

euvi (1)

Let ρ denote the probability that a packet sent by node u is
received by at least one node in Fwd∗(u). Then ρ = 1 − α.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2011 3

Let Ch
u (Fwd∗) denote the expected energy that node u must

consume to send a packet to at least one node in the forwarder
list Fwd∗. Ch

u (Fwd∗) can be calculated as follows:

Ch
u (Fwd∗) =

w

ρ
(2)

When at least one node in the forwarder list received the
packet successfully, we need to calculate the expected cost
to forward the packet sent by node u. Here we assume that
only one node from the forwarder list that received the packet
will forward the packet. Although this assumption is very
optimistic, as we will explain later, in most cases it is true. The
expected cost that we calculate here could be slightly lower
than the actual cost when multiple nodes from forwarder list
could forward the data packet.

Let Cf
u (Fwd∗) denote the expected total cost for u to for-

ward (using some nodes in the forwarder list of u) the packet to
the target. Cf

u (Fwd∗) can be calculated as follows. Assume the
prioritized forwarder list is Fwd∗ = {v1, v2, · · · , v|Fwd∗ |}.
The probability that node v1 forwards the packet is 1−e(u, v1)
and the expected cost by v1 is Cv1 ; then node v2 will forward
the packet with probability e(u, v1) · (1 − e(u, v2)) and the
cost will be Cv2 . Basically, node vi forwards the packet if it
receives the packet and nodes vj , 0 < j < i did not receive
the packet, and in this case, the cost will be Cvj . Hence, the
expected cost can be computed as follows:

β = (1−euv1)Cv1 +
|Fwd∗ |∑

i=2

i−1∏

j=1

euvj

 · (1−euvi) ·Cvi (3)

Since β is computed under condition that a forwarder node
got the packet, then we have

Cf
u (Fwd∗) =

β

ρ
(4)

Notice that the communication cost for obtaining agreement
among nodes in Fwd on which node will forward data is
also a factor that affects the total cost forwarding data in
practice. Let Cc

u(Fwd∗) denote the communication cost from
all nodes in the forwarder list in order to reach an agreement
on which node will finally help to relay the packet, Cu(Fwd∗)
is computed as follows:

Cu(Fwd∗) = Ch
u (Fwd∗) + Cf

u (Fwd∗) + Cc
u(Fwd∗) (5)

Equation 5 illustrated how to compute the expected cost of
a sender to broadcast a packet if the current chosen forwarder
list is Fwd∗. The cost consists of three parts. The first part
is the expected cost for the sender to successfully transmit
a packet to at least one receiver in Fwd∗. The second part
is the expected cost that there is one node in the forwarder
list Fwd∗ to help to relay the packet to the final destination
node. The third part Cc

u(Fwd∗) is the communication cost to
reach an agreement on choosing the actual relay node. This
cost Cc

u(Fwd∗) is often incurred once when the network is
static, while the cost of sending and forwarding depends on
the traffic flows.

Without Agreement to Resolve Duplication: Observe that
in our previous computation, we assume that we would like

to pay an additional cost Cc
u(Fwd∗) among the forwarding

nodes to prevent the scenario when multiple forwarding nodes
receive the packet correctly and all decide to forward the
packet. When this additional communication is not applied,
potentially few nodes may forward the data. This happens
when some receiving nodes in Fwd cannot hear from each
other directly. Figure 2 illustrates such an example.

v

v

source target

v

4

3

2

v1

u v

(a) (b)

Fig. 2. (a) An example for expected cost calculation, (b)
Calculating the expected cost in adjustable transmission
power model.

In Fig 2, assume 〈v1, v4〉 and 〈v2, v3〉 are the only neigh-
boring pairs among the forwarding list. If no communications
are used to resolve duplicates, (i.e., Cc

u(Fwd∗) = 0) then the
forwarding cost can be calculated as

Cf
u (Fwd∗) = ρ−1 · ((1− euv1) · Cv1 + (1− euv2) · Cv2+

euv2 · (1− euv3) · Cv3 + euv1 · (1− euv4) · Cv4)

In other words, a node vi will forward the packet only if
vi received the packet, and all its neighboring nodes with
higher priority did not forward the packet. Thus, the cost of
forwarding is computed as follows:

Cf
u(Fwd∗) =

∑|Fwd∗ |
i=1

(∏i−1
j=1,vj∈N(vi)

euvj

)
· (1− euvi) · Cvi

ρ
(6)

Due to the hardness to estimate the agreement cost and con-
sidering that most strategies need to pay the communication
cost in order to guarantee the 100% data transmission success
ratio, we omit the communication cost for agreement when
we compute the forwarding list, i.e. formula (6) will be used
instead. However, we do count the number of ACK messages
used by each node for each packet and use this data as the
communication cost in our TOSSIM simulations. We admit
that this is may be not accurate enough and we will do further
analysis in our future work.

3.2 Finding the optimal forwarder list
So far we have introduced the method to calculate the expected
cost for a given node when the forwarder list is given. Next, we
discuss how to choose the forwarder list. Consider there are k
nodes in N(u) for which an expected cost is already assigned,
then there are (2k − 1) choices to select the forwarder list.
Finding the expected cost pertaining to each forwarder list is
not practical. Here we study the properties of the forwarder list
and the expected cost and then we explain how to efficiently
choose the optimal forwarder list.

To simplify our arguments, let us introduce a property
known as prefix. A set X is called a prefix of an ordered set

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2011 4

Y if X are the set of first k elements of Y . So each set Y has
(|Y |+ 1) prefixes. Now consider node u and its neighboring
nodes N(u). Sort the nodes in N(u) based on their expected
cost in increasing order, and get N∗(u) = {v1, v2, ..., v|N(u)|}
such that |N(u)| ≥ i > j > 0 ⇒ Cvi

> Cvj
. First we show

that the optimum forwarder list of node u is a prefix of N∗(u).
Theorem 1: [1] The optimum forwarder list of node u must

be a prefix of N∗(u).
We further study the properties of forwarder list by in-

troducing another two theorems. The first theorem, Theorem
2, shows that if a node, whose expected cost is less than
the expected cost of a prefix forwarder list, is added to the
forwarder list, then the expected cost of the newly created
forwarder list will decrease while it will still be greater than the
expected cost of the newly added node. The second theorem,
Theorem 3, shows that if a node, whose expected cost is
greater than the expected cost of a prefix forwarder list, is
added to the forwarder list, then the expected cost of the newly
created forwarder list will increase.

Theorem 2: [1] Consider a node u, a prefix forwarder list
Fwd∗, and a node vk ∈ N(u) \ Fwd∗. If Cvk

< Cu(Fwd∗),
then Cvk

< Cu(Fwd∗
⋃{vk}) < Cu(Fwd∗)

Theorem 2 proves that the expected cost of each node is
higher than the expected cost of every node in its forwarder
list. This property enables us to take a greedy approach in
routing, which will be discussed later.

Theorem 3: [1] Consider a node u, a prefix forwarder list
Fwd∗, and a node vk ∈ N(u) \ Fwd∗. If Cvk

> Cu(Fwd∗),
then Cu(Fwd∗

⋃{vk}) > Cu(Fwd∗).
Having these three properties, forwarder list can be selected

easily. Algorithm 1 finds the optimum forwarder list and
calculates the expected cost for a wireless node. Algorithm
1 works as follows. First it calculates N∗(u) and then adds
nodes in N(u) to the forwarder list as long as the cost is
decreasing. Once the cost starts to increase, it terminates.
Based on Theorem 2, before we add a node to the forwarder
list we know this operation will increase or decrease the cost.
Note that based on the theorems we proved above, it is obvious
that Algorithm 1 finds the optimum forwarder list.

Algorithm 1: ExpectedCostFixedPower(u, N(u), Cu, Fwd)
Input: the expected cost of all its neighboring nodes
Output: the cost Cu and forwarder list Fwd.

1: Set Cu = ∞, Fwd = ∅.
2: Sort the neighboring nodes N∗(u) = {v1, v2, ..., v|N(u)|}

based on its expected cost in increasing order.
3: for (i = 1; i ≤ |N(u)|; i = i + 1) do
4: if (Cu > Cvi) then
5: Set Fwd = Fwd

⋃
vi and compute Cu = Cu(Fwd)

based on Equation (5).

Now we are ready to verify our claim that a node may not
choose all its neighbors into the forwarder list as the optimum
forwarder list at the beginning of this section. Consider a
network example illustrated by Figure 1 (b). Assume node
u consumes one unit of energy (i.e. w = 1) to send a
packet and N1(u) = {v1, v2, v3}. For simplicity let ei denote

Algorithm 2: ExpectedCostAdjustPower(u,Cu, Fwd)
1: Set Cu = ∞, Fwd = ∅
2: Sort nodes in N(u) based on weight in increasing order.
3: Let N(u) = {v1, v2, ..., v|N(u)|}
4: for (i = 1; i ≤ |N(u)|; i = i + 1) do
5: Set w = w(u, vi)
6: Run Algorithm 1,

ExpectedCostFixedPower(u,Nw(u), CrCost, CFwd)
7: if Cu > CrCost then
8: Set Cu = CrCost and Fwd = CFwd.

e(u, vi) and ci denote the expected cost at node vi. It is
desired to calculate the expected cost at node u. First we
add node v1 to the forwarder list. The expected cost if
Fwd(u) = {v1} will be w+(1−e1)·c1

1−e1
= 3. The expected

cost at node v2 is 1.5, so based on Theorem 2 adding node
v2 will decrease the expected cost at node u. The expected
cost if Fwd(u) = {v1, v2} will be w+(1−e1)·c1+e1(1−e2)·c2

1−e1e2
=

2.5. The expected at node v3 is 3, so based on Theorem
3 adding node v3 will increase the expected cost at node
u. The expected cost if Fwd(u) = {v1, v2, v3} will be
w+(1−e1)·c1+e1(1−e2)·c2+e1e2(1−e3)·c3

1−e1e2e3
, which is equal to 18

7 >
2.5. So the optimum forwarder list is {v1, v2} and the expected
cost at node u is 2.5. This would serve as a good example
that an optimum forwarder list is not necessarily N(u), as
mentioned in the beginning of this section.

4 ADJUSTABLE POWER MODEL

In this section we consider the case where a node can adjust
its power to any value w ∈ [0,W]. Note that for a given
forwarder list, if we decrease w to the weight of the farthest
link in Fwd(u) then Ch

u (see Equation 2) may decrease while
Cf

u (see Equation 4) will remain the same, so using adjustable
transmission ranges will give us some marginal improvement.
As another example consider Figure 2. Assume node u has an
expected cost of Cu when the transmission power w is used,
where W > w(u, v) > w. As can be seen in Figure 2, if node
u consumes power w, node v will not receive packets sent by
node u. Should we increase the transmission power of node
u to include node v in its transmission range? If Cv > Cu,
based on Theorem 3, adding node v will increase the expected
cost of node u even if no more additional power is needed.
But if Cv < Cu, there is a tradeoff. On the one hand, adding
node v increases the power Ch

u that node u must consume;
on the other hand, decreases Cf

u may or may not decrease the
expected cost at node u.

To find the expected cost in adjustable transmission power
model, we sort the nodes in N(u) based on the weight of the
link that connects that node to u. Then we keep increasing
the power at node u such that the number of nodes in Nw(u)
increases by one at each step until u reaches its transmission
power limit or there is no more neighbor. Then for each w
and each Nw(u), using the Algorithm 1, we calculate the
expected cost and pick the one that induces the minimum cost.
Algorithm 2 summarizes our approach.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2011 5

Next, we present our method (Algorithm 3) that builds the
forwarder list for each node in the graph. We will calculate the
expected cost for each node u to send a packet to the target
node t. Let Cu,t denote this expected cost and assume that the
cost for a node to send a packet to itself is zero (i.e., Ct,t = 0).
Given a set V of nodes, a source node s, and a target node
t, Algorithm 3 computes the expected energy cost needed to
relay a packet from any node to the target node t using our
opportunistic routing strategy.

Algorithm 3 works as follows. First, the set of nodes V is
divided into two sets S1 and S2. Initially set S1 = V − {t}
and S2 = {t}. Then we find the node u in S1 that has the
least expected cost (denoted as Cu,t). We remove that node
from S1 and add it to Set S2. The algorithm continues till all
node are in the set S2.

Let Expected Cost Graph denote the directed subgraph that
includes a directed edge uv from the original communication
graph if v is in the forwarder list of u. We have the following

Theorem 4: [1] Expected Cost Graph is loop free and
Algorithm 3 assigns the optimum expected cost to each node.

Algorithm 3: Expected Cost by Opportunistic Routing
Input: target node t, source node s, power w(u, v) and
link reliability for each link uv.
Output: the expected cost Cu,t from node u to node t
using opportunistic routing and the forwarder list of each
node u.

1: ∀u ∈ V , set Cu,t = ∞. Let Ct,t = 0.
2: ∀u ∈ N(t) run Algorithm 1 or 2 to compute Cu,t ⇐ Cu.
3: repeat
4: Let v be the node in S1 that has the minimum cost.
5: Let S1 = S1 − {v} and S2 = S2 ∪ {v}.
6: For each u ∈ N(v) ∩ S1, run Algorithm 1 or 2 to

compute Cu,t, depending on the power model.
7: until no node updated the forwarder list and cost Cu,t.

Observe that the unmarked node u with the minimum cost
among all unmarked nodes can be found using a distributed
approach. However, the cost may be prohibitive. We thus
design a method (Algorithm 4) that is similar to the Bellman-
Ford algorithm, a distributed computing method of the shortest
path. The basic idea of Algorithm 4 is to let each node
continuously update its expected cost to the target node t.
When the network does not change, the expected cost Cu,t

will not be reduced. The algorithm terminates when no node
can reduce its expected cost Cu,t. It is easy to show that
Algorithm 4 can terminate in constant rounds and find the
correct optimum forwarder list and the cost Cu,t.

5 PERFORMANCE STUDY IN WSNS

In this section, we present the design details of our Energy
Efficient Opportunistic Routing (EEOR) protocol in TinyOS-
based wireless sensor network (WSN) simulation environment.
In our simulation, we consider the case where there are
multiple source/destination pair nodes in a randomly deployed
WSN. Our design faces several key challenges. Firstly, all

Algorithm 4: Distributed Computing of Forwarder List
and Expected Cost by Opportunistic Routing

Input: target node t, source node s, power w(u, v) and
link reliability for each link uv.
Output: the expected cost Cu,t from node u to node t
using opportunistic routing and the forwarder list of each
node u.

1: ∀u ∈ V , set Cu,t = ∞. Let Ct,t = 0.
2: ∀u ∈ N(t) run Algorithm 1 or 2 to compute Cu,t ⇐ Cu.
3: repeat
4: For each u, run Algorithm 1 or 2 to compute Cu,t and

update its forwarder list, depending on the power
model.

5: Node u sends the new cost Cu,t to all its neighboring
nodes.

6: until no node updated the forwarder list and cost Cu,t.

nodes in the forwarder list of a node must agree on next opera-
tion, i.e., based on the priorities coming with the packet, which
one(s) will finally act as the relay node(s) in order to save
energy and increase the throughput. Since agreement involves
communication and thus increases the overhead of the wireless
network, we must guarantee the increased overhead will not
overwhelm the performance gain brought by EEOR. Secondly,
the EEOR protocol should be able to handle the network traffic
efficiently, i.e., be able to handle with congestion, to avoid
bottleneck in order to decrease packet loss ratio and save the
energy cost at the same time. To solve this issue, we need to
consider many aspects. For example, the ongoing traffic flows
from all source nodes should not exceed the capacity bound
of the wireless networks. In other words, all source nodes
should be able to dynamically adjust their network flows such
that the ongoing flows in the wireless network are stable, e.g.,
push more flow to the network if the network does not reach
its capacity; Otherwise, decrease its flow. Thirdly, a single
packet could arrive at the destination through multiple pathes,
thus involves more wireless nodes, consumes more energy
and increases the traffic burden of wireless networks. Thus,
it is necessary to introduce certain penalty scheme in order to
punish those selfish nodes, e.g., some node chooses too many
nodes as potential forwarders. This is because when a wireless
node finds that the packets from its neighbor contain too many
nodes in the forwarder list, it could increase its expected cost to
quit the forwarder list next time or drop this packet. Fourthly,
a node can utilize overheard messages to reduce the needs of
ACK messages. Actually, to utilize these snooped information
to avoid duplication is one important strategy in our design
and simulation results indicate that this strategy can improve
the system performance.

We implemented our protocol EEOR on TOSSIM, TinyOS
2.0.2. on Ubuntu 7.0.4. and conducted extensive tests based on
different network environment. We compared our simulation
results with ExOR [2] for unicast case in terms of energy
consumption, packet loss ratio, end-to-end delay and packet
duplication ratio. The experimental results showed that the
performance of our protocol is better than ExOR’s.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2011 6

5.1 Network Description
We randomly place 100 wireless nodes with transmission
range 50 feet in a 300 × 300 feet2 square region. A node
uses default CSMA MAC protocol in TinyOS.

From 100 wireless nodes we randomly pick 18 pairs
of wireless node as source/destination pairs and for each
source/destination pair nodes u and v, u will generate a
new packet per second, which is heading for v by one- or
multi-hop. Notice that the frequency of generating new packet
could change when the source node find congestion in the
network. We call the number of sending packets as data size.
Considering the limited storage capacity of wireless sensor
nodes, we set the buffer size to 20. After the buffer of a node
is full, it will either drop new packet or replace old packet
with new one according to different priorities of packets.

5.2 Performance Evaluations
We compared our protocol with ExOR with respect to the
total energy consumption, packet loss rate, end-to-end delay
and packet duplication ratio. We implement ExOR following
the descriptions in [2]. To compare two protocols fairly, we
use same max forwarder list size for both protocols and we
let the each batch contain one packet in ExOR.

Due to different operations have different energy consump-
tion parameters, we first considered and compared several
operations of nodes which dominates the energy consumption,
like sending and receiving. The Fig. 3 and 4 show the total
transmission times and receiving times (including receiving,
snooping intercepting) of all wireless nodes for both EEOR
and ExOR.

As we can see from the figures, both transmission times
and receiving times of ExOR are larger than EEOR’s. This is
due to the following reasons. First, for a node u in ExOR, it
will always choose more neighbors (ExOR includes nodes that
make on average at least 10% of the total expected number
of transmissions [20]) into forwarder list for a packet under
the constraint of penalty. However, in EEOR, when a node u
chooses forwarder list for a packet, it will not only consider
the expected cost of sorted neighbors, but also consider the
increment cost by adding a node to the forwarder list such
that u will not add a new neighbor to the forwarder list if
doing so will increase the expected cost. Second, in ExOR
protocol, a wireless node u’s expected cost only depends on
the neighbor which has smallest ETX value. However, the
expected cost of a wireless node u is determined by the current
selected forwarder list and link error rates between u and
nodes in the forwarder list, which is more reasonable. These
two differences between EEOR and ExOR make the average
forwarder list size of the former is smaller than latter’s in most
of cases, thus EEOR involves fewer intermediate nodes.

Next, we measure the total energy consumption for both
protocols based on the energy consumption parameters of
TmoteSky sensor node. For example, the energy consumption
for one time transmission and receiving for TmoteSky sensor
node is 17.4mA and 19.7mA respectively. Given a fixed
randomly topology, we randomly chosen 18 source/destination
pairs, the Fig. 5 illustrates the total energy consumption for

EEOR, AdjustablePower-EEOR and ExOR when we let the
data size of each source node change from 200 to 500. As
we can see, the total energy consumption for each protocol is
increased with the data size of each source node. And for each
case, the performance of our protocols is better than ExOR’s.

To compare the packet loss rate, we set the data size of each
source node equal to 500 and compared 18 source/destination
pairs one by one for both protocols. The comparison results
are shown in Fig. 7.

As we can see, the average packet loss rate of each pair
increases as the hop count increases between a source and a
destination node. For pairs with same hop numbers, the packet
loss rate fluctuates due to the different unreliability of links
and real-time traffic situation. In addition, in most cases, the
packet loss rate is less than ExOR’s.

The next comparison property is the end-to-end delay. We
still let each source node send up to 500 packets towards
its destination at the same time. We measure both average
and max end-to-end delay time for each source/destination
pair. Here, the definition of end-to-end delay of a packet is
the time duration from a source node sent a packet to a
destination received this packet. The average delay of each
pair is illustrated in Fig.8 and the maximum delay for each
pair is described in Fig. 9.

As we can see, the end-to-end delay of EEOR is smaller
than EXOR’s. This is mainly because in ExOR, a wireless
node u sorts the neighbors nodes only by ETX (expected
transmission count) when it chooses the forwarder list for a
packet. However, the computation of ETX is not real time,
when a node on some deliver path changed its ETX, other
nodes may need to update their ETX one hop by one hop
based on the new ETX value of this node.

In EEOR, for a wireless node u, we considered both the
expected cost of a neighbor node v and the link error rate
(which could be considered as real time) between u and v.

The last property we compared our protocol with ExOR
is the packet duplication ratio. Here the main motivation to
test the packet duplication ratio is that both our algorithm and
ExOR are multi-path routing protocols. In most of cases, same
packets will be relayed to the destination node through differ-
ent pathes, thus increases the overhead of wireless networks.
Even using other tricks like Clique Method or Double ACK
Method, we still cannot guarantee that the packet will only
arrive at the destination node at most once due to the unreliable
links. Thus, multi-path property for unicast on the one hand
decrease the packet loss ratio and energy consumption to
some extend, on the other hand increase the overhead of the
whole network. Fortunately, through our simulation results, the
overhead increased by multi-path property is not much and
the total energy consumption is decreasing as our conjecture.
The reason is that for both protocols, a forwarder list for each
engaging node constraints the area in which a packet can travel
in the network, and eventually these multi-pathes will converge
to some nodes or at least cross with each other. The result of
duplication packet ratio is shown in Fig.6. Here, the definition
of repeat times is the average times that a wireless node is
required to forward how many duplicated packets for each
source/destination pair.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2011 7

200 250 300 350 400 450 500
3

4

5

6

7

8

9x 10
4

of Packets per Source

ExOR
EEOR
A−EEOR

Fig. 3. Total transmis-
sions.

200 250 300 350 400 450 500
2

3

4

5

6

7

8x 10
5

of Packets per Source

ExOR
EEOR
A−EEOR

Fig. 4. Total received
packets.

200 250 300 350 400 450 500
0.5

1

1.5x 10
7

of Packets per Source

ExOR
EEOR
A−EEOR

Fig. 5. Energy con-
sumption.

200 250 300 350 400 450 500
10

15

20

25

30

of Packets per Source

ExOR
EEOR
A−EEOR

Fig. 6. Duplicated
Packets.

 0

 0.2

 0.4

 0.6

 0.8

 1

83-3
84-4

93-13
96-16

85-5
86-6

87-7
88-8

97-17
81-1

94-14
89-9

90-10
91-11

92-12
95-15

98-18
82-2

Lo
ss

 R
at

io

|<--------1 hop-------->| |<------2 hops------>| |<---3 hops-->| |<-----------more than 3 hops---------->|
 Source-Destination Pair

EEOR
EXOR

Fig. 7. Packet loss ratio.

 0

 1000

 2000

 3000

 4000

 5000

 6000

83-3
84-4

93-13
96-16

85-5
86-6

87-7
88-8

97-17
81-1

94-14
89-9

90-10
91-11

92-12
95-15

98-18
82-2

A
ve

ra
ge

 E
nd

 to
 e

nd
 d

el
ay

 (
m

s)

|<--------1 hop-------->| |<------2 hops------>| |<---3 hops-->| |<-----------more than 3 hops---------->|
 Source-Destination Pair

EEOR
EXOR

Fig. 8. Average delay for each pair.

 0

 2000

 4000

 6000

 8000

 10000

 12000

83-3
84-4

93-13
96-16

85-5
86-6

87-7
88-8

97-17
81-1

94-14
89-9

90-10
91-11

92-12
95-15

98-18
82-2

E
nd

 to
 e

nd
 d

el
ay

 (
m

s)

|<--------1 hop-------->| |<------2 hops------>| |<---3 hops-->| |<-----------more than 3 hops---------->|
Source-Destination Pair

EEOR
EXOR

Fig. 9. Max delay for each pair.

6 RELATED WORK
A number of energy efficient routing protocols [5], [12] have
been proposed recently combining with a variety techniques.
Most existing power aware protocols did not consider the
packet losses of the wireless links. They assumed that the
wireless links are reliable and then tried to theoretically
provide performance guarantees [7], [13], [14].

There are some other protocols proposed recently to remedy
the unreliability of the wireless channels such as using multi-
path routing [9], [10], building reliable backbone [14], [8], and
using energy efficient reliable routing structure [4], [19]. In [4],
Dong and Banerjee addressed the problem of energy-efficient
reliable wireless communication in the presence of unreliable
or lossy wireless link layers in multi-hop wireless networks.
Their main focus is on single path routing. Banerjee and Misra
[19] explored the effect of lossy links on energy efficient
routing and solved the problem of finding the minimum energy
paths in the hop-by-hop retransmission model.

However, they all followed a conventional design principle
in network layer of wired networks: after the best path(s)
between a source and destination is calculated, all data flows
from source and destination follow the selected path(s) until
the path is updated after certain routing update period. ExOR
[2] challenges this conventional design principle in network
layer. MORE [3] presents a MAC-independent opportunis-
tic routing protocol. MORE randomly mixes packets before
forwarding them. This randomness ensures that routers that
hear the same transmission do not forward the same packets.
Thus, MORE needs no special scheduler to coordinate routers

and can run directly on top of 802.11. Experimental results
from a 20-node wireless testbed show that MORE’s median
unicast throughput is 22% higher than ExOR, and the gains
rise to 45% over ExOR when there is a chance of spatial
reuse. In addition to EXOR, [17] propose another opportunistic
any-path forwarding protocol. Notice that ExOR and MORE
were designed for large file transferring in wireless static
mesh networks where energy saving is not a concern. Our
protocol focused on minimizing the energy consumption of
data forwarding in wireless sensor networks.

Recently [16] proposed a local metric, expected packet ad-
vancement (EPA) for GOR to achieve efficient packet forward-
ing. EPA for GOR is a generalization of EPA for traditional
routing. Later, [15] proposed a new method of constructing
transmission conflict graphs and proposed transmitter based
conflict graph in contrast to link conflict graph.

7 CONCLUSION

Several interesting and challenging problems are left unsolved
here. An interesting question is to design efficient protocols for
selecting optimum forwarder list for multicast and broadcast.
A challenge is to compute the expected cost accurately when
we need to consider the additional overhead by sensor nodes
for agreeing a unique node in the forwarder list to forward
the data when multiple nodes could have potentially received
the data correctly. It is interesting to design protocols using
opportunistic routing that deliver the data most reliably, or
deliver the data with the minimum delay.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2011 8

REFERENCES
[1] X.-F. Mao, X.-Y. Li, W.-Z. Song, P. Xu and K. Moaveni-Nejad Energy

Efficient Opportunistic Routing in Wireless Networks In ACM MSWIM’
09

[2] Sanjit Biswas and Robert Morris. Exor: opportunistic multi-hop routing
for wireless networks. In SIGCOMM, pages 133–144, 2005.

[3] S. Chachulski, M. Jennings, S. Katti, and D. Katabi. Trading structure
for randomness in wireless opportunistic routing. In ACM SIGCOMM,
2007.

[4] Qunfeng Dong, Suman Banerjee, Micah Adler, and Archan Misra.
Minimum energy reliable paths using unreliable wireless links. In ACM
MobiHoc, 449–459, 2005.

[5] Robin Kravets and P. Krishnan. Power management techniques for
mobile communication. In ACM MobiCom, 1998.

[6] Johnson Kuruvila, Amiya Nayak, Ivan Stojmenovic. Hop count optimal
position-based packet routing algorithms for ad hoc wireless networks
with a realistic physical layer. IEEE JSAC, Vol. 23, No. 6, June 2005,
1267-1275.

[7] Xiang-Yang Li, Wen-Zhan Song, and Weizhao Wang. A unified energy-
efficient topology for unicast and broadcast. In MobiCom, 1–15, 2005.

[8] Manki Min, Feng Wang, Ding-Zhu Du, and Panos M. Pardalos. A
reliable virtual backbone scheme in mobile ad-hoc networks. In IEEE
MASS, 2004.

[9] A. Nasipuri, R. Castaneda, and S. R. Das. Performance of multipath
routing for on-demand protocols in ad hoc networks. ACM/Kluwer
Mobile Networks and Applications (MONET), 6(4):339–349, 2001.

[10] J. Raju and J. Garcia-Luna-Aceves. A new approach to on-demand
loop-free multipath routing. In ICCCN, pages 522–527, 1999.

[11] T.S. Rappaport. Wireless Communications: Principles and Practices.
Prentice Hall, 1996.

[12] Volkan Rodoplu and Teresa H. Meng. Minimum energy mobile wireless
networks. In IEEE ICC, volume 3, 1998.

[13] P.-J. Wan, G. Calinescu, X.-Y. Li, and O. Frieder. Minimum-energy
broadcast routing in static ad hoc wireless networks. ACM Wireless
Networks, 2002.

[14] Y. Wang, W.-Z. Wang, and X.-Y. Li, Distributed low-cost backbone
formation for wireless ad hoc networks. In ACM MobiHoc, 2005.

[15] K. Zeng, W. Lou, and H, Zhai. On End-to-end Throughput of Oppor-
tunistic Routing in Multirate and Multihop Wireless Networks. In IEEE
InfoCom 2008

[16] K. Zeng, W. Lou, J. Yang, D. III. On geographic collaborative
forwarding in wireless ad hoc and sensor networks. In WASA 2007

[17] Z. Zhong, J. Wang, and S. Nelakuditi. Opportunistic any-path forwarding
in multi-hop wireless mesh networks. In USC-CSE, Technical Report
TR-2006-015

[18] H. Dubois-Ferriere, D. Estrin and M. Vetterli. Packet Combining in
Sensor Networks In ACM SenSys, 2005.

[19] S. Banerjee and A. Misra. Minimum energy paths for reliable commu-
nication in multi-hop wireless networks. In ACM MobiHoc 2002.

[20] D. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput
path metric for multi-hop wireless routing. In ACM MobiCom, 2003.

Dr. Xufei Mao is a Computer Science PhD
student at Illinois Institute of Technology. He
received B.S. from Shenyang Univ. of Tech. and
M.S. from Northeastern University, China. His
research interests include design and analysis of
algorithms for wireless networks and the design
and implementation of large-scale wireless sen-
sor networks. He is a student member of IEEE.

Shaojie Tang is a Computer Science PhD stu-
dent at Illinois Institute of Technology. He re-
ceived B.S. at Radio Engineering, Southeast
University, P.R.China, 2006. His research field
is on algorithm design, optimization, security
of wireless networks, electronic commerce as
well as online social network. He is a student
member of IEEE.

Xiaohua Xu received the BS degree from
ChuKochen Honors College at Zhejiang Univer-
sity, P.R. China, in 2007. He is currently working
toward the PhD degree in Computer Science
at Illinois Institute of Technology. His research
interests and experience span a wide range
of topics from theoretical analysis to practical
design in wireless networks. He is a student
member of the IEEE.

Dr. Xiang-Yang Li (M’99, SM’08) has been an
Associate Professor since 2006 and Assistant
Professor of Computer Science at the Illinois
Institute of Technology from 2000 to 2006. He
hold MS (2000) and PhD (2001) degree at Com-
puter Science from UIUC. He received B.Eng.
at Computer Science and Bachelor degree at
Business Management from Tsinghua Univer-
sity, P.R. China in 1995. His research interests
span wireless sensor networks, computational
geometry, and algorithms, and has published

over 200 papers and 4 books on these fields. He is an editor of IEEE
TPDS, Networks: An International Journal, and was a guest editor
of several journals, such as ACM MONET, IEEE JSAC. In 2008, he
published a monograph “Wireless Ad Hoc and Sensor Networks: Theory
and Applications”. He is a senior member of the IEEE and a member of
ACM.

Dr. Huadong Ma (M’99) received the B.S. de-
gree in Mathematics from Henan Normal Uni-
versity in 1984, the M.S. degree in Computer
Science from Shenyang Institute of Computing
Technology, Chinese Academy of Science in
1990 and the Ph.D. degree in Computer Sci-
ence from Institute of Computing Technology,
Chinese Academy of Science in 1995. He is
currently a Professor and Director of Beijing Key
Lab of Intelligent Telecommunications Software
and Multimedia, Dean of School of Computer

Science, Beijing University of Posts and Telecommunications, China.
He visited UNU/IIST as research fellow in 1998 and 1999. From 1999
to 2000, he held a visiting position in the Department of EECS, The
University of Michigan. He was a visiting Professor at The University of
Texas at Arlington from July to September 2004, and a visiting Professor
at HKUST from Dec. 2006 to Feb. 2007. His current research focuses
on multimedia system and networking, Internet of things and sensor
networks, and he has published over 100 papers and 4 books on these
fields. He is member of IEEE and ACM.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2011 9

APPENDIX

.1 Proof of Theorems
The proof of Theorem 1.

Proof: We prove this theorem by contradictions. As-
sume that the optimum forwarder list, say Opt, has the
lowest expected cost and is not a prefix of N∗(u) =
{v1, v2, · · · , v|N∗(u)|}. Then there must be two nodes
vk, vk+1 ∈ N∗(u) such that vk /∈ Opt and vk+1 ∈ Opt.
Assume vk is the first node satisfies conditions above when
we check nodes in Opt∗ (sorted list of Opt by increasing
order) one by one. We will show that, if vk is added to
Opt, the expected cost decreases, i.e., Cu(Opt+) ≤ Cu(Opt),
and hence Opt cannot be the optimum forwarder list. Here
Opt+ = Opt

⋃{vk}.
First, let’s examine a way to compute an upper bound, say

∆, of the expected cost for the node set Opt+ as follows. If
node vk+1 receives the packet and node vk doesn’t, then node
vk+1 forwards the packet with cost Cvk+1 . If both vk+1 and
vk receive the packet, then node vk forwards the packet with
cost Cvk

. In other words, node vk forwards data only if both
node vk and vk+1 receive the packet. It is obvious that this
change increases the expected cost of node u, assuming same
forwarder list Opt+. In other words, ∆ ≥ Cu(Opt+). Then,
we compare ∆ and Cu(Opt). Let us consider the expected
cost to forward the packet by one of the nodes in the forwarder
list. The only time that the cost is different is when node vk

and node vk+1 both receive the packet and no node vi, i < k
receives the packet. In the calculation of ∆, the cost is Cvk

;
while in the calculation of Cu(Opt), the cost is Cvk+1 since
vk /∈ Opt. According to the assumption, Cvk

≤ Cvk+1 , hence
∆ ≤ Cu(Opt).

Consequently, we have Cu(Opt+) ≤ ∆ ≤ Cu(Opt). That
is to say, Opt can not be the optimum forwarder list, if it is
not a prefix of N∗(u). This completes the proof.

The proof of Theorem 2.

Proof: Assume node u uses energy w to send the packet.
For simplicity let e = euvk

, C1 = Cu(Fwd∗), and C2 =
Cu(Fwd∗

⋃{vk}). Using Equations (1), (3), and (5) we have
{

(1− α) · C1 = w + β

(1− α · e) · C2 = w + β + α(1− e)Cvk

(7)

Subtract and reorder, we have (1−α · e) ·C2 = (1−α) ·C1 +
α(1− e)Cvk

. We know that Cvk
< C1, so (1− α · e) · C2 <

(1− α) · C1 + α(1− e)C1, thus, C2 < C1.
Now we show that Cvk

< C2. In Equation (7), we replace
(w + β) in the second equation with ((1− α) · C1) from the
first equation. Then we have (1−α · e) ·C2 = (1−α) ·C1 +
α(1− e)Cvk

. We know that Cvk
< C1, thus, (1−α · e) ·C2 >

(1− α) ·Cvk
+ α(1− e)Cvk

. This implies that C2 > Cvk
.

The proof of Theorem 3.

Proof: The proof is similar to that of Theorem 2. In
Equation (7), we subtract and reorder to get (1−α · e) ·C2 =
(1 − α) · C1 + α(1 − e)Cvk

. We know that Cvk
> C1, thus,

(1−α · e) ·C2 > (1−α) ·C1 +α(1− e)C1. This implies that
C2 > C1.

.2 Concept Validation by Simulations
Besides we design the system and compare its performance to
other protocols in TOSSIM, we also run the following simula-
tions in self-designed simulator (which does not consider radio
interferences). We randomly placed 100, 125, 150, 175, 200,
225, and 250 nodes in a 50feet × 50feet square region, the
transmission range of each sensor node is set to 10feet. For
each set of nodes we generated 100 random graph, for each
random graph we tried 100 random pair of source and target
nodes, and for each pair of source and target nodes we tried
the routing 100 times. In addition to that, for each set up, we
tried the cases where the average error producibility of links
were 0.25, 0.50, 0.75, and the extreme case 0.95 and then we
run each set up on 6 different methods for both non-adjustable
and adjustable transmission models.

The routing and forwarder selection method we compared
includes:
• Standard Dijkstra we implemented two variation of

Dijkstra. In non-adjustable transmission model we assign
the weight 1

1−e (e denotes the error probability of a link
) to each node and then run the traditional Dijkstra and in
adjustable transmission model we assign the weight w

1−e
to each link and then we run the traditional Dijkstra.

• Distance Based: each node selects a certain number of
its neighbors that are closest to the destination node.
Actually, this naive method can be improved by the
idea in [6] which selects a certain number of neighbors
based on cost function w/(1 − p), this is referred as
Cost function Based method ([6]). Notice, the results
of simulation refer to Distance Based method rather than
the method in [6].

• Reception Based: each node selects a certain number of
its neighbors that have the best reception (i.e., small error
probability).

• Most Forwarding: this method is also known as compass
forwarding. Each node selects a certain number of its
neighbors that are the most forwarding nodes. Briefly if
a message is located at a node v, and wants to reach
node t, most forwarding will send it to the neighbor u of
v such that the slope of the line segment joining u to v
is the closest to the slope of the segment joining v to t.

Previously, we calculated the expected costs of the nodes
based on the assumption that only one among the nodes in
the forwarder list forwards the packet. But our routing method
does not guarantee that. In our routing method each node sends
ACK messages to its neighboring nodes to tell them not to
forward, but what if there is another node in the forwarder
list that is not in the transmission range of the sender of the
ACK message? For example, a node u sends a packet to nodes
v and w which are both in the forwarder list of node u. If
the ∠vuw > 60 then nodes v and w will not receive ACK
messages from each other under non-adjustable model. So if
nodes v and w both receive the packet, they both will forward.
This is the reason why the actual cost of our routing method

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2011 10

75 100 125 150 175 200 225 250 275
3

4

5

6

7

8

9

10

Number of Nodes

C
on

su
m

ed
 E

ne
rg

y

Non Adjustable Transmission

Expected
Actual

75 100 125 150 175 200 225 250 275
1

1.5

2

2.5

3

3.5

4

Number of Nodes

C
on

su
m

ed
 E

ne
rg

y

Adjustable Transmission

Expected
Actual

(a) non-adjustable power (b) adjustable power

Fig. 10. Expected cost vs actual cost.

75 100 125 150 175 200 225 250 275
0

10

20

30

40

50

60

70

Number of Nodes

C
on

su
m

ed
 E

ne
rg

y

Non Adjustable Transmission (Good Quality Links)

Ours
Dijkstra
Distance Based
Reception Based
Most Forwarding

75 100 125 150 175 200 225 250 275
0

20

40

60

80

100

Number of Nodes

C
on

su
m

ed
 E

ne
rg

y

Non Adjustable Transmission (Bad Quality Links)

Ours
Dijkstra
Distance Based
Reception Based
Most Forwarding

(a) good links (b) bad links

Fig. 11. Energy consumption comparison.

is slightly higher than the expected cost. In the adjustable
transmission model, nodes tend to choose nearby neighbors as
forward nodes since they usually reduce their power for power
saving purposes, so the above case does not happen very often.
On the other hand, in the non-adjustable transmission model,
nodes tend to select bigger forward lists and hence the above
case happens more. The Figure 10 (a) and Figure 10 (b) show
the difference between the actual cost and expected cost for
adjustable and non-adjustable transmission model separately.

.2.1 Non-Adjustable Transmission Model
As can be seen in Figure 11 our method outperforms distance
based, reception based, and most forwarding methods. If links
are reliable, then Dijkstra will perform very close to the
optimum, so there is not much room for improvement, but
if links have very poor reliability, specially when the graph
is dense, then our method will also outperform Dijkstra. See
Figure 11 for an illustration.

.2.2 Adjustable Transmission Model
The same arguments apply to the adjustable transmission
model. As can be seen in Figure 12 our method again outper-
forms distance based, reception based, and most forwarding
methods. If links are reliable, then Dijkstra will perform
very close to the optimum, so there is not much room for
improvement, but if links have very poor reliability, especially
when the graph is dense, then our method will also outperform
Dijkstra. See Figure 13 for an illustration.

.2.3 Source-Target Distance
We can look at the problem from another point of view. We
can compare the energy consumed to route a packet based
on the distance between source and target. As can be seen in
figure 14 all methods perform closely when the target is close
(i.e., less than one hop away), but the difference increases as
the distance increases.

Figure 15 illustrate different forwarder list selection meth-
ods implemented and discussed in this paper. We randomly
placed 100 nodes in a 50feet× 50feet square region and the
transmission range of each sensor node is set to 10feet.

.2.4 Further Improvement
As mentioned before the expected cost calculated at each node
is based on the assumption that only one node in the forwarder
list forwards the message. This is the ideal case and the routing

algorithm introduced in this paper cannot guarantee that. The
reason is that the nodes in the forwarder list do not necessarily
build a clique. If two nodes in the forwarder list cannot hear
each other, both of them will forward the message. To alleviate
this problem we introduce two additional methods:

Double ACK method: in this method when the sender
receives the ACK message from one of the nodes in its
forwarder list, it sends a second ACK message to its neighbors
whose expected cost is higher than the expected cost of the
node that sent the first ACK message. This will guarantee that
only one node in the forwarder list forwards the message if
the ACK is free of lost.

Clique method: in this method we remove some nodes
from the forwarder list such that the forwarder list of each
node is a clique. Consider node u and its forwarder list, and
assume node v has the smallest expected cost among the nodes
in Fwd(u). Then for each node w in Fwd(u), we keep node w
iff the following two conditions are satisfied. 1) ∠vuw < 30;
2) nodes v and w are neighbors of each other. Otherwise we
delete node w from Fwd(u). Unlike all other algorithms and
method introduced in this paper, Clique method requires some
geometry information to be able to calculate the angle. This
guarantees that all the nodes in the forwarder list are contained
in a pie whose angle is at most 60 and hence the nodes in the
forward list will make a clique. Note that removing nodes from
forwarder list will increase the expected cost at the node, but
on the other hand, guarantees that only one node forwards the
message.

To emphasize on WBA property and the impact of the
DoubleAck method and Clique method placed the same
number of nodes in a 30feet × 80feet rectangular region
and we also placed the source node and the target node at the
opposite ends of the region.

In Figure 16 the average error rate is 30%, so there is a good
chance that two or more nodes in the forwarder list forward
the message. So our method consumes more energy than the
Dijkstra method. The Clique method and the Double ACK
method perform very close to optimum.

In Figure 17 the average error rate is 70%, so there is less
chance that two or more nodes in the forwarder list forward
the message. So our method consumes less energy than the
Dijkstra method. Again the Clique method and the Double
ACK method perform very close to optimum.

In Figure 18 the average error rate is 95%, so there is
very little chance that two or more nodes in the forwarder
list forward the message. So our method not only outperforms

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2011 11

75 100 125 150 175 200 225 250 275
0

10

20

30

40

50

60

70

Number of Nodes

C
on

su
m

ed
 E

ne
rg

y
Adjustable Transmission (Good Quality Links)

Ours
Dijkstra
Distance Based
Reception Based
Most Forwarding

Fig. 12. Energy consumption com-
parison. Good links

75 100 125 150 175 200 225 250 275
0

10

20

30

40

50

Number of Nodes

C
on

su
m

ed
 E

ne
rg

y

Adjustable Transmission (Bad Quality Links)

Ours
Dijkstra
Distance Based
Reception Based
Most Forwarding

Fig. 13. Energy consumption com-
parison. Bad links

−1 0 1 2 3 4 5 6 7
0

20

40

60

80

100

120

Distance

C
on

su
m

ed
 E

ne
rg

y

Source−Target Distance

Ours
Dijkstra
Distance Based
Reception Based
Most Forwarding

Fig. 14. Energy consumption com-
parison based on source-target dis-
tance

(a) Original UDG (b) Our Method Non-Adjustable (c) Our Method Adjustable (d) Dijkstra Non-adjustable

(e) Dijkstra Adjustable (f) Distance Based (g) Reception Based (h) Most Forwarding

Fig. 15. Different forwarder list selection methods

75 100 125 150 175 200 225 250 275
5

10

15

20

25

30

Number of Nodes

C
on

su
m

ed
 E

ne
rg

y

Non Adjustable Transmission (Average Error Rate: 30%)

Expected
Double Ack
Clique
Actual
Dijkstra

Fig. 16. Average Error Rate: 30%

75 100 125 150 175 200 225 250 275
10

15

20

25

30

35

Number of Nodes

C
on

su
m

ed
 E

ne
rg

y

Non Adjustable Transmission (Average Error Rate: 70%)

Expected
Double Ack
Clique
Actual
Dijkstra

Fig. 17. Average Error Rate: 70%

75 100 125 150 175 200 225 250 275

40

60

80

100

120

140

160

180

200

Number of Nodes

C
on

su
m

ed
 E

ne
rg

y

Non Adjustable Transmission (Average Error Rate: 95%)

Expected
Double Ack
Clique
Actual
Dijkstra

Fig. 18. Average Error Rate: 95%

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2011 12

Dijkstra method but also it performs slightly better than the
Clique method because the Clique method removes some of
the nodes from the forward list.

.3 System Design and Implementation
Table 1 introduces some main properties that a wireless node
and a packet are related with.

TABLE 1
Properties related with wireless node u and packet p

u.id the unique identity of u
p.src source node identity of p
p.des destination node identity of p
ACK(p) ACK message corresponding to p
u.fwdList(p) forwarder list that u constructs for p
u(p).pri priority of u to forward p, this is indicated

in the forwarder list contained in p
LER(u, v) link error rate from u to its neighbor node

v
LRτ

i (u, v) i type packet loss rate from u to v during the
past τ time, here i ∈ {data, beacon, ack}
denotes three different message type

Nτ
i (u) # of i type packets sent by u during the past

τ time, i ∈ {data, beacon, ack}
u.pktList Packet list of u, which records information

of all data packets u received during a
period of time.

.3.1 Node data structures
We assume every node has a unique node identity. In our
design, a wireless node u could act as several roles simulta-
neously, like a source node, a destination node and a relay
node for one or more different source/destination pairs. The
function for each role is very simple. For example, when
u acts as a source node, u will construct and send new
packets periodically. When receiving a new packet p, a node
u will compute u.fwdList(p) first and then broadcast p to
all neighbors when u is not the destination node of packet p.
When u’s role is a relay node for packet p, it will replace
the old forwarder list contained in p with new forwarder list
computed by u and broadcast p. If u works as a destination
node, it simply get data payload of p (may do further operation
depending on different system).

After a node u booted, u only needs to know (collect)
the information of its one hop neighboring nodes. This is
conducted by listening to the beacon, data and ACK mes-
sages from neighbors. In addition, u will maintain a routing
table which contains necessary information for u to compute
the forwarder list for a packet p to p’s destination. Simply
speaking, if a node u wants to send or relay a packet p to its
destination v, what u needs to do is to compute the optimal
forwarder list p.fwdList based on the current information in
the routing table, and broadcast p to all nodes in p.fwdList.
To sum up, the detail operations of u to do this mainly depend
on following aspects.
• Routing Table: which records its expected cost to forward

a packet to the destination and the expected cost of each
neighbor to relay this packet to each specific destination.
These information will be used to compute a node’s

real-time forwarder list to the specific destination. The
routing table will be updated continuously by collecting
information from all data, beacon and ACK messages
from neighbors.

• Buffer Size: which determines directly how many packets
a node can handle simultaneously, thus plays a key role
for a node to make further decision when it generates or
is required to relay a packet.

• Priority : which indicates on which priority a node should
forward (send) a packet. This priority is assigned by the
sender and indicated by the order, following which a
receiver is in the forwarder list. The source node has the
highest priority for all packets it generated automatically,
i.e., a node will take care its own packets first when con-
flict between its own packets and relay packets happens.

• Packet List: which records the unique information (e.g.
sender ID + packet ID) of all packets a node listened;
Before a node takes care of a packet, it will look up the
Packet List first and check out what operations the node
have done to previous seen packets during a period, then
decide the next step.

More detailed definition and explanation of aforementioned
items are shown in C.4. For simplicity, from now on, we focus
on one destination node.

.3.2 Link Reliability Measurement
Another issue needs to be considered carefully is the link
reliability of EEOR since the link reliability is directly related
with the choice of a node’s forwarder list, thus determines
the performance of EEOR. As we know, the link reliability
between two neighboring nodes not only depends on the
transmission power of the transmitter, background noise, but
also depends on its logical position in the network. For
example, if a node is surrounded by many source nodes, the
link reliability from it to its neighbors probably could be worse
than other nodes due to the numerous competition for radio
since data source nodes will push new data to the network
continuously.

In our design, besides considering link gain, power, and
background noise, we considered several other aspects to
compute the link reliability between two neighboring nodes
as well. We considered the transmission situation of all
three types of messages together during a period of τ time
(τ = 1000 ms in our design) to get the link reliability for two
wireless neighboring nodes since both their packet length and
utilized frequency are different. For two neighbors u and v,
the way to compute the current link error rate LER(u, v) is
as follows: After node u started, u will continue to collect the
information from data, beacon and ACK messages received
from v for the past τ time and update the current packet
loss ratio for data (LRτ

data(u, v)), beacon (LRτ
beacon(u, v))

and ACK (LRτ
ack(u, v)) messages respectively. Notice, every

node will also broadcast how many packets it has broadcast
and how many packet it has received successfully from its
neighboring nodes during current time window. For example,
u collects the neighboring information (e.g. ID, expected cost
for forwarding a packet to the destination, data transmission
successful ratio, etc.) from beacon message, collects packets

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2011 13

from data message by receiving or overhearing, collect sending
status from ACK messages and so on. Thus, the current link
error rate satisfies:

LER(u, v) =
∑

i∈{data,beacon,ack}

LRτ
i (u, v)×Nτ

i (u)∑
j∈{data,beacon,ack}Nτ

j (u)

.3.3 Forwarder List
When a node u prepares to send a packet p to its destination
node p.des (no matter p is generated by u or needs to be
forwarded by u), u have to compute the current forward
list of p first by Algorithm 1 or 2 for two different models
respectively. The forwarder list is updated in real-time and
could be different according to the different destinations for a
given time. Given a node u and a packet p, the construction of
u.fwdList(p) is determined by considering several factors:
• Link error rates between u and nodes in N(u);
• Expected cost of each neighbor to forward p to p.des;
• Traffic situation of each neighbor;

Here, a node’s traffic situation will be considered when a node
computes its expected cost to a specific destination, this will
be explained later in Congestion Handling subsection (supple-
mentary file). One thing needs to be mentioned that there is a
tradeoff between the frequency to update the forwarder list and
the frequency of a node to broadcast beacons to its neighbors.
When a node collects ”enough” information from messages
it received or after a specific time period, it will re-compute
its forwarder list for each potential destinations and update its
expected cost for every destinations. Otherwise, the forwarder
list updating either wastes resources or does not reflect the
optimal forwarder list real time.

.3.4 Message Handling
As we have mentioned before, after a node receive a packet,
it may save it, drop it, forward it immediately or waits for
a while to make further decision. In this subsubsection, we
will explain the details of the operation when a node receive
beacon, ACK and data message respectively.

Every node will broadcast beacon messages periodically
which will be operated by the routing layer. After receiving
a beacon message from one of neighboring nodes, a wireless
node will collect necessary information from the beacon and
update its known information.

Before presenting our strategies to handle ACK and data
packet, we need to introduce a concept named Packet List
because it is important and will be used in both strategies.
Packet List records some necessary information of the packets
a node received during a period, like source identity, sequence
number, and so on. Notice, Packet List only records informa-
tion of a packet, rather than packet itself due to the limited
storage of a wireless node.

After a node u receives a packet p, u will broadcast an ACK
message after waiting for t times if u belongs to the forwarder
list that is contained in p. Here t depends on node u’s priority
(remembering that this priority is determined by the order in
the forwarder list of p), the higher the priority of node u is, the
shorter t is. The basic idea for a node to react upon receiving
an ACK message is as follows: when the sender node of p

receives ACK, it will stop sending p again. If another node v
which belongs to the forwarder list of p receives ACK(p), v
will compare its priority to forward p with u’s. v will drop
p if v finds it has lower priority. The node in the forwarder
list which has highest priority will become the new source
node of p and continue to forward p to p’s destination. To
guarantee the high data transmission success ratio, a sender
will retransmit a packet for several times (within the upper-
bound which is 5 in our simulation) until it receives ACK or
overhears the packet being forwarded by some node in the
forwarder list. We set up the same threshold for all algorithms
compared in the simulation section in order to guarantee the
fairness. Please see Algorithm 5 for more details. In Alg. 5,
we use abbreviations { Pd, Pf, Po} to denotes the status of
a packet (saying p) for a node (saying v). Here, p.status ==
Pd means p has been delivered successfully by v; Pf means
p will be forwarded by v later. Po means p is created by v
originally.

Thus all or most of nodes in the same forwarder list
including the sender node itself will agree on which node(s)
will act as new source node(s) of this packet upon receiving
ACK on time. However, nodes in the same forwarder list
may not be able to receive message from each other. For
example, they are not neighbors or the ACK message could
be lost. There will be several nodes that become new senders
of p sooner or later and increase the duplication of p and
traffic burden. Actually, based on our observation through
running the case on the TOSSIM, both cases aforementioned
happened frequently with the increment of the traffic and the
increment of unreliability between links. In order to mitigate
this situation, we design the ”snoop” mechanism. Basic idea is
to let a wireless node to snoop the message from its neighbors
and analyze the situation by comparing the information of new
coming message with the information recorded in its Pack
List before making further decision. Details please refer to
Algorithm 5. Our simulation results indicate that the Message
Handling algorithm can decrease the duplication of packets
significantly and reduce the packet delay as well.

Our simulation results showed this packet handling mech-
anism can mitigate the duplications of packets extremely in
most of cases. We also take the congestion handling problem
into consideration.

.3.5 Congestion Handling
When the traffic increases to the network capacity, some
packets will be dropped by some nodes due to the limited
buffer size. For example, the source nodes generates packets
so quickly that inter-relay nodes cannot forward all packets
on time and do not have enough space to save more packets
into buffer at the same time, many packets will be dropped.
In addition, the decreasing of the link reliability because of
the weather or some other reasons will lead to the increase
of retransmission times, thus degrade the performance. Thus,
a source node should have the ability to adjust its speed
to initiate sending new packets to the network. We use a
similar strategy as TCP to handle the congestion related issue.
Recall each node maintains a real-time routing table towards
each specific destination. If a node u finds some of its links’

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2011 14

Algorithm 5: Message Handling
input : Receiving a packet p
begin

if p is a data packet then
if this is the first time for u to receive p then

if u.id == des(p) then
broadcast(ACK(p)); save data packet p;
pktList(p).status = Pd;

if u.id == sdr(p) then
Drop(p); pktList(p).status = Pd;

if u.id ∈ p.fwdList then
broadcast(ACK(p));
putPacketInBuffer(p); and
pktList(p).status = Pf ;

else
pktList(p).status = Pd;

else
if pktList(p).status == Pd then

Drop(p);
if pktList(p).status == Po then

Drop(p); pktList(p).status = Pd;
if pktList(p).status == Pf then

if sdr(p).pri ≥ u(p).pri then
Drop(p); pktList(p).status = Pd;

else
Drop(p);

else
Drop(p);

else
if p is ACK(q) then

if q /∈ u.pckList or
u.pckList(q).status == Pd then

Drop(p);
else

if u.id == q.sdr or
(p.sdr)(q).pri > u(q).pri then

u.pckList(q).status=Pd; Drop(q);

else
Get information from beacon message p, and
update local information;

end

reliability is decreasing (resp. increasing) or congested, the
computed expected cost will increase (resp. decrease). The
increasing (or decreasing) of the expected cost of u will
lead to the increment of expected cost of a series of nodes
(probably all nodes from u to the source node on one of
multiple pathes), finally this will either make the packets
toward specific destination choose different routing pathes (or
push more packets to this path) or lead the source node to
increase (or decrease) its expected cost. When a source node
finds its expected cost is increasing (resp. decreasing) (more

than 25% in our simulation) it will decrease (resp. increasing)
the data rate by half. Our simulation results indicate that our
strategy can handle the congestion well.

.4 Description of ExOR [2]
ExOR broadcasts each packet, choosing a receiver to forward
only after learning the set of nodes which actually received
the packet. Delaying forwarding decisions until after reception
allows ExOR to try multiple long but radio lossy links con-
currently, resulting in high expected progress per transmission.
The key challenge in realizing ExOR is ensuring that only the
best receiver of each packet forwards it, in order to avoid
duplication. ExOR operates on batches of packets in order
to reduce the communication cost of agreement. The source
node includes in each packet a list of candidate forwarders
prioritized by closeness to the destination. Receiving nodes
buffer successfully received packets and await the end of
the batch. The highest priority forwarder then broadcasts the
packets in its buffer, including its copy of the “batch map” in
each packet. The batch map contains the sender’s best guess
of the highest priority node to have received each packet.
The remaining forwarders then transmit in order, but only
send packets which were not acknowledged in the batch maps
of higher priority nodes. The forwarders continue to cycle
through the priority list until the destination has 90% of the
packets. The remaining packets are transferred with traditional
routing.

