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Energy-Efficient Packet Transmission Over a
Wireless Link
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Abstract—The paper considers the problem of minimizing the of wide interest to develop low-power signaling and multiac-

energy used to transmit packets over a wireless link vitazysched- cess schemes, signal processing circuits, and architectures to
ules that judiciously vary packet transmission times. The problem increase battery life.

is motivated by the following observation. With many channel Th has b | f h .
coding schemes, the energy required to transmit a packet can be ere has been a lot of research on transmission power

significantly reduced by lowering transmission power and code control schemes over the past few years (see, e.g., [4], [8],
rate, and therefore transmitting the packet over a longer period of [11], [12], [14], [19] and [21]). The chief motivation of these
time. However, information is often time-critical or delay-sensitive  schemes, however, has not been to directly conserve energy but
and transmission times cannot be made arbitrarily long. We 5iher 1o mitigate the effect of interference that one user can

therefore consider packet transmission schedules that minimize h h | df btaining distributed
energy subject to a deadline or a delay constraint. Specifically, C2US€ 0 others. The results ranged from obtaining distribute

we obtain an optimal offline schedule for a node operating under Power control algorithms to determining the information
a deadline constraint. An inspection of the form of this schedule theoretic capacity achievable under interference limitations [2],
naturally leads us to an online schedule which is shown, through [13].

simulations, to perform closely to the optimal offline schedule. Whereas most power control schemes aim at maximizing
Taking the deadline to infinity, we provide an exact probabilistic

analysis of our offline scheduling algorithm. The results of this the amount of information sent for a given average power
analysis enable us to devise a lazy online algorithm that varies constraint, a recent study [3] considers minimizing the power
transmission times according to backlog. We show that this lazy subject to a specified amount of information being successfully
schedule is s}_gnificantly more energy-el;]ﬁc(ijerllt chompared 10 a transmitted. Rather than minimizing power, [5] considers the
e, " 4537522 quesion of minimizing energy diecty; and compares the
energy efficiency, defined as the ratio of total amount data
delivered and total energy consumed, of several medium access
protocaols.
In this paper we expand on the work in [17] and consider
|. INTRODUCTION the problem of minimizing the energy used by a node on a

BIQUITOUS wireless access to information is gradua||§;oint-to-point link to transmit packetized information within a
l J becoming a reality. Dedicated-channel voice transmigivén amount of time. The setup attempts to model a number

sion (as in most existing cellular systems, e.g., GSM, 1S-98 rgalistic wir_e!ess networking scenarios: ;) a node with finite
has already become a widespread and mature technoldi§lime and finite energy supply such as in a sensor network
Packet-switched networks are being considered for heterogll: 2) @ battery operated node with finite-lifetime information;
neous data (combined voice, web, video, etc.) to efficientiat IS, information that must be transmitted before a deadline;
use the resources of the wireless channel. Wireless LANs &l 3) @ battery-operated node thatis periodically recharged. In
personal area networks, where packetization is more suifé#f case, minimizing transmission energy ensures that the node
to the bursty nature of the data, are being developed affg€S not run out of energy before it is recharged. .
deployed. More recently, ad hoc networks and networks of 10 Minimize transmission energy, we vary packet transmis-
distributed sensors are being designed utilizing the robustn&i times and power levels to find the optimal schedule for
and asynchronous nature of transmissions in packet networisansmitting the packets within the given amount of time. The
A key concern in all of these wireless technologies is ener@}b)servation that leads to this approach is that transmission en-
efficiency. The mobility of a hand-held wireless device is lim€rdy can be lowered by reducing transmission power and trans-
ited by the fact that its battery has to be regularly recharg8dtting a packet over a longer period of time. It has been known
from a power source. In a sensor network, the sensors may (&€ [1], and more recently, [9]) that, with many coding schemes,
be charged once their energy is drained, hence the lifetimet@¢ energy needed to transmit a given amount of information

the network depends critically on energy. It has therefore belrStrictly decreasing and convex in the transmission duration.
The next section provides a few examples in support of this
bservation.
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sion of future packets and increase the overall energy spent. The | 4, d2 body ' dy

[ o mmmmm e o = [, -

rest of the paper attempts to understand this tradeoff precisely : ; : ; ;
and to exploit it to devise energy-efficient schedules.

t t

1 2 3

A. Outline of the Paper

i : Fig. 1. Packet arrivals if0, 7).
In Section II, we set up the framework for modeling the ' acket arrivals if0, T')

minimum energy packet transmission scheduling problem for
a node with a finite lifetimel’. In Section Ill, we find the
offline optimal-energy transmission schedule for fixed length
packets and Section IV extends these results to variable length
packets. In Section V, the form of the offline optimal-energy
schedule (OOE) suggests a natural online schedule. We show
that this online schedule is quite energy efficient—it achieves
an average energy that is quite close to the optimal offline
algorithm. The comparison is done using simulations since it is
hard to conduct analytical comparisons for firiite

By letting 7" — oo and assuming Poisson arrivals, we are
able to conduct an exact analysis of the optimal offline schedule
(as outlined in the Appendix). This gives us insight into how
to design an energy-efficient online schedule that assigns . . .
transmission times according to the backlog in the queue. We z ) 2 2 2 2
call this scheduléazy Under a queue stability constraint, Lazy Transmissions/bit
is compared with the Deterministic schedule and it is shOV\L_rﬂ 5
to beat the Deterministic schedule significantly for a range ofg' '
packet arrival rates. This is an interesting comparison because
among schedules that are independent of the packet arrivalt) £€(q) 2 0.
process (and hence are oblivious of backlogs), the deterministic2) €(¢) is monotonically decreasing in
schedule achieves the smallest average delapich implies ~ 3) €(g) is strictly convex ing.
that it has the highest transmission times, and hence the loweshssumption 1) is obvious. We shall now demonstrate that as-
energy. The fact that lazy schedules are more energy-efficisnmmptions 2) and 3) hold by considering the energy required to
than the deterministic schedule, therefore, demonstrates takably transmit one bit of information over a wireless link. The
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Energy per bit versus transmission time with optimal coding.

need to take advantage of lulls in packet arrival times. following two examples assume a discrete time additive white
Finally, Section VI outlines further work and concludes th&aussian noise (AWGN) channel model for the wireless link
paper. and consider two different channel coding schemes.
1) Optimal Channel Coding:Consider an AWGN wireless
II. PROBLEM SETUP channel with average signal power constrairgnd noise power

N. As is well known [6], the information theoretically optimal

Consider a wireless node Whos_e lifetime is finij[e, equ_al Ghannel coding scheme, which employs randomly generated
T, say. Suppose tha/ packets arrive at the node in the t'mecodes, achieves the channel capacity given by

interval [0, T') and must be transmitted to a receiver befdre
(see Fig. 1). In the figure, the arrival times of packeis.are 1 P ) o
marked by crosses and interarrival epochs are denotetj.by C1 = logy <1 + N) bits/transmission @)
Without loss of generality, we assume that the first packet is
received at time 0. The node transmits the packets accordigre precisely, given ang < « < 1, information can be
to a schedule that determines the beginning and the duratiorrafably transmitted at rat& = «C;. To determine the energy
each packet transmission. We seek an answer to the quester:bit£, note thaty = 1/R can be interpreted as the number
How should the transmission schedule be chosen so that the tofatansmissions per bit. Substituting into (1), we obtain
energyused to transmit the packets is minimized?

Let £(q) denote the transmission energy per bit for the par- E=gqP=¢gN (22/‘”1 - 1) .
ticular coding scheme that is being used, which has code rate

R = 1/q bits/transmission. Hence,q is the number of trans- |t is easy to see that is monotonically decreasing and convex
missions per bit. The following are the only assumptions Wg 4, and that as; approaches infinity the energy required to

make about(g) in this paper. transmit a bit&o, = (2/a)In2 = (1/a)1.3863. Fig. 2 plots
E(q) versusyfor N = 1 anda = 0.99. The range of in the plot
!By the well-known theorem “determinism minimizes delay” [20]. corresponds to SNR values from 20 dB down to 0.11 dB. This is

2The wordtransmissiorin this paper frequently refers to the transmission of typical range of SNR values for a wireless link. In this range
an entire packet. The terhits/transmissionvill be used to indicate the number c be d db f £20 by i . LI
of bits per channel use (also knownlzits/symbo), i.e., the information theo- ¢ Can De decreased by a factor o Yy Increasing transmission

retic rate, andransmissions/biindicates the reciprocal of this rate. time and correspondingly decreasing power.
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Fig. 3. Energy per bit versus transmission time for the suboptimal codifidg. 4. Energy per bit versus transmission time with uncoded MQAM
scheme. modulation.

2) A Suboptimal Channel Coding Schem@onsider a sions/bit, andu(7) = B&£(r/B). From our earlier assumptions
scheme that uses antipodal signaling [18] and binary bloekoutf(q), it follows thatw(7) is a nonnegative, monotonically
error correction coding again over an AWGN wireless link. Itlecreasing and convex functionaf
can be shown that the minimum error probability per bit using

antipodal signaling over an AWGN channel is given by [1l. OPTIMAL OFFLINE SCHEDULING
P In this section, we determine the energy-optimal offline
p=Q < N) schedule for the above model of a finite number of packets
to be transmitted in a given finite-time horizon. This offline

optimal schedule provides a lower bound on energy that can be
ed for evaluating the performance of online algorithms. After
riefly introducing the basic setup, a necessary condition for
timality is stated (Lemma 2). This motivates the definition of
the specific schedule OOE (Definition 1). OOE is shown to be
feasible (Lemma 3), and energy-optimal (Theorem 1).

where is the well-known Gaussiag-function. Using this sig-
naling scheme, the channel is converted into a binary symmeﬂ
channel (BSC) with cross-over probability The optimal bi-
nary error correction coding scheme achieves the Shannon
pacity for the BSC, given by

Cy = 1 — h(p) bits/transmission Suppose that the arrival timeg ¢ = 1, ..., M of the M
packets that arrive in the interv@l, 7) are known in advance,
whereh(p) is the binary entropy function. i.e., beforet = 0. Assuming equal length packets each with

Thus, for any0 < « < 1, information can be reliably trans- bits, the offline scheduling problem is to determine the transmis-
mitted at rateR = «Cs. Again interpreting; = 1/R to be the sion duration vectoF so as to minimizes(7) = > 1, w(r;).
number of transmissions per bit, the energy per bit can be comThe assumption that () decreases with trivially implies
puted as a function of. This is depicted in Fig. 3 fovV = 1 that it is suboptimal to hav®_, r; < 7', for we could simply
anda = 0.99. Note that€ is againmonotonically decreasing increase the transmission times of one or more packets and re-
and convein g and converges to a limit,, = 2.108, which, as ducew(7"). Hence, we only consider “non-idling” transmission
expected, is larger than that using optimal coding. The rangesshedules wheré ;7 = T'. It is also sufficient to consider
¢ in the figure corresponds to an SNR between 20 dB-87 FIFO schedules where packets are transmitted in the order they
dB. In this range¢ drops by over a factor of 8. arrive. The FIFO and non-idling conditions combined with

3) An Uncoded MQAM Schemédere, each symbol can as-the causality constraint, i.e., that packet transmission cannot
sume one o/ = 2" possible values, hence, one symbol carrid¥egin before the packet arrives, yield the following feasibility
7 bits of information, i.e., the number of transmissions per bit gonditions.

1/r. This modulation scheme is used in some practical wirelessLemma 1: A non-idling FIFO schedul€ is feasible iff
systems, e.g., the IEEE 802.11a wireless LAN standard recom- . .
mends MQAM withr = 1, 2, 4, 6 in each OFDM subcarrier. ZT‘ B Z d

Fig. 4 plots the energy per bit as a function of the number P v = P ¢
of transmissions per bit using MQAM, when the bit error rate
(BER) is less than 10*. fork=1,2..., M -1, and> " 7 =3V d.

The three examples above support the assumptions made eagye now state a key observation of this section.

lier about€. Now, denote byw(7) the transmission energy for Lemma 2: A necessary condition for optimality is
a packet that takes transmissions (i.e., channel uses). If the

packet containg3 bits, this corresponds @ = 7/B transmis- T 2> Tivl forie{l,..., M —1}. (2
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Proof: Let 7 be a feasible vector such that < 7;4; for
somei € {1, ..., M — 1}. Further suppose that it is optimal.
Consider the schedutsuch that; = 0,41 = (7; + 741)/2
ando; = 7; for j # 4, i+ 1. Itis easy to verify thaf is feasible. St
Comparing the energies used Bandao, we obtain | I I

1

|||||
16

14

w(T) —w(@) = w(m) +w(ris1) — wloi) — w(oit1) B

=w(n;) +w(r41) — 2w <%) (;)0

where inequality(a) follows from the strict convexity ofu(-). Tos}
This contradicts the optimality af and proves the lemma. =

The proof of the above lemma suggests the form of the op- o 2 4 6 10
timal offline schedule: equate the transmission times of each Packet Number

packet, subject to feasibility constraints. We proceed to do just
this and define the optimal schedule next. Fig- 5. An example run ofs (top) andr"s (bottom).

14 6 18 20

Given packetinterarrival timeg, ¢ € {1, ..., M}, letky = . o
0, and define Proof: We first establish i). Fot < k < &y,
k k
1
my =  Imax {_Zdi} Z _km1>k2 Zd“
ke{l,.., M}y | k ~ =1
and where the inequality follows from the definition of; .

} Similarly fork; < k < ka,
1 .

k

ZT; :klml + (k - kl)m

Forj > 1, let

=1
1 b Koy k d K
= z ‘ > < :—k LB ;
M+t = kC[l,I.r},a])\(ffkj} {k;dkﬁ—z} B ;dr’_(k kl)f,:%:-H k= ki ;dv
and ) . X X
k Proceeding thus, we obtain that,_, 7 > >"-_, d, for all k,
2 iyt 1<k<M.
kjt1 =k; + max  k: % = mjq1 To finish the proof of i) it only remains to show that
Ziwl z* T. NOW
M J
wherek varies between 1 andf — &;. We proceed as above Sor Z (k; —kj 1) (4)

to obtain pairgm;, k;) until k; = M for the first time3 Let
J = min{j: k; = M}. The pairs(m;, k;),j = 1, ..., J, .
are used g de;‘ine a sghedulepwho(sejtraa)shjission times arevg%@reko = 0 and k‘.’ = M. By definition ofm; andk;, it
noted by *, and Theorem 1 shows that is the optimal offline follows that for eacty
schedule. ;
Definition 1: The vector of transmission times™ given by (kj —kj_1)m; = Z dy.
k=Fk; 1+1
7': =m; if kj_l <t < /%J (©)
Using this in (4), we geE7 \TE = Zf\il d; = T. This estab-
is called OOE. lishes i).

Fig. 5 shows an example run of OOE. The arrivals in the As for ii), it suffices to show thatn; > m;1 since this
figure have been randomly generated (with exponentially dignplies 7 > 7, for eachi. We first show thatn; > mo.
tributed interarrival intervals of mean 1) using a time windowor anyk € [k; + 1, k3],
of " = 20. The heights of the bars are proportional to the

magnitudes of thels andr*s. my = M
Lemma 3: The foIIowing hold for7* of OOE. ks
i) Itis feasible anozZ Th =T @dy 4+ +dy,  dig1 o dy
i) It satisfies the condition stated in Lemma 2. > k + k
3Note that, by definitionk; < k; .. Therefore, thé:;s are increasing with _ ﬁ m (/f — kl) (dk1+1 4+ -4 dk)
J and will equalM for somey. -t k k—k
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where(«a) follows from the definition ofn, . Choosing: = k-, Thus, under Case 1, any feasible schedulmay be mod-
we obtain ified to obtain a more energy efficient schedaleTherefore,
iy Fey — Ky schedules yvhich are different frofft* in the sense of Case 1
my > —my + mo are suboptimal.
k2 ez Case 2—; < 7/ We shall argue for a contradiction and
from which it follows thatm; > mo. show that such & is infeasible.
In an exactly similar fashion it can be shown that > m3 From the definition ofF*, we know that” = m;, assuming

and, more generally, that; > m;1 foranyj, 1 < j < J—-1. k;j_1 <é<kj. Infactr =m;forallk;_1 <1< k.

This establishes ii) and completes the proof of the lemma Sincei is the first index where” and 7" disagrees; = 7/
Theorem 1: The schedule OOE of Definition 1 is the op-for all/ < i. Suppose that the schedulsatisfies the condition
timum offline schedule. of Lemma 2 (else it is suboptimal and we are done). It follows

Proof: Consider any other feasible schediiléet: be the thatr; > --- > 7, and we obtain
firstindex wherer; # 7.*. We show thaiu(7) > w(7*). There - -
are two possibilities to consider. N
Case 1-+ > 7/ Since}; 7; = T (otherwiser would idle Z e Z i
for some time, making it suboptimal), there must be at least one
J > iforwhichr; <77 Letr = min{j: i < j < M, 7; < But, by definition of 7",
7} }. Consider the schedutedefined as follows:

12)

kj J k;
o =7 — A (5) Zﬁ* = Z(’W — ki-1), my = Z dy.
=1 =1 =1
Opr =Tp + A (6) . i ks ko . .
o Equation (12) now gived "7, 7 < ;2 di, implying that?
oj=m;, forallj#ir (7) is infeasible.
. . . This contradiction concludes Case 2 and the proof of The-
whereA = min{(r; — 7}), (v, — =) }. orem 1 is complete. -

Claim 1: The schedul& does not idle and is feasible.
Proof of Claim 1: Since}_, o; = >, 7; = T, itdoes not
idle. By the definition of the indicesandr, and the feasibility
of 7 and7*, it follows that

Lazy scheduling trades off delay for energy. To do this, it must
necessarily buffer packets. The energy savings that come from
simply keeping a small buffer is best illustrated by an example.
Imagine a scheme that keeps a buffer size of zero (hence trans-

k k mission times can at most be set equal to interarrival times).
Y oyj=> 72> d;, fori<k<i-—1 (8) Forthe setofpacket arrivals shown in Fig. 5, the optimal of-

J=1 J=1 J=1 fline schedule achieves an energy of 65.445 and the zero-buffer
; ; ; scheme (which, therefore, has no queueing delay) achieves an
s L d. g) energy 77.78< 10°; five orders of magnitude larger [using an
z_:aj - Z_:T’ - z_: ! © energy functionr(26/7 — 1)].
j=1 j=1 j=1
, LS . ) IV. EXTENSION TO OPTIMAL OFFLINE SCHEDULING OF
doopz ) =) d;,  fori<k<y (10) VARIABLE -LENGTH PACKETS
j=1 j=1 j=1

. . . This section extends the results of the previous section to vari-
able-length packets. As the optimal schedule and the arguments
z_:l i Z = Z % for k> 7 (11) that establish its optimality are virtually identical to those of the
= previous section, for brevity, we shall omit a number of details.
This verifies the conditions for feasibility in 1, and Claim 1 is Consider a node at which/ packets arrive irf0, 77, and

proved. suppose that the length of packetquals/; bits. Without loss
Claim 2: w(c) < w(7). of generality we consider schedules that do not idle. Hence, the
Proof of Claim 2: feasibility condition in Lemma 1 continues to apply, i.€.is
feasible if and only ifforl < k < M,>F 7 >3 d;.
w(7) —w(d) =w(r) +w(r.) — w(o;) — wlo,) The arrival times;, i = 1, ..., M are known at time 0, as
are the lengths of the packets= [I1, I2, ..., Ix]. As before,
=w(r) —w(ni = A)+w(n) = w(n+A) Gequme that; = 0. Definew(, 7')[: 1E(7/1). Th]e problem is
(@) to determiner, the vector of transmission times, so as to mini-

0 . = /
> mizew(l, 7) 2 M w(l;, 7).
where inequality(a) follows from two facts: L)w(-) is strictly Since it_ is suboptimal to con_sider idling policies, we shall
convex and decreasing and 2) > 7,.. That is, for any real- Only consider schedulesthat satisfy) ; 7; =T
valued functionf that is strictly convex and decreasing, and for Leémma 4: A necessary condition for optimality is
anya, b € R such that, < b, we havef(b) — f(b—6)+ f(a)— Ti  Titl .
f(a+6) > 0, whered < 6 < b — a. This proves Claim 2. A = lig1’ foriefl, ..., M -1} (13)
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Proof: Let 7 be a feasible vector such that/l; < Definition 2—OOE: The schedule with the vector of trans-
Tiv1/liy1 for somed € {1,..., M — 1}. Further sup- mission timesr'* given by
pose that it is optimal. Consider the scheddlesuch that _
oi/li = oig1/livs = (1 + 1ix1)/(li + liy1) @ando; = 7; T =lipg, ki <i<ky (14)

forj # 4, i + 1. It is easy to verify that' is feasible (because

) y.C th dBands bt s called OOE.
oi > 7i). Comparing the energies usedBpndd, we obtain Lemma 5: The foIIowing hold for ther’* of OOE.
(f, —w(l, &) 1) Itis feasible ang" Y 7+ = T.
_ 75) 4 w( 2) It satisfies the condition stated in Lemma 4.
- z—|—17 7_2—1—1) . .
Proof. We first establish 1). Far < & < &4,
= <;—>+ Z+18<T7+1>—li8<%>— liﬂg(fl’&ll) .
‘ ’ o k k k Z_: j k
= <1 Z+18<7—Z+1>— (lZ+lZ+1)g<m> ZT; = le Z 3 = Zdz
l; liv1 L+l i=1 i=1 =L 3y imt
a j=1
(>) 0

where the inequality follows from the definition pf .

where inequality(a) follows from the convexity of(-). This ~ Similarly, fork, <k < ks,
contradicts the optimality of and the lemma is proved. =
The proof of the above lemma suggests the principle of the = I;

_ : o pa + lipz 2 ) di.
optimal offline schedule: Equate the number of transmissions Z Z ' Z 2= Z
per bit for each packet, subject to feasibility constraints. Note
that this principle is similar to the one in the previous sectio®roceeding thus, we obtain th@

1=k1+1

>ZZ 1 d; for all &,

zlz

indeed, as will be the optimal schedule and proofs. 1<k <M.
Given packet interarrival timeg, i € {1, ..., M},letko =  With similar steps, it can be shown thg}’ =+ = 7, and
0, and define 1) is established.
N Asfor 2), it suffices to show that; > ;41 since thisimplies
S d; 75 [li > 7 /liq1, for eachi. We first show thafi; > ji0. For
L= max i=kl anyk € [/%1 + 1, ]%2]
ke{l,.., M ¢
e 2 ik
=t H 11 + -+
and . .
k
E d: E di + E d; E W E d;
= (a) i= i=k1+1 iz i=k1 41
ki = max< k _k— =1 p. k Tk T
L > Sk Xk
=1 =1 = i=1
Forj > 1, let where(a) follows from the definition ofu;. Choosingk = k-,
- we get
k
di, i k k
_ zg kit ZI: di Z di
i1 = max % i=1 i=ky+1
ke{l, ..., M—k;—1} 5 b4 R R T 2
=T >l S
and =1 =1
i d, i from which it follows that;; > ps.
S — I ' In a very similar fashion, it can be shown that > u3 and,
i+ = max k = Hit1 more generally, that; > p;,1 foranyj, 1 < j < J — 1. This
l ; J J
; kej+i establishes 2) and completes the proof of the lemma. m

Theorem 2: The schedule OOE of Definition 2 is the op-
wherek varies between 1 and/ — k;. We proceed as abovetimum offline schedule.
to obtain paws(uj, k) until k; = M for the first time. Let Proof: The proof is identical to the proof of Theorem 1.
J = min{j: k; = M}. The pairs(y;, k;), 7 = 1, ..., J Hence, to avoid repetitions, we only present the highlights and
are used to define the general form of OOE (the OOE of tiet the details.
previous section is simply the special case for whick- B, As before, consider any other feasible scheduleet: be the
V). As in the previous section, transmission times of OOE afiest index wherer; # 7*. We show thato(l, 7) > w(l, 7*).
denoted™*, and Theorem 2 shows that is the optimal offline There are the following two possibilities to consider. Case 1 is
schedule for the variable length case. 7 > 77, and Case 2 is; < 7.
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Under Case 1, we use the schedulgo define another is thebacklogin the queue when thgth packet starts transmit-
scheduler as before and establish the following two claims. ting. Observe that this backlog does not include ithepacket;

Claim 1: The schedul& does not idle and is feasible. thatis, ifb; = 1, then there is precisely one packet [namely, the
Claim 2: w(l, 5) < w(l, 7). (j + 1)th] in the queue when thgth packet starts transmitting.
Hence, we conclude that any feasible scheduldiffering Finally, letC;, ¢ € {1, ..., M — j — b;} be the interarrival

from 7 in the sense of Case 1 may be modified to obtaintanes between packets that arrafer 777 . Thus, when thgth
strictly more energy efficient schedusée This concludes Case packet starts transmitting the situation is this: 1) the “time to go”
1. equalsl’ — 77, 2) there aré; packets currently backlogged; 3)
Under Case 2, we shall argue for a contradiction and shaW — j — b; packets are yet to arrive and the first of these will
that the schedul& must be infeasible exactly as in the proof ofirrive inC; units of time, the second will arrive ifi; + C5 units

Theorem 1. of time, etc.
This completes the proof of Theorem 2. [ | With this notation and some algebra, it can be shown-that
is also given by
V. ONLINE SCHEDULING L
o . . 1 c, (15)
In this section, we develop and evaluate energy-efficient on- T = ketl, ...I,TJL\?)_((H@)} [y ; if-

line scheduling algorithms based on the optimal offline algo-

rithm discussed in Section lll. Henceforth, we shall assume thagjs formula is just an alternative representation of OOE and
the packets are of the same length. ives exactly the same schedule. It schedules packets one at a

~In order to design online algorithms that are energy-éfime, taking into account the current backlog, future arrivals,
ficient on average one needs the statistics of the arrivahnq the time to go.

process. Whilst our approach is general, for concreteness and
tractability, we mainly assume Poisson arrivals in this pap@. Online Algorithm
We note that Poisson arrivals are unrealistic in the wireless

LAN environment, where arrivals tend _to be more burstyOng online algorithm. The transmission time of a packet that
In fact, we have observed that when arrivals are bursty, laz

scheduling performs even better than in the Poisson case sfyarts being transmitted at times " when there is a backlog
gp 'oPh packets can be set equal to thepected valuef the random

one can take advantage of a small queueing delay and gree/a{yiable
reduce transmission energy.

We proceed by first formulating the offline algorithm OOE in 1 X
a manner that is suited for online use (Section V-A). Based on (b, t) = e (8 {k_+b > Di} (16)
this formulation, we propose an online algorithm (Section V-B) i=1
and, using simulations, show that on the average it is aimost@serep is the current backlog ani; are the interarrival times
energy-efficient as the optimal offline schedule (Section V-Cly¢ the (random numbet)! of packets that will arrive irg¢, 7).

We then investigate the important special casd’'of> 0. |n the following, schedules based Biir* (b, +)) will be used.
In this case, we are able to analyze the optimal offline schedWgthe moment, we do not know that this will produce the op-
exactly (in the Appendix), obtain an online lazy schedule astiga| online schedule, nor do we believe thatit should. However,
result of this analysis, and perform comparisons of the energys an online schedule and its performance can be compared to
efficiency of the lazy schedule and a fixed-transmission timgat of the optimal offline schedule. We proceed to do this in
online algorithm (Section V-D). the next section and evaludigr*(b, t)) numerically wheril"

is finite.

The alternative form of OOE in (15) strongly suggests the fol-

A. Online Formulation of OOE

Consider the time intervdDd, T") and as before assume tha>:
a packet arrives at time 0. Suppose also that packets arrive aldsing simulations, we compare the energies expended by the
a Poisson process of rale Conditioned on there beily — 1  online algorithm defined above and the optimal offline algo-
arrivals in(0, T'), letthe interarrival times be denoted By. Let  rithm. The setup is as follows. A finite-time horiz&h= 10 s
the optimal offline schedule, OOE, assign transmission tim@schosen. We assume a packet lengtBcef 10 kB and a max-
7* to theseM packets. The time at which thih packet starts imum rate of 6 b/transmission, with a link speed of ti@nsmis-
transmitting is sions/s. (Hence, the minimum transmission duration for a packet
is 10/6 ms, which we shall calltame unit) Within the time pe-
. it . riod 7', we assume that packets arrive according to a Poisson
17 = ZTi . process at a loading factor of = 0.7 arrivals per time unit.
=1 Since it is possible for packets to arrive arbitrarily close to the
finish time 7, if we insist that these very late arrivals also be
transmitted before the deadlifig thenanyalgorithm, including
b1 the optimal offline algorithm, incurs a huge energy cost. This
b; = max {k Z D; < T]’f} —j makes comparisons of performance difficult and meaningless.
=1

Simulations: Finite-Time Horizon

The quantityb; given by

We therefore use a “guard bangaround the finish time and
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Fig. 6. A comparison of the online algorithm with the optimal offlineFig- 7. A plot of E(7(b)) versush for A = 1.
algorithm.

TABLE |
disallow packets from arriving after timg — g. For the com- AVERAGE ENERGY/PACKET AND AVERAGE DELAY/PACKET FORLAZY; AND
parison, we usg = 0.1 s and the following formutafor the =~ DETERMINISTIC OVER A,\'/“lIL’EEESENEQ"(EH'?G%REE';)DELAY VALUES ARE IN
packet transmission energyas a function of packet transmis-

sion timer in seconds, N Poisson arrivals
Lazy, Deterministic
_ 106 0.02/7 _
w(r) =10°7 (2 1) : 17) E/pkt x10~* | Dly/pkt | E/pkt x 10~ | Diy/pkt

91.6| 3.19 1004.6] 1.89
118.8] 3.56 1004.6| 2.07
159.4| 4.01 1004.6| 2.30
218.4| 4.60 1004.6| 2.64
308.6| 5.51 1004.6| 3.23
435.1] 6.92 1004.6| 4.23
623.7| 9.58 1004.6| 6.61

Fig. 6, which plots the energy per packet against transmission
time, shows that the online algorithm is almost as energy-effi-
cient as the optimal offline algorithm.

D. Infinite-Time Horizon: Formulation and Simulations

o] oo] W] & | B[ Lo

The algorithm presented above was directly motivated by
the optimal offline algorithm. It is of interest to 1&t — oo and
look at how the lazy schedule performs in terms of energy and o ) _
delay. DefiningE(7* (b)) A E(limy oo (b, 1)), it is shown mission node with |m_°|n|te gueue capacity. The _node transmits
in the Appendix that E(r*(b)) = ((1 + b)/\)((x2/6) — a pack_etp for a dur_atlonf(b) when the b_acklog in the queue,
22:1(1/k2))_ excluding packep, is b. The arrival rate\ is not known at the

Fig. 7 plotsE(r*(b)) as a function of the backlogwhen the transmitter, bu_t itis known that < ),‘max' .
arrivals are a rate 1 Poisson process. As can be seen, the a\'}'_he transmitter needs to be designed to ensure stability, and
celn.x IS a worst case estimate of the arrival rate, stability

erage transmission time of the offline schedule decreases wit . T
the backlog, approachinty A as the backlogh, approaches in- W_|I be ensured if the rate (_)f transmls_sm_n is _hlgher tha{gx._
finity. This exact analysis of the offline algorithm not only pro—Smct()a akllazy scheg_ule vanr:as ftran§m|23|?n tlmebs_lldepen(:mg on
vides us with insight into the manner in which transmissio; e a}:: 0g according t?t e” u?cumﬁ ): orr.?ta Hity it sut-
times should depend on backlog, but also suggests a spe |ﬁgs.t atr(b) < .1/)‘““" orall b large enough. .
online schedule. Poisson Arrivals: We now compare the specific
Unlike the finite7’ case where online schedules can be coH‘ﬁZy SChedgle' Laa;g that gets TLazy (D) o (1 +
pared solely on the basis of their energy expenditure, when ©)/Amax)((7°/6) — 32, (1/k%)) to a deterministic schedule

o packet delays (or queue size, stability, etc.) must be taken iff§h 7pet(b) = @/ Amax. The arrival process is a ratePoisson

consideration. Otherwise, energy comparisons become meif2C€Ss-

ingless since we can simply let transmission times be arbitrarily NOt€ thatas long as < 1, both scheduling algorithms ensure
long and obtain the minimum possible transmission energy paRPility for arrival rates less thak,.... We performed simula-
packet whereas the delay can become infinite. tlons_ using both scheduling algorithms tee= 0.95, A\, = 1,
1) Online Scheduling Under a Stability Guaranteas Varying from 0.3 to 0.9. To allow energy and delay to come
above, packets arrive according to a ratprocess at a trans- cIo;eto equilibrium, each §|mul_at|on was performed for 100 000
arrivals. The results are given in Table I.
4The formula is obtained using the information theoretic capacity formulain The energy/packet values in Table | are dimensionless due

(1) for the AWGN channel with noise powe¥ = 1 for the transmission of o . .
10-kB packets for a duration s at symbol rate 10transmissions/s. to the normalization with noise PSD [See (17)]' The energy

5The analysis in the Appendix leads to some side results about the runnV%lueS correspond to an average SNR per papk_et_ of approxi-
averages of exponential random variables, seemingly of independent interesnately 25—-34 dB for Lazyand 36 dB for Deterministic.
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TABLE I tuned for Poisson arrivals. A second conclusion from the tables
AVERAGE ENERGY/PACKET AND AVERAGE DELAY/PACKET FORLAZY AND is that, at low values o, lazy scheduling works better on the
DETERMINISTIC OVER AN INFINITE TIME HORIZON. DELAY VALUES ARE IN . . .
MILLISECONDS (Low SNR) bursty arrival process than on the Poisson arrival process.
Now we develop another algorithm, called Lazy
A Poisson arrivals which is derived from the bursty arrival process, and
Lazy, Deterministic hence potentially better tuned to it. Consider an infinite
E/pkt x 10~ * [ Dly/pkt| E/pkt x10~* [ Diy/pkt time horizon as above. Recall that, for a backlog iof
3 4.27] 9.56 8.32] 5.700 7(0) = sup,>1{(1/(n + b)) >>7_, D;}. In order to obtain a
4 4.48] 10.66 8.32| 6.219 bound onE(f,—(b)), we consider
5 4.76] 12.00 8.32} 6.935
.6 5.14| 13.76 8.32| 7.984 1 n
7 5.62]16.28 8.32] 9.622 Pr(r(b) < r) = Pr | sup Y Dip<r
w31 | b4
.8 6.22(20.27 8.32112.567 = i=1
9 6.97127.81 8.32|19.453 "
=Pr <Z(Di — )y <br, Vo> 1) .
TABLE Il =t
AVERAGE ENERGY/PACKET AND AVERAGE DELAY/PACKET FORLAZY; AND 5 A R
DETERMINISTIC OVER AN INFINITE TIME HORIZON. DELAY VALUES DefineYi(’) = D, — r. For a givenr, Yim are i.i.d. random
ARE IN MILLISECONDS variables of meait(D) — r. Define 5" £ - v, When
X Bursty arrivals E(D) —r < 0, 5 is a random walk with a negative drift.
Lazy, Deterministic It is known (see [10, Ch. 7], especially Problem 7.12) that the
| Erpkt x10~4] Diy/pkt E/pkt x10~*|  Dly/pkt following bound holds:
3 66.972| 2.473 1004.6 |~ 1.583 R )
4] 95.746] 3731|  1004.6| ~1.583 Pr (S}{;) > bT) <o (18)
51 212.769| 4.453 1004.6 |~ 1.583
6] 326.072| 5.642 1004.6| 2.480 wheres* is the solution of the equation
T 431.995| 6.996 1004.6| 4.233
8| 552.195] 8.598 1004.6| 6.263 B sy 1
9| 729285[11.801| 1004.6| 10.607 (‘3 ) =4

In our case, the above equation reduces to

In order to give a fuller picture, let us also consider lower SNR ) )
values. We do this by considering lower rates. In the rest of this Bt (7 (1 B)er (=T = 1. 19)
section, the maximum rate is set to 2 bits/transmission, while o
the symbol rate is kept the same as befofable Il shows how _ USing the above dS)f!n|t|on§ and results(r(b) > r) =
the energy per packet ranges for Laand Deterministic. For PX(Sy 2 br) < e ™", providedr > E(D). Now we are
Lazy, the SNR goes from 7 to 11 dB. ready to boundi(r (b))

Bursty Arrivals: We have just seen that the schedule Lazy 00
is more energy-efficient compared to a deterministic schedule E(7(b)) = / Pr(r(b) > r)dr
when the arrivals are Poisson. The schedule Lazgs devel- 0
oped by conducting an asymptotic analysistfb, ¢) (see the E(D) X e
Appendix), wherer*(b, t) is defined in (16). The asymptotic /0 Pr(r(b) = r)dr +/ € dr
analysis for Poisson arrivals assumes that the interarrival times
D, in (16) are i.i.d. exponentials. Thus, Lazis “tuned” to
Poisson arrivals.

It is therefore interesting to ask just how well Lazwill
perform under non-Poisson input processes. To this end, we
consider the following “bursty” arrival process. The interarrival )
timesD; are i.i.d. withPr(D; = a;) = 8 = 1 — Pr(D; = a2), This §uggests anonline lazy ;phedau@é) = a*B(Q), where
wherea,, a, and3 are parameters. When is small and3 is @ < 1 is there to ensure stability. We will call this schedule
large arrivals tend to be bursty with a high probability. Lazys,. _ _

First, we run Lazy on the bursty arrival process with The schedule Lazy wheres(b) is calculated as described
as/a; = 9, and Amax = 1. The results are summarized indoove foraz/a, = 9,1 — f = 1/9, andAnax = 1is plotted
Table I1l. Comparing the energy/packet values in the last thrleFig- 8 (fora = 1). Note that a$ grows, o (b) asymptotes to

rows of Tables | and Ill, we see that Lazys indeed better 1/Amax in the figure, and in general, it asymptotesito\ max.
Table IV summarizes results of the comparison of Lazith

6Sin(':e the symbol raFe _is iO(ansmissions/s, the minimum transmit_time ofDeterministic on a bursty arrival process. Comparing Tables I
a 10 bit packet (i.e., unit time) is now 10/2 ms as opposed to the previous 10/6. d IV sh hat L : b hedule f he b
Note that) is arrivals/unit time, hence for the same the actual number of &1 shows that Lazyis a better schedule for the bursty ar-

packet arrivals/s is lower than before. rivals process than is Lazgyas ought to be the case.

IA

E(D)

IA

B+ [ e
E(D)

>

B(b).
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longer period of time. However, information is often time-crit-
ical or delay-sensitive, hence transmission times cannot be arbi-
trarily long. We therefore considered packet transmission sched-
ules that minimize energy subject to a deadline or a delay con-
straint. Specifically, we obtained an optimal offline schedule for
a node operating under a deadline constraint. An inspection of
the form of this schedule naturally lead us to an online schedule,
which was shown, through simulations, to be quite energy-effi-
cient. We then relaxed the deadline constraint and provided an
exact probabilistic analysis of our offline scheduling algorithm.
We then devised an online algorithm, which varies transmission
times according to backlog and showed that it is more energy
efficient than a deterministic schedule with the same stability
20 25 %0 region and similar delay.

b Several important problems remain open. The most obvious
is that of finding the optimal online schedule in the finite and
infinite 7" cases. The question of how much energy can be saved
by using lazy scheduling in practice has not been addressed in
the paper. The theoretical and simulation results presented here

a(b)

Fig. 8. A plot ofo(d) versush for a lazy schedule designed fes/a; = 9,
Amax = 1, and witha = 1.

BURSTY ARRIVALS: AVER—Z?-}ELIS\IEII;/GY/PACKET AND AVERAGE encourage further investigation into the use of lazy scheduling
DELAY/PACKET FOR LAZY ; AND DETERMINISTIC OVER AN INFINITE TIME in real-world wireless networks.
HORIZON. DELAY VALUES ARE IN MILLISECONDS
A Bursty arrivals APPENDIX
Lazy, Deterministic Consider a transmitter which, at time 0, Hagackets in the
Bipkix10~* | Dly/pke | E/pktx10~¢] Diy/pkt queue. Suppose thaf packets arrive at this nodefi, '), with
3] 51192) 7.580) 1004.6]~1.583 the first of these arriving at time 0. This situation can be modeled
4] 107.495] 7.786] 1004.6|~1583 asM + b packets arriving if0, T) with d; = --- =d, =0
S| 209923] 9110 1004.6]~1.583 and> 1" 4, = T. Then, as we have seen in Section V-A,
6] 293.675]10.033 1004.6] 2450 the optzimal offline schedule will transmit the first packet for an
7| 389.735|11.159 1004.6{ 4.233 . R
‘1 513.605112.959 100461 6263 amount of time, sayy,(b), which is given by
9| 692.246(16.492 1004.6 | 10.607

k
1
8 — ;i 2
T (b) ke{lfr}jjj(\l-i—b}{k;d/} (20)
The simulation results demonstrate that lazy schedules B
achieve significantly lower energy than the deterministic 1 &
g y 9y max _Zdi . (21)
ke{l,..,M} | K+ b pars

schedule with a moderate increase in average delay. This
comparison with the deterministic schedule is important since,
for a given mean service time, the deterministic scheduleHere we analyze the optimal offline schedule by allowifig
achieves the smallest average delay among all schedules thagpproach infinity. Thus, suppose that the arrival$oinT’)
are independent of the arrival process and hence obliviagcur as a ratd Poisson process and [Etgo to infinity to yield
to backlogs [20]. In turn, this implies that the deterministic

schedule has the largest transmission times and hence the 1 i

lowest energy among backlog-oblivious schedules. The fact 7(b) = sup {ﬂ ZDZ} (22)
that our suboptimal lazy schedule is more energy efficient than ‘

the deterministic schedule demonstrates the advantage of Ig&ére theD; are i.i.d. mear /A exponential random variables.

scheduling. To evaluate the distribution of(b), consider
VI. CONCLUSION Zk: D
Conservation of energy is a key concern in the design of wire- Pr(r(b) < r) = Pr | sup i=1 <7 (23)
less networks. Most of the research to date has focused on trans- k>1 )| k+b

mission power control schemes for interference mitigation and
only indirectly address energy conservation. In this paper, we
put forth the idea of conserving energy by lazy scheduling of —p D .

L L . X = ,—r)<brVk>1
packet transmissions. This is motivated by the observation that g Z( ) <br -

: ) . ) 1
in many channel coding schemes the energy required to transmit ) &
Pr <

k

a packet over a wireless link can be significantly reduced by
lowering transmission power and transmitting the packet over a

113

Yi<brVk21>. (24)

i=1
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Since theD; are assumed to be i.i.d., meah\, exponential =Pr(Dx >t+r+s|Dx >r+s)
random variables, (@)
X = Pr(DX > t)
y El Dy =) sincet > br.
11m = —-.
k—oo k+b A Equality () is due the memoryless property of the exponential
Therefore, from (23) we at once see tRatr(b) < r) = 0 for random variable®;. Using this to evaluatg(c***|X < oc),
all 7 < 1/ we get
Hence, suppose > 1/A. Then theY; = D; — r are i.i.d. oo cabr
random variables with a negative mean aptf_, Y; is a E(e**¥|X < o0) =/ e M) gt = P
br -

random walk with a negative drift. Evaluating the probability at _ o
(24) is therefore equivalent to determining the probability that Using this in (31), we get that

a random walk with a negative drift never exceeds a positive Pr(X < o) = (A — a)e~a,
threshold oftr.
For notational convenience, defind, = 0 and Hence, we finally obtain
S, = Z;;l Y;. Define the associated exponential mar-
tingale Z, = ¢*5», wherea > 0 is yet to be determined. Also ~ Pr(7(b) <7) =Pr(X =c0) =1— (A —a)e **" (32
define the stopping time&l 2 inf{n: S, > br} and observe
thatPr(X = oc) = Pr(r(b) < 7). wherea solves (27).

We shall consider the stopped exponential martingalend Given the distribution of (b), one coulql numerically evaluate
use the optional stopping theorem [7] to deternitméX < o) E(7(b)). The_ a_\pproach of the next section allows us to express
and henc@r(r(b) < r). The details follow. E(7(b)) explicitly.

First, in order thatZ,, be a martingale, we need to choose

@R. An Alternative Analysi
a such thatt(Z,,) = E(Zy) = E(e*¥) = 1 for everyn. In - AN Alemative Analysis

particular,a should be such that Define S; = 3°'_, D; and,(b) = max(y<;<ny{S:/(i +
) b)}.
E(Z1) =E(e®™ ) =1 (25)  Lemma®6:
= B(e?Pr) =0, (26) 14 1
. . - . . . E(7a(b)) = —5 (33)
But, D, is exponentially distributed with meadr/ \. Using this A= (k+0b)

in (26), we see that is the solution to the equation
Proof: We start by expressing the distribution function of

la% —ar
l-5=e™. (27)  1,(b) as
It is not hard to see that, for a givenandr» > 1/, there is a S;
uniquec that satisfies (27). Pr(r,(b) < t) = Pr <{1135L<Xn} {L n b} < t) (34)
Continuing with the determination &f(~(b) < r), consider ; B
E(Zx): :Pr(,_:b<t,Vi:1§i§n> (35)
1
E(Zx) =E(Zx|X < 00) Pr(X < 00) HOAD) (240)
FE(Zx|X = 00)Pr(X =o0)  (28) _ / / . (36)
0 Ss1

WE(Zy|X < 00) Pr(X < o) (29) B

:E(easx | X < o0)Pr(X < o) (30) /snl St (1, - 5n) dsn s
where(a) holds becaus§'x = —co on the sef X = co}. By (37)
;c/cs (())E;[;?Qal sampling theorem (see [15, Proposition IV-4-19]), Note thatfp, . p.(di, .. .sdn) = A exp(=AY", dy)

(recall the independence assumption). The Jacobian of
1 =E(Zx) = E(¢™¥|X < 00) Pr(X < o0). (31) the transformationS; = 37, D;, Vi is 1. Therefore,

fs1, 8, ..5,(51, 82, ..., sn) = A" exp(—As,), and (37) can

Therefore Pr(X < oo) = (E(¢**¥|X < o0))~ ' Toeval- o \ritten as

uateE(e™x|X < oco) we determinePr(Sy > t|X < oo)

as follows. Fort < br, by definition of the stopping timeX, Pr(ra(b) < t)
Pr((Sx > t|X < o) = 1. Fort > br, Aty pH(24b)
Pr(Sx > t|X < 00) = o /S1
=Pr(Yx >t+s[Yx > s) t(n+b)
A —Asp)dsy, - d 38
wheres = br — Sx_1 /Sn_1 exp(—As,) ds S1 (38)



498

L t(14b)  pt(24b)
S [
0 51

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 4, AUGUST 2002

To establish part 3), we write

t(n—1+b) Pr <& > Zn1>
/ 67)\571_1 _ ef)\t(n-f—b) dsn—l . 'dSl n
e :Pr<S >— V1<L<n>
t(14b) n
p—— J— n_l PR
— Pr(r 1(b) < £) = A /0 5 5.
=Pr|—>5,...,—>
t(n—1+b) n n n — 1
/ e MOFD) sy dsy. (39) -
- / An 1(2)fs, (n2)n dz 42)
z=0
Using the identityE(Y f Pr(Y > t) dt for any positive N
random variablé”, we obtam from (39) whereA,_1(z) = Pr(S; < 2z, 52 < 22, ..., 8,1 < (n—

0o (1+b)
Bl (1) = B (0) + A [ gt [T
0 0

1)z|S,
process. The conditiofi,, = nz is the same as saying that- 1
arrivals occurred ifi0, nz), and it is well known that under this

= nz). Recall thatS; are arrival epochs in a Poisson

(n—1+4b) conditionSy, ..., S, _1 are distributed as order statistics [10],
/ dup—1---duy e,
s
— . . (n—1)!
by the normalizationu; = s;/t. The (n — 1)-dimensional  f(s,,....s,_,15.)(51, -+, Sn_1lsp =n2) = —. (43)
2 (nz)n—1
volume
(140)  p(24D) (n—14b) Therefore,
/ / .../ dun_l...dul
0 w1 Up—2

can be shown (by an induction argument) to equal

z (n—1)z — 1
g [ [
0 Sp—2 (nz)n—

1 (n—1)
(7’L + b)(n72) :n—(n—l) (71 - 1)' / o / du T d'u,
P ] o Ju. "

e . . . . . (n—2)
Substituting this into the above equation and integrating with — D — 1)) n _1 (44)

respect ta yields (n—1)!
(1+0) Substituting (44) into (42), we obtai®r((S,/n) >

=E(7,,_ —_

SinceE (7 (b)) = 1/A(1 4+ b), Lemma 6 follows. ] For part 4), writeE(L,) = E(ly|l, > 0)Px(l, > 0).

Corollary 1: Define 7(b) = sup,>;(S;/i) and recall the P

Or, more explicitly, E(

L) = E((Sn/n) = Zn-a|(Sn/n) >

—1)Pr((S,/n) > Z,_1). From part 3),Pr((S,/n)

definition E(r (b)) 2 E(litn,—o 7.(b)). Then, Zo 1) = 1/n, and from part 1).E(L,) = 1/\n? s0
(1+0) [ b E((Sn/n) — Zn_1|(Sn/n) > Z,_1) = 1/An. This result is

E(r(b)) = 0 <€ - Z —2> . (41) interesting because it says that given the current time average

ma1 exceeds the previous maximum, the average amount of the

Proof: The proof follows from monotone convergenae. €XCess is exactly/An. Finally, part 5) follows by setting = 0
Out of the proof of Lemma 6, we get the following inter!N Corollary 1. .

esting results about i.i.d. exponential random variables (of mean
1/)) and the convergence of their sample averadég o To our
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Corollary 2: Define Z,, = max(1<i<n}(S:/), andl,, =
Zn — Zn—1. The following hold:

1) E(1,,) = 1/An?

2) B(Z,) = (1/3) X1, (1/8%)

3) Pr((Sn/n) > Zn_1) = 1/n

4) E((Sn/n) — Zpn_1|(Sn/n) > Zn_1) = 1/Mn

5) supy,>13 Zn = limpu>1y Zn = 72 /6.

Proof: Part 1) follows by takingg = 0 in (40). Part 2) 3]
follows by settingh = 0 in Lemma 6. [4]
We now show parts 3)-5). For notational convenience, we set
A = 1 for the time being; the results trivially scale by\, as

will be clear in the calculations below.

(1
[2]

guidance in obtaining some of the results in the Appendix.
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