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Abstract

This paper considers multi-input multi-output (MIMO) multicell networks, where the base stations (BSs) are full-duplex

transceivers, while uplink and downlink users are equipped with multiple antennas and operate in a half-duplex

mode. The problem of interest is to design linear precoders for BSs and users to optimize the network’s energy

efficiency. Given that the energy efficiency objective is not a ratio of concave and convex functions, the commonly

used Dinkelbach-type algorithms are not applicable. We develop a low-complexity path-following algorithm that only

invokes one simple convex quadratic program at each iteration, which converges at least to the local optimum.

Numerical results demonstrate the performance advantage of our proposed algorithm in terms of energy efficiency.

Keywords: Energy efficiency, Cooperative multicell network, Full-duplexing transceiver, Precoder design,

Path-following convex quadratic programming

1 Introduction
Energy saving has become a pressing ecologi-

cal/economical concern in dealing with global warming.

From this perspective, it is important to reduce the

amount of carbon emissions associated with operating

modern and sophisticated communication networks

[1, 2]. Energy saving also helps to reduce the operational

cost since energy consumption constitutes a significant

portion of the network expenditure. Green cellular net-

works (see, e.g., [3, 4]), which aim at optimizing energy

efficiency (EE) for communications in terms of bits per

joule per hertz have drawn considerable research inter-

ests in recent years (see, e.g., [5–8] and the references

therein). In fact, EE has been recognized as the new

figure-of-merit in assessing the quality and efficiency

of future communication networks and beyond (see,

e.g., [9–11]). For multicell networks, EE requires new

approaches for interference management as compared to

the more traditional performance metrics [12–17], which

mainly aim at maximizing the spectral efficiency (SE) in

terms of bits per second per hertz.
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Full-duplex (FD) communication, which allows simul-

taneous transmission and reception (over the same fre-

quency band) to and from multiple downlink users

(DLUs) and multiple uplink users (ULUs), respectively,

has emerged as one of the key techniques for the fifth-

generation (5G) networks [18–23]. Nevertheless, a chal-

lenging issue in realizing FD communication is that the

interference is very severe, not only because of the resid-

ual FD self-interference (SI) but also the cross interference

between the uplink and the downlink transmissions. In

this paper, we consider the design of linear precoders to

optimize energy efficiency under quality-of-service (QoS)

constraints in FD multi-input multi-output (MIMO) mul-

ticell networks. Specifically, the BSs are equipped with

multiple antennas and operate in the FD mode. There are

two separate groups of multi-antenna users (UEs) in each

cell, the ULUs and the DLUs, and both groups operate

in the hall-duple (HD) mode. To the authors’ best knowl-

edge, such precoder design problem has not been thor-

oughly addressed, even for MIMO cooperative multicell

networks with half-duplex base stations.

It is pointed out that, since the rate function of the

users is nonconcave, the QoS in terms of user’s minimum

rate constitutes difficult nonconvex constraints, which are

addressed very recently in [24] in a different optimization

problem. On the other hand, the EE objective is not a ratio

of concave and convex functions in order to facilitate the
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Dinkelbach-type algorithm [25], which is the main tool

for obtaining computational solutions of EE optimization

problems (see, e.g. [26–28] and the references therein). To

get around such nonconvexity issue, references [29] and

[30] consider the specific zero-forcing precoders to com-

pletely cancel the interferences so that the user’s rate func-

tion becomes concave and the QoS constraints become

convex, while the EE objective becomes a ratio of concave

and convex functions. This then allows the application of

the Dinkelbach-type algorithm. It should be noted, how-

ever, that although having the convex QoS constraints

on zero-forcing precoders, the EE optimization problems

are still very difficult and there are no polynomial-time

algorithms available to solve them. Furthermore, EE opti-

mization for zero-forcing precoders only applies to the

case that the number of antennas at each BS is much larger

than the total number of users’ antennas. As for the FD

cooperative multicell networks considered in this paper,

the interference cannot be completely canceled out due to

the presence of self-interference [19, 21, 22]; hence, the

Dinkelbach-type algorithm is not applicable.

Motivated from the above observations, the aim of this

paper is to develop a novel solution approach that directly

tackles the nonconvexity of the concerned EE optimiza-

tion problem. The proposed algorithm is a path-following

computational procedure, which invokes a simple convex

quadratic program at each iteration. The rest of the paper

is structured as follows. Section 2 provides the prob-

lem formulation. Section 3 develops its computational

solution. Section 4 is devoted to numerical examples.

Section 5 concludes the paper.

Notation. All variables are denoted by mathematical

sans serif letters. Vectors and matrices are boldfaced. In
denotes the identity matrix of size n × n, while 1n×m

is the all-one matrix of size n × m. The notation (·)H
stands for the Hermitian transpose, |A| denotes the deter-
minant of a square matrix A, and Trace(A) denotes the

trace of a matrix A. The inner product 〈X,Y〉 is defined as

Trace(XHY), and therefore, the Frobenius squared norm

of a matrixX is ||X||2 = Trace(XXH). The notationA � B

(A ≻ B, respectively) means that A − B is a positive

semidefinite (definite, respectively) matrix. E[·] denotes
the expectation operator and ℜ{·} denotes the real part of
a complex number.

2 Systemmodel and optimization problem
formulations

We consider an MIMO cooperative network consisting of

I cells. As illustrated in Fig. 1, the BS of cell i ∈ {1, . . . , I}
serves a group of D DLUs in the downlink (DL) channel

and a group of U ULUs in the uplink (UL) channel. Each

BS operates in the FD mode and is equipped with N �

N1+N2 antennas, whereN1 antennas are used to transmit

and the remaining N2 antennas to receive signals. In cell

i, DLU (i, jD) and ULU (i, jU) operate in the HD mode and

each is equipped withNr antennas. Similar to other works

on precoding and interference suppression (see, e.g., [6,

12, 13, 15–17, 29] and references therein), it is assumed in

this paper that there are high-performance channel esti-

mation mechanisms in place and a central processing unit

is available to collect and disseminate the relevant CSI.

In the DL, a complex-valued vector si,jD ∈ Cd1 is the

symbols intended for DLU (i, jD), where E
[

si,jD(si,jD)H
]

=
Id1 , d1 is the number of concurrent data streams, and

d1 ≤ min{N1,Nr}. Denote by Vi,jD ∈ CN1×d1 the complex-

valued precoding matrix for DLU (i, jD) . Similarly, in the

UL, si,jU ∈ Cd2 is the symbols sent by ULU (i, jU), where

E
[

si,jU(si,jU)
H
]

= Id2 , d2 is the number of concurrent data

streams, and d2 ≤ min{N2,Nr}. The precoding matrix of

ULU (i, jU) is denoted as Vi,jU ∈ CNr×d2 . Define

I � {1, 2, . . . , I}; D � {1D, 2D, . . . ,DD};
U � {1U, 2U, . . . ,UU}; S1 � I × D; S2 � I × U ;

V � [Vi,j](i,j)∈S1∪S2 .

(1)

In the DL channel, the received signal at DLU (i, jD) is

expressed as:

yi,jD � Hi,i,jDVi,jDsi,jD
︸ ︷︷ ︸

desired signal

+
∑

(m,ℓD)∈S1\(i,jD)

Hm,i,jDVm,ℓDsm,ℓD

︸ ︷︷ ︸

DL interference

+
∑

ℓU∈U
Hi,jD,ℓUVi,ℓUsi,ℓU

︸ ︷︷ ︸

ULintracell interference

+ni,jD , (2)

where Hm,i,jD ∈ CNr×N1 and Hi,jD,ℓU ∈ CNr×Nr are the

channel matrices from BSm to DLU (i, jD) and from ULU

(i, ℓU) to DLU (i, jD), respectively. Also, ni,jD is the addi-

tive white Gaussian noise (AWGN) sample, modeled as

circularly symmetric complex Gaussian random variable

with variance σ 2
D. Suppose that each BS i employs dirty-

paper coding (DPC)-based transmission strategy (see, e.g.,

[31]) in broadcasting signals to its users. Then the cor-

responding DL throughput for user (i, jD) is [32, eq. (4)]

fi,jD(V) � ln
∣
∣
∣INr + Li,jD(Vi,jD)LH

i,jD
(Vi,jD)�−1

i,jD
(V)

∣
∣
∣ , (3)

where Li,jD(Vi,jD) � Hi,i,jDVi,jD and

Li,jD(Vi,jD)LH
i,jD

(Vi,jD) = Hi,i,jDVi,jDV
H
i,jD

HH
i,i,jD

, (4)

�i,jD(V) �
∑

(m,ℓD)∈S1\{(i,ℓD),ℓ=j,...,D}
Hm,i,jDVm,ℓDV

H
m,ℓD

HH
m,i,jD

+
∑

ℓU∈U
Hi,jD,ℓUVi,ℓUV

H
i,ℓU

HH
i,jD,ℓU

+ σ 2
DINr . (5)

Note that DPC-based broadcasting is a capacity achiev-

ing transmission, which enables user (i, jD) view the term
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Fig. 1 Illustration of FD multicell network

∑

kD<jD
Hi,i,jDVi,kDsi,kD as known non-causally and thus

reduces it from the interference in (3) [33, Lemma 1]. This

term is still present under conventional broadcast, for

which the interference mapping �i,jD(V) in (3) becomes

�i,jD(V) �
∑

(m,ℓD)∈S1\{(i,jD)}
Hm,i,jDVm,ℓDV

H
m,ℓD

HH
m,i,jD

+
∑

ℓU∈U
Hi,jD,ℓUVi,ℓUV

H
i,ℓU

HH
i,jD,ℓU

+ σ 2
DINr . (6)

It is pointed out that our below development is still

applicable to the case of conventional broadcast.

In the UL channel, the received signal at BS i can be

expressed as

yi �
∑

ℓU∈U
Hi,ℓU,iVi,ℓUsi,ℓU

︸ ︷︷ ︸

desired signal

+
∑

m∈I\{i}

∑

ℓU∈U
Hm,ℓU,iVm,ℓUsm,ℓU

︸ ︷︷ ︸

UL interference

+ HSI

i

∑

ℓD∈D
Vi,ℓD s̃i,ℓD

︸ ︷︷ ︸

residual SI

+
∑

m∈I\{i}
HB

m,i

∑

jD∈D
Vm,jDsm,sD

︸ ︷︷ ︸

DLintercell interference

+ni,

(7)

where Hm,ℓU,i ∈ CN2×Nr andHB

m,i ∈ CN2×N1 are the chan-

nel matrices from ULU (m, ℓU) to BS i and from BS m to

BS i, respectively. The channel matrixHSI

i ∈ CN2×N1 rep-

resents the residual self-loop channel from the transmit

antennas to the receive antennas at BS i after all real-

time interference cancelations in both analog and digital

domains [22, 34] are accounted for (more detailed dis-

cussion on modelling the SI channel can be found in

[22, 34]). The additive Gaussian noise vector s̃i,ℓD with

E
[

s̃i,jD(s̃i,jD)H
]

= σ 2
SIId1 models the effects of the ana-

log circuit’s non-ideality and the limited dynamic range

of the analog-to-digital converter (ADC) [19, 23, 34, 35].

The SI level σ 2
SI is the ratio of the average SI powers

before and after the SI cancelation process. Lastly, ni
is the AWGN sample, modeled as circularly-symmetric

complex Gaussian random variable with variance σ 2
U .

By treating the entries of the self-loop channel HSI

i in

(7) as independent circularly symmetric complex Gaus-

sian random variables with zero mean and unit variance,

the power of the residual SI in (7) is

σ 2
SIE

⎧

⎨

⎩
HSI

i

⎛

⎝

∑

ℓD∈D
Vi,ℓDV

H
i,ℓD

⎞

⎠ (HSI

i )H

⎫

⎬

⎭
= σ 2

SI

⎛

⎝

∑

ℓD∈D
||Vi,ℓD ||2

⎞

⎠ INr .

(8)

It is important to point out that the above power expres-

sion only depends on the BS transmit power, and it cannot

be changed by precoder matrices Vi,ℓD .

Given that the minimum mean square error–successive

interference cancelation (MMSE-SIC) detector is themost

popular detection method in uplink communications, this

type of receiver is also adopted in this paper. Under the
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MMSE-SIC receiver, the achievable uplink throughput at

BS i is given as [36]

fi(V) � ln
∣
∣
∣IN2 + Li(VUi)L

H
i (VUi)�

−1
i (V)

∣
∣
∣ , (9)

where

VUi � (Vi,ℓU)ℓU∈U ,Li(VUi)

�
[

Hi,1U,iVi,1U ,Hi,2U,iVi,2U , . . . ,Hi,UU,iVi,UU

]

,
(10)

and

Li(VUi)L
H
i (VUi) =

U
∑

ℓ=1

Hi,ℓU,iVi,ℓUV
H
i,ℓU

HH
i,ℓU,i

, (11)

�i(V) �
∑

m∈I\{i}

∑

ℓU∈U
Hm,ℓU,iVm,ℓUV

H
m,ℓU

HH
m,ℓU,i

+ σ 2
SI(

∑

ℓD∈D
||Vi,ℓD ||2)INr

+
∑

m∈I\{i}
HB

m,i

⎛

⎝

∑

jD∈D
Vm,jDV

H
m,jD

⎞

⎠(HB

m,i)
H + σ 2

UIN2 .

(12)

Following [37], the consumed power Ptoti of cell i can be

modeled as

Ptoti (V) = ζPti (V) + PBS + UPUE, (13)

where Pti (V) �
∑

jD∈D
||Vi,jD ||2 +

∑

jU∈U
||Vi,jU ||2 is the total

transmit power of BS and UEs in cell i and ζ is the recipro-

cal of drain efficiency of power amplifier. Alo PBS = N1Pb
and PUE = NrPu are the circuit powers of BS and UE,

respectively, where Pb and Pu represent the per-antenna

circuit power of BS and UEs, respectively. Consequently,

the energy efficiency of cell i is defined by
∑

jD∈D
fi,jD(V) + fi(V)

Ptoti (V)
. (14)

In this paper, we consider the following precoder design

to optimize the network’s energy efficiency:

max
V

min
i∈I

∑

jD∈D
fi,jD(V) + fi(V)

Ptoti (V)
s.t. (15a)

∑

jD∈D
||Vi,jD ||2 ≤ Pmax

BS , i ∈ I , (15b)

||Vi,jU ||2 ≤ Pmax
UE , (i, jU) ∈ S2, (15c)

fi,jD(V) ≥ rmin
i,jD

, (i, jD) ∈ S1 (15d)

fi(V) ≥ rU,min
i , i ∈ I , (15e)

where (15b)-(15c) limit the transmit powers for each BS

and ULU, while (15d)-(15e) are the QoS constraints for

both downlink and uplink transmissions.

On the other hand, the problem of optimizing the

energy efficiency in DL transmission only is formulated as

follows:

max
VDL=[Vi,jD ](i,jD)∈S1

min
i∈I

∑

jD∈D
f DLi,jD

(VDL)

ζ
∑

jD∈D
||Vi,jD ||2 + PBS

s.t. (15b), (16a)

f DLi,jD
(VDL) ≥ rmin

i,jD
, (i, jD) ∈ S1 (16b)

with

f DLi,jD
(VDL) � ln

∣
∣
∣INr + Hi,i,jDVi,jDV

H
i,jD

HH
i,i,jD

×(
∑

(m,ℓD)∈S1\{(i,ℓD),ℓ=j,...,D}
Hm,i,jDVm,ℓD

× VHm,ℓD
HH

m,i,jD
+ σ 2

DINr

)−1
∣
∣
∣
∣
. (17)

Likewise, the problem of optimizing the energy effi-

ciency in the UL transmission only is

max
VUL=[Vi,ℓU ](i,ℓU)∈S2

min
i∈I

f ULi (VUL)

ζ
∑

ℓU∈U
||Vi,ℓU ||2 + UPUE

s.t. (15c),

(18a)

f ULi (VUL) ≥ rU,min
i , i ∈ I ,

(18b)

with

f ULi (VUL) � ln

∣
∣
∣
∣
∣
∣

IN2 +
U
∑

ℓ=1

Hi,ℓU ,iVi,ℓUV
H
i,ℓU

HH
i,ℓU ,i

×

⎛

⎝

∑

m∈I\{i}

∑

ℓU∈U
Hm,ℓU ,iVm,ℓUV

H
m,ℓU

HH
m,ℓU ,i

+ σ 2
UIN2

⎞

⎠

−1
∣
∣
∣
∣
∣
∣
∣

.

(19)

As discussed before, for the downlink EE optimiza-

tion problem (16), references [29] and [30] apply zero-

forcing precoders so that all the interference terms

in (5) are completely canceled, making f DLi,jD
(VDL) =

ln
∣
∣
∣INr + Hi,i,jDVi,jDV

H
i,jD

HH
i,i,jD

/σ 2
D

∣
∣
∣. Then by making the
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variable change Xi,jD = Vi,jDV
H
i,jD

, the EE optimization for

zero-forcing precoders becomes:

max
XDL=[Xi,jD ](i,jD)∈S1

min
i∈I

×

∑

jD∈D
ln

∣
∣
∣INr + Hi,i,jDX

H
i,jD

HH
i,i,jD

/σ 2
D

∣
∣
∣

ζ
∑

jD∈D
Trace(Xi,jD) + PBS

s.t. (20a)

∑

jD∈D
Trace(Xi,jD) ≤ Pmax

BS , i ∈ I , (20b)

ln
∣
∣
∣INr + Hi,i,jDX

H
i,jD

HH
i,i,jD

/σ 2
D

∣
∣
∣ ≥ rmin

i,jD
, (i, jD) ∈ S1,

(20c)

XDL ∈ Zzf , (20d)

where the last linear constraint (20d) is to explicitly spec-

ify a zero-forcing precoder. Since the numerator in the

objective (20a) is concave in Xi,jD , the problem expressed

in (20) is maximin optimization of concave-convex func-

tion ratios. To solve such problem, references [29] and [30]

use the Dinkelbach-type algorithm [25]. Specifically, the

optimal value of (20) is found as the maximum of γ for

which the optimal value of the following convex program

is nonnegative:

max
XDL=[Xi,jD ](i,jD)∈S1

min
i∈I

⎡

⎣

∑

jD∈D
ln

∣
∣
∣INr + Hi,i,jDX

H
i,jD

HH
i,i,jD

/σ 2
D

∣
∣
∣

−γ

⎛

⎝ζ
∑

jD∈D
Trace(Xi,jD) + PBS

⎞

⎠

⎤

⎦ s.t. (20b), (20c), (20d).

(21)

It should be noted that, although being convex for fixed

γ , the program (21) is still computationally difficult. This

is because the concave objective function and convex con-

straints (20c) in (21) involve log-det functions. In fact,

no polynomial-time algorithms are known to find the

solution. Another issue is that the zero-forcing constraint

(20d) in (21) would rule out the effectiveness of the opti-

mization, unless the total number (N · I) of the BSs’

antennas is much larger than the total number (I · D · Nr)

of DLUs’ antennas.

The optimal value of (7) is still the maximum of γ > 0

such that the optimal value of the following program is

nonnegative

max
V

min
i∈I

⎡

⎣

∑

jD∈D
fi,jD (V) + fi(V) − γPtoti (V)

⎤

⎦ s.t. (15b) − (15e).

(22)

However, problem (22) is a very difficult nonconvex

optimization even for a fixed γ > 0 because its objec-

tive function is obviously nonconcave while its constraints

(15e) are highly nonconvex. In fact, one can see that (22)

for a fixed γ is not easier than the original nonconvex opti-

mization problem (15). In the next section we will develop

a path-following procedure for computing the solution of

(15) that avoids the setting (22).

3 Path-following quadratic programming
With the newly introduced variable t = (t1, . . . , tI), ti > 0,

i = 1, 2, . . . , I and under the convex quadratic constraints

ζ
∑

jD∈D
||Vi,jD ||2 +

∑

jU∈U
||Vi,jU ||2 +PBS +UPUE ≤ ti, i ∈ I ,

(23)

problem (15) is equivalently expressed by

max
V,t

P(V, t) � mini∈I

∑

jD∈D fi,jD (V)+fi(V)

ti

s.t. (15b), (15c), (15d), (15e), (23). (24)

Let

Mi,jD(V) � Li,jD(Vi,jD)LH
i,jD

(Vi,jD) + �i,jD(V)

� �i,jD(V),
(25)

and

Mi(V) � Li(VUi)L
H
i (VUi) + �(Vi)

� �(Vi).
(26)

At V(κ) �

[

V
(κ)
i,j

]

(i,j)∈S1∪S2

, which is feasible to (15b)-

(15e), define the following quadratic functions in V:

�
(κ)
i,jD

(V) � a
(κ)
i,jD

+ 2ℜ
{

〈�−1
i,jD

(V(κ))Li,jD (V
(κ)
i,jD

),Li,jD (Vi,jD )〉
}

− 〈�−1
i,jD

(V(κ)) − M
−1
i,jD

(V(κ)),Mi,jD (V)〉

= a
(κ)
i,jD

+ 2ℜ
{

Trace
(

(V
(κ)
i,jD

)HHH
i,i,jD

�−1
i,jD

(V(κ))Hi,i,jDVi,jD

)}

−
∑

(m,ℓD)∈S1\{(i,ℓD),ℓ=j+1,...,D}
Trace

(

VHm,ℓD
HH

m,i,jD

(

�−1
i,jD

(V(κ))

−M
−1
i,jD

(V(κ))

)

Hm,i,jDVm,ℓD

)

−
∑

ℓU∈U
Trace

(

VHi,ℓUH
H
i,jD ,ℓU

(

�−1
i,jD

(V(κ))

−M
−1
i,jD

(V(κ))

)

Hi,jD ,ℓUVi,ℓU

)

− σ 2
DTrace

(

�−1
i,jD

(V(κ)) − M
−1
i,jD

(V(κ))

)

(27)
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and

�
(κ)
i (V) � a

(κ)
i + 2ℜ

{

〈�−1
i (V(κ))Li(V

(κ)
Ui ),Li(VUi)〉

}

− 〈�−1
i (V(κ)) − M

−1
i (V(κ)),Mi(V)〉

= a
(κ)
i + 2

U
∑

ℓ=1

ℜ
{

Trace
(

(V
(κ)
i,ℓU

)HHH
i,ℓU ,i

�−1
i (V(κ))Hi,ℓU ,iVi,ℓU

)}

−
∑

m∈I

∑

ℓU∈U
Trace

(

VHm,ℓU
HH

m,ℓU ,i
(�−1

i (V(κ))

−M
−1
i (V(κ)))Hm,ℓU ,iVm,ℓU

)

− σ 2
SITrace(

(

�−1
i (V(κ)) − M

−1
i (V(κ))

) ∑

ℓD∈D
||Vi,ℓD ||2

−
∑

m∈I\{i}

∑

jD∈D
Trace

(

VHm,jD
(HB

m,i)
H (�−1

i (V(κ))

−M
−1
i (V(κ)))HB

m,iVm,jD

)

− σ 2
UTrace

(

�−1
i (V(κ)) − M

−1
i (V(κ))

)

.

(28)

These functions are concave because �−1
i,jD

(V(κ)) −
M

−1
i,jD

(V(κ)) � 0 and �−1
i (V(κ)) − M

−1
i (V(κ)) � 0. Also

0 > a
(κ)
i,jD

= fi,jD(V(κ)) − 〈�−1
i,jD

(V(κ))Li,jD(V
(κ)
i,jD

),Li,jD(V
(κ)
i,jD

)〉

0 > a
(κ)
i = fi(V

(κ)) − 〈�−1
i (V(κ))Li(V

(κ)
Ui ),Li(V

(κ)
Ui )〉,

(29)

which follows from the inequality1

ln |I + X| ≤ Trace(X), ∀ X � 0. (30)

The following result shows that the highly nonlinear and

nonconcave functions fi,jD(·) and fi(·) in problem (15) can

be globally and locally approximated by concave quadratic

functions.

Theorem 1 It is true that [24]

fi,jD(V(κ)) = �
(κ)
i,jD

(V(κ)) and fi,jD(V) ≥ �
(κ)
i,jD

(V) ∀ V,

(31)

fi(V
(κ)) = �

(κ)
i (V(κ)) and fi(V) ≥ �

(κ)
i (V) ∀ V.

(32)

It follows from the above theorem that the nonconvex

QoS constraints (15d) and (15e) can be innerly approx-

imated by the following convex quadratic constraints:

�
(κ)
i,jD

(V) ≥ rmin
i,jD

, (i, jD) ∈ S1; �
(κ)
i (V) ≥ rU,min

i , i ∈ I .

(33)

These constraints also yield

ℜ
{

〈�−1
i,jD

(V(κ))Li,jD (V
(κ)
i,jD

),Li,jD (Vi,jD )〉
}

≥

−a
(κ)
i,jD

+ 〈�−1
i,jD

(V(κ)) − M
−1
i,jD

(V(κ)),Mi,jD (V)〉 ≥ 0, (i, jD) ∈ S1,

(34)

and

ℜ
{

〈�−1
i (V(κ))Li(V

(κ)
Ui ),Li(VUi)〉

}

≥

−a
(κ)
i + 〈�−1

i (V(κ)) − M
−1
i (V(κ)),Mi(V)〉 ≥ 0, i ∈ I .

(35)

Therefore, by using the inequality2

x

ti
≥ 2

√
x(κ)

√
x

t
(κ)
i

−
x(κ)

(t
(κ)
i )2

ti ∀x > 0, x(κ) > 0, ti > 0, t
(κ)
i > 0,

(36)

we obtain

ℜ
{

〈�−1
i,jD

(V(κ))Li,jD(V
(κ)
i,jD

),Li,jD(Vi,jD)〉
}

ti
≥ ϕ

(κ)
i,jD

(Vi,jD , ti),

ℜ
{

〈�−1
i (V(κ))Li(V

(κ)
Ui ),Li(VUi)〉

}

ti
≥ ϕ

(κ)
i (VUi, ti)

(37)

for

ϕ
(κ)
i,jD

(Vi,jD , ti) � 2b
(κ)
i,jD

√

ℜ
{

〈�−1
i,jD

(V(κ))Li,jD (V
(κ)
i,jD

),Li,jD (Vi,jD )〉
}

− c
(κ)
i,jD

ti

ϕ
(κ)
i (VUi, ti) � 2b

(κ)
i

√

ℜ
{

〈�−1
i (V(κ))Li(V

(κ)
Ui ),Li(VUi)〉

}

− c
(κ)
i ti,

(38)

where

b
(κ)
i,jD

=

√

〈�−1
i,jD

(

V(κ)
)

Li,jD

(

V
(κ)
i,jD

)

,Li,jD

(

V
(κ)
i,jD

)

〉

t
(κ)
i

> 0, c
(κ)
i,jD

=
(

b
(κ)
i,jD

)2
> 0,

b
(κ)
i =

√

ℜ
{

〈�−1
i

(

V(κ)
)

Li

(

V
(κ)
Ui

)

,Li

(

V
(κ)
Ui

)

〉
}

t
(κ)
i

> 0, c
(κ)
i =

(

b
(κ)
i

)2
> 0.

(39)
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It is pointed out that functions ϕ
(κ)
i,jD

and ϕ
(κ)
i are concave

[38]. Furthermore, define functions

g
(κ)
i,jD

(V, ti) �
a

(κ)
i,jD

ti
+ 2ϕ

(κ)
i,jD

(Vi,jD , ti)

−
〈�−1

i,jD
(V(κ)) − M

−1
i,jD

(V(κ)),Mi,jD(V)〉
ti

,

g
(κ)
i (V, ti) �

a
(κ)
i

ti
+ 2ϕ

(κ)
i (VUi, ti)

−
〈�−1

i (V(κ)) − M
−1
i (V(κ)),Mi(V)〉
ti

,

(40)

which are concave. This can be justified by observing that

the first terms of these two functions, a
(κ)
i,jD

/ti and a
(κ)
i /ti,

are concave as a
(κ)
i,jD

< 0 and a
(κ)
i < 0 by (29), while their

second terms have been shown to be concave as above,

and their third terms are concave according to [39].

We now address the nonconvex problem (15) by suc-

cessively solving the following convex quadratic program

(QP):

max
V,t

P
(κ)(V, t) � min

i∈I

⎡

⎣

∑

jD∈D
g
(κ)
i,jD

(V, ti) + g
(κ)
i (V, ti)

⎤

⎦

s.t. (15b), (15c), (23), (33).

(41)

Note that (41) involves n = 2(N1 · d1 · I ·D+Nr · d2 · I ·
U) + I scalar real variables and m = I · D + 3 · I + I · U
quadratic constraints so its computational complexity is

O(n2m2.5 + m3.5).

Proposition 1 Let (V(κ), t(κ)) be a feasible point to (24).

The optimal solution (V(κ+1), t(κ+1)) of convex program

(41) is feasible to the nonconvex program (24) and it is

better than (V(κ), t(κ)), i.e.,

P(V(κ+1), t(κ)) ≥ P(V(κ), t(κ)). (42)

as long as (V(κ+1), t(κ+1)) 
= (V(κ), t(κ)). Consequently,

once initialized from a feasible point (V(0), t(0)) to (24), the

κ-th QP iteration (41) generates a sequence {V(κ)} of fea-
sible and improved points toward the nonconvex program

(24), which converges to an optimal solution of (15). Under

the stopping criterion

∣
∣
∣

(

P(V(κ+1), t(κ+1)) − P(V(κ), t(κ))
)

/P(V(κ), t(κ))

∣
∣
∣ ≤ ǫ

(43)

for a given tolerance ǫ > 0, the QP iterations will terminate

after finitely many iterations.

Proof The proof of the above proposition is based on the

theory of sequential optimization [40]. For completeness,

it is provided in the Appendix section.

The proposed path-following quadratic prgramming

that solves problem (15) is summarized in Algorithm 1.

Algorithm 1 Path-following quadratic programming for

EE optimization.

Initialization: Set κ := 0, and choose a feasible point

(V(0), t(0)) to (24).

κ-th iteration: Solve (41) for an optimal solution (V∗, t∗)
and set κ := κ + 1, (V(κ), t(κ)) := (V∗, t∗) and calculate

P(V(κ), t(κ)). Stop if
∣
∣
(

P(V(κ), t(κ)) − P(V(κ−1), t(κ−1))
)

/P(V(κ−1), t(κ−1))
∣
∣ ≤ ǫ.

Before closing this section, it is pointed out that a fea-

sible initial point (V(0), t(0)) to (24) can be founded by

solving

max
V

min
(i,jD)∈S1

{

fi,jD(V)

rmin
i,jD

,
fi(V)

rU,min
i

}

: (15b), (15c), (44)

with iterations

max
V

min
(i,jD)∈S1

⎧

⎨

⎩

�
(κ)
i,jD

(V)

rmin
i,jD

,
�

(κ)
i (V)

rU,min
i

⎫

⎬

⎭
: (15b), (15c), (45)

which terminate as soon as

fi,jD(V(κ))/rmin
i,jD

≥ 1 and fi(V
(κ))/rU,min

i ≥ 1, ∀(i, jD) ∈ S1.

(46)

4 Numerical results
For the purpose of illustrating the performance advantage

(in terms of the EE) of the proposed FD precoder design,

the FDBSs can be reconfigured to operate in theHDmode

withN = N1 +N2 antennas at each BS. In particular, each

BS operating in the HD mode serves all the DLUs in the

downlink and all the ULUs in the uplink, albeit in two sep-

arate resource blocks (e.g., time or frequency). We then

apply Algorithm 1 to solve the EE optimization problems

(16) and (18). Suppose that Vopt,DL and Vopt,UL are their

optimal solutions. Accordingly, we compare the optimal

value of (15) with

min
i∈I

(

∑

jD∈D
fi,jD(Vopt,DL) + f ULi (Vopt,UL)

)

/2

ζ

(

∑

jD∈D
||Vopt

i,jD
||2 +

∑

jU∈U
||Vopt

i,ℓU
||2

)

+ PBS + UPUE

,

(47)
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Table 1 Simulation parameters used in all numerical examples

Parameter Value

Carrier frequency 2 GHz

System bandwidth 10 MHz

Maximum BS transmit power, Pmax
BS

20 W

Maximum user transmit power, Pmax
UE

150 mW

Noise power density −174 dBm/Hz

Noise figure at a DLU receiver 9 dB

Noise figure at a BS receiver 5 dB

where the fraction 1/2 in the numerator accounts for the

fact that two time slots are used in HD downlink and

uplink communications and PBS = (N1 + N2)Pb.

The channel matrix between a BS and a user at a dis-

tance d is generated according to the path loss model

for line-of-sight (LOS) communications as 10−PLLOS/20H̃ ,

where PLLOS = 103.8 + 20.9 log10 d and each entry of H̃

is an independent circularly symmetric Gaussian random

variable with zero mean and unit variance [41]. The chan-

nel matrix from a ULU to a DLU at a distance d is assumed

to follow the non-line-of-sight (NLOS) path loss model as

10−PLNLOS/20H̃ with PLNLOS = 145.4 + 37.5 log10 d [41].

For the FD mode, the number N1 of transmit anten-

nas and the number N2 of receive antennas at a BS are 4

and 2, respectively. The numbers of concurrent downlink

and uplink data streams are assumed to be equal to the

number of antennas at a DLU/ULU, i.e., d1 = d2 = Nr .

The precoding matrices Vi,jD and Vi,jU in (2) and (7) are of

dimensions N1 × Nr and Nr × Nr , respectively. The rate

constraints in (15d) and (15e) are set as rmin
i,jD

= 2 bps/Hz

and rU,min
i = 2 bps/Hz, respectively. The circuit pow-

ers for each antenna in BS and UE are Pb = 1.667 W

Fig. 2 A single-cell network with 2 DLUs and 2 ULUs
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Fig. 3 Energy efficiency of the single-cell network for FD and HD

modes

and Pu = 50 mW, respectively [37]. To arrive at the

final figures, 100 simulation runs are carried out and the

results are averaged. Table 1 lists other 3GPP LTE net-

work parameters that are used in all simulations [41].

For simplicity, the drain efficiency of power amplifier ζ

is assumed to be 100% for both the downlink and uplink

transmissions.

4.1 Effect of SI in a single-cell network with fixed users

The example network in Fig. 2 is used to study the energy

efficiency performance of Algorithm 1. By considering

a single-cell network with fixed-location users, one can

focus on the effect of SI while isolating those of the intra-

cell and intercell interferences. Figure 3 shows the energy

efficiency results for two cases of Nr = 1 and Nr = 2.
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Fig. 4 Data rates of DL and UL for FD and HD modes with Nr = 2 in

the single-cell network
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Fig. 5 Data rates of DL and UL for FD and HD modes with Nr = 1 in

the single-cell network

It is clear that the EE under the FD mode degrades as σ 2
SI

increases. In particular, FD EE is more than double the

HD EE when σ 2
SI ≤ −100 dB. Figures 4 and 5 further illus-

trate the data rates of FD and HD modes for Nr = 2 and

Nr = 1, respectively. It can be seen that, due to the adverse

effect of SI, the data rates of DL and UL in the FD model

degrade with increasing of σ 2
SI. For the case of Nr = 2,

Fig. 4 shows that the data rates in the FD mode are higher

than that of theHDmodewhen σ 2
SI ≤ −120 dB. Similarly,

it is clear from Fig. 5 that the data rates in the FD mode

with Nr = 1 are superior than that in the HD mode when

σ 2
SI ≤ −110 dB.

Fig. 6 A single-cell network with one fixed DLU and one moving ULU.

The DLU location is fixed at point B, whereas the ULU is located at any

point A on the circle of radius of 90 m

Fig. 7 Energy efficiency of the single-cell network under FD and HD

modes

4.2 Effect of intracell interference in a single-cell network

The example network in Fig. 6 is examined to study the

EE performance of Algorithm 1 when the intracell inter-

ference changes but σ 2
SI is fixed at σ 2

SI = −110 dB. The

location of the DLU is fixed at point B but the location

of the ULU is varied. For each position of the ULU at

a point A on a circle of radius 90 m, the EE quantity is

found by Algorithm 1. By keeping the small-scale fad-

ing parameter unchanged, a small angle ÂOB in Fig. 6

results in a small path loss and accordingly a large intracell

interference level.

It can be observed from Fig. 7 that the FD EE is always

much higher than the HD EE if the intracell interference is

sufficiently small. The largest gain in EE is achieved when

Fig. 8 Data rates of DL and UL for FD and HD modes with Nr = 2 in

the single-cell network
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Fig. 9 Data rates of DL and UL for FD and HD modes with Nr = 1 in

the single-cell network

the ULU-DLU distance is maximum (i.e., ÂOB = π ),

in which case, the intracell interference is smallest. In

addition, Figs. 8 and 9 plot the data rates of FD and HD

modes for Nr = 2 and Nr = 1, respectively. For the case

of Nr = 2, the data rates of FD DL at ÂOB = 0 are

smaller than that of the HD DL. This is expected since

when the ULU is very close to DLU at ÂOB = 0, the

intracell interference is strongest. When the ULU-DLU

distance becomes larger, the data rates of FD are signif-

icantly higher than the data rates of HD. In the case of

Nr = 1, the data rates of FD DL are only smaller than

Fig. 10 A three-cell network with 1 DLU and 1 ULU. The cell radius is

r = 100 m
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Fig. 11 Effect of SI on the energy efficiency in a three-cell network

that of HD DL at ÂOB = 0, while the data rates of FD

UL are higher than that of HD UL at every position of

the ULU.

4.3 Multi-cell networks

In the last simulation scenario, we compare the FD EE and

HD EE for a three-cell network as depicted by Fig. 10. The

positions of the ULU and DLU in each cell are fixed at

distances 2r/3 = 66.67m and r/2 = 50m from their serv-

ing BS, respectively. Figure 11 shows that the EE decreases

with the increasing level of SI.

The convergence behavior of Algorithm 1 is demon-

strated in Fig. 12 for the network in Fig. 10, where the error

tolerance for convergence is set as ǫ = 10−3. As can be

seen, the proposed algorithmmonotonically improves the

objective value after every iteration. Table 2 shows that
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Fig. 12 Convergence of Algorithm 1 for the FD energy efficiency with

ǫ = 10−3
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Table 2 The average number of iterations required by

Algorithm 1

σ 2
SI (dB) -150 -130 -110 -90

Average number of iterations 32.4 20.3 25.7 18.5

the convergence occurs within about 32 iterations. Note

also that each iteration only involves one simple convex

QP, which can be solved very efficiently by any available

convex solvers such as CVX [42]. The data rates of the

minimum cell energy efficiency forNr = 2 andNr = 1 are

provided in Figs. 13 and 14, respectively. For the case of

Nr = 2, the data rates of FD DL are slightly smaller than

that of HD DL, but the gap between FD UL and HD UL

data rates becomes larger as σ 2
SI increases. In the case of

Nr = 1, although the data rates of FD DL are higher than

that of the HDDL, it decreases with increasing σ 2
SI. On the

contrary, the data rates of FD UL are smaller than that of

the HD UL.

5 Conclusions
We have designed novel linear precoders for base stations

and users in order to maximize the energy efficiency of

a multicell network in which full-duplex BSs simultane-

ously transmit to and receive from their half-duplex users.

The precoders are found by a low-complexity iterative

algorithm that requires solving only one simple convex

quadratic program at each iteration. It has also been

proved that the proposed path-following algorithm is

guaranteed to monotonically converge. Simulation results

have been presented in various network scenarios to

demonstrate the performance advantage of the proposed

precoders in terms of energy efficiency.
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Fig. 13 Data rates of DL and UL for FD and HD modes with Nr = 2 in

a three-cell network
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Fig. 14 Data rates of DL and UL for FD and HD modes with Nr = 1 in

a three-cell network

Endnotes
1Function ln |I + X| is concave in X � 0 so its first-

order approximation at 0, which is Trace(X), is its upper

bound [38].
2Function x2/t is convex on x > 0 and t > 0, so its first-

order approximation at (x̄, t̄), which is 2x̄x/t̄ − x̄t/t̄2, is its

lower bound [38].

Appendix
Proof of Proposition 1

By (31) and (32), any (V, t) feasible to the convex program

(41) is also feasible to the nonconvex program (24). As

(V(κ), t(κ)) is feasible to (41), it follows that

P(V(κ+1), t(κ+1)) ≥ P
(κ)(V(κ+1), t(κ+1))

> P
(κ)(V(κ), t(κ)) = P(V(κ), t(κ))

(48)

as far as (V(κ+1), t(κ+1)) 
= (V(κ), t(κ)), hence showing (42).

Since the sequence {(V(κ), t(κ))} is bounded by con-

straint (15c), by Cauchy’s theorem, there is a convergent

subsequence {(V(κν ), t(κν ))}, i.e.,

lim
ν→+∞

[

P(V(κν+1), t(κν+1)) − P(V(κν ), t(κν ))

]

= 0. (49)

For every κ , there is ν such that κν ≤ κ and κ+1 ≤ κν+1.

It follows from (42) that

0 ≤ lim
κ→+∞

[

P(V(κ+1), t(κ+1)) − P(V(κ), t(κ))
]

≤ lim
ν→+∞

[

P(V(κν+1), t(κ+1)) − P(V(κν ), t(κν ))
]

= 0,

(50)

showing

lim
κ→+∞

[

P(V(κ+1), t(κ+1)) − P(V(κ), t(κ))
]

= 0. (51)
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For a given tolerance ǫ > 0, the iterations will therefore

terminate after finitely many iterations under the stopping

criterion

∣
∣
∣

(

P1(V
(κ+1), t(κ+1)) − P(V(κ), t(κ))

)

/P(V(κ), t(κ))

∣
∣
∣ ≤ ǫ.

(52)

Each accumulation point (V̄, t̄) of the sequence

{(V(κ), t(κ))} satisfies the minimum principle necessary

condition for optimality [40].
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