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Abstract—The recent developments in wearable devices and the
Internet of Medical Things (IoMT) allow real-time monitoring
and recording of electrocardiogram (ECG) signals. However,
continuous monitoring of ECG signals is challenging in low-
power wearable devices due to energy and memory constraints.
Therefore, in this paper, we present a novel and energy-efficient
methodology for continuously monitoring the heart for low-
power wearable devices. The proposed methodology is composed
of three different layers: 1) a Noise/Artifact detection layer to
grade the quality of the ECG signals; 2) a Normal/Abnormal
beat classification layer to detect the anomalies in the ECG
signals, and 3) an Abnormal beat classification layer to detect
diseases from ECG signals. Moreover, a distributed multi-output
Convolutional Neural Network (CNN) architecture is used to
decrease the energy consumption and latency between the edge-
fog/cloud. Our methodology reaches an accuracy of 99.2% on the
well known MIT-BIH Arrhythmia dataset. Evaluation on real
hardware shows that our methodology is suitable for devices
having a minimum RAM of 32KB. Moreover, the proposed
methodology achieves 7× more energy efficiency compared to
state-of-the-art works.

Index Terms—Electrocardiogram, Heart Monitoring, Arrhyth-
mia, Wearable Systems, Internet-of-Medical-Things (IoMT).

I. INTRODUCTION

ELECTROCARDIOGRAM (ECG) signals are widely used
to detect cardiovascular diseases, which are the leading

cause of death globally [1]. Moreover, according to the Amer-
ican Heart Association, the early detection of these diseases
is crucial for patients’ health [2]. Clinical ECG is the primary
tool for monitoring cardiac activity. However, it can only
be used for a limited time, and continuous monitoring of
the patients’ condition is still required outside clinical hours.
Traditionally, ambulatory ECG devices are used to monitor
the cardiac activity for a long duration to be further inves-
tigated by clinicians. For example, the Holter [3], a battery-
operated portable device, is used to record and store long-term
ECG signals. However, these devices cannot provide real-time
feedback to users, and cardiologists need to analyze long-term
recordings, which is a very time-consuming and expensive
process.
To solve this issue, several heart monitoring devices and solu-
tions have been proposed and developed both in academia and
industry [4], [5], thanks to rapid development on the internet
of Medical Things (IoMT) and smart health care systems.
These heart monitoring devices or systems can be categorized
into two different groups according to their methods. The
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first group [6], [7] analyzes long-term recorded ECG signals
offline by using remote cloud servers. The utilized algorithms
in the cloud provide a powerful classification performance.
However, they cannot be implemented on the edge node due
to their memory requirements and high energy consumption.
Moreover, since all computing occurs in the cloud, the latency
of the system increases, which weakens the user experience
[8]. The latency is an essential factor for heart monitoring
applications because the rapid detection of cardiovascular
diseases is critical for people’s lives. The second group [9],
[10] provides a real-time solution by doing computation on
the edge side rather than the cloud; however, the amount of
time the device is monitoring the cardiac activity is limited
due to constraints on battery life, which is the most valuable
resource for the edge of the network [11].
Due to these problems, many people live for years unaware
of their illness [12]. Some cases reported that deaths due
to cardiovascular disease could have been prevented if the
disease was detected earlier [13]. Therefore, continuous real-
time ECG monitoring can be a vital solution for people with
cardiovascular diseases.
The main challenge of designing a continuous real-time
monitoring system is adhering to the devices’ energy and
memory constraints since processing requires lots of memory
and is computationally intensive. To overcome this problem,
existing works have proposed performing the computation
at the proximity of data generation sources, which are the
edge devices in this case, using fog or edge-cloud [14]–[16]
architectures by transferring real time signals to these nodes of
network. However, this transfer operation requires tremendous
communication power, which decreases the device’s battery
life and makes it difficult to sustain continuous monitoring
over long periods. This kind of IoMT system requires signifi-
cant energy resources on the edge device, and is vulnerable to
privacy issues [17], [18]. Several methods have been proposed
to encrypt the ECG signals. However, they require additional
energy and memory at the edge [19], [20]. Moreover, the
transferred ECG signals might be contaminated with noise
or artifacts caused by the users’ mobility, which results in
further unnecessary energy consumption. In summary, the key
research challenges associated with continuous heart moni-
toring are: (i) developing resource-efficient algorithms on the
edge, (ii) detecting abnormalities in ECG signals as fast as
possible to minimize latency.

To address the above mentioned challenges, this paper
proposes a novel heart monitoring methodology on a hybrid
edge-fog/cloud IoMT. In this paper, we define “edge” as the
computing platform where the data acquisition is performed,
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and “fog” is defined as the device possessing further comput-
ing and network resources along the path between data sources
and cloud data centers, e.g., a smartphone. Throughout the
paper, ”edge-fog/cloud” is used since the proposed method-
ology is a solution for any two-tiered systems employing
edge-cloud, edge-fog, or fog-cloud architectures. The proposed
methodology delivers a layered software pipeline architec-
ture by distributing the layers between edge and fog/cloud.
The first layer running on the edge is designed to detect
Noise/Motion artifacts. This detection aims to conserve energy
resources through avoiding unnecessary artifacts transmission.
The second layer, running as well on edge, classifies normal
and abnormal beats in the ECG. If the beats are classified
as normal, the classification is considered complete, and only
the heart rate value of that beat is transmitted instead of the
raw signal. Else, the beats are classified as abnormal and are
sent to the next layer in the hierarchy, which could be a fog
or cloud, to be further classified. Moreover, these first two-
layers can further reduce the energy consumption of the edge
device through controlling the data sampling rate. If the signal
is not classified as clean or the recorded ECG signal has no
abnormal beats, the control unit changes the sampling rate to
the degree that both classifiers still maintain high-performance
classification. The last layer, running on fog or cloud, is a
distributed multi-output CNN to classify several cardiovascular
diseases.

A. Motivational Example

We have done several experiments to show the advantages
of the proposed methodology for continuous heart monitoring.
In Case I, the 1-hour raw ECG, which are acquired digital
signals from sensors, are transferred to the fog/cloud server
without any investigation or operation on the edge for noise
and artefacts. Then, the energy consumption of these transfer
operations is calculated for four different communication
technologies, Wi-Fi, LTE, 3G and BLE. For Case II, the
1-hour ECG record is partitioned into two parts: i) a 50-
minutes segment of clean ECG which has no artifacts with just
regular beats and ii) a 10-minutes segment of the ECG signal,
simulated as a noisy signal. The required communication
energy for transferring this record is calculated again. Lastly,
in Case III the ECG signal is divided into three parts: i)
a 40 minutes regular beats segment; ii) a 10 minutes noisy
signal; and iii) 10 minutes of the recording including several
arrhythmias. The energy consumption for all cases’ transfer
operation is shown in Figure 1. While calculating the energy
consumption of these cases, we have followed the µJ/bit
values given in [23] for the Wi-Fi, LTE, and 3G. For BLE
protocol energy consumption, we performed the profiling for
data exchange on an EFR32BG13 Blue Gecko Bluetooth®
Low Energy SoC which has 32-bit ARM Cortex-M4 core with
40 MHz maximum operating frequency.

Since the raw ECG data is transmitted without any classi-
fication on edge in Case I, its communication energy is the
highest among the three cases regardless of the communication
methods as shown in Figure 1. However, when we applied our
proposed methodology to detect the normal and noisy beats in
the ECG signal and filtered out them before transmitting to the

Fig. 1: Energy consumption of Case I, II, and III

fog/cloud node (Case II, III), the communication power can be
decreased by 1000× and 3× for Case II and III, respectively.
Also, to make a fair comparison with different cases, we
measure the additional computational energy consumption of
our proposed methodology to detect the artifacts and abnormal
beats in the ECG signals for case II and III. We observe that
the algorithm’s energy consumption approximately 1.5 J for
an hour, which makes Case II and III still much more energy-
efficient than Case I. Moreover, it is known that arrhythmias
are not as frequent in people like Case III (ten minutes of
hour), so case II will be more common for most of the people.
Therefore, we observe that detecting the normal and noisy
ECG beats in edge devices could save energy and time while
reducing the communication channel usage and fog/cloud
server load.

B. Novel Contributions

The novel contributions of this paper are as follows:
• A real-time continuous heart monitoring system that

runs on a hybrid edge-fog/cloud architecture while being
energy and memory efficient.

• A novel layer-wise distributed multi-output CNN ar-
chitecture that is optimized for decreasing the energy
consumption and latency between edge and fog/cloud. To
the best of our knowledge, we are the first to investigate
the signal’s physiology in distributing the computational
complexity of architecture between the different nodes of
a network.

• Evaluation of our proposed methodology on the well
known MIT-BIH datasets [22], and PhysioNet/CinC
(PICC) 2011 challenge [21], [25]. It shows that, our
proposed methodology reaches or outperforms the current
state-of-the-art works in terms of classification perfor-
mance [26], [27], [34]–[36].

• Evaluation on real hardware shows that each layer of the
proposed methodology achieves up to 7× more energy
efficiency compared to the state-of-the-art works [34]–
[36].

The rest of the paper is organized as follows. In Section II,
we review related works for heart monitoring systems. Section
III describes the proposed methodology. Section IV shows the
experimental setup. Section V discusses the results. Finally, a
conclusion is drawn in Section VII.



II. RELATED WORK

A. Quality Assessment of ECG

Signal Quality Assessment (SQA) is the critical first step
in continuous heart monitoring since it eliminates the noisy
signals before the classification. Mostly, SQA methods grade
ECG into two groups: acceptable and unacceptable. Existing
methods extracted several features from the ECG signals and
graded them using heuristic rules [26] or machine learning-
based classifiers such as Support Vector Machine [27], [28].
For example, authors in [27] proposed extracting six different
features based on time and frequency domains, whereas the ex-
traction of these features depends on the accurate and reliable
detection of the QRS complex in noisy ECG signals, which
is a challenging task. To avoid detection of QRS complex,
authors in [26] examined three main causes of noise in ECG:
(i) abrupt change, (ii) signal absence, and (iii) high-frequency
noise. Since the authors do not detect the QRS complexes in
ECG signals, they investigated the 10-second windows based
on time and frequency. However, since the number of samples
increases with a longer duration of ECG recording, the fea-
ture extraction-related algorithms’ computation requirements
increase, especially when the frequency-domain features are
used. Since these SQA algorithms run in the proximity of data
sources (edge of the networks) during acquisition, they need
to be energy and memory efficient. Therefore, in this paper,
we proposed a lightweight SQA which can detect noise and
artifact.

B. Heartbeat Classification of ECG Signals

A wide range of automatic heartbeat classification methods
has been proposed, and these existing methods may be cat-
egorized into two groups. The first method [7], [9] extracts
some handcrafted features from the ECG signals and feeds
them to a classifier like SVM. For example, authors in [7],
extract 6 frequency-domain features from the heart rate for
arrhythmic beat classification. Similarly in [9] authors use
32 time-domain features with linear kernel SVM to classify
heartbeats. However, this feature extraction process increases
the computational complexity and memory. Moreover, these
extracted features may not represent the complete characteris-
tics of the ECG and restrict the performance.
The second method is to directly send the original waveform
to a neural network for classification, known as end-to-end
classification method to avoid the feature extraction process
since the neural networks do not require feature engineering
as they automatically extract features. For example, in [34],
authors use a combination of Bidirectional Recurrent Neural
Network (BRNN) and CNN model to detect 4 kinds of
heartbeats. Compared to feature-based classification methods,
this method can reach higher accuracy. However, this com-
bined architecture has tens of millions of parameters, making
it unsuitable for the edge node with memory and energy
constraints. Similarly, authors in [36] proposed a two-stage
neural network, which combines a multi-layer perceptron and
a CNN. The first stage classifies the ECG beats as normal or
abnormal, and the second stage classifies the abnormal beats to
several arrhythmias. Moreover, their proposed solution uses an

additional classifier for discriminating abnormal beats, which
introduces more parameters and energy consumption to the
system. However, our proposed methodology uses a distributed
multi-output CNN architecture to detect and filter out the
regular beats during run-time without using any additional
features and classifiers.

III. OUR PROPOSED METHODOLOGY

The proposed methodology, shown in Figure 2, consists of 3
main layers and several processing blocks whose components
are detailed in the following section.

A. Processing and Control Units

1) Filtering: We use a fifth order linear phase bandpass
filter with a Hamming window cut-off frequencies (f1=1 Hz
and f2=50 Hz).

2) R-peak Detection: To detect the R-peaks, we have used
the Pan-Tompkins algorithm [29], a real-time QRS complex-
based heartbeat detection approach that has an accuracy of up
to 99.5%.

3) Beat Segmentation: We take Fs/3 samples before and
Fs/2 samples after the R-peak. The highest heart rate is chosen
as 180 Beats Per Minute (BPM) to avoid overlapping two beats
in a window.

4) Heart Rate Calculation: The heart rate is calculated
using the following equation:

HR(i) =
60

(R(i) −R(i−1))/Fs
(1)

Where HR(i) is the heart rate of the ith heartbeat segment in
BPM. R(i) is the location of the R-peak in the ith heartbeat
segment, and Fs is the sampling frequency.

5) Sampling Rate Control: This unit controls the ECG
acquisition sampling rate according to the output of two
different decision units. The first decision unit checks the ECG
signal’s quality. If it detects a noisy ECG signal, the sampling
rate is decreased to the degree that all components maintain
the high classification performance. The second decision unit
monitors the incoming beats and classify them as normal and
abnormal beats. If the beats are classified as normal, this unit
decreases the sampling rate to the same degree.

B. Noise/Artifact Detection Layer

The ambulatory ECG signals are mostly contaminated with
low-frequency motion artifacts that cannot be removed using
simple filtering. Therefore, the first layer is designed to detect
these artifacts. Since this algorithm runs on the edge, we have
focused on developing a lightweight and robust algorithm to
increase the device’s battery life. We have observed that a rule-
based decision method is superior compared to the classical
machine learning algorithms (SVM, RF) considering energy
efficiency while maintaining the classification performance for
this task. Therefore, a rule-based algorithm is used to classify
signals into two groups acceptable and unacceptable. The
ECG signals are divided into 10-seconds windows. First, the
windows are normalized with respect to the maximum ampli-
tude value. The mean of a normalized window is obtained and



Fig. 2: Overview of our proposed methodology

compared with a threshold (λ) to detect the absence of an ECG
signal. If the mean is lower than the threshold, the window is
classified as unacceptable and the signal is discarded.

The abrupt changes and baseline wander are investigated
using a moving standard deviation of the 10-seconds ECG
signal. In this method, a window of a specified length (2Fs/5)
is moved over the signal with a 70% overlap. The deviation
of the signal (σi) is computed over the data by using Equation
2.

σi =

√√√√ 1

N − 1

N∑
n=1

|xi[n]− µi|2 (2)

Where σi and µi are the corresponding standard deviation
and mean of the window, respectively. An example of σi
waveforms is shown in Figure 3. When the ECG signal has an
abrupt change, the algorithm suppresses the beats and brings
the artifacts forefront. Finally, to detect the abrupt changes,
the mean of the waveform (σi) is obtained and compared with
a threshold, which is set to 0.2 based on acceptable level of
noise. If the mean is higher than the threshold, the signal is
classified as acceptable.

Fig. 3: The Acceptable and The Unacceptable ECG signals
from PICC [25] and obtained σi waveforms

The proposed method has the following advantages: (i) it
is sensitive to abrupt changes and baseline wanders where if
a small portion of the signal is corrupted with an artifact or
noise, it is detected and ignored; (ii) it is energy efficient since

it can run at a low sampling rate of 100-120 Hz without losing
performance, and it does not need complex features to classify.

C. Normal/Abnormal Beat Classification

While classifying the normal and abnormal beats, we have
followed the Association for the Advancement of Medical
Instrumentation (AAMI) instructions, which are the golden
standard for automatic heartbeats classification. According to
the AAMI standard, heartbeats can be divided into N (normal),
S (supraventricular ectopic beat), V (ventricular ectopic beat),
F (fusion beat), and Q (unclassified beat) [30]. Therefore, the
beats are divided into two groups for that layer. The first group
only contains the normal beats N from the datasets, and the
second group is composed of other types of heartbeats (S, V,
F, and Q), which are the abnormal beats.
If a beat is classified as normal in this stage, it is not
transmitted to the fog/cloud node to save energy. Nevertheless,
if a regular beat is mistakenly classified as abnormal, it can
still be corrected by the next classifier. So, we need to ensure
that the abnormal beats are classified with high sensitivity in
that layer.
It is known that during arrhythmias, the heart rate deviates
from its normal rhythm. These heart rate variations are com-
mon in the premature beats; as the name suggests, they occur
when the ventricles or atrial contract too soon, out of sequence
with the normal heartbeat. Moreover, as shown in Figure 4, the
waveform of the abnormal beats is different from the regular
beats.

Fig. 4: The waveform of normal and abnormal beats

Therefore, the heart rate variability and correlation of the
beats are indicators of abnormal beats. We have used these



together with the result of the first output block to decide
whether a beat is normal or abnormal.
If the first output block classifies a beat as abnormal, the output
of the first convolutional is directly sent to the next classifier to
be further examined. However, if a beat is classified as normal,
other indicators just confirm the decision. The first indicator
is the Heart Rate Variability (HRV) between three consecutive
beats, which is calculated using Equation 3.∣∣∣∣Fs× ( 1

RR(i−1)
− 1

RRi

)∣∣∣∣ (3)

Where RRi is the latest interval and Fs is the signal’s
sampling rate. Figure 5 is the whisker plot for HRV values
of different beats. The threshold value is set to 10 based on
variances of normal and abnormal beats. If the calculated HRV
value is greater than 10, the last beat is classified as abnormal
even though the first block classified it as a regular beat. It is
also observed that most of the normal beats with HRV values
greater than 10 are either before or after abnormal beats.

Fig. 5: HRV values for normal and abnormal beats

As a second indicator, we have calculated the correlation
of a template and classified beat. While creating a template,
we have used 20 different regular beats. These regular beats
are aligned according to their R-peak and averaged, then the
correlation is calculated using Equation 4.

ρ(T, x) =
1

N − 1

N∑
n=1

(
T [n]− µT

σT

)(
x[n]− µx

σx

)
(4)

Where σT and µT are the standard deviation and mean of
the template beat (T) and σx and µx are the standard deviation
and mean of the incoming beat, respectively. If the correlation
coefficient is lower than 0.2, the normal beat label is changed
to abnormal and forwarded to the next layer running in the
fog/cloud for further classification.

D. Distributed Multi-Output CNN

Our distributed multi-output CNN consists of 3 convolution
and 2 output blocks. The first and last convolution blocks are
followed by an output block. Figure 6 shows the layout of the

designed CNN. The first and third convolution blocks consist
of one convolution layer passed through ReLU activation,
one max-pooling layer, and one batch normalization layer.
The third convolution block is composed of depthwise and
pointwise convolutions. The depthwise convolution block,
which connects to each feature map, learns frequency-specific
filters. The pointwise convolution block is placed after that to
mix the feature maps. Also, closer inspection of the Table
I shows that the kernel sizes of designed CNN vary from
64 to 1, which enables the model to learn different features
from the heartbeats. Since the shorter filters can cover limited
samples, they are used to extract more temporary and rapid
oscillatory changes in the ECG, and the longer filters are used
to extract more long-term features such as abnormalities in
the T-wave. Before the second output block, a dropout value
of 0.2 is used to prevent overfitting during training. Each of
the output blocks consists of one fully connected layer passed
through the softmax activation. The details of the architecture
parameters for each of the layers are given in Table I.

TABLE I: Multi-output CNN architecture details

Layer Kernel Stride Activation Output # of
Name Size Size Function Shape Param.
Input - - - 105x1 0

Conv 1 64 2 ReLU 53x5 325
Pooling 1 2 2 - 27x5 0

Batch Norm. - - - 27x5 10
Fc 1 - - Softmax 2x1 272

Total Number of Parameters on Edge 607
Conv 2 32 1 ReLU 27x15 2415

Pooling 2 2 2 - 14x15 0
Batch Norm - - - 14x15 30

Grouped Conv 10 1 - 14x75 825
Pointwise Conv 1 1 Relu 14x5 380

Pooling 3 2 2 - 7x5 0
Batch Norm - - - 7x5 10

Dropout - - - 7x5 0
Fc 2 - - Softmax 4x1 144

Total Number of Parameters on Fog/Cloud 3804

We design the distributed multi-output CNN considering
the current limitations and resource constraints of the state-of-
the-art works. It is known that the number of parameters and
computational operations increases with the number of layers
which leads to the consumption of more energy and memory
resources. To solve these problems, we have distributed the
CNN layers between edge and fog/cloud so that the introduced
additional energy consumption and memory of the CNN to
the edge are decreased. This fact may be seen from Table I.
The total number of parameters before the second convolution
block is 607, whereas CNN has 3804 more parameters after
that. This clearly shows that by distributing the CNN over
nodes, the memory requirement of the edge node can be
decreased by 87%.

Another advantage of this proposed solution is that we de-
creased the communication energy requirements by ∼ 1000×
using the first output block. The first output block is designed
to classify beats as normal or abnormal during run-time using
the extracted features from the first convolution block. By
adding this block, normal and abnormal beats can be distin-
guished without the need to invoke the other two convolutional



Fig. 6: Distributed multi-output CNN architecture

blocks. We have observed that this classification, which uses
the first convolution block, can reach up to 95% accuracy.
Therefore, further processing of those regular beats would
be redundant. Through avoiding this redundant operation, the
system’s energy consumption and inference time are decreased
from both communication and computation.

IV. EXPERIMENTAL SETUP

A. Training Distributed Multi-output CNN Classifier

We use data from MIT-BIH Arrhythmia dataset [22],
which contains 48 half-hours of two-channel ambulatory ECG
recordings, digitized at 360 samples per second, obtained
from 47 subjects, and MIT-BIH Supraventricular Arrhythmia
Database [31] which includes 78 half-hour ECG recordings
with digitized at 120 Hz. We combined these two datasets to
increase the number of abnormal beats. For both datasets, only
the lead-II ECG signals are used for experiments. For a fair
comparison with published results, we follow the evaluation
settings that was most frequent in the state-of-the-art-works.
We have excluded the 4 paced records (102,104,107,217) from
the MIT-BIH dataset [22]. ECG beats in 22 recordings from

Fig. 7: The ratio of training and validation samples in
traning set.

the MIT-BIH dataset are included to training set. Additionally,
beats from MIT-BIH Supraventricular Arrhythmia Database
[31] are added to the training set. In the training set, 80% of
ECG beats are used for training, and 20% of ECG beats are
used for validation (as shown in Figure 7). Since the sampling
rates of the two datasets are different, we have resampled them
to 130 Hz. The 44 records (22 records from the training set
and 22 records which model has never seen before) from the
MIT-BIH dataset [22] are used as test data. The network was
trained with Glorot initialization of the weights [37], we used
the Adam optimizer [33] with the default parameters β1 = 0.9
and β2 = 0.999. The learning rate is initialized to .001 and

reduced by a factor of 10 when the validation accuracy stopped
improving for 15 consecutive epochs. The training continues
until 100 successive epochs without validation performance
improvements with a maximum of 500 epochs. The best model
is chosen as the highest accuracy rate on the validation data.
After training the complete CNN architecture, the weights
of the first convolution block are obtained to train the fully
connected layer at the first output block. The same training
data is given as input to the first convolution block again. Then,
the output of the first batch normalization layer is fed to the
fully connected layer instead of the second convolution block
to classify beats as normal and abnormal. During backpropa-
gation, only the weights and biases of the fully connected layer
are calculated from the gradient of classification loss. In other
words, while training the first output block, the parameters of
the first convolutional block are not changed.

B. Target Wearable Device

Our work is designed for low-power and low-memory
wearable devices. For example, SmartCardiaINYU [24] device
is equipped with an ultra-low-power 32-bit microcontroller
STM32L151 containing an ARM Cortex–M3 with a maximum
clock rate of 32 MHz. It has a 48 KB RAM, 384 KB Flash, and
a standard 710 mAh battery. The device captures ECG signals
using a single lead ECG sensor. We have tested our work on
a BLE standalone module similar to [24] with a 32-bit ARM
Cortex-M4 core with 40 MHz maximum operating frequency
and 64 KB of RAM. Our profiling showed that algorithms
peak memory usage do not exceed 30 KB of RAM.

V. RESULTS

A. Performance of Noise/Artifact Detection

Firstly, the MIT-BIH arrhythmia dataset is used to evaluate
the performance. The recordings include clinically significant
arrhythmias, which have quite different waveforms from the
normal ECG, so it is essential to classify them as not noisy
ECG signal to validate the algorithm. The performance of the
proposed method is evaluated using four benchmark metrics,
sensitivity (Se), accuracy (Ac), specificity (Sp), and positive
predictivity (PPV) which are defined as follows:

Se =
TP

TP + FN
(5) Sp =

TN

TN + FP
(6)

PPV =
TP

TP + FP
(7) Ac =

TP + TN

TP + TN + FN + FP
(8)

Where TP , TN , FP and FN refer to True Positive, True
Negative, False Positive and False Negative, respectively.

TABLE II: Performance of the algorithm in MIT-BIH for
detection of Noise/Artifact

Segment
Type

Total # of
Segments

True
Positives

False
Negatives

Sp
%

Ac
%

Se
%

PPV
%

Clean 5000 4970 30 99.4 99.3 99.2 99.5
Noisy 5000 4959 41 99.2 99.3 99.4 99.4

A total of 10000 segments are obtained from the MIT-BIH
dataset. As shown in Table II, the algorithm’s accuracy can



reach 99.3% by wrongly classifying only 71 segments in the
MIT-BIH dataset amongst the 10000 segments.

The PhysioNet/CinC (PICC) 2011 challenge [25] is used
as a second dataset to validate our algorithm and compare it
with the other related works. In the PICC, the ECG signals are
standard 12-lead, and the leads are recorded simultaneously for
10 seconds; each lead is sampled at 500 Hz.

TABLE III: Performance comparison of related works in
PICC and MIT-BIH dataset for detection of Noise/Artifact

Works Sp Ac Se Dataset Methods Features

[26] 94 - 99.74 PICC Rule Based Time & Freq.
Domain99.4 - 98.5 MIT-BIH

[27] 96.5 97.1 97.7 PICC SVM Time & Freq.
Domain97.8 97.8 97.7 MIT-BIH

Ours 96.3 96 94.5 PICC Rule Based Time
Domain99.4 98.3 99.2 MIT-BIH

The proposed solution to detect the noise and artifacts in
the ECG signals outperforms the other related works in MIT-
BIH dataset (see Table III). This advantage of the algorithm is
crucial since any other method that classifies arrhythmias as
noisy would lead to a rejection of the data. Another advantage
is that our algorithm does not require computationally heavy
features to classify.

B. Performance of Normal/Abnormal Beat Classification

The performance of this layer is evaluated using the AAMI
instructions for beat type classification. However, unclassified
beats (Q) are excluded from the abnormal beat types since they
are very rare in the dataset. As shown in Table IV, this layer’s
classification accuracy is 98.5% with a 99.6% sensitivity for
abnormal beats.

TABLE IV: The performance evaluation of the algorithm in
merged MIT-BIH for detection of Normal/Abnormal beats

Labels Total #
Beats

True
Classified

False
Classified

Beat
Type

Se
%

Sp
%

Acc
%

Abnormal 18000 17929 71 S,V,F 99.6 97 98.5Normal 15000 14545 455 N 97 99.6

The goal in this layer is to achieve high sensitivity for
abnormal beats classification because if a beat is classified
as normal, it would not be transmitted to the fog/cloud node.
Table IV shows that amongst the 18000 abnormal beats, only
71 of them are misclassified, which indicates a very high
sensitivity for the abnormal beat classification.

TABLE V: The performance comparison of related works
with ours for Abnormal beat detection

Works Methods Se PPV Acc
[7] SVM - - 96
[32] Tree 96.4 92 -

Ours CNN &
Rule based 97 99.6 98.5

Table V compares the performance of related works with
the proposed solution on the MIT-BIH dataset. The proposed
algorithm outperforms others in terms of classification perfor-
mance. Moreover, these methods use feature-based classifiers

such as SVM and tree, so they need to extract different features
from the ECG signal. For example, the authors in [7] extract 14
different time-frequency domain features from ECG, requiring
additional memory and a computational overhead which does
not suit the edge device. We tried to evaluate the memory
and energy consumption of the state-of-the-art works in our
target wearable device, which is explained in Section IV-B.
However, the target device’s memory overflowed more than
1.5× of its maximum memory for all algorithms [7], [32]
due to huge memory requirements for the feature extraction
and classification. On the other hand, our proposed solution
calculates the correlation between template and input beats,
checks the heart rate variability; no additional features are
extracted from a beat specific to that layer. Moreover, unlike
the related works, we do not use a feature-based classifier since
the first convolution block is used to classify the beat types
(N, S, V, F) for complete CNN architecture. The designed first
convolution and output blocks consist of 607 parameters that
allow us to run that algorithm on edge.

C. Performance of CNN Classifier

The overall performance is evaluated according to the
second output block, which classifies beats into Normal, SVEB
(supraventricular ectopic heartbeats), VEB (ventricular ectopic
heartbeats), and Fusion beat. To make a fair comparison with
other works, the performance of Normal/Abnormal Beat
Classifier is also considered. So, if a beat is misclassified
as normal in that layer, it is not transmitted to further CNN
layers. The classification performance (Acc, Sen, Spe, Ppr) of
VEB and SVEB are also investigated to be consistent with
related works and given in Figure 8.

Fig. 8: Performance comparison between the proposed
methodology and related works

Figure 8 shows that the proposed algorithm’s performance
is the highest for PPV of SVEB; and for the other metrics, it
is 0.4%−1% below from the best one. Also, closer inspection
of the table shows that the performance of [35] reaches more
than 0.999 for 3 different metrics which is practically hard
to outperform. However, our algorithm’s worst performance
is 97.8% whereas it is 80.2% and 88% for [34] and [36],
respectively. Since the number of normal beats in MIT-BIH
is approximately 10 times that of abnormal data, it is easy
for models to achieve high accuracy. However, it is harder to
achieve high performance on all the metrics. Also, the other
models, in general, are not suitable for the edge devices as



their architecture has many parameters. To compare models
in terms of memory and energy, we estimated the number
of parameters and multiply-accumulate operations (MACs) of
each architecture. Equation 9 is used for the calculation of
MACs,

MACs =
Cin × Cout ×Kh ×Kw ×Hout ×Wout

g
(9)

where Cin is the number of input channels, Cout is the
number of output channels, Hout and Wout are the height
and width of the layer’s output, respectively. Kh × Kw is
the kernel size of each convolution, and g is the number
of groups if there are any. When the MACs are calculated
for different works, we observed that the proposed solution
has 30000× fewer operations compared to [34]. Therefore,
for better visualization, Figure 9 is given in logarithmic form
where the two y-axes are in millions. Figure 9 shows that

Fig. 9: Comparison of computational complexity and
memory with related works

the proposed solution is much more energy and memory
efficient compared to other existing work. Even the closest
CNN architecture performs 7× more MAC operations and
requires 40× more memory compared to ours.
The proposed CNN has very few parameters and MACs
compared to related works because of two reasons. First,
in the third convolution block of the proposed CNN, the
grouped and pointwise convolutions are performed instead
of 1D convolutions to mix the high-level features optimally.
These convolution operations are also more efficient compared
to the 1D convolutions since the number of MACs are
decreased with increasing groups in convolutions. Second, as
we applied a bandpass filter with cut-off frequencies f1 = 1
Hz and f2 = 50 Hz at the beginning of the process, the
ECG signal’s sampling rate, which directly affects the input
size of CNN, is downsampled to 130 Hz without losing any
information.
D. Memory and Energy Consumption Evaluation

We evaluate the memory footprint and energy consumption
of our proposed methodology on the target device mentioned
in Section IV-B. Table VI shows the execution time, energy
consumption, and required memory for each layer that runs on
the edge device. When we evaluate the power and execution
time of each layer, we perform multiple experiments to take

the average of them. In the end, we observe ±1% mW
and ±0.5% ms deviation from the average of all trials. For
example, we observe a maximum 20.12 ms execution time
and 14.13 mW average power consumption for the First
Convolutional Block. The model is implemented and deployed
to the target device using MATLAB (MATLAB and Coder
Toolbox Release R2020b,The MathWorks, Inc, USA).

TABLE VI: Memory and energy consumption on blue Gecko

Layers Operation Exe.
Time (ms)

Average
Power (mW)

Energy
(µJ)

Compatible
RAM

Noise/Motion
Artifact

Feature
Extraction 13.5 14.3 193.05 ≥ 32 KB

Normal/
Abnormal beat

Template Check
& HRV 1.8 23 41.4 ≥ 8 KB

CNN

First Convolution
Block 20 14.1 282

≥ 32 KBFirst Output
Block 1.2 7.5 9

The overall execution time for a heartbeat takes 36 ms in
the edge device with 55 mW power consumption. Also, our
proposed methodology is compatible with any devices with a
minimum RAM of 32 KB. As a result, our methodology guar-
antees high classification performance while maintaining the
low-power wearable devices requirements of being resource-
efficient in terms of energy and memory.

VI. DISCUSSION AND FUTURE WORK

In this paper, we present a novel and energy-efficient
methodology that runs on a hybrid edge-fog/cloud architecture
for continuously monitoring the heart at low-power wearable
devices. To evaluate our methodology’s performance, we com-
pare our approach with several state-of-the-art methods that
evaluate their classification results on the same datasets. We
show that our proposed methodology reaches or outperforms
the current state-of-the-art works in terms of classification per-
formance for 3 different tasks (Noise/Artifact detection, Nor-
mal/Abnormal beat detection, Abnormal beat classification)
while being energy and memory efficient. However, despite
these promising results, questions remain about whether the
proposed approach’s performance is excellent. Therefore, it is
important to evaluate the limitations of our methodology.
Firstly, in our proposed methodology, the Abnormal beat
detection and classification layers heavily depend on the R-
peak detection performance. It is observed that when the
detected R-peaks are wrong, the classification performance
decreases severely due to wrong segmentation and HRV
calculation. Secondly, even though the MIT-BIH dataset is
widely used in literature, most state-of-the-art-works and our
proposed methodology focus on identifying small numbers of
cardiac abnormalities (VEB, SVEB) that do not represent the
complexity and difficulty of ECG interpretation. Therefore,
we believe that there is abundant room for further progress
in beat classification in wearable devices. For example, this
paper showed that the HRV is a helpful feature to classify
beats as normal or abnormal. In future investigations, it might
be helpful to use different machine learning structures such as
neural graph learning to integrate heart rate variability features
into an end-to-end model. Since our proposed methodology is
a distributed neural architecture between nodes of the network,
a further study with more focus on federated learning can be



employed to increase performance while preserving privacy
[38]. Also, the performance of the transmission decision unit
(Normal/Abnormal beat classification) can be further studied
using a more comprehensive ECG dataset with different ar-
rhythmias and abnormalities.

VII. CONCLUSION

This paper proposes a methodology for real-time continuous
heart monitoring using distributed multi-output CNN. The
neural network layers are distributed between edge-fog/cloud
so as to save energy and time while reducing the communi-
cation channel usage and server load. Moreover, the proposed
methodology requires 40× less memory compared to state-
of-the-art works while maintaining high accuracy. To the
best of our knowledge, our methodology achieves the best
performance on heartbeat classification while being 7× more
energy efficient for devices with a minimum of 32 KB of
RAM.
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