
Research Article

Energy-Efficient Reliability-Aware Scheduling Algorithm on
Heterogeneous Systems

Xiaoyong Tang1,2 and Weizhen Tan3

1School of Information Science and Engineering, National Supercomputing Center in Changsha, Hunan University,
Changsha 410082, China
2Information Science and Technology College/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China,
Hunan Agricultural University, Changsha 410128, China
3Archive, Hunan University of Humanities, Science and Technology, Loudi 417000, China

Correspondence should be addressed to Weizhen Tan; twb1022@163.com

Received 22 December 2015; Accepted 24 February 2016

Academic Editor: Florin Pop

Copyright © 2016 X. Tang and W. Tan.	is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

	e amount of energy needed to operate high-performance computing systems increases regularly since some years at a high pace,
and the energy consumption has attracted a great deal of attention. Moreover, high energy consumption inevitably contains failures
and reduces system reliability. However, there has been considerably less work of simultaneousmanagement of systemperformance,
reliability, and energy consumption on heterogeneous systems. In this paper, we
rst build the precedence-constrained parallel
applications and energy consumption model. 	en, we deduce the relation between reliability and processor frequencies and
get their parameters approximation value by least squares curve
tting method. 	irdly, we establish a task execution reliability
model and formulate this reliability and energy aware scheduling problem as a linear programming. Lastly, we propose a
heuristic Reliability-Energy Aware Scheduling (REAS) algorithm to solve this problem, which can get good tradeo� among system
performance, reliability, and energy consumption with lower complexity. Our extensive simulation performance evaluation study
clearly demonstrates the tradeo� performance of our proposed heuristic algorithm.

1. Introduction

For a long time, energy consumption has simply been
ignored in the performance evaluation in large-scale parallel
computing systems. However, Intelligence (DCDi) Industry
Census reported that the amount of electricity consumed
by global data centers ran up to 40GW in 2013, and it was
also with a 7% increase [1]. According to the latest world’s
Top 500 supercomputers Ranking, the power consumption
of
rst supercomputer “Tianhe-2” is 17.808MW and average
power consumption for Top 10 systems in Ranking list is
6.2939MW, respectively [2]. 	us, it is obvious that high
energy cost is a key feature of designing and applying
heterogeneous systems.

On the other hand, computing systems are a group
of heterogeneous processors connected via a high-speed
network that supports the execution of parallel applications.

For example, the Top supercomputer “Tianhe-2” in Top 500
lists consists of Intel Xeon� E5-2692 12C 2.200GHz and Intel
Xeon Phi 31S1P (MIC) [2]. For each processor, the number
of transistors integrated into today’s Intel Xeon EX processor
reaches to nearly 2.3 billion and its power consumption
over 130W [3]. 	is implies the possibility of worsening
single processor reliability, eventually resulting in poorness
of the whole heterogeneous system reliability. Furthermore,
the modern large-scale computing systems usually have a lot
of processors, such as “Tianhe-2” with 3,120,000 cores and
“Titan” with 560,640 cores [2]. One of the main problems
existing in this situation is system reliability, which drasti-
cally decreases as the number of processor cores increases
[4]. Even when the single processor’s one-hour reliability
becomes very high, such as 0.999999, as the system size
approaches 10,000 cores, the system’s MTTF (the Mean Time
to Failure) drops to less than 10 hours [4]. 	is also allows

Hindawi Publishing Corporation
Scientific Programming
Volume 2016, Article ID 9823213, 13 pages
http://dx.doi.org/10.1155/2016/9823213

2 Scienti
c Programming

us to focus primarily on the main problem of this paper,
which is the simultaneousmanagement of systemperformance,
reliability, and energy consumption.

In recognition of this, we
rst build a reliability
and energy aware task scheduling architecture including
precedence-constrained parallel applications and energy
consumption model on heterogeneous systems. 	en, we
propose the single processor failure rate model based on
DVFS technique and deduce the application reliability of
systems. Finally, to provide an optimum solution for this
problem, we propose a heuristic Reliability-Energy Aware
Scheduling (REAS) algorithm, which adopts a novel schedul-
ing objective RE. 	e overall objective of this paper is trying
to get good tradeo� among performance, reliability, and
energy consumption.

	e rest of the paper is organized as follows: the related
work is summarized in Section 2. We describe the task
scheduling system model in Section 3. In Section 4, we
provide a system reliability model. To solve this problem,
a heuristic reliability and energy aware task scheduling
algorithm is proposed in Section 5. In Section 6, we verify
the performance of the proposed algorithm by comparing
the results obtained from performance evaluation. Finally,
we summarize the contributions and make some remarks on
further research in Section 7.

2. Related Work

	e high-performance parallel application running on com-
puting systems is usually composed of intercommunicated
tasks, which are scheduled to run over di�erent processors in
the systems. In most cases, the main objective of scheduling
strategies is to map the multiple interacting program tasks
onto processors and order their executions so that task
precedence requirements are satis
ed and, in the meanwhile,
the minimum schedule length (makespan) can be achieved.
	e problem of
nding the optimal schedule is NP-complete
in general [5–9]. 	ere are many scheduling algorithms
that have been proposed to deal with this problem, for
example, dynamic-level scheduling (DLS) algorithm [6] and
heterogeneous earliest-
nish-time (HEFT) algorithm [5, 8,
10, 11].

As the energy consumption has become important issue
in designing large-scale computing systems in the last few
years,many techniques including dynamic voltage-frequency
scaling (DVFS), dynamic powering on/o�, slack reclamation,
resource hibernation, and memory optimizations have been
investigated and developed to reduce energy consumption
[12–14]. DVFS, which is a technique in which a processor
runs at a less-than-maximum frequency when it is not fully
utilized in order to conserve power, is perhaps the most
appealing method for reducing energy consumption [14,
15]. Most of the early DVFS-enabled researches focused on
the single processor of embedded and real-time computing
systems [14, 16, 17]. Recently, there has been a signi
cant
amount of work on task scheduling for heterogeneous sys-
tems usingDVFS-enabled techniques. For instance, Rountree
et al. focused on energy optimization of MPI program in
HPC environment and proposed a linear programming (LP),

which incorporates allowable time delays, communication
slack, and memory pressure into its scheduling using DVFS
(i.e., slack reclamation) [18]. Rizvandi et al. proposed a
method to
nd the best frequencies of processor to obtain the
optimal energy consumption [19]. Lee andZomaya addressed
the problem of scheduling precedence-constrained parallel
applications on multiprocessor computer systems and their
scheduling decisions are made using the relative superiority
metric (RS) devised as a novel objective function [20]. In [21],
Zong et al. proposed two energy-e�cient scheduling algo-
rithms (EAD and PEBD) for parallel tasks on homogeneous
clusters based on duplication strategy.

All of this work demonstrated that dynamic adjusting
the processor’s voltage and frequency can e�ectively reduce
system energy consumption.However, recent researches have
illustrated that scaling the processor’s voltage and frequency
has negative impact of nanoscale semiconductor circuits’s
cosmic ray radiations, electromagnetic interference, and
alpha particles, which enforce the unreliability of processor
[22–24]. 	us, it is a good way to incorporate the reliability
into energy aware scheduling based on DVFS. Recently,
Zhu etc. focused on reducing energy consumption while
preserving the system reliability for periodic real-time tasks
[25, 26].	ey proposed a reliabilitymodel that the processor’s
reliability decreases as scaling their voltage and frequency
from max to min and incorporated the reliability require-
ments into heuristic energy aware task scheduling strategies.
However, their techniques are not suitable for precedence-
constrained parallel applications on heterogeneous systems
based on DVFS-enabled processors.

Many researches had dealt with the reliability on hetero-
geneous systems. For example, Dogan and Özgüner intro-
duced three reliability cost functions that were incorporated
into making dynamic level (DL) and proposed a reliable
dynamic level scheduling algorithm (RDLS) [27]; the goal
was to minimize not only the execution time but also the fail-
ure probability of the application. In our previous work [8],
we propose a scheduling algorithmwhich considers the task’s
execution reliability. Qin and Jiang investigated a dynamic
and reliability-cost-driven (DRCD) scheduling algorithms
for precedence-constrained tasks in heterogeneous clusters
[28]. Unfortunately, those works did not consider the energy
consumption and the reliability of scaling the processor’s
voltage and frequency. In recognition of this, we focus on
the reliability and energy consumption on DVFS-enabled
heterogeneous systems.

3. System Models

3.1. Scheduling Architecture. Various task scheduling archi-
tectures are proposed in literature [5, 8, 9, 14, 28, 29].
However, the energy consumption and system reliability
are not e�ectively incorporated into scheduling. In this
paper, we propose a reliability and energy aware task
scheduling architecture, as depicted in Figure 1(a). It is
assumed that all parallel applications, along with infor-
mation provided by user, are submitted to system by a
special user command. First, the parallel applications are
divided as a task DAG by Task DAG Model. 	en, the

Scienti
c Programming 3

User nUser 3

Task DAG
model

Scheduler

Reliability
analysis

Energy
consumption

estimator

Clusters

Parallel
applications

pmp3p2p1

· · ·

· · ·

· · ·

User 2User 1

(a)

�2

�1

�3

�5 �6

�4

�7

�8

(b)

Figure 1: (a) 	e reliability and energy aware task scheduling architecture. (b) A parallel application task graph.

Table 1: 	e parameters of heterogeneous processors.

�� ��[�] �[�] (��,�, ��,�)1 2 3�1 1.4 × 10−4 73.6 3.663 × 10−8 (0.8 × 109, 0.93) (2.1 × 109, 1.23) (3.2 × 109, 1.43)�2 1.62 × 10−4 57.1 4.95 × 10−8 (2.3 × 109, 0.85) (3.0 × 109, 1.36)

estimate energy consumption of tasks, which are executed
on the DVFS-enabled heterogonous processors, is com-
puted by the Eneregy Consumption Estimator. At the same
time, reliability analysis computes the processors’ reliability
according to di�erent frequency to get the whole system
reliability. Finally, the Scheduler schedules tasks based on the
above task energy consumption and system reliability.

3.2. Heterogeneous Systems. 	e target system used in this
work consists of a set of � = {�1, �2, . . . , ��} heterogeneous
processors/machines [5, 8, 9, 14, 29], which are connected by
high-speed interconnects, such as In
niband and Myrinet.
Each DVFS-enabled processor �� ∈ � can adjust its
operational voltage and frequency [14].	erefore, they can be
executed on discrete set of frequency-voltage pairs, (��,�, ��,�),
in which (��,1 < ��,2 < ⋅ ⋅ ⋅ < ��,��) and (��,1, ��,2 < ⋅ ⋅ ⋅ <��,��), where�� is processor��’s operation level [14, 30]. For
example, the quad-core AMDPhenom II supports 4 di�erent
frequencies (0.8GHz, 2.1 GHz, 2.5 GHz, and 3.2GHz) and
voltages ranging from 0.85V to 1.425V [30]. Since clock
frequency transition overheads take a negligible amount of
time (e.g., 10 us–150 us), these overheads are not considered
in our study.

	e heterogeneous processor’s failure is assumed to fol-
low a Poisson process and each processor has a constant
failure rate � [8, 9, 29]. For example, �� denotes a processor�� failure rate when it works at normal voltage and frequency
[8, 9, 27, 29]. 	ese failure rates can be derived from system’s
pro
ling, system log, and statistical prediction techniques

[31]. For demonstration purposes, we illustrate two hetero-
geneous processors, one has 3 frequency levels and the other
has 2 frequency levels, and the parameters are listed in Table 1.

3.3. ApplicationsModel. 	eprecedence-constrained tasks of
parallel application are usually denoted as a Directed Acyclic
Graph (DAG) � = ⟨�, �, [��,�, ��,�,�]⟩ [5, 8–10, 29], where� = {V1, V2, . . . , V	} is the set with � tasks that can be
scheduled to any available DVFS-enabled processors [5, 8–
10, 29]; � represents the precedence relation that de
nes a
partial order on the task set�, such that V��V� implies that the
task V� must be
nished, before V� can start execution [5, 8–
10, 29]. [��,�] is � × � communication matrix that denotes
the communication time between tasks V� and V� for 1 ≤�, � ≤ �. [��,�,�] is � × � × �max computation matrix in
which each ��,�,� gives the estimated time to execute task V�
on processor �� at frequency ��,�. Here, �max is the maximal
operation level on systems. 	e communication cost and
computation cost can be evaluated by building a historic table
and using code pro
ling or statistical prediction techniques
[31]. Figure 1(b) shows a parallel application DAG, Table 2
lists the tasks execution time on two heterogeneous DVFS-
enabled processors listed in Table 1, and the communication
time among these tasks is listed in Table 3.

Generally, the common objective of task scheduling is
to map tasks with precedence constrained onto processors
and get a minimum schedule length (which is also called
makespan) [10, 11]. Before presenting the schedule length, it
is necessary to de
ne the scheduling attributes EST and EFT

4 Scienti
c Programming

Table 2: Task estimated execution matrix [��,�,�].
Task

�1 �2�1,1 �1,2 �1,3 �2,1 �2,2
V1 11.12 2.28 2.87 3.89 3

V2 36.29 13.82 9.12 12.7 9.78

V3 15.46 5.91 3.92 5.45 4.21

V4 5.33 2.01 1.4 1.94 1.49

V5 66.77 25.44 16.77 23.28 17.83

V6 13.82 5.3 3.53 4.84 3.75

V7 7.43 2.86 1.89 2.68 2.04

V8 8.48 3.19 2.09 2.91 2.31

Table 3: Estimated communication matrix [��,�].
Task V2 V3 V4 V5 V6 V7 V8
V1 6.99 15.48 6.69

V2 10.86

V3 1.25 12.56

V4 6.93 0.3

V5 0.11

V6 6.535

V7 6.2

of task V�. EST(V�, ��,�) denotes the earliest execution starting
time of task V� ∈ � on DVFS-enabled processor �� ∈ �
at frequency ��,�, which is constrained by tasks precedence
relation and the available time of processor �� [5, 8–10, 29].
EFT(V�, ��,�) is the earliest execution
nish time of task V� on
processor �� at frequency ��,�, which is described as

EFT (V�, ��,�) = EST (V�, ��,�) + ��,�,�. (1)

In this paper, let ���,� = 1 denote the task V� scheduled on

processor �� at frequency ��,�; otherwise ���,� = 0. 	us, the
schedule length is de
ned as follows:

makespan = 1≤�≤��
Max

1≤�≤	, 1≤�≤�
{���,�EFT (V�, ��,�)} . (2)

3.4. Energy Model. 	e major energy consumption of com-
puting systems depends on its memory, disks, CPUs, and
other components. 	is paper only considers DVFS-enabled
CPUs, which consume the largest proportion of energy on
systems [14, 19, 20, 32]. 	e power consumption of DVFS-
enabled microprocessor based on complementary metal-
oxide semiconductor (CMOS) logic circuits mainly consists
of static power and dynamic power dissipation, which can be
modeled as [25, 26]

� = �� + 0��, (3)

where �� is the static power, which is a constant and the
power used to maintain basic circuits and keep the clock
running, and frequency-independent active power. 0 denotes
the processor’s model, if processor is at execution model,0 = 1; otherwise, 0 = 0. �� is the most signi
cant factor

of processor power consumption and can be estimated as
[14, 16, 19, 20, 32]

�� = ��2�, (4)

where � represents the switched capacitance, � is the supply
voltage, � represents processor’s working frequency, and �
stands for circuit dependent constant. 	e example of such
processor parameters is listed in Table 1.

Let EN(V�, ��,�) be the energy consumption caused by
task V� running on DVFS-enabled processor �� at frequency��,�, of which it is determined by task execution time and
processor power consumption:

EN (V�, ��,�) = ��,�,� × ��
= ��,�,� × ��� + ��,�,� × �� (��,�) , (5)

where ��(��,�) denotes dynamic power dissipation of proces-
sor �� at frequency ��,� (see (4)). 	us, for an application �,
the energy consumption EN(�) is the summation of all tasks
of energy consumption:

EN (�) = 1≤�≤��∑
1≤�≤	, 1≤�≤�

{���,�EN (V�, ��,�)}

= 1≤�≤��∑
1≤�≤	, 1≤�≤�

{���,���,�,� × ��� + ���,���,�,� × �� (��,�)} .
(6)

At the same time, for heterogeneous systems, all proces-
sors are power-on; they are sleep or execution model. 	at
is to say, all processors of systems consume � ! �" �o�#$ all
the time. 	us, the computing systems energy consumption
EN(�) is the summation of all processors static power and
dynamic power dissipation of application energy consump-
tion:

EN (�) = makespan × ∑
�=1,2,...,�

���
+ 1≤�≤��∑
1≤�≤	, 1≤�≤�

{���,���,�,� × �� (��,�)} .
(7)

Obviously, systems energy consumption EN(�) is greater
than application energy consumption EN(�). In this paper,
one of our main objectives is to minimize systems energy
consumption EN(�).
4. System Reliability Analysis and

Problem Statement

In this section, we
rst provide the single DVFS-enabled
processor failure rate model.	en, we analyze heterogeneous
systems reliability. At last, we formulate the reliability and
energy aware task scheduling as a linear programming
problem.

Scienti
c Programming 5

4.1. Single DVFS-Enabled Processor Failure Rate. Among
various sources of unreliability in a semiconductor circuit
processor, it is predicted that the failure rate due to cosmic ray
radiation-induced so� errors dominates all other reliability
issues [24]. Transient fault occurs when a high energy particle
such as alpha or neutron strikes a sensitive region in a
semiconductor device and �ips the logical state of the struck
node [33]. Most of the modern DVFS-enabled processor
is the integration of multibillion transistors on a single
chip leading to increasing number of sensitive devices in
submicron technologies which is vulnerable to so� error
and consequently raises the So	 Error Rate (SER) [34].
	ese phenomena become more and more serious with the
continued scaling of processor’s voltage and frequency [23,
25].

Traditionally, the modern DVFS-enabled processor’s reli-
ability has beenmodeled as the followingPoisson distribution
with a failure rate � when it works at normal voltage and
frequency [8, 9, 27, 29, 35]. Moreover, it has been shown
that DVFS has a direct and negative e�ect on failure rates
as blindly applying DVFS to scale the supply voltage and
processing frequency for energy savings, which may cause
signi
cant degradation in processor’s reliability [23, 25, 26].
	erefore, for the DVFS-enabled heterogonous processor�� ∈ � to be considered in this paper, the failure rate at a
reduced frequency ��,� (and the corresponding voltage ��,�)
can be modeled as

�� (��,�) = �� ⋅ %� (��,�) , (8)

where �� is the failure rate corresponding to the normal
processing frequency �nm (and corresponding to normal
voltage �nm). Prior researches which studied the e�ect of
normal voltage on processor’s reliability have revealed that
the failure rates generally increase with scaled processing
frequencies (and supply voltages) away from normal voltage
[24, 36]. On the other hand, the fault rates are exponentially
related to the circuit’s critical charge (which is the threshold
voltage). 	us, we have the following equations:

%� (��,�)
= {{{

#��
��10��((��,�−�nm)/(�max−�min)) �nm ≤ ��,� ≤ �max

#��
��10��((�nm−��,�)/(�max−�min)) �min ≤ ��,� ≤ �nm,
(9)

where the exponent -� is the parameter of threshold voltage
and /� is a constant, representing the sensitivity of fault rates
to frequency scaling, and �min and�max denote theminimum
and maximum frequency, respectively.

In order to get the precision value of parameters -� and/�, we use least squares curve
tting method [37]. 	erefore,
the natural logarithm of both sides for (9) is

ln (%� (��,�))

=
{{{{{{{{{{{

-�� � + /� ln 10 ��,� − �nm�max − �min

�nm ≤ ��,� ≤ �max

-�� � + /� ln 10 �nm − ��,��max − �min

�min ≤ ��,� ≤ �nm.
(10)

Let 9 = ln(%�(��,�)), : = -�� �, ; = /� ln 10(1/(�max −�min)), and ? = /� ln 10(�nm/(�max − �min)). 	en, (10)
becomes

9 = {{{
: + ;��,� − ? �nm ≤ ��,� ≤ �max

: − ;��,� + ? �min ≤ ��,� ≤ �nm. (11)

	us, we can get the parameters -� and /� approximation
value by using least squares linear
tting method.

4.2. Application Reliability Analysis. Assume that the task
V processing time has taken place during the time interval[:, ;] on heterogeneous DVFS-enabled processor �� at
frequency ��,�, where : denotes the task start execution time
and ; denotes the task
nish time [5, 8, 9, 29]. 	us, the task
execution reliability can be given by

� [V] = � {� (;) − � (:) = 0}
= � {� (; − : + :) − � (:) = 0}
= exp {−�� (��,�) (; − :)} .

(12)

For a task V� of application� on processor �� at frequency��,�, its reliability �[V�, ��,�] is equal to all of its immediate
parent tasks and its execution reliability, which can be de
ned
by

� [V�, ��,�] = ∏
V�∈pred(V�)

� [V�]
× exp (−�� (��,�) × ��,�,�) ,

(13)

where pred(V�) denotes all direct predecessors of V� and �[V�]
is the reliability of task V� that is equal to the reliability of task
V� executing on processor �� at frequency ��,�

� [V�] = 1≤�≤��∑
1≤�≤�

{��1,�� [V�, ��,�]} . (14)

For the entry task V1 of application, which is executed on
processor �� at frequency ��,� and pred(V1) = G, its reliability

� [V1, ��,�] = exp(−1≤�≤��∑
1≤�≤�

{��1,��� (��,�) × �1,�,�}) . (15)

Generally, application � has one exit task Vexit. 	e
reliability of application �[�] is equal to the exit task Vexit:

� [�] = � [Vexit] = ∏
V�∈pred(Vexit)

� [V�] × � [Vexit, ��,�] .
(16)

	is is the other objective of this paper, in which we try
to improve the application reliability �[�]. From the above
analysis, we know that allocating tasks with less execution
times to more reliable processors might be a good heuristic
to increase the reliability.

6 Scienti
c Programming

Input: 	e task DAG of parallel applications
Output: 	e scheduling of task-processor pairs
(1) Calculate each task J level of DAG
(2) Sort tasks in a scheduling list by non-increasing order of J level
(3) while the scheduling list isnot empty do

(4) Remove the
rst task V� from the scheduling list
(5) Set minK(V�), minL(V�) as maximum value
(6) for each processor-frequency ��,� in systems do
(7) Compute the earliest
nish time EFT(V�, ��,�) use (22)
(8) if minK(V�) > EFT(V�, ��,�) then
(9) minK(V�) = EFT(V�, ��,�)
(10) end

(11) Compute task energy consumption EN(V�, ��,�) use (5)
(12) if minL(V�) > EN(V�, ��,�) then
(13) minL(V�) = EN(V�, ��,�)
(14) end

(15) end

(16) Set min RE(V�) as maximum value
(17) for each processor-frequency ��,� in systems do
(18) Compute the earliest
nish time EFT(V�, ��,�) use (22)
(19) Compute task energy consumption EN(V�, ��,�) use (5)
(20) Compute metric RE(V�, ��,�) use (24)
(21) if minRE(V�) > RE(V�, ��,�) then
(22) min RE(V�) = RE(V�, ��,�)
(23) end

(24) end

(25) Assign task V� to the corresponding processor-frequency
(26) Update the processor execution
nish time
(27) end
(28) “Slack reclamation
(29) for each task in scheduling task-processor pairs do
(30) Compute task slack time Slack(V�) use (25)
(31) for each frequency of processor � do

(32) Compute the optimal frequency ��,� use (26)
(33) end

(34) Reassign task V� and update corresponding data
(35) end
(36) Compute the schedule length, application reliability �[�], systems energy consumption EN(�)

Algorithm 1: 	e pseudocode for REAS algorithm.

4.3. Problem Statement. As simultaneous management of
scheduling performance, system reliability, and energy con-
sumption is the main problem of this paper, we formulate it
as follows:

Minimize makespan

Minimize EN (�)
Maximize � [�]

s.t. ���,� = 1 Or ���,� = 0
1≤�≤��∑
1≤�≤�

���,� = 1 ∀V� ∈ �
V��V� ∀V�, V� ∈ �.

(17)

5. Proposed Reliability-Energy Aware
Scheduling Algorithm

	is section presents a Reliability-Energy Aware Scheduling
algorithm on heterogeneous systems called REAS, which
aims at achieving lower energy consumption, high reliability,
and shorter schedule length. Its scheduling decisions are
made using the hybridmetric including energy consumption,
reliability, and schedule length, devised as a novel objective
function. 	e pseudocode of the algorithm is shown in
Algorithm 1. 	e algorithm is complete in three main phases
as described in the following sections.

5.1. Task Priorities Phase. 	is step is essential for list
scheduling algorithms. A task processing list is generated by
sorting the task by decreasing order of some prede
ned rank

Scienti
c Programming 7

Table 4: 	e J level value of task.

Task V1 V2 V3 V4 V5 V6 V7 V8J level 73.4 61.4 42.4 26 34.15 16.6 13.7 3.8

Seq 1 2 3 5 4 6 7 8

function, such as level, J level, Rank, CP, and DL [5, 6, 8–
10, 29]. Here, we use the average computation capacity, which
is de
ned as

� (V�) = ∑1≤�≤��1≤�≤� ��,�,�∑1≤�≤��� . (18)

In this research, we use J level as the rank function. 	eJ level of task V� is the sum of the path weight from task V�
to exit task. We can compute this value recursively traversing
DAG from exit task, and it is de
ned as follows:

J level (V�) = � (V�) + Max
V�∈succ(V�)

{��,� + J level (V�)}
+ RC (V�) ,

(19)

where succ(V�) is the set of immediate successors of task V�.
RC(V�) is the average reliability overhead of task V� and can be
computed by

RC (V�)
= (1 − exp

{{{−∑1≤�≤��1≤�≤� �� (��,�)∑1≤�≤��� × � (V�)}}})

× � (V�).
(20)

For the exit task Vexit, the J level is equal to

J level (Vexit) = � (Vexit) + RC (Vexit) . (21)

Basically, J level(V�) is the length of the critical path from
task V� to the exit task, including the average computation cost
and reliability overhead of task V�. For example, considering
the application DAG in Figure 1(b), heterogeneous systems
parameters in Table 1, task execution time matrix in Table 2,
and communication matrix in Table 3, the task J level value
which is recursively computed by (19) and (21) is shown in
Table 4.

5.2. Task Assignment Phase. In this phase, tasks are assigned
to the processors with earliest execution
nish time EFT(V�),

high reliability, and minimum task energy consumption
EN(V�). However, for heterogeneous systems, these perfor-
mance metrics are con�icted most of the time. Here, we
introduce a novel objective as RE, which can get good
tradeo� among these metrics.We
rst rede
ne task V� earliest
execution
nish time on processor �� at frequency ��,� as

EFT (V�, ��,�) = EST (V�, ��,�) + ��,�,� + RO (V�, ��,�) , (22)

where RO(V�, ��,�) is the reliability overhead of task V� on
processor �� at frequency ��,� and is computed by

RO (V�, ��,�) = (1 − � [V�, ��,�]) × ��,�,�. (23)

On the other hand, we let MinK(V�), MinL(V�) denote
the earliest execution
nish time and minimum task energy
consumption on all processors of heterogeneous systems.
	us, the novel metric RE of task V� on processor �� at
frequency ��,� is
RE (V�, ��,�) = Y × EFT (V�, ��,�) − MinK (V�)

EFT (V�, ��,�)
+ (1 − Y) × EN (V�, ��,�) − MinL (V�)

EN (V�, ��,�) ,
(24)

where Y is the weight of task earliest execution
nish time.
If the task execution time is more important than energy
consumption, we can give higher value to Y; otherwise, Y
value is lower. Moreover, the scheduling objective of this
problem is minimum in both schedule length and energy
consumption. 	us, in each task assignment step, we try
to get the minimum RE(Vi, ��,�) and assign task V� to the
corresponding processor frequency.

5.3. Slack Reclamation. Tasks of parallel application may
have some slack time for their execution due primarily
to communication events, for example, “multidimensional”
intertask communication (or intertask data dependencies),
and these processor slacks are an obvious source of energy
wastage. Slack reclamation was studied to reduce energy
consumption using the slack le� by some completed task
instances. 	e idea behind the slack reclamation for the
reducing of energy consumption is to exploit the slack time
to slow down the execution speeds of the remaining tasks
[12, 20]. In this paper, we adopt this technique to reduce
energy consumption a�er making the scheduling decision.
	e slack time of task V� is de
ned by

Slack (V�) = Min
V�∈succ(V�)

{{{
Sch (V�, �Z) − Sch (V�, �Z) if V�, V� on same processor

Sch (V�, �Z) − ��,� − Sch (V�, �Z) otherwise, (25)

8 Scienti
c Programming

50 tasks

100 tasks

0.2 0.4 0.6 0.8 10

Weight

0

500

1000

1500

2000

2500

M
ak

es
p

an
 (

s)

(a)

50 tasks

100 tasks

0.2 0.4 0.6 0.8 10

Weight

0

200000

400000

600000

800000

1000000

1200000

1400000

E
n

er
g

y
(J

)

(b)

50 tasks

100 tasks

0.2 0.4 0.6 0.8 10

Weight

0.7

0.75

0.8

0.85

0.9

0.95

1

R
el

ia
b

il
it

y

(c)

Figure 2: 	e experimental results of REAS algorithm with various weights Y. (a) Schedule length. (b) Energy consumption. (c) Application
reliability.

where Sch(V�, �Z) is the task V� earliest start time in scheduling
processor-frequency pairs and Sch(V�, �Z) is the earliest

nish time.

If task slack time Slack(V�) > 0, we can scale down the
execution frequency to save energy consumption. 	us, the
optimal frequency ��,� is satis
ed with

��,�,� + RO (V�, ��,�) < Sch (V�, �Z) + Slack (V�) ,
EN (V�, ��,�) < EN (V�, ��,orig) , (26)

where ��,orig is the original scheduling processor-frequency
pairs. At last step, we reassign task V� to the optimal frequency��,�.
6. Experimental Results and Discussion

In this section, we compare the performance, energy con-
sumption, and system reliability using our REAS algorithm
with three existing scheduling algorithms: DLS [6], RDLS
[27], and ECS [20]. 	e experiments are performed on the
synthetic randomly generated precedence-constrained paral-
lel application graphs as described below. 	e performance
metrics chosen for the comparison are the schedule length
(2) and (22), systems energy consumption EN(�) (7), and
application reliability �[�] (16).

To test the performance of these algorithms, we have
developed a discrete event simulation environment of het-
erogeneous systems with 8 DVFS-enabled processors using
C++. 	is simulator includes 2 Intel� Core� Duo, 2 Intel
Xeon, 2 AMD Athlon, 1 TI DSP, and 1 Tesla GPU, mostly
based on Intel processor. 	e systems are interconnected
by In
niband, which is a switched fabric communications
link primarily used in high-performance computing. For the
In
niband con
guration, the switch considered is Mellanox
In
niScaleTM III SDR and NIC is Mellanox ConnectXTM
IBDual Copper Card [21]. Other parameters of themodel are
set as follows.	e failure rates of processors are assumed to be
uniformly distributed between 1×10−4 and 1×10−5 failures/hr
[8, 9, 28]; the transmission rates of links are assumed to be1000Mbits/sec.

6.1. Randomly Generated Application Graphs. 	ese experi-
ments use three commonly DAG characteristics to generate
parallel application graphs [5, 8, 9, 29]:

(i) DAG Size (V). It is the number of tasks in the appli-
cation DAG.

(ii) Communication-Computation Ratio (CCR). It is
the ratio of communication time to computation
time. A small CCR value means the application is
computation-intensive; a large CCR value indicates

Scienti
c Programming 9

0.1 0.4 0.8 1 2 5 10

CCR

REAS

RDLS

ECS

DLS

0

100

200

300

400

500

600
M

ak
es

p
an

 (
s)

(a)

0.1 0.4 0.8 1 2 5 10

CCR

REAS

RDLS

ECS

DLS

0

50000

100000

150000

200000

250000

300000

350000

400000

E
n

er
g

y
(J

)

(b)

0.1 0.4 0.8 1 2 5 10

CCR

REAS

RDLS

ECS

DLS

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

R
el

ia
b

il
it

y

(c)

0.1 0.4 0.8 1 2 5 10

CCR

REAS

RDLS

ECS

DLS

0

200

400

600

800

1000

1200

1400

M
ak

es
p

an
 (

s)

(d)

100.1 0.4 0.8 1 2 5

CCR

REAS

RDLS

ECS

DLS

0

200000

400000

600000

800000

1000000

1200000

E
n

er
g

y
(J

)

(e)

0.1 0.4 0.8 1 2 5 10

CCR

REAS

RDLS

ECS

DLS

0.7

0.75

0.8

0.85

0.9

0.95

1

R
el

ia
b

il
it

y

(f)

Figure 3: 	e experimental results. (a) 50-task schedule length. (b) 50-task energy consumption. (c) 50-task application reliability. (d) 100-
task schedule length. (e) 100-task energy consumption. (f) 100-task application reliability.

that the application is communication-intensive
[5, 8–10, 29].

(iii) Out-Degree. It is out-degree of a task node.

In experiments setting, DAG are generated based on the
above parameters with the number of tasks 50 and 100. Task
weights are generated randomly from uniform distribution

[1 × 109, 9 × 1011] execution cycles to be around 4.5 × 1010;
thus the average task execution cycles are 4.5 × 1010. We also
generated edge weights with a uniform distribution based on
a mean CCR. Di�erent objective parallel applications can be
produced as giving various CCR values [5, 8–10, 29]. In these

experiments, we varied CCR in a reasonable range of 0.1 to10.
6.2. Various Weight Y of REAS Algorithm. In the
rst
experiments, we evaluate the performance of weight Y to
REAS algorithm. Figure 2 shows the simulation results of
scheduling 50 and 100 tasks with CCR = 1 by varying weightY from 0 to 1, in steps of 0.2. We observe from Figure 2
that the schedule length and energy consumption decrease
and the application reliability almost at the same level as the
REAS algorithm weight Y increases. It is reasonable that the
REAS algorithmwith high Y ismostly based on task execution
time andmakes its schedule length shorter and consumes less

10 Scienti
c Programming

0.1 0.4 0.8 1 2 5 10

CCR

REAS

RDLS

ECS

DLS

0

400

800

1200

1600

2000
M

ak
es

p
an

 (
s)

(a)

REAS

RDLS

ECS

DLS

0.1 0.4 0.8 1 2 5 10

CCR

0

200000

400000

600000

800000

1000000

1200000

E
n

er
g

y
(J

)

(b)

REAS

RDLS

ECS

DLS

0.1 0.4 0.8 1 2 5 10

CCR

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
el

ia
b

il
it

y

(c)

Figure 4: 	e experimental results of 100 tasks for 4 Intel Xeon and 4 AMD Athlon. (a) Schedule length. (b) Energy consumption. (c)
Application reliability.

energy. However, as the weight Y over 0.4, the performance
of REAS is not much distinguishable. 	us, in the below
experiments, we let Y = 0.5.
6.3. Random Task Performance Results. For the set of ran-
domly generated parallel applications, the results are shown
in Figures 3 and 4, where each data point is the average of the
data obtained in 1,000 experiments. In this set of experiments,
we assume the weight Y = 0.5 ofmetric RE (see (24)) in REAS
algorithm. In other word, the REAS algorithm has the same
weight on task execution time and energy consumption. In
the next section, we will examine the performance by various
weights Y.

We observe from Figure 3(a) that REAS is over RDLS
and ECS with respect to schedule length, and the schedule
length increases as the CCR increases. 	e average schedule
length of the REAS algorithm is shorter than that of the RDLS
and ECS by 2.6% and 1.9%, respectively. 	is improvement
becomes more obvious as CCR increases, for CCR = 5 and
REAS over RDLS and ECS by 7.5% and 2.6%, respectively.
However, the REAS is inferior to DLS in terms of schedule
length. Figure 3(b) reveals that REAS saves more average
energy consumption than RDLS by 15.3%, ECS by 3.7%,
and DLS by 16%, respectively. Figure 3(c) shows that REAS
outperforms RDLS, ECS, and DLS by 0.3%, 2%, and 0.7% in
terms of the average application reliability.

	is is mainly due to the fact that REAS algorithm
schedules tasks according to the novel objective RE, which
can get e�ective tradeo� among task execution time, energy
consumption, and task execution reliability. However, DLS
algorithm only focuses on optimizing the task execution time
and its actual execution time including the task scheduling
time and reliability overhead. 	us, the scheduling solution
generated by DLS can get optimal schedule length. However,
it consumes more energy and has lower reliability. RDLS
algorithm schedules tasks considering their execution relia-
bility and ignoring task energy consumption. ECS algorithm
is a solution for optimizing both schedule length and energy
consumption, but this solution needs more task execution
reliability overhead. 	us, REAS algorithm outperforms
RDLS, ECS, and DLS in terms of the schedule length, energy
consumption, and reliability. Other interesting experimental
phenomena are that RDLS and DLS are better than ECS in
terms of reliability. 	is is mainly due to the fact that tasks of
solutions RDLS and DLS are always executing on the normal
frequency of processor, which has the high reliability in all
processor frequency.

	e improvements of scheduling performance also could
be concluded from Figures 3(d), 3(e), and 3(f) for 100 tasks.
	ese results also show REAS over RDLS and ECS by 4.9%
and 3.5% in terms of the average schedule length. And, REAS
is also over RDLS, ECS, and DLS by 8.93%, 4.53%, and 8.24%
in terms of the average energy consumption and by 1.86%,

Scienti
c Programming 11

0.1 0.5 1 2 4

CCR

REAS

RDLS

ECS

DLS

0

40

80

120

160
M

ak
es

p
an

 (
s)

(a)

REAS

RDLS

ECS

DLS

0

20000

40000

60000

80000

100000

E
n

er
gy

 (
J)

0.1 0.5 1 2 4

CCR

(b)

0.1 0.5 1 2 4

CCR

REAS

RDLS

ECS

DLS

0.7

0.75

0.8

0.85

0.9

0.95

1

R
el

ia
b

il
it

y

(c)

Figure 5: 	e experimental results of real-world DSP problem. (a) Schedule length. (b) Energy consumption. (c) Application reliability.

6.28%, and 2.1% in terms of the average application reliability,
respectively.

We also simulate heterogeneous systems with 4 Intel
Xeon and 4 AMD Athlon; the other con
gurations are the
same as before. Figure 4 shows the results of 100 randomly
generated tasks on this heterogeneous computing platform.
	e results show REAS over RDLS, ECS, and DLS in terms
of average schedule length and energy consumption. How-
ever, REAS is inferior to RDLS in terms of the application
reliability.

6.4. Application Graphs of Real-World Problem. Using real
applications to test the performance of algorithms is very
common [5, 8–10, 29]. In this section, we also simulate a
real-world digital signal processing (DSP) problem, and the
detail can be seen in [5, 8–10, 29]. From Figure 5, we can
conclude that REAS is also better than RDLS, ECS, and
DLS.

7. Conclusions and Future Work

In the past few years, with the rapid development of heteroge-
neous systems, the high price of energy, system performance,
reliability, and various environmental issues have forced the
high-performance computing sector to reconsider some of its
old practices with an aim to create more sustainable system.
In this paper, we attempt the simultaneous management
of system performance, reliability, and energy consump-
tion. To achieve this goal, we
rst built a reliability and
energy aware task scheduling architecture, which mainly
includes heterogeneous systems, parallel application DAG
model, and energy consumption model. 	en, we proposed
a relationship between execution reliability and processor’s
voltage/frequency anddeduced its parameters approximation
value by least squares curve
tting method. 	irdly, we
established parallel application execution reliability model
and formulated this reliability and energy aware scheduling
problem as a linear programming. Finally, to provide an

12 Scienti
c Programming

optimum solution for this problem, we proposed a heuris-
tic Reliability-Energy Aware Scheduling (REAS) algorithm
based on a novel scheduling objective RE, which is synthetic
considering the task execution time, energy consumption,
and reliability.

	e performance of REAS algorithm is evaluated with an
extensive set of simulations and compared to three of the best
existing scheduling algorithms for heterogeneous systems:
the RDLS, ECS, and DLS algorithms. 	e comparison is also
performed on the synthetic randomly generated precedence-
constrained parallel application DAG. 	e simulation exper-
iment results clearly con
rm the superior performance of
REAS algorithm over the other three, particularly in energy
saving.

	is work is one of the
rst attempts to consider the
simultaneousmanagement of systemperformance, reliability,
and energy consumption on high-performance computing
systems. Future studies in this domain are twofold. Firstly, it
will be interesting to extend our model to multidimensional
computing resources, such as interconnections, memory
access, and I/O activities. Secondly, in this paper, the failures
occurring on resources of systems are assumed to follow
Poisson process. Other reliability models can also be used in
further studies.

Competing Interests

	e authors declare that they have no competing interests.

Acknowledgments

	is research was partially funded by the National Sci-
ence Foundation of China (Grant no. 61370098), Hunan
Provincial Natural Science Foundation of China (Grant no.
2015JJ2078), National High-Tech R&D Program of China
(2015AA015303), Key Technology Research and Develop-
ment Programs of Guangdong Province (2015B010108006),
and a project supported by the Science Foundation for
Postdoctorate Research from the Ministry of Science and
Technology of China (Grant no. 2014M552134).

References

[1] http://www.datacenterdynamics.com/focus/archive/2014/01/
dcd-industry-census-2013-data-center-power.

[2] http://www.top500.org/lists/2015/11/.

[3] S. Rusu, S. Tam, H. Muljono et al., “A 45 nm 8-core enterprise
xeonr processor,” IEEE Journal of Solid-State Circurits, vol. 45,
no. 1, pp. 7–14, 2010.

[4] L. Charng-Da, Scalable diskless checkpointing for large par-
allel systems [Ph.D. thesis], University of Illinois at Urbana-
Champaign, 2005.

[5] X. Tang, K. Li, Z. Zeng, and B. Veeravalli, “A novel security-
driven scheduling algorithm for precedence-constrained tasks
in heterogeneous distributed systems,” IEEE Transactions on
Computers, vol. 60, no. 7, pp. 1017–1029, 2011.

[6] F. Dong and G. Selim, “Scheduling algorithms for grid comput-
ing: state of the art and open problems,” Tech. Rep. 2006-504,
2006.

[7] Y. Xu, K. Li, J. Hu, andK. Li, “A genetic algorithm for task sched-
uling on heterogeneous computing systems using multiple
priority queues,” Information Sciences, vol. 270, pp. 255–287,
2014.

[8] X. Tang, K. Li, R. Li, and B. Veeravalli, “Reliability-aware sched-
uling strategy for heterogeneous distributed computing sys-
tems,” Journal of Parallel and Distributed Computing, vol. 70, no.
9, pp. 941–952, 2010.

[9] X. Tang, K. Li, and G. Liao, “An e�ective reliability-driven
technique of allocating tasks on heterogeneous cluster systems,”
Cluster Computing, vol. 17, no. 4, pp. 1413–1425, 2014.

[10] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-e�ective
and low-complexity task scheduling for heterogeneous comput-
ing,” IEEE Transactions on Parallel and Distributed Systems, vol.
13, no. 3, pp. 260–274, 2002.

[11] Y. Xu, K. Li, L.He, andT. K. Truong, “ADAG scheduling scheme
on heterogeneous computing systems using double molecular
structure-based chemical reaction optimization,” Journal of
Parallel andDistributed Computing, vol. 73, no. 9, pp. 1306–1322,
2013.

[12] Y. Wang, K. Li, H. Chen, L. He, and K. Li, “Energy-aware
data allocation and task scheduling on heterogeneous multi-
processor systems with time constraints,” IEEE Transactions on
Emerging Topics in Computing, vol. 2, no. 2, pp. 134–148, 2014.

[13] V. Venkatachalam and M. Franz, “Power reduction techniques
for microprocessor systems,” ACM Computing Surveys, vol. 37,
no. 3, pp. 195–237, 2005.

[14] K. Li, X. Tang, and Q. Yin, “Energy-aware scheduling algo-
rithm for task execution cycles with normal distribution on
heterogeneous computing systems,” in Proceedings of the 41st
International Conference on Parallel Processing (ICPP ’12), pp.
40–47, Pittsburgh, Pa, USA, September 2012.

[15] Z. Du, H. Sun, Y. He, Y. He, D. A. Bader, and H. Zhang,
“Energy-e�cient scheduling for best-e�ort interactive services
to achieve high response quality,” inProceedings of the 27th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS ’13), pp. 637–648, Boston, Mass, USA, May 2013.

[16] J.-J. Han, M. Lin, D. Zhu, and L. T. Yang, “Contention-aware
energymanagement scheme forNoC-basedmulticore real-time
systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 3, pp. 691–701, 2015.

[17] J. Mei, K. Li, and K. Li, “Energy-aware task scheduling in
heterogeneous computing environments,” Cluster Computing,
vol. 17, no. 2, pp. 537–550, 2014.

[18] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R. de
Supinski, and M. Schulz, “Bounding energy consumption in
large-scale MPI programs,” in Proceedings of the ACM/IEEE
Conference on Supercomputing (SC ’07), pp. 1–9, Reno, Nev,
USA, November 2007.

[19] N. B. Rizvandi, J. Taheri, and A. Y. Zomaya, “Some observa-
tions on optimal frequency selection in DVFS-based energy
consumption minimization,” Journal of Parallel and Distributed
Computing, vol. 71, no. 8, pp. 1154–1164, 2011.

[20] Y. C. Lee and A. Y. Zomaya, “Energy conscious scheduling
for distributed computing systems under di�erent operating
conditions,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 8, pp. 1374–1381, 2011.

[21] Z. Zong, A. Manzanares, X. Ruan, and X. Qin, “EAD and
PEBD: two energy-aware duplication scheduling algorithms for
parallel tasks on homogeneous clusters,” IEEE Transactions on
Computers, vol. 60, no. 3, pp. 360–374, 2011.

Scienti
c Programming 13

[22] E. Chielle, F. Lima Kastensmidt, and S. Cuenca-Asensi, “Tuning
so�ware-based fault-tolerance techniques for power optimiza-
tion,” in Proceedings of the 24th International Workshop on
Power and Timing Modeling, Optimization and Simulation
(PATMOS ’14), pp. 1–7, Palma deMallorca, Spain, October 2014.

[23] D. Ernst, S. Das, S. Lee et al., “Razor: circuit-level correction of
timing errors for low-power operation,” IEEEMicro, vol. 24, no.
6, pp. 10–20, 2004.

[24] F. Firouzi, A. Yazdanbakhsh, H. Dorosti, and S. M. Fakhraie,
“Dynamic so� error hardening via joint body biasing and
dynamic voltage scaling,” in Proceedings of the 14th Euromicro
Conference onDigital SystemDesign: Architectures,Methods and
Tools (DSD ’11), pp. 385–392, Oulu, Finland, March 2011.

[25] D. Zhu, R. Melhem, and D. Mossé, “	e e�ects of energy
management on reliability in real-time embedded systems,”
in Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pp. 35–40, IEEE, November 2004.

[26] D. Zhu and H. Aydin, “Reliability-aware energy management
for periodic real-time tasks,” IEEE Transactions on Computers,
vol. 58, no. 10, pp. 1382–1397, 2009.

[27] A. Dogan and F. Özgüner, “Matching and scheduling algo-
rithms for minimizing execution time and failure probability
of applications in heterogeneous computing,” IEEETransactions
on Parallel and Distributed Systems, vol. 13, no. 3, pp. 308–323,
2002.

[28] X. Qin and H. Jiang, “A dynamic and reliability-driven schedul-
ing algorithm for parallel real-time jobs executing on heteroge-
neous clusters,” Journal of Parallel and Distributed Computing,
vol. 65, no. 8, pp. 885–900, 2005.

[29] Y. Xu, K. Li, L. He, L. Zhang, and K. Li, “A hybrid chemical
reaction optimization scheme for task scheduling on hetero-
geneous computing systems,” IEEE Transaction on Parallel and
Distributed System, vol. 26, no. 12, pp. 3208–3222, 2015.

[30] V. Spiliopoulos, S. Kaxiras, and G. Keramidas, “Green gov-
ernors: a framework for continuously adaptive DVFS,” in
Proceedings of the International Green Computing Conference
(IGCC ’11), pp. 1–8, IEEE, Orlando, Fla, USA, July 2011.

[31] M. Qiu and E. H.-M. Sha, “Cost minimization while satisfy-
ing hard/so� timing constraints for heterogeneous embedded
systems,”ACMTransactions on Design Automation of Electronic
Systems, vol. 14, article 25, 2009.

[32] S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya,
“Environment-conscious scheduling of HPC applications on
distributed Cloud-oriented data centers,” Journal of Parallel and
Distributed Computing, vol. 71, no. 6, pp. 732–749, 2011.

[33] R. Baumann, “	e impact of technology scaling on so� error
rate performance and limits to the e�cacy of error correction,”
in Proceedings of the International Electron Devices Meeting
(IEDM ’02), pp. 329–332, San Francisco, Calif, USA, December
2002.

[34] A.M. Fard, M. Ghasemi, andM. Kargahi, “Response-timemin-
imization in so� real-time systems with temperature-a�ected
reliability constraint,” in Proceedings of the CSI Symposium on
Real-Time and Embedded Systems and Technologies (RTEST ’15),
Tehran, Iran, October 2015.

[35] S. Song, D. W. Coit, Q. Feng, and H. Peng, “Reliability analysis
for multi-component systems subject to multiple dependent
competing failure processes,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 331–345, 2014.

[36] V. Degalahal, L. Li, V. Narayanan,M. Kandemir, andM. J. Irwin,
“So� errors issues in low-power caches,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 13, no. 10, pp.
1157–1166, 2005.

[37] Z. Lei, G. Tianqi, Z. Ji, J. Shijun, S. Qingzhou, and H. Ming, “An
adaptive moving total least squares method for curve
tting,”
Measurement, vol. 49, pp. 107–112, 2014.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

