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Energy-Efficient Resource Provisioning
Algorithms for Optical Clouds

J. Buysse, K. Georgakilas, A. Tzanakaki, M. De Leenheer, B. Dhoedt and C. Develder

Abstract—Rising energy costs and climate change
have led to an increased concern for energy-efficiency
(EE). As Information and Communication Technology
(ICT) is responsible for about 4% of total energy con-
sumption worldwide, it is essential to devise policies
aimed at reducing it. In this paper, we propose a
routing and scheduling algorithm for a cloud architec-
ture, which targets minimal total energy consumption
by enabling switching off unused network and/or
Information Technology (IT) resources, exploiting the
cloud-specific anycast principle. A detailed energy
model for the entire cloud infrastructure compris-
ing wide area optical network and IT resources is
provided. This model is used to make a single-step
decision on which IT end points to use for a given
request, including the routing of the network con-
nection towards these end points. Our simulations
quantitatively assess the EE algorithm’s potential en-
ergy savings, but also assess the influence this may
have on traditional Quality of Service parameters
such as service blocking. Furthermore, we compare
the one-step scheduling with traditional scheduling
and routing schemes, which calculate the resource
provisioning in a two-step approach (selecting first
the destination IT end point, and subsequently using
unicast routing towards it). We show that depending
on the offered infrastructure load, our proposed one-
step calculation considerably lowers the total energy
consumption (reduction up to 50%) compared to the
traditional iterative scheduling and routing, espe-
cially in low to medium load scenarios, without any
significant increase in the service blocking.

Index Terms—Energy Efficiency, WDM networks,
Cloud Computing, Resource Provisioning

I. INTRODUCTION

ICT equipment, facilities and the processes to con-

trol this equipment consume up to 4% of the world’s

total energy budget, implying a considerable environ-

mental impact in terms of greenhouse gas emissions

[3], [33]. This paper addresses the energy expendi-

ture for an integrated network and IT infrastructure

that can support cloud and grid architectures. The

blueprint for the Grid architecture was laid out in

[22]: in analogy with a power grid, users could get

access to computing power on demand. Grid customers

would generally create an application, submit it using

the grid middleware, and wait until the job finishes

in order to collect the results. A more commercial

version, the cloud infrastructure, extends this concept

and applies the Infrastructure-as-a-Service (IaaS) con-

cept. The consumer decides on a number of Virtual

Machines (VMs), which are to be deployed on real

physical devices, to which access is granted during a

certain time. Cloud computing is seen as an energy-

efficient architecture, as end users are limited to low-

power devices, while processing power (and hence also

a large part of energy consumption) is moved to the

cloud [3]. Moreover, cloud architectures provide aggre-

gation points for workloads that would otherwise be

run on separate devices. This means that demands

can be consolidated through statistical multiplexing

and hosts can be better utilized. Grid and cloud ar-

chitectures both require the pooling and coordinated

allocation of a large set of distributed resources, and

we aim to optimize their utilization to reduce the

overall energy consumption. As the network prereq-

uisites for the applications we envisage are very de-

manding (e.g., high bandwidth and low latency), we

assume an optical circuit-switched network based on

Wavelength Division Multiplexing (WDM) and thus

consider an optical grid/cloud context (see [16] for

a recent overview on such optical grids/clouds). We

jointly optimize energy consumption of network and

IT resources using a scalable algorithm by exploiting

the anycast principle. Anycast reflects the idea that a

user is generally not interested in the location where

his workload is processed “in the cloud”), as long as the

requirements (which have been set in advance by so-

called Service Level Agreements, SLAs [35]) are met.

Hence, freedom arises as to where to execute a job or

to place a VM. This paper presents a heuristic that

for a given request finds (i) an IT end point to process

the request (the scheduling problem) and (ii) a route

from the requesting source to that IT end point in the

optical network (the routing problem). Requests arrive

sequentially and we are solving the online routing

problem, as opposed to the offline version (e.g., [8]),

which has an a priori known request vector, expressing

for each source the number of requests which need to

be served. Our algorithm minimizes energy consump-

tion by either trying to share as much active resources

as possible (avoiding a startup cost for each newly

activated resource) or by allowing switching-off idle

resources. The remainder of this paper is structured as

follows. Section II starts off with an overview of related

work, where we indicate the novelty of our contribu-

tion. Next, in Section III, we present our power model

for the grid/cloud infrastructure (including quantified

power consumption figures). In Section IV we detail



2

the routing/scheduling algorithms, which are subse-

quently investigated by a detailed simulation case

study in Section V. Final conclusions and future work

are discussed in Section VI.

II. RELATED WORK

A. Optical network energy models

Optical network technology is incontestably energy-

efficient. The authors of [30] present a comparison of

different IP-over-WDM architectures, demonstrating

that a translucent optical architecture (i.e., the optical

signal is periodically regenerated by all-optical 3R re-

generators) can save up to 60% of energy compared to

classical technologies (e.g., where optical signal regen-

eration is done in the electronic IP layer). Comparable

conclusions are drawn in [2], [4], [36], [37]: optical

nodes generally consume less power than electronic

ones, especially optical circuit-switched architectures

based on MEMS switching devices. Furthermore, it

has been demonstrated that an energy-efficient net-

work design is coincidentally a cost-efficient design

since router ports play a dominant role in both energy

and capital cost. In Section III we will further discuss

the model for the network energy consumption based

on [2].

B. IT energy models

Regarding electricity consumption of servers and

data centers, [28] indicates that power usage of all

servers in the U.S. accounts for a substantial frac-

tion of total US electricity consumption, which even

doubles when auxiliary infrastructure (cooling, wa-

ter pumps, etc.) is included. This is the reason that

our energy model takes this supporting infrastructure

into consideration. The authors of [21] investigate the

power properties for servers, individual racks and clus-

ters. They also demonstrate that nameplate ratings

(manufacturer’s prediction of power use) have little

or no value as they tend to overestimate actual peak

usage which explains why we take the parameters

for a server’s energy consumption from real life mea-

surements. Secondly, they investigate the influence of

Dynamic Voltage Scaling (DVS): this method reduces

energy consumption by slowing down the rate of CPU

processing since the faster the processing rate, the

higher the energy consumption. Our energy model for

a server is based on this work, while we changed

the model for racks and data centers using up-to-

date cooling techniques. Another strategy for IT energy

minimization is server consolidation. The authors of

[32] have investigated this while also trying to predict

which nodes will need to be powered down/on in the

future. These previous ideas, i.e., server consolidation

and DVS, are combined into a single formalism in [10].

C. Energy-efficient operation in optical networks

Switching off network elements to save energy has

been evaluated in [11] for an offline scenario (i.e., traf-

fic is known beforehand - as opposed to our approach).

The authors demonstrate that, for the scenarios under

consideration, there is an energy saving potential of

total network energy. Similar conclusions are drawn

in [9], which extends [11] with an empirical study

for power consumption of a router. Scaling down the

logical IP topology in an IP-over-WDM network is

investigated in [34]. The authors assign a higher cost

for IP links having a load below a certain threshold,

deviating traffic flows from these links to remove the

IP links from the IP topology. Results show that a high

threshold only favors architectures which make use of

equipment with high idle power (e.g., as demonstrated

in [9]), as for the more EE equipment longer paths

(which lead to more transit traffic in core interfaces)

lead to an increase in power consumption, as the

power requirements are proportional with interface

bandwidth. The effect of putting clusters of network

nodes in a sleep state, by routing to an appropriate

location (thus using anycast as described in Section

I), is examined in [5]. Our work differs in that we

allow powering down individual network nodes, as well

as network links. Power-awareness combined with re-

siliency aspects is investigated in [25], but only consid-

ers the network resources and a unicast scenario: the

authors achieve power reduction by putting network

resources into a sleep state when they are used as

backup resources and demonstrate the effectiveness

by comparing different routing algorithms. Although

in our work we do not consider protection, we are

using a similar network energy model where different

components of network entities can be shut down.

In [23] the authors propose to groom sub-wavelength

traffic into light paths, while allowing a modular

network node to offer energy savings by powering

on/off chassis, modules or ports depending on traffic

entering the network node. They conclude that at

off-peak hours, a traditional (minimizing the number

of light path setups per request) and energy-aware

approach have about the same energy consumption. In

peak conditions however, the energy-aware approach

outperforms the traditional strategy (regarding energy

consumption) since more traffic requests can be routed

through already active components. A comprehensive

overview of ongoing research regarding energy effi-

ciency in telecom networks, with a specific emphasis

on optical technologies, is presented in [39]. For several

network architectures (metro, access and core), energy

minimization opportunities are investigated and re-

lated ongoing standardization efforts are overviewed.

They also indicate that there might be a potential in

scheduling jobs in a grid context, allowing servers to

be switched-off. We build on this concept, while also

considering the energy consumed in the optical core
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network in between the IT end points and the data

centers.

D. Energy-efficient operation in data centers

The work in [7] reviews methods and technologies

currently deployed for energy-efficient operation of

computer hardware and network infrastructure, par-

ticularly in cloud contexts. They demonstrate that data

center scheduling can influence energy consumption

and that virtualization of resources can be benefi-

cial from an energy consumption perspective. These

policies only focus on one part of the cloud, either

the network or the data center, but no work tries to

combine both realms. The authors indicate possible

improvements, such as reducing energy consumption

due to communications, which is the aim of this paper.

In [1] the authors investigate how to build a cluster-

scale network (within the data center premises) whose

power consumption is proportional to the amount of

traffic it is transmitting. They demonstrate that a

flattened butterfly topology (similar to a fully con-

nected torus) operated at a data rate proportional

to the offered traffic intensity of the data center, is

the most energy-efficient intra data center network

design. The work in [27] presents an intra data center

scheduling approach (for a three-tier network) that

combines energy efficiency and network awareness: it

allows analyzing data received from the switches and

links and takes actions based on the network feedback.

The scheduling approach avoids hotspots within a data

center while minimizing the number of computing

servers required for a job execution (job consolidation).

In our work however, we do not consider advanced

intra data center scheduling of jobs, but enforce a

First Come First Serve (FCFS) policy. Note that this

work complements ours, where we do not provide

detailed modeling of the intra data center network. We

believe that incorporating such more advanced intra

data center scheduling will not impact our qualitative

discussions pertaining to the importance of jointly

considering (core) network and data center energy

consumption.

E. Energy-efficiency in an integrated infrastructure

Dynamically powering on/down servers to address

actual demand in a grid context has been investigated

in [17]. The authors propose a power-aware schedul-

ing scheme that reduces IT power consumption. The

penalty is an increase in network utilization because

longer paths are used. Our work builds on this con-

cept by also considering the optical network, jointly

optimizing the utilization of IT and network resources

used to serve all demands. Chapter six of [20] proposes

two ways to reduce energy consumption: (i) a novel,

integrated optical network and IT infrastructure and

(ii) an energy-aware service plane architecture. The

first optimization consists of distributing a fraction

of IT nodes from IT resource sites at the network

edge into the network core so that network opera-

tors can benefit from the existing space, cooling and

power of switching nodes in the core of the network.

The second optimization consists of a resource or-

chestration formulation taking into account energy-

aware parameters, such that the selection of network

and IT resources is optimized to reduce the overall

power consumption. Depending on the scenario, the

new integrated infrastructure can improve energy ef-

ficiency up to 45% and the EE resource orchestration

up to 10%. Another attempt to define a comprehensive

energy model where network and IT resources are

treated in an integrated way has been examined in

our earlier work [8]: it addresses the energy-efficient

operation of integrated network and IT infrastruc-

tures in the context of cloud computing in an offline

scenario. There, we proposed energy-efficient routing

and IT allocation algorithms using MILP, by allowing

switching-off several IT and networking elements and

by exploiting the anycast principle. More specifically,

comparing joint minimization of both network and IT

energy provides energy savings of the order of 3% to

55% compared to the network energy minimization

only approach, depending on the granularity of a data

center to switch on/off a set of servers. On the other

hand, pure network-energy minimization allows en-

ergy savings of the order of 1% to 2% of the total energy

budget compared to shortest path routing (i.e., energy-

unaware). Although [20] and [8] indicate that treating

network and IT resources jointly allows for energy

optimization, their approaches are difficult to adopt in

real settings since they suffer from scalability issues

and cannot produce results in a reasonable time frame.

Therefore, we extend this earlier work in two ways:

(i) we update the energy model to include energy-

efficient cooling units (In-Row Cooling) and (ii) we

tackle the problem in an online scenario to obtain

results in a faster time frame.

F. Contribution of this paper

Our study extends previous works in several ways.

Our first main contribution consists in the integra-

tion of the network and the IT realm: by considering

optical and IT resources in the same scheduling and

routing step, we lower the overall energy consump-

tion considerably. Moreover, we provide a one-step

anycast calculation and compare it with a sequential

computation (two-step, first IT data center selection,

then routing towards it) and show the benefits of our

unified approach in terms of power consumption and

service blocking. Furthermore, we allow switching off

network nodes, links, servers, racks and data centers

in contrast to previous works which mainly focused

on either the core network or the IT infrastructure.

Secondly, our unified energy model considers a cooling

system, namely in-row cooling, which proves to be the
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Fig. 2: Layout of an opaque OXC. All elements except

for the (de)multiplexer consume energy.

most energy-efficient cooling system for data centers

available today [6]. Thirdly, we treat the problem

from an online perspective, as opposed to the offline

scenario, resulting in an algorithm that is able to

dynamically allocate resources in a short time frame.

Lastly, we focus not only on energy consumption, but

we also investigate the influence of EE scheduling and

routing on traditional QoS parameters such as service

blocking and average resource load (as opposed to e.g.

[20]).

III. MODELING

A. Topology modeling

We model the optical network as a bidirectional

graph G = (S,C,E) where S is the set of source nodes,

comprising optical cross-connects (OXCs) generating

requests. C is the set of core OXCs, which (as opposed

to source OXCs) may be switched off completely. E
is the set of optical fiber links connecting all OXCs

(S∪C). Each fiber is assumed to have W wavelengths.

The topologies used in our study are presented in

Fig. 1. Furthermore we define D ⊆ S as the set of

destination sites, i.e., these OXCs d ∈ D are connected

to a data center. Our graph model employs auxiliary

links between the data center objects and d ∈ D, which

we will denote as virtual links, as they do not represent

actual physical links. All fiber links incident to d ∈ D
have 2W wavelengths, as these are the end points of

all paths and need more capacity to prevent network

blocking. We assume that all data centers have the

same characteristics: each data center d has n racks,

each containing s servers with idle and peak power

characteristics described and measured in [13].

B. Network energy modeling

We assume OXCs based on a photonic switch-

ing matrix that is realized by 3D Micro-Electrical-

Mechanical-Systems (MEMS) [31]. Each OXC supports

a number of input and output fibers ports, each em-

ploying a maximum number of wavelengths W . It

is assumed that each OXC is equipped with wave-

length converters at the output so that a light path (a

wavelength path including all used wavelength links

from source to destination) can be established between

any source-destination pair as long as there is a free

port, avoiding situations of wavelength blocking. Apart

from the passive elements, being the Multiplexers

(MUX) and De-Multiplexers (DEMUX), Fig. 2 illus-

trates the active elements of the OXC: the switch

matrix, one Erbium-Doped Fiber Amplifier (EDFA)

per input/output fiber port and one transmitter (Tx)

and one receiver (Rx) pair per light path. The OEO

transponders support full wavelength conversion. The

number of through (express) ports (portsthrough) is

calculated as the number of input fibers times the

fiber wavelength capacity W . The add/drop ports (e.g.,

for traffic from/to a local data center) are denoted

as portsa/d). The active incoming/outgoing fibers are

represented as fin and fout respectively. The network

power is completely determined by the power con-

sumption of all the OXCs and the optical fiber links.

The power expenditure of an OXC (POXC) depends on

the constant power consumption of (i) the switch fab-

ric (Psf ), (ii) the receivers and transmitters (Ptransc),

(iii) the wavelength converters (Pconv), (iv) the optical

amplifiers (Pampl) and (v) the controller power (Pcontrol)

for the OXC. Eq. 1 show how these figures are used in

the total power consumption model of the OXC, while

Table I shows typical values for their parameters.

POXC = Pcontrol + Psf + Ptransc + Pconv + Pampl (1a)

Ptransc = portsa/d × PTx/Rx (1b)

Pconv = portsthrough × Ptransponder (1c)

Pampl = (fin + fout)× Pedfa (1d)

Regarding the fiber links of the optical networks, the

power consuming elements are the optical amplifiers

installed per span. The amplifier span length (span) is

assumed to be 80km. Hence, the power consumption

Pl of a fiber link depends on its length (|l|) and can

be calculated as shown in Eq. 2 (Note that -1 is used

because the first span can be covered by the EDFA at

the fiber output port of the OXC).

Plink(l) = (
|l|

span− 1
)× Pedfa (2)

The total network energy consumption is then com-

puted by Eq. 3. Note that we multiply the network

energy with a factor called the Power Usage Effective-

ness (PUE), to account for energy used for cooling and

power delivery for the network resources, and typically
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Fig. 1: The topologies considered in this study, containing 28 OXCs. The circled OXCs are the eight core nodes.

The dotted lines between the DC’s and the network nodes are the virtual links. All topologies were gathered

from [15].

(a) Dense topology (57 fiber links, node de-
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(c) Sparse network (33 fiber links, average
node degree 2.4)
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amounts to around 2 [4]. We have chosen not to model

the power delivery and cooling chain in more detail for

the network. Indeed, the values for cooling and power

delivery for a data center and an OXC differ in several

orders of magnitudes. Hence, a more accurate power-

cooling model for OXCs would not change our results

qualitatively (while a simple PUE approach as opposed

to our current model for the data center would).

Pnetwork = PUE ×

(

∑

n∈S∪C

POXC +
∑

l∈E

Plink(l)

)

(3)

C. IT energy modeling

1) Power consumption of a server: We express the

capacity of a server using floating-point operations

per second (FLOPS). A server’s power consumption is

accurately estimated by Eq. 4 given its current load

φserver expressed in FLOPS, its maximum processing

capacity zserver (also expressed in FLOPS), the power

in idle state Pidle and the power at maximum load Pmax

[21].

Pserver(φserver) = Pidle +
Pmax − Pidle

zserver
× φserver (4)

2) Power consumption of a data center: We formalize

the energy consumption of a data center based on a

typical state-of-the-art deployment (see Fig. 3). In this

model, a data center consists of rows of IT equipment

which contain servers, storage devices and other sup-

porting hardware such as coolers, water pumps (to

move the cooling water) and uninterruptible power

supply (UPS) systems. All power issued to these racks

first passes a UPS unit which serves as a battery

backup to prevent IT equipment failures in case of

power interruptions. Power leaving the UPS enters a

power distribution unit (PDU) that sends the power

directly to the racks and servers. Note that (i) the elec-

tricity consumed by the power delivery chain (PDU+

Pump

UPS

PDU

Server racks + in row coolers

Coolers (situated on roof)

Cold water 

from coolers

Pump

Pump

Fig. 3: Energy consuming devices in our data center

model.

UPS) accounts for a substantial portion of the overall

power consumption of the data center (depending on

the technology and load up to half of the total energy

consumption) and that (ii) this power delivery chain on

top of the pure IT power wastes some energy, which is

mainly caused by energy loss at the UPS [26]. Another

important factor in a data center regarding power

consumption is air flow. The predominant architecture

for delivering cooled air is raised floor air delivery

from perimeter Computer Room Air Handlers (CRAH).

CRAHs are placed around the room and distribute

cold air through a raised floor with perforated floor

tiles. This kind of architecture suffers from a couple

of imperfections: (i) the distance between the cooling

units and the heat source makes it difficult to re-

move the heat without mixing with the supply air

and (ii) a considerable amount of energy is needed to

drive the fans [6]. To overcome this, we consider an

air-circulating solution that addresses these problems,

called in-row or rack-based cooling. In this approach,

the air cooling systems are integrated into a rack; it

makes the air paths shorter, and significantly reduces

the power required to operate the fans [18]. We model

the power consumption of such an in-row cooler, given
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the current capacity of all the rack’s servers , the same

way as a server; linearly interpolated between a P inrow
min

and P inrow
max , as in Eq. 5.

Prack = P inrow
min +

P inrow
max − P inrow

min
∑

server∈rack zserver
×

∑

server∈rack

φserver

(5)

Apart from air flow, we still need a cooling mech-

anism. The assumed deployment uses k dry coolers

/ free coolers which cool the water to about 17-18 C.

Finally, the pumps that circulate the cooled water to

the racks have to be accounted for. Concluding, the

power consumption of our data center prototype is

shown in eq. 9 while Table I shows values for these pa-

rameters, based on actual readings of the Ghent data

center (which serves as our state-of-the-art example,

both in technology and in dimensions) or equipment

data sheets. Our model allows switching off certain

parts of a data center, which gives us freedom in our

request scheduling:

• When a server is not in use, we switch it off

completely.

• Whenever a rack has no active servers we allow

to switch off the in-row coolers

• When no racks are active we allow switching-off

the coolers, pumps and UPS system (start up cost

for a data center).

PDC = Pbase +
∑

r∈racks

Prack +
∑

s∈servers

Pserver(φs) (6a)

Pbase =

{

0 if not in use

PUPS + Ppumps + Pcooler otherwise
(6b)

IV. PROVISIONING ALGORITHM

We investigate two approaches of scheduling and

routing. The first algorithm is based on an integrated

scheduling approach, where the destination site and

the route towards that destination are found in a

single pass, optimizing the network and IT infrastruc-

ture utilization simultaneously. We will refer to this

approach as Full-Anycast (FA). In a second approach,

we first decide where to handle the request and find

the route towards that destination subsequently. This

means that scheduling a request consists of two sep-

arate calculations: in a first step it optimizes the IT

infrastructure, followed by the best possible routing

given the IT destination. This latter approach (denoted

Assisted Anycast or AA) constitutes the state-of-the-

art technique in commercial cloud infrastructures. As

a last remark, both FA and AA only consider data

centers still having enough capacity to fulfill the re-

quest. For both FA and AA, when a request has been

scheduled to a data center, the data center enforces a

First Come First Serve policy (FCFS): it first tries to

schedule the requests to the first active server (in an

Symbol Description Value
S Set of source nodes generating requests 20
C Set of core nodes. These do not generate

requests and can be switched off com-
pletely.

8

E Set of bidirectional links. 56
D Set of OXCs which are connected to a

data center.
5

W Amount of wavelengths per fiber link. 16
n Number of servers per rack 20
π Number of racks per data center 45
κ Number of free coolers 3
Pmax Power consumption of a server when at

100% load. [13]
268 W

Pmin Power consumption of a server when un-
used [13]

144 W

P inrow
idle Power consumption of in-row cooler

when unused. (AR)
300 W

P inrow
max Power consumption of in-row cooler

when all its servers are at 100% load.
(AR)

500 W

Ppumps Average power consumption of the
pumps for the cooling water (AR)

28500
W

Pcooler Average power consumption of the cool-
ers. (AR)

13000
W

Pups Average power consumption of UPS.
(AR)

12500
W

Ptransponder O/E/O: Power consumption of a line-side
WDM Transponder (10Gbit/s) [24]

35 W

Pcontrol Power consumption of a controller [13] 150 W
Psf Power consumed by the switching fabric.

[29]
30 W

Ptx/rx E/O,O/E: Power consumed by either a
transmitter or a receiver [2]

5.9 W

Pedfa Power consumption for an EDFA. [24] 15 W
span Amplifier span length 80 km

TABLE I: Parameters and power consumption fig-

ures for the network and IT resources. References

are provided where possible and “AR” (actual reading)

indicates that average power was measured on site at

the Ghent University data center(Jan. 2012).

active rack) it finds. Only after deciding there are no

active servers that can process the request, a new rack

is activated with the necessary servers.

A. Full Anycast (FA)

The FA routing algorithm uses a function PFA :
(E × N) → R found in Eq. 7 (expanded in Eq. 7a,

Eq. 7b, Eq. 7c and Eq. 7d) for assigning link weights

for link l when a request r needs to be scheduled, after

which it computes the shortest path based on these

weights using Dijkstra’s algorithm. We assume φ ∈ N

to be the amount of requested IT capacity. Note that

in Eq. 7b we add 1 in the sum, to also account for the

EDFAs situated in the source and destination OXC

of link l. Pnode(l) returns either the base power for

an OXC, or the extra power needed to switch a path.

PDC(l, φ) only works for virtual links, i.e., the graph

edges which connect an OXC with a data center. The

function PDC(φ) returns the additional power needed

if request r were to be scheduled to data center DC.

Assume we have a function P (DC) which returns the

current power of data center DC and P ′(DC) the power
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of the same data center after scheduling request r,

then PDC(l, φ) is given by P ′(DC)− P (DC).

PFA(l, φ) = α.Plink(l) + β.Pnode(l) + γ.PDC(l, φ) (7a)

Plink(l) =

{

0 if link l is in use
(⌈

|l|
span

⌉

+ 1
)

.Pedfa otherwise
(7b)

Pnode(l) =











Psf + Pcontrol + Ptransponder

if end of l is inactive

Ptransponder otherwise

(7c)

PDC(l, φ) =











Pbase(φ) + PDC(φ)

if adjacent DC of l is inactive

PDC(φ) otherwise

(7d)

We mention that when α = β = γ = 1, the

function PFA(l, φ) attributes each link the extra power

it requires if that link (virtual or actual) were to be

used to handle request r. By changing the values of α,

β and γ, we change the relative importance of power

contributions of links, OXCs or data centers, which has

been shown to impact the QoS (e.g., blocking [38]).

Moreover, by choosing a value different from one for

α, β and γ the algorithm is no longer a greedy one and

inactivates network resources, although minimizing

the infrastructure’s energy would activate them. This

could potentially be beneficial as the newly activated

IT resources (momentarily consuming more power

than necessary) can later be reused to service future

requests, reducing the temporary energy penalty in

the future (see Section V-A2). In our performance

evaluation, we will demonstrate a relation between

energy consumption and QoS by changing the values

for α, β and γ. In this work we will denote a parameter

set as {α, β, γ}.

B. Assisted Anycast (AA)

As mentioned above, the assisted anycast algorithm

consists of two steps. First we select the data center to

handle the request after which we find a route to that

data center. We investigate four heuristics to select the

data center:

• Closest: chooses the data center physically closest

to the requesting source;

• L-max: chooses the data center with the highest

current load (concentrating IT requests as much

as possible);

• L-Min: chooses the data center with the lowest

current load (performing IT load balancing);

• Random: randomly chooses a data center (as a

benchmark strategy).

When assigning link weights to the graph edges, we

only use the network-related terms from FA. More

specifically we assign weight to the links using PAA :
E → R found in Eq. 8.

PAA(l) = α.Plink(l) + β.POXC(l) (8)

V. PERFORMANCE EVALUATION

We will show results for the simulations performed

for the dense EU topology, portrayed in Fig. 1a, with 28

nodes, of which 8 are core nodes and the remaining 20

source nodes. Section V-A presents results assuming

communication-intensive requests, while Section V-B

will confirm that our conclusions hold for an IT-

intensive request scenario. In Section V-C we will

present results for the other topologies found in Fig. 1.

All source sites s ∈ S adopt a Poisson process to

generate requests, with mean arrival rate λ and mean

holding time µ, which accurately fits real world Grid

job traces [12]. Consequently the load per source site

is expressed in Erlang (λ/µ). Each request corresponds

with a single bandwidth unit (i.e., one wavelength) and

a fixed amount of IT capacity (which correspond to

a number of servers) which needs to be provisioned

at a single data center. The dense topology contains

57 bidirectional fiber links, with each link supporting

W = 16 wavelengths, apart from the links between

an OXC and a data center node. Such OXC-DC links

are assumed to have W = 32 wavelengths. The link

lengths correspond to the actual distance between

adjacent vertices (cities). Each data center is equipped

with 20 racks, each containing 45 servers. We have

performed 20 simulations (with a certain warm up pe-

riod) with different seeds for every load and averaged

the results; where possible the graphs show error bars,

indicating the 95% confidence interval. We stopped the

simulation after having served 200.000 requests. We

have used a custom-built simulator [14], developed in

the context of the GEYSERS [19] project.

Simulations are initially performed for a scenario

where network connectivity is important (we require

3.3 servers per request) and named this the network-

intensive scenario and later we perform the same

set of simulations with identical seeds where we in-

crease the requested IT capacity per bandwidth unit

to 8.3 servers per request, which we denote as the

computing-intensive scenario. We start with a thor-

ough analysis of the FA algorithm, which we compare

to AA in Section V-A4. The parameters α, β and γ have

been ranged between 0.001 and 1 of which we show

results for the most important parameter sets.

A. Network-intensive scenario (FA/Dense topology)

1) Pure IT vs. pure network optimization: In order

to compare savings made by parameter sets which

either emphasize network or IT power minimization,

we illustrate in Fig. 4 the total power consumption for

(i) the parameter choice with a high focus on network

optimization {1, 1, 0.001} denoted as Net. Opt. and for

(ii) the parameter set with a large focus on IT opti-

mization {0.001, 0.001, 1} (IT Opt.) We also mention the

percentage that network and IT resources contribute

to the total energy budget (depicted as the numbers on

the corresponding bars), to demonstrate the balance
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Fig. 4: Power consumption (divided into consumption

for network and IT resources) for two parameter sets:

first bar IT Opt. and second bar Net. Opt. The numbers

on the bars indicate the contribution of either network

or IT resources to the total energy budget. Up until

16.95 Erlang, IT Opt. is best, after which Net. Opt.

has lower values.
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Fig. 5: Total power consumption for parameter sets

A, B,C, IT. Opt. and IT Opt. Up until 11.94 Erlang

B minimizes total power consumption, after which A

and B attain about the same values.

between network and IT. Fig. 4 shows (i) that IT

Opt. leads to minimal energy consumption in low load

conditions while Net. Opt. achieves this in high load

conditions and (ii) that minimizing network energy

leads to an increase in IT energy and vice versa.

The large variations in total energy in low load

situations (a difference up to 48%) mainly stem

from switching on all data centers to optimize net-

work power consumption for the Net. Opt. scenario,

while fewer active data centers could serve all re-

quests. However, starting from 19 Erlang this situ-

ation changes and Net. Opt. achieves a total power

reduction compared to IT Opt. of about 3%. In these

cases all data centers have to be switched on and the

reduction of IT power for IT Opt. (on average 15.1

Watt lower IT power consumption than Net. Opt.) is too

small for the network power energy savings achieved

by Net. Opt. (on average difference of 58.2 Watt more

savings in network energy than IT. Opt.). In what

follows we will investigate how the values for α, β and

γ can be chosen to lower overall power consumption

even further.

2) Parameter set minimizing total energy consump-

tion: Our goal is to find the parameters leading to min-

imal energy consumption, while keeping an acceptable

level of service blocking. The first parameter set we

investigate is {1, 1, 1}, which we will denote as C. In

practice, C is a greedy algorithm which chooses the

best routing and scheduling achievable at the moment

of calculation. In our simulations we have performed

a parameter sweep for the values for α, β and γ
where we have chosen all possible combinations out

of 1, 1/10, 1/100, 1/1000. Results of those simulations

point out two extra important parameter sets: two

parameter sets with a less explicit focus on network

resources than Net. Opt. {0.1, 0.1, 0.001} (denoted as A)

and {0.1, 0.01, 0.001} (denoted as B). Figure 5 shows the

total power consumption achieved by those parameter

sets while in Table II we show the difference in power

consumption for these parameter sets compared to the

absolute minimum from the parameter sweep. There

are three general conclusions which can be derived

from Fig. 5 and Table II: (i) in the low load range

[6.92− 11.94] parameter set B achieves minimal power

consumption, while in the other end either A or B is

best, (ii) neither C, IT Opt. or Net. Opt. reaches this

minimal power consumption and (iii) making efficient

use of network resources pays off in high load condi-

tions. In order to explain the difference in power values

for each parameter set, we need to look into the ability

of switching off resources, for which we refer to Fig. 6,

Fig. 7 and Fig. 8 where we have plotted the number of

inactive data centers, OXCs and fibers per parameter

selection. Fig. 9 shows the average path length each

algorithm requires.

B has minimal power consumption in the

[6.96− 11.94] end, as it is more effective in switching-

off data centers than A (about half a data center). The

reason for this is that A sometimes reaches situations

where the contribution of IT power (γ.PDC(l, φ)) is

minimized to such an extent that the contributions of

needed network power (α.Plink(l) + β.Poxc(l)) to reach
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Fig. 6: Number of data centers that are turned off.

Parameter sets with a high focus for IT power mini-

mization are clearly best in switching off complete data

centers (Net. Opt. is unable to switch off data centers).
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TABLE II: Difference in total power consumption for the different parameter sets compared to absolute

minimum from all simulations over all parameter sets. Gray cell indicate that the corresponding parameter set

achieved minimal energy consumption (over all runs).

Offered
Load

6.92 9.43 11.94 14.45 16.95 19.46 21.97 24.48 26.98 29.49 32

A 11.60% 8.40% 7.90% 0.00% 0.00% 0.60% 0.00% 1.20% 0.00% 0.00% 0.20%
B 0.00% 0.00% 0.00% 1.10% 2.40% 0.10% 0.60% 2.20% 0.40% 1.30% 0.20%
C 2.80% 6.60% 2.50% 0.70% 3.30% 1.50% 3.20% 2.40% 2.60% 3.00% 1.60%
Net. Opt. 48.60% 41.80% 34.10% 19.10% 12.90% 4.20% 2.50% 2.80% 1.40% 1.80% 0.40%
IT Opt. 3.40% 7.50% 7.60% 7.10% 9.00% 6.70% 5.80% 6.00% 4.60% 4.70% 2.90%
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Fig. 7: Number of OXCs which are inactive. Network

focused parameters sets are switching off more OXCs.

The increase around 19.46 erlang stems from switch-

ing on all data centers (see Fig. 6), thus reduces the

need for longer paths. Note the ability of A, B and

C to turn off OXCs in higher load scenarios: as more

and more data centers are turned on, the need to go

through the core of the network diminishes and more

OXCs can be turned off.

any of the active data centers is too large compared

to the adjusted value for the start up cost of an

inactive data center. So instead of taking a relatively

long path, where additional network resources need

activation, the algorithm chooses another path (using

already active network resources) and boots up an

extra data center. (Note that, since our algorithm

does not perform a rescheduling or rerouting step at
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Fig. 8: Number of fiber links which can be switched off.

A, B and Net. Opt. are able to switch off significantly

more fiber links.

certain time intervals, this penalty stays during the

complete simulation.)

Conversely, in terms of switching off network re-

sources, A is more successful: it is able to switch off

on average 2 more OXCs than B in the [6.96− 11.94]
region, as it sometimes has one active data center

more than B and hence shorter paths can be used (see

Fig. 9). These network savings however do not counter

the actual startup cost for the extra data center.

In the right region of the graphs ([14.45− 32]) we

see that A and B are able to switch off the same

amount of fibers, OXCs and IT resources thus reaching

about the same level of energy consumption (given that

almost all data centers are active, see Fig. 6). As the

heavy startup cost for a data center is not included

anymore (only rack/server cost) in the term for IT

energy, PDC(l, φ), the factor γ = 0.001 minimizes the IT

energy contribution to a number which is eight times

smaller than the contribution of OXC power (β.Poxc(l)).
As paths constitute multiple hops, making β 10 times

smaller (B has a β = 0.01 compared to A which has

β = 0.1) does not affect the routing much and A and B

reach the same routing and scheduling.

When we focus on the greedy algorithm C, Table II

indicates that it never reaches the minimal total power

consumption, which is also reflected in its ability for

switching off resources. The intuitive reason is that

C attributes the real incremental power to service a

new request, and does not account for the possible

reuse of newly activated resources by later requests.
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Fig. 9: Average path length per parameter set. IT

Opt. produces longer paths, to reach the IT energy

minimizing datacenter.
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Looking at Fig. 6, in the [6.96− 11.94] region, B is

able to switch off a higher number of data centers.

As the contribution of IT power that C accounts for

is higher than that for B (or A, for that matter),

longer paths are required to avoid activation of a new

rack (see Fig. 9). As C thus requires more network

resources to reach the data centers, situations occur

where for a certain source node there is no (sufficient)

free network capacity towards particular data centers,

making it necessary to start up another data center to

process the request. In the [14.45− 32] area however,

almost all data centers need to be switched on in any

case. Yet, for C the accounted contribution of IT power

for the algorithm is still large enough (even without

data center start-up costs) compared to the network

resources (PDC(l, φ) is about 10 times larger than

β.Poxc(l) or α.Plink(l) for C). Thus, following longer

paths is still cheaper with the cost metrics at hand (i.e.,

IT power minimization is still preferred over network

power minimization). Consequently, C is unable to

switch off network resources as much as A or B (see

Fig. 7), which explains the difference in total power

consumption between C and A/B.

Lastly we note that the contribution of link power

(i.e., EDFAs) in the algorithm is minimal because

(i) whenever a link has already been activated, its

contribution (as part of the algorithm) is neutralized

(Plink(l) = 0) as it can be freely used and (ii) the

average number of EDFAs per link is five, resulting in

an average contribution of only PUE × (5 × 15) Watt,

which is small compared to the contributions of the

OXCs (about 3 times when only one wavelength is

routed over the OXC) and the IT resources (about 4

times for 1 rack with one server). We see that Net. Opt.

is able to switch off significantly more fiber links than

the other strategies (up to 48% compared to IT Opt.),

as EE routing is equivalent to switching-off network

resources. In low load conditions, A is able to switch off

4% more fiber links than B. As stated above, B requires

this to reach better destinations to keep as much IT

resources inactive as possible. Lastly, we find that IT

Opt. is unable to switch off links as efficiently as the

other strategies, as longer paths are needed to reach

the best IT site.

3) Influence on QoS: In this section we investi-

gate the influence of parameter options on request

blocking in Fig. 10 (due to unavailable network or IT

resources), show the average network load in Fig. 12

and mention the data centers load. In the considered

network-intensive scenario, there is sufficient data cen-

ter capacity to meet all requests in the considered

load scenarios. The only reason for requests not to

be provisioned is lack of network resources, i.e., we

fail to find a light path to a given server. We see that

when optimizing for IT Opt., we have slightly higher

blocking, since paths are somewhat longer (see Fig. 9),

thus saturating links more (see Fig. 11). Differences

among the other strategies are minimal.
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Fig. 10: Network blocking per parameter set. Apart

from IT Opt., the A, B, C and Net. Opt. have no

significant differences.
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higher than 85%. Parameter sets with a large focus

on IT power, have a high saturation value.

We thus find that the strategies leading to the lowest

energy consumption (A or B, see higher) are also those

with lower blocking. This may sound contradictory

to earlier work described in [38], showing a trade-

off between energy efficiency and blocking due to net-

work resource fragmentation resulting from long EE

paths. However, this work is different in several ways.

We consider a network with wavelength conversion,

whereas they assume the wavelength continuity con-

straint. Hence, the effect of resource fragmentation on
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IT Opt.
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Fig. 13: Distribution of power (network and IT energy)

comparing FA (parameter set B) with AA
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Fig. 14: Network blocking figures comparing FA (pa-

rameter set B) with AA for different scheduling al-

gorithms. FA-B and Closest attain about the same

blocking value. L-max and Random reach unaccept-

able blocking figures.

blocking in our use case is not present, as blocking

only occurs when there is no capacity left anymore.

Secondly, they assume a random traffic pattern, where

each node of the network is a possible destination and

lastly they are not switching off nodes (i.e., transpon-

ders, switching fabric, etc.) but only the optical links

(EDFAs).

4) Difference between FA and AA (Dense topology):

In this section we study whether we can achieve

the same results as the FA algorithm with a simple

AA approach. In Fig. 13 we show the total power

consumption for the AA scheduling algorithms, with

parameter settings (α = β = 1). Based on results not

detailed here (because of space constraints), we have

concluded that the total power consumption for AA

is hardly influenced by either α or β. The reason for

this is that independently choosing the IT site, forces

the algorithm to use OXCs (most dominant network

resources), although another destination choice could

leave the considered network resource inactive. In

Fig. 13 we plot the total power consumption for the

AA greedy approaches (α = β = 1) together with the

FA values for parameter set B (FA-B). We compare the

corresponding blocking probability in Fig. 14.

Looking at the power consumption in Fig. 13, we find

as expected that FA-B performs best (with the notable

exception of the highest loads; see our comment at

the end of this subsection). Nevertheless, some AA

approaches do come very close, but the exact one

depends on the load region. For low loads (until 14.45

Erlang in our case study at hand), the L-max strategy

seems the best AA approach (and only 3% above FA-B),

while for higher loads Closest is to be preferred. The

fact that L-max seems best at low loads is intuitively

clear: it is possible to aggregate requests in a limited

number of data centers (which is what L-max aims

for) and turning off the rest. Yet, at these low loads,

L-max leads to significantly higher blocking ratios (see

Fig. 14) than any other AA strategy or FA-B. For

higher loads (21.97 erlang and above), intuition also

expects Closest to be best, since there all data centers

need to be powered on, and selecting the nearest data

center minimizes network resource usage. Network

blocking for Closest is also similar to that of FA-B,

thus making it a valid (and less complex from an

implementation point of view) alternative. Only at mid

loads (16.95-19.46 erlang), none of the AA approaches

consumes as few power as FA-B. In conclusion, to

have a single approach that attains lowest power

consumption under all load conditions, none of the AA

alternatives does the job, and we should resort to the

FA approach.

As a final note, we mentioned that Fig. 13 suggests

that Random attains the lowest total power consump-

tion for the highest considered loads (starting from

26.98 Erlang). Yet, Fig. 14 shows that Random has

a very high blocking ratio and consequently the ap-

parent power decrease does not stem from intelligent

scheduling/routing, but merely because requests are

blocked and we get lower data center/network utiliza-

tion.

B. Computing-intensive scenario (Dense topology)

When we increase the desired number of servers

per request, we change our scenario from one where

requests resemble network intensive applications (e.g.,

video streaming services) to applications where compu-

tation is more important. We have also simulated such

a use case (for the same FA strategies with parameter

settings A, B, C, IT Opt. and Net Opt.) and have

reached the same qualitative conclusions as for the

network-intensive scenario:

• There is no “universally best” option amongst IT-

only or network-only optimization.

• By considering network and IT resources together,

we achieve minimal energy consumption of the

complete infrastructure.

• This energy reduction does not come with a service

blocking penalty.

• True optimum can be reached using FA; it is not

possible to reach the same optimum with a simple

AA heuristic.

The difference between maximum and minimum

power consumption amounts to 38%, which is 10%

less than the previous use case (more power intensive

IT resources need to be activated). The preference
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Fig. 15: Power values for the basic network.

for using either parameter set A or B, depending on

the load remains: in low load conditions B is still

preferred, but reaches in higher load conditions the

same optimal value as parameter set A. The ability

of all parameter sets to switch off network resources

does not disappear, but is merely shifted to lower load

conditions: from a certain point all network resources

need to be activated in order to reach certain IT end

points.

Although the relation for service blocking between

parameters sets stays unchanged, they differ in values.

In high load conditions there is not enough IT capac-

ity left to process a request and IT blocking occurs.

Although IT blocking for the IT Opt. parameter set

is lower than for the other strategies (there is only

an insignificant difference in IT blocking among A,

B and C), network blocking for IT Opt. is prevailing,

rendering the IT blocking penalty for A, B or C still

small enough to outperform IT Opt. where total service

blocking is concerned. This is also reflected in the

network load, which slightly differs between IT Opt.

and the other FA cases, leading to the difference in

blocking.

C. Influence of topology

We demonstrate that our conclusions for the dense

topology also hold for the sparse and basic EU topology

(with one major difference for the sparse topology

when comparing FA and AA). Using the A, B, C, Net.

Opt., IT Opt. and the different AA algorithms, we

have again performed 20 simulations and averaged the

results for the basic and sparse EU topologies. The

number of requested servers per request is 3.3. (We

also performed these simulations for a requested 8.3

servers per request and found that the same qualita-

tive conclusions hold.)

1) Basic topology: The difference between the basic

and the dense topology is the number of fiber links (40

vs. 57). There is one major consequence with respect

to energy minimization: the number of possible paths

between source and destination pairs is smaller for

the basic topology compared to the dense topology.

This means fewer opportunities for choosing a route

between one of the source s ∈ S and one of the

destination nodes d ∈ D. This results in (i) fewer
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Fig. 16: Network blocking for the basic network.
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Fig. 17: Power values for the sparse network.

opportunities for switching off network resources and

(ii) fewer opportunities for switching off data centers

as there is less network capacity. This is also reflected

in Fig. 15 where we plot the total power consump-

tion for the different strategies (with an adjusted

load per source (λ/µ) site as we keep the number

of wavelengths per link the same as for the dense

topology). We conclude that all qualitative results for

the dense topology also apply for the basic topology.

The difference between IT Opt. and Net. Opt. is con-

siderably lower (up to 14% compared to 48% for the

sparse topology) and we see that Net. Opt. very quickly

reaches minimal energy consumption (starting from

9.17 Erlang): all data centers need to be switched on

to overcome network blocking as important links get

saturated. The relative difference between A, B and C

stays unchanged compared to the dense topology: in

the [6.92− 10.66] region B is the best parameter choice

while in the other end A, B, C, Net. Opt. reach almost

the same optimal power consumption figures. We note

that there is no significant difference for the network

blocking figures for A, B, C and Net. Opt. and that IT

Opt. has blocking figures which differ from the other

parameter set in the orders of several magnitudes.

The conclusion regarding the comparison between FA-

B and AA also still applies: (i) in the low load scenario

AA L-Max approximates the FA algorithm in terms

of power consumption, but with a network blocking

penalty and (ii) in high load conditions FA-B has

similar energy values and service blocking figures as

Closest scheduling.
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Fig. 18: Network blocking for the sparse network.

2) Sparse topology: The number of fiber links for the

sparse topology is even less that the basic topology

(33 vs. 40), thus opportunities for EE routing and

scheduling are even more limited. Focusing on total

power consumption (Fig. 17) we see that even in low

load scenarios, IT Opt. is outperformed by the other

strategies as all data centers need to be switched on

to overcome network blocking. The relative difference

between A, B, C and Net. Opt. is similar as for the

basic and dense topology, with a preference for B in

the low load scenarios. The relation between AA L-max

and FA-B is also unchanged: AA L-max approximates

FA power consumption in a low load scenario, with a

service blocking penalty. In high load scenarios how-

ever, the service blocking figures for FA and Closest are

different, although reaching the same optimal energy

values. Trying to route with a power minimization

objective leads to longer paths in a sparse topology.

These longer paths consume precious network capac-

ity, leading to a larger service blocking, while the

power optimization seems to have no effect (compared

to choosing the closest data center). The reason for the

latter, is that EE routing of a single newly arriving

request temporarily allows to provision it without ac-

tivating new resources, but the advantage is lost quite

soon when subsequent requests still require to activate

new (scarce) network resources. The latter effect seems

not to play in less network constrained conditions (i.e.,

the basic and dense topologies).

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Energy reduction in optical networks received a

considerable amount of attention in the research com-

munity. In this work, we have ported a number of

ideas presented in previous works to an optical cloud

context. More specifically, we have presented a unified,

online and weighted routing and scheduling algorithm

for a typical optical cloud infrastructure for which we

have developed an energy consumption model jointly

considering network and IT resources.

We can summarize our findings as follows:

• There is no “universally best” option amongst IT-

only or network-only energy optimization. Only

by considering network and IT resources jointly,

we are able to reach the infrastructure’s minimal

energy consumption.

• This energy reduction does not lead to a larger

service blocking (apart for highly loaded sparse

networks).

• Minimal energy consumption can only be reached

using a unified “Full Anycast” approach; it is not

possible to reach the same optimum with a sim-

ple two step heuristic (“Assisted Anycast”) which

first considers IT resources after which routing is

performed, in particular for low to medium load

conditions.

Possible extensions and investigations can be de-

vised. Our scheduling algorithm only considers data

center selection after which a first server selection

strategy is performed over all servers and racks. Con-

sequently, adapting the algorithm with different in-

data center scheduling algorithms could lower total

energy consumption even further. Another direction

for future work is enforcing the wavelength conti-

nuity constraint, relieving the need for OEO conver-

sion at OXCs (consequently lowering network energy

as transponders are not necessary) and investigating

different wavelength selection algorithms. Lastly, re-

siliency could be explored: how can we protect the

integrated network and IT infrastructure, providing

resiliency for both network and IT resources, by allow-

ing sharing inactive protection resources (links, OXCs

and servers/racks).
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