
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2004

Energy-Efficient Routing and Data Aggregation in Sensor Energy-Efficient Routing and Data Aggregation in Sensor

Networks: An Experimental Study Networks: An Experimental Study

Ossama Younis

Sonia Fahmy
Purdue University, fahmy@cs.purdue.edu

Report Number:
04-031

Younis, Ossama and Fahmy, Sonia, "Energy-Efficient Routing and Data Aggregation in Sensor Networks:
An Experimental Study" (2004). Department of Computer Science Technical Reports. Paper 1614.
https://docs.lib.purdue.edu/cstech/1614

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ENERGY-EFFICIENT ROUTING AND DATA AGGREGATION
IN SENSOR NETWORKS: AN EXPERIMENTAL STUDY

Ossama Younis
Sonia Fahmy

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #04·031
November 2004

Energy-Efficient Routing and Data Aggregation In
Sensor Networks: An Experimental Study

Ossama Younis and Sonia Fahmy
Department of Computer Sciences, Purdue University

250 N. University Street, West Lafayette, IN 47907-2066, USA
e-mail: {oyounis,fahmy}@cs.purdue.edu

Abstract- Several sensor network applications, such as envi
ronmental monitoring, require data aggregation to an observer
(e.g., a base station). For this purpose, a data aggregation
tree rooted at the observer is constructed in the network to
reduce communication overhead and facilitate faster and more
reliable results. Node clustering can be employed for this purpose,
to further balance load among sensor nodes and prolong the
network lifetime. In this paper, we design and implement a
system, iHEED, in which node clustering is integrated with
multi-hop routing for TinyOS. In iHEED, sensor nodes are
clustered prior to constructing the data aggregation tree. We
consider simple data aggregation operators, such as AVG or
MAX. We perform experiments on a sensor network testbed
to quantify the benefits of integrating hierarchical routing with
data aggregation. Our results indicate that, by using reduced
intra-cluster transmission power and exploiting intra-cluster and
inter-cluster data aggregation, network lifetime is prolonged by a
factor of 2 to 4, and successful transmissions are almost doubled.
The overhead of the clustering process is subsumed by tree
construction and maintenance overhead.

Index Temls- sensor networks, implementation, clustering,
energy efficiency

I. INTRODUCTION

Networked embedded systems provide an important oppor
tunity for supporting applications, such environmental mon
itoring or military field surveillance. In these applications,
tiny sensors are deployed in vast fields to continuously report
measured parameters, such as temperature, pressure, humidity,
light, or chemical activity. Reports transmitted by these sensors
are collected by observers, such as base stations, that are
typically situated outside the network field. The unattended
nature of these networks makes it impossible to re-charge
node batteries. Therefore, the goal of most research in sensor
networks has been to design energy-efficient protocols at all
layers [1].

Several sensor network applications require an aggregated
data value that is reported regularly. For example, in habitat
monitoring where humidity is being measured, an average
or maximum of the reported values may be sufficient at
the observer. In military fields, where chemical activity or
radiation is measured, the maximum value may be required
to trigger an action or alert the troops. For this purpose, a
data aggregation tree (e.g., a spanning tree) is constructed

- This rescarch has been sponsored in part by NSF grant ANI-0238294
<CAREER) and the Schlumberger Foundation technical merit award.

for in-network aggregation. The tree is rooted at the ob
server, which is the final destination of the aggregate report.
Data aggregation reduces the communication overhead in the
network, thus saving the sensor scarce energy resource. In
addition, aggregation results in less channel contention and
packet collisions. Consequently, data can reach its destination
faster and more reliably.

For large-scale networks, node clustering is proposed for
efficient organization of the sensor network topology. Clus
tering balances the traffic load and resource utilization and
consequently prolongs the network lifetime [2], [3], [4], [5].
In a clustered network, a 2-tier hierarchy is constructed where
cluster heads form an overlay responsible for data forwarding,
while other nodes (which we refer to as "regular nodes")
only report their data to their heads.] Energy savings are
achieved by periodically re-clustering the network to select
more energy-abundant nodes to act as cluster heads, and form
the network routing infrastructure. Rotating the role of cluster
head among nodes also results in keeping the level of residual
energy uniform across the network, thus maintaining most of
the nodes alive for extended periods of time. compared to a
non-clustered network. In a multi-hop, non-clustered sensor
networks, certain nodes may die very quickly because of their
presence on "popular" paths, especially if the node distribution
is non-uniform.

In this paper, we investigate the integration of node cluster
ing and data aggregation trees in a real sensor network setting.
We quantify the impact of using clustering on network lifetime
and number of successfully transmitted measurements. We
consider source-driven applications, where nodes periodically
send reports to a fixed observer (we discuss the case of
mobile observers in Section V). In particular, we consider
an application that uses a data aggregation operator, such
as average (AVG), maximum (MAX), minimum (MIN), sum
(SUM), or count (COUNT). Prior to constructing the data
aggregation tree, the network is clustered to identify a set of
cluster heads that have higher average residual energy than
their peers. Only cluster heads then proceed to discover the
path to the root of the tree (the observer) by constructing a
breadth-first spanning tree. Therefore, a cluster head acts as an
aggregation point for its cluster members, as well as its child
cluster heads in the data aggregation tree.

I A hierarchy can contain more than two tiers by recursively clustering the
higher tier.

(I)

Constructing a spanning tree for data forwarding was pro
posed for multi-hop routing in TinyOS [6], [7], [8]. We use
HEED clustering [2] in conjunction with data aggregation
and integrate it with the MultiHopRouter [9] to implement a
clustered, multi-hop router (iHEED) in TinyOS for data aggre
gation applications. We selected the HEED clustering protocol
because it terminates in a constant number of iterations and
selects cluster heads that are well-distributed in the network
field [2]. This gives HEED an advantage over protocols whose
termination is dependent on network diameter [10], [II], [12],
[13] or dependent on the number of nodes [3]. HEED also
does not require special node capabilities, such as location
awareness, does not assume specific node distribution, and
works correctly when nodes are not synchronized. iHEED
can serve both source-driven (where sensors are periodically
reporting their readings) and data-driven (where an observer
queries the network for some data of interest) applications.
To the best of our knowledge, our work is one of the earli
est implementations and testbed measurements of clustering
protocols in sensor networks.

The contributions of this work can be summarized as
follows:

• Identifying the practical challenges for building an
energy-efficient routing infrastructure in the higher tier of
a clustered network, using the residual energy parameter
as the metric for cluster head selection.

• Designing and implementing the iHEED system, which
integrates node clustering with data aggregation tree
construction.

• Demonstrating iHEED advantages in terms of network
lifetime and successful data transmissions using experi
ments on a testbed of sensor motes [14].

• Giving recommendations for the design of reliable rout
ing systems in the presence of an intelligent MAC layer,
significant packet losses, sleeping nodes, and in hostile
environments.

The remainder of this paper is organized as follows. Sec
tion II gives a brief description of the HEED clustering
protocol [2] and its properties. Section III introduces the
hardware platform used, the class of data aggregation ap
plications considered, the basic challenges in implementing
a clustering protocol in TinyOS systems, and the iHEED
system design details. Section IV gives empirical results of
the iHEED implementation on sensor motes, and the effect of
clustering on network performance. Section V discusses design
and implementation aspects related to deploying clustering in
large-scale networks. Section VI briefly surveys related work.
Finally, Section VII concludes the paper and discusses plans
for system extension.

II. HEED CLUSTERING

In this section, we briefly describe the Hybrid, Energy
Efficient, Distributed (HEED) clustering protocol [2]. HEED
assumes that sensor nodes do not have any special capabilities,
such as being GPS-equipped, and that all n nodes to be
clustered are equally important. The goal of HEED is to

prolong the network lifetime. 2 . To attain this goal, HEED uses
a probabilistic approach to elect cluster heads in a constant
number of iterations. The elected cluster heads must have
higher residual energy than regular nodes (not cluster heads) in
the network. They must also be well-distributed in the network
area to form a uniform routing infrastructure as demonstrated
below.

HEED identifies a set of cluster heads which covers the
entire sensor field. Each node Vi, where 1 ::; i ::; n, is mapped
to exactly one cluster Cj, where 1 ::; j ::; n e , and n e is the
number of clusters (ne ::; n). A regular node must be able
to communicate with its cluster head via a single hop using
an intra-cluster transmission range, R e . Re corresponds to a
power level Pc. Inter-cluster routing uses a higher transmission
range, Rt (Rt > R e), corresponding to a power level Pt. If the
application is source-driven (nodes send periodic reports to an
observer), then a proactive routing approach, such as DSDV
can be used. If the application is data-driven (sensors only
respond to queries), then reactive routing approaches, such as
Directed Diffusion [15] can be used. Inter-cluster routing on
data aggregation trees is the primary focus of this work.

Cluster head selection is based on two parameters: A pri
mary parameter is used to select an initial set of cluster heads,
and a secondary parameter is used to break ties. A tie occurs
when two nodes within range R e from each other announce
their willingness to become cluster heads. The HEED primary
parameter is the node residual energy. We propose a technique
for estimating residual energy during network operation in
Section I1I-e. The secondary parameter can be set to an
estimate of the intra-cluster communication "cost," which is a
function of cluster density or neighbor proximity. For example,
a cluster head with smaller degree may be favored to one with
a larger degree to balance load.

Let the clustering process duration, Tcp, be the time
interval taken by the clustering protocol to cluster the network.
Let the network operation interval, T NO , be the time between
the end of a Tcp interval and the start of the subsequent Tcp
interval. Clustering is triggered every Tcp +TNO seconds to
select new cluster heads. A node initially sets its probability
to become cluster head, C H prob, as follows:

C C
Eresidllal

Hprob = prob X E
max

where Eresidual is the estimated residual energy of the node,
E max is a reference maximum energy, and C prob is a small
constant fraction used to limit the number of initial cluster
head announcements. CHprob is not allowed to fall below a
small probability, Pmin, to ensure constant time termination.

During each iteration, a node arbitrates among the cluster
head announcements it has received to select the lowest cost
cluster head. If it has not received any announcements, it elects
itself to become a cluster head with probability C Hprob. If suc
cessful, it sends an announcement indicating its "willingness"
to become cluster head. The node then doubles its probability
CHprob, waits for a short iteration interval fe, and then begins

"In [2], the network lifetime was deli ned as the time until the Ii rst (last)
node in the network depletes its energy. We consider more practical deli nit ions
in Section IV-S

Fig. I. Cluster head distribution in two scenarios: (I) uniform node
distribution. and (2) non-uniform node distribution

A. ApplicaTion

We consider a class of applications that utilizes in-network
data aggregation. An example application is radiation-level
monitoring around a nuclear plant, where the maximum value
is of particular interest for the safety of the plant and the
surrounding environment. Another example is humidity mea
surement in a field (e.g., for habitat monitoring or cultivation).
In addition, the average temperature is of interest for studying
the best conditions for raising cattle or crop productivity.
Several projects, such as the ZebraNet wildlife tracker [16] or
the Habitat Monitoring on Great Duck Island [17], can utilize
the approach proposed in this work for data aggregation.

We study network support for the basic data aggregation op
erators: AVG, SUM, MIN, MAX, and COUNT. TinyDB [18]
can be directly used on top of our clustered multi-hop network
to provide query processing capabilities and data aggregation
to applications. To assess energy savings, we experiment with
a scenario where sensor nodes periodically sense the medium
and send out their readings. These readings are forwarded
towards an observer (base station) on an energy-aware data
aggregation tree (details are given in Section III-E). Nodes
along the path from the leaves to the root aggregate data by
forwarding only two values: (I) the data value D, which is
the sum in case of AVG and SUM operators, or the maximum
(minimum) in case of MAX (MIN) operator, and (2) the
number of aggregated sensor readings N. An observer can
thus compute AVG by dividing D by N, SUM/MAXIMIN
by using D, and COUNT by using N. In future studies, we

100eo40 60

X·axis[m)

20

20

20

60

oc-.-~~--"---~---'
o 20 40 60 eo 100

X-axis(m)

eo

4{)

4{)

60

eo ~ - -_..-- .L.__ ..

100 r----~~-.--__,

(b) Cluster head distribution
in scenario I

(d) Cluster head distribution
in scenario 2

4{) 60 eo 100

X-axis(m)

20

'~illiii
20 :;;1t-1,.,i-":'-~:f:.~s. SJ:~tl~~"..?.._'~~

o ir~'~~!~~1k~~:dt~~J:
o 20 4{) 60 eo 100

X-axIs(m}

(a) Node distribution in sce
nario I

(c) Node distribution in sce
nario 2

In this section, we discuss the iHEED system in detail.
First, we describe the class of applications studied in this
paper. Although most of our work is useful for configuring any
energy-efficient sensor network architecture, we only consider
data aggregation applications in this paper. Second, we discuss
the challenges of energy-efficient clustering in sensor networks
that affect our design and methodology. Finally, we describe
the hardware platform of motes that we used in this work and
our system design details.

III. IHEED IMPLEMENTATION IN TINYOS

3This is a loose upper bound.

the next iteration. A node stops this process one iteration after
its C Hprob reaches I. Thus, if no announcements are received
by a node until C H prob reaches I, a node will elect to become
a cluster head and will exit the clustering process, raising its
transmission power to R t for inter-cluster communication.

We have shown in [2] that HEED terminates in Niter

0(1) iterations, where Niter ~ ilog2-1-l+1. In addition, the
PTII 'I TI

clustered network remains connected under a certain density
model and when R t 2: 6Rc .1 We have also proven that the
probability of having two cluster heads within cluster range
Rc of each other is very small.

We now demonstrate the independence of the output cluster
head distribution and the node distribution in the field. We ex
periment with two scenarios, where 3000 nodes are distributed
in a 100 m x 100 m field with a cluster range R c = 10m. Cprob

is set to 5%, Emax is set to I Joule, and each node starts with
a random Eresidual that is Uniform[O, I]. In the first scenario,
depicted in Fig. I(a), nodes are uniformly distributed in the
field. Fig. I(b) shows that the elected cluster heads are well
distributed in the network field, with 3-4 nodes in each cell of
20 m x 20 m. This agrees with the cell occupancy analysis
in [2]. In the second scenario, nodes are dispersed such that the
bottom left, top left, bottom right, and top right quarters have
2%, 9%, 9%, and 80% of the nodes, respectively. Fig. I(c)
depicts the node distribution in this scenario. Fig. I(d) shows
the elected cluster head distribution, which is similar to that in
the first scenario. This is because we set the HEED clustering·
parameters here to energy and an estimate of communication
cost which is based on proximity (in addition to the cluster
range). We do not use density or load as primary or secondary
clustering parameters in this experiment. A cluster head VI

in a dense area will expend more energy than another one
V2 in a less dense area because it has to serve more cluster
members. However, this is compensated for by the fact that
VI will elect as cluster head less frequently than V2 because
of the abundance of VI neighbors which compete to carry out
this role. Well-distributed cluster heads are very important for
paths to the observer to be (almost) optimal. There may be a
redundancy in the first or last hop since a node has to send and
receive through its cluster head. Once a cluster head obtains
the cluster data, it forwards the aggregate data towards the
observer, similar to typical multi-hop routing using the same
transmission range. We assume that the observer is situated
outside the network area.

. ;.;plan to incorporate more operators, such as MEDIAN and
VARIANCE, in addition to multi-dimensional data. An initial
study of efficient aggregation for the MEDIAN operator can
be found in [19].

B. Challenges

From the network perspective, energy scarcity is the primary
challenge that drives protocol design. To tackle this challenge,
topology management becomes key for modifying the routing
infrastructure in order to keep most of nodes operational
as long as possible. An empirical study in [4] showed that
periodic node clustering can prolong the network lifetime by
a factor of four (for a specific radio model) compared to
direct communication with the base station. Since nodes are
randomly deployed in the field, their distribution on the ground
can be arbitrary. Thus, some nodes may be on "popular"
paths and rapidly deplete their energy, leaving areas in the
field unmonitored. Periodic node clustering based on residual
energy reduces this effect significantly by electing nodes with
higher remaining energy to perform the more demanding job
of cluster heads, leaving lower-energy nodes to only perform
sensing. Clustering also enables nodes to communicate with
smaller power ranges at the intra-cluster level for more energy
savings. A 2-tier architecture also reduces interference and
collisions if different channels (or CDMA codes) are used for
intra-cluster and inter-cluster communication. Thus, routing
should be based on both shortest distance (number of hops),
as well as remaining energy.

A second challenge for data aggregation applications is
the integration of clusters with data aggregation trees without
degrading path quality. We propose applying HEED clustering
prior to constructing the aggregation tree, and using only
cluster heads to construct the aggregation tree. Therefore,
a cluster head collects and aggregates data from its cluster
members, as well as from its descendants in the aggregation
tree. This organization is demonstrated in Fig. 2. The benefit
of using HEED as the underlying cluster structure is three
fold: (1) whenever clustering is triggered, cluster heads are
elected that have higher residual energy, (2) regardless of how
the nodes are distributed in the field, HEED generates a well
distributed set of cluster heads as shown in Section II. This
helps in maintaining high path quality at the inter-cluster level,
and (3) cluster heads act as initial points of data aggregation,
thus reducing the scale of communications.

A third challenge for energy-based topology management
and routing protocols is the estimation of the remaining
battery energy. One possibility is to inspect the analog-to
digital converter (ADC) for the battery voltage. This may
not be useful because of the coarse granularity of the ADC
result. In addition, the accuracy of the computed ADC result is
not always guaranteed, which means that an erroneous value
may lead to an inefficient choice of cluster head. Therefore,
we compute the remaining energy in the node by using a
simple approach described below. We also exploit the mea
surements provided in [20]. We consider all sources of energy
consumption, and propose a credit-point system (CREP) for
manipulating the mote energy budget during on-line operation

4

,-

• ' , • • • Slalion
......•

Fig. 2. A spanning tree of cluster heads rooted at the base station

of the network.4 In Section III-C below, we give a general
analytic model for CREP computations. Later, we will use this
model for energy monitoring in our Mica2+Mica2dot (motes
from Crossbow [14]) testbed. Note that we are not trying to
propose an accurate CREP system. We are merely computing
a rough estimate of the the remaining energy that can be
computed using a unified methodology across all motes. This
methodology is independent of the ADC hardware.

C. Dissipated Energy Estimmion

Assume that a sensor mote uses a battery with maximum
capacity of A b Amp-hr, and typical average voltage of Vb.

The maximum residual energy in the battery Emax can be
computed as follows:

E71lox = Vb X Ab X 3.6 X 103 Joule (2)

We compute the dissipated energy for various sensor ac
tivities. In a sensor network, a node expends energy in four
main activities: (I) processing, (2) sensing and actuation, (3)
flash memory operations (read/write), and (4) communication
(transmitting/receiving). According to the application, a node
goes through a duty cycle when it performs some of the above
activities and sleeps otherwise. For most applications, it is
possible to accurately determine the active to sleep ratio for
the sensor board since sensing is periodic. Flash memory usage
can also be estimated with some accuracy if it is independent
of the data received. Processor active to idle period ratio can
also be estimated accurately if it is independent of received
data, or can be based on an estimate of the maximum amount
of received data otherwise. This inaccuracy in estimating
the processor consumed energy is negligible since it is well
known that the energy consumed for transmitting/receiving
data is relatively higher than processing energy [21]. The
communication active and sleep periods can be estimated if the
transmission pattern is fixed. However, it is usually difficult to
estimate the amount of received packets during active periods,
especially that the radio remains listening for extended periods
of time if it is part of the routing infrastructure.

Let I po and Ips denote the current drawn by the processor
during the active and sleep periods, respectively. Let I 71lr , I m11l,

4 A query power monitor was also proposed in the TinyDB query proces
sor [18]. Its purpose and approach are different from our needs for the iHEED
system.

TABLE I

MIC A2 MOTE CURRENT CONSUMPTION (ACCORDING TO DATA SHEET)

AND PERCENTAGE OF TIME FOR ACTIVE AND SLEEP MODE (ACCORDING

TO A HYPOTHETICAL APPLICATION)

and 1m " denote the current drawn for memory read, write, and
sleep, respectively. Let I sa and Is" denote the current drawn by
the sensor board during active and sleep modes, respectively.
Finally, let, I rx , I tx , and I es denote the current drawn by the
radio for receive, transmit, and sleep modes, respectively.

Consider the the active to sleep ratio for different compo
nents to be: for the processor R pa : R ps , for the flash memory
R mr : R l1l1r : R 771 " and for the sensor board R sa : R ss . The
effective current I eff per unit time drawn from all components
except the radio can be computed as follows:

I eff IpaRpa + IpsRps + I"aRsa + IssRss

+ I mr R 771r + I 771w R mw + I 771s R ms

ComponentIMode

Processor (active) I po

Processor (sleep) Ips

Sensor (active) I sa
Sensor (sleep) Iss
Flash memory (read) 1m r

Flash memory (write) 1m ,,,

Flash memory (sleep) I ms
Radio (transmit) I tx
Radio (receive) I rx
Radio (sleep) I cs

Current

8 rnA
15 pA
5mA
5 pA
4 rnA
15 rnA
2/-LA
16.8 rnA
10 rnA
I pA

Percentage

J
99
5
95
o
o
100

o

Similarly, the energy consumed for receiving one packet (in
Joule), E rx can be computed as:

Consider a time period to' The energy consumed for all
components other than the radio, Eo, can be computed as
follows: measurement study conducted in [20], and we assume to = I

minute. We extract the rest of the parameters from the Mica2
data-sheet and the MPRJMIB user manual found at [14].

Using the information in Table I, Eo = (8 x 0.01 + 0.015
x 0.95 + 5 x 0.05 + 0.005 x 0.95 + 0.002 x I) x 3 x 60
= 56 mJ. Now assume that during a fa period of I minute,
the sensor transmitted 20 packets of 30 bytes length each.
Therefore, E tx = 16.8 x 3 x 0.0624 x 30 x 8 = 0.75 mJ per
packet. The total transmission time within the fa interval, t Lr

= 0.0624 x 30 x 8 x 20 = 300 msec. Therefore, E rx = 0.01
x 3 x (60-0.3) = 1.8 J.

It is clear from the above calculations that the least energy
(one packet transmission) is better expressed as multiple of I
j.1J. Thus, the points in CREP can be assigned as follows: The
maximum credit limit (battery capacity) = 23760 x 106 points,
Eo = 56000 points, E tx = 750 points, and Erx = 1.8 X 106

points.

D. Platform

The hardware platform we use in this work is the Berkeley
Mica2 and Mica2Dot sensor motes [14] that run TinyOS [6],
[8]. The Mica2 mote has a 7.38 MHz Atmel processor, while
the Mica2Dot has a 4 MHz Atmel microprocessor. Both types
have 128 KB program memory, 4 KB RAM, and 512 KB
non-volatile storage. The two types also have the same radio
properties. The radio is a Chipcon SmartRF CCIOOO, with
916 MHz frequency, FSK modulation with data rate 38.4
kBaud (19.2 Kbps), Manchester encoding, and linear RSSI
(received signal strength indicator). Output power is digitally
programmable by setting the PAYOW register. A minimum
setting of PAj>OW = Ox02 corresponds to a power output of
-20 dBm (10 j.1W), while the default value PAYOW=Ox80
corresponds to a power output of 0 dBm (I mW). In our
experiments, we use the documented power consumption
values from the Chipcon CCIOOO data-sheet.

We also carried out some experiments in our lab to deter
mine the correspondence between transmitted power (the value
of PAj>OW) and the transmission range. The results are shown
in Table II. These measurements were taken when a clear line
of-sight ""'as there between the sender and receiver motes. The
results are usually specific to the environment where they are
carried out. Therefore, we do not recommend these results

(4)

(3)

(5)

If we assume that the radio is always in the receive mode
while it is not transmitting, then E rx should be computed in
a similar manner to Eo. That is, Erx = Vb X Irx x (to - tl:r)'
where ttx is the total time during which the radio was in the
transmission mode. f tx can be computed by multiplying the
number of packets transmitted during a period to by the time
taken for one packet transmission.

Our credit-point system, CREP, assigns points to E 771ax

instead of Joule. To be conservative, these points should be
a fraction of the computed Emax (say 90%). E tx points are
deducted for each packet transmission operation, assuming a
fixed packet length. Every period of time to' Eo points are
deducted for energy consumption of components other than the
radio, and Erx points are deducted for radio receive. To avoid
floating point computations and increase accuracy, points are
integers with a finer granularity than the smallest granularity of
energy consumption. For example, if the smallest granularity
of the computed energy consumption values is in mJ, then
the points are given in multiples of J-LJ.

Example: Consider a Crossbow Mica2 nodes [14] with AA
batteries. A conservative estimate of the AA battery capacity
is 2.2 mA-hr (an average estimate of AA capacity is about 2.4
mA-hr). A Mica2 mote uses two AA batteries with effective
average voltage Vb = 3Y. Therefore, the total energy available
for a Mica2 mote from 2 AA batteries, E max = 2.2 x 3
x 3600 = 23760 J. The current drawn by all components
during active/sleep modes are listed in Table 1. We assume
that the sensors transmit at 0 dBM (I mW). The table also
gives the percentage of time each component is in active and
sleep modes, estimated according to typical data values. The
time per bit transmission is 62.4 J-Lsec as indicated in the

Let Etx be the energy consumed for transmitting one packet
of size k bytes (in Joule), and let tb be the bit transmission
time. E tx can be computed as follows:

TABLE II

TRANSMISSION POWER LEVELS AND THEIR CORRESPONDING INDOOR

MEASURED RANGES FOR CHIPCON RF CC I 000 RADIO ON MICA2 AND

MICA2DOT MOTES

Mote PA-POW Output Range (ft)
power (pW)

Mica2 OxOI S 0.5
Ox02 10 <2
Ox05 32-40 S6
Ox06 50 S8-9
OxOA 100 < 20

Mica2Dot OxOJ S 0.5
Ox02 10 S1-2
Ox05 32-40 S3-4
Ox06 50 S6
OxOA 100 < 10

to be used directly. In addition, the values when PA.POW=I
were not documented. That is why we just report the range
results without specifying any corresponding consumed power
value. From the table, it appears that the Mica2Dot mote
covers smaller transmission ranges compared to those of
Mica2s using the same transmission power levels_ This is
despite the fact that they both use the same radio model and
antenna_ The smaller range may be due to the inability of the
Mica2Dot radio chip to draw as much current as the Mica2
radio_ During our experiments, Mica2Dot motes sometimes
exhibited unpredictable behavior, especially with respect to the
transmission range capabilities. Mica2 motes have exhibited
much more consistent behavior.

E. System Design

In .this section, we discuss the design details of the iHEED
system. iHEED extends the multi-hop router implementation
and functionality in [22] (initially proposed in [9]) by adding:
(I) clustering logic that is executed prior to parent selection
in the routing tree, and (2) a packet capture mechanism in
the router for pushing data up the protocol stack to the data
aggregation application, in case the node is a cluster head. The
schematic design of the iHEED system is depicted in Fig. 3.
The main modules in the multi-hop router are:

The Routing Engine: This module is the main control unit
in the iHEED router. It is responsible for examining whether
the packet should be forwarded on to the parent of the tree, or
pushed up the protocol stack. For setting the next hop in the
packet, the "Routing Logic" module should be consulted. For
data aggregation, the "Routing Engine" module in a cluster
head intercepts incoming packets from its cluster members or
its descendants in the aggregation tree and pushes them up the
protocol stack. The application can thus manipulate this data
according to its own logic. This module is independent of the
routing mechanism, and is responsible for sending out packets
coming from the application layer.

The Routing Logic: This module is responsible for pro
viding a routing algorithm for data forwarding. It is there
fore responsible for structuring the network into a connected
graph, maintaining information about neighbor nodes in a
neighbor table, and sending routing update messages for tree
construction and maintenance. The "Routing Logic" consists

6

of two main sub-modules: (I) the Clustering Logic which
implements the clustering algorithm used to select a set of
connected cluster heads. Aggregation tree construction follows
network clustering, and considers only cluster heads in the
routing infrastructure, and (2) the Parent Selection module
which is responsible for estimating the link cost for each
neighbor based on the "quality" of communications and its
proximity to the base station. Thus, a cluster head can deter
mine the "best" parent in the aggregation tree. The quality of
communication can be determined by considering data losses
and link symmetry [9]. For example, a cluster head v having
a neighbor 'U I that is 4 hops away from the base station, and
another neighbor '112 that is 6 hops away from the base station
may prefer '112 to '111 as its parent if the loss rate for '111 exceeds
a specified minimum requirement. Each node maintains an
internal estimate of the data sent and received from each of
its neighbors to record the link quality to each of them.

Application

~~~~~lr ~~~t- - - - - - - - - - - --~~~;~~-~~~;~ --

parent I Parent I
Routing Selecti~

Engine energy tcluster
monitor head

cluster head I
I
Clust~ring

'--_----' energy monito LogiC

Fig. 3. Schematic diagram of the iHEED system

We now describe the details of incorporating HEED into
the routing infrastructure, the process of energy monitoring,
and the methodology for tree aggregation.

1) Cluster formation: The initial proposal of the multi
hop router in [22] includes a timer (Timer I) used for sending
out routing updates and triggering new routing computations.
We augment the Routing Logic module with two additional
timers to serve the clustering process: (I) clustering trigger
timer (Timer2), which is triggered every Tcp+ TNo interval
(defined in Section II), and (2) clustering iteration timer
(Timer3), which is triggered every few seconds to start the next
iteration of the clustering process. The number of iterations,
Niter, was computed Section II. When Timer2 expires, a node
declares that it is not a cluster head (NON_CH) and it has
no parent. At that point, we proceed to initialize a table of
neighbors that are final cluster heads (FINALCH). This table
is used to arbitrate among final cluster heads within the cluster
range, after Niter iterations have been executed. Timer2 then
triggers Timer3 to start iterating so that the node competes for
cluster head candidacy. Whenever Timer3 expires, the steps
discussed in Section II are followed in order to elect a cluster
head or join a cluster.

During the clustering process, information about node can
didacy for becoming a cluster head is embedded within a
routing update message, along with the secondary cost used by
the HEED algorithm. If the node elects to become cluster head,
a routing update message is forced out by asynchronously
triggering Timer! to rapidly inform the neighbors. After the



clustering process ends, routing update messages continue
carrying information about a final cluster head to aid nodes
that are newly deployed or have been sleeping for an extended
period of time. After a node u. elects a cluster head v, it
invokes a method "joinClusterHeadO" to use this head as its
parent. This process is successful only if: (I) the link between
u. and v is symmetric using the intra-cluster range, and (2)
11 was able to find a path to the root, i.e., has determined
its position in the aggregation tree. The pseudo-code for
clustering logic initialization and timer actions is included in
Fig. 4. For brevity, we do not detail the entire pseudo-code
of the clustering process that is executed in Timer3.ExpireO
since it can be found in [2].

2) Clustering iteration interval tc: The clustering itera
tion interval t c should allow neighboring nodes (within the
cluster range) to exchange information about their status if
they elect to become cluster heads. Three main parameters
drive the choice of t c : (I) the packet transmission time, t p , (2)
the number of neighbors n g , and (3) the delays due to retrans
missions, propagation, and queuing. Assuming that packets
are lost with probability p, then r1~p1 transmissions will be
required for successful packet transmission. The transmission
interval should be multiplied by a constant cq to account for
propagation and queuing delays. Therefore, t c = n g x tp x
r1~p1 x cq . For example, if tp = 15 msec (as computed in
the example of Section III-C), n g = 50, p = 0.15, and cq = 6,
then tc should be set to 9 seconds.

3) Triggering the clustering process: The clustering pro
cess is triggered by timer expiration as described above. For
efficient clustering, nodes should start the clustering process
simultaneously. This is difficult in practice because clock drift
causes the network nodes to be unsynchronized. Therefore, we
use a simple approach to asynchronously trigger the clustering
process in the network. A cluster head v whose Timer2 has
expired immediately broadcasts a routing update packet to
its cluster members and its neighbor cluster heads in the
aggregation tree. The message contains information that v
is not a cluster head anymore (NON_CH). Upon receiving
this message, cluster members with v as their cluster head
trigger their clustering process by re-initializing their Timer2.
This is shown in the RoutingLogic.Receive(pkt) method in
Fig. 4. In addition, neighboring cluster heads immediately
trigger their cluster members and neighbor cluster heads and
so on. Hence, the clustering process diffuses through the entire
network, though certain regions start slightly earlier than their
neighboring regions. A node whose Timer2 expires before it
receives a trigger from its cluster head starts the clustering
process independently. If its cluster head Timer2 still does not
expire before all the clustering iterations are executed, then
the node will likely elect the same cluster head again, given
that their link is still symmetric. In addition, a node within its
clustering process ignores any received cluster trigger packets.

The fine granularity of packet transfer (msec per packet)
and the coarse granularity of a clustering iteration (seconds)
allows the network to rapidly converge to a stable state. For
example, for a network of 100,000 nodes and average cluster
size of 100 nodes, the worst case diameter is linear in the
number of cluster heads, i.e., 100,000/1 00 = 1000 hops. For

Fig. 4. The iHEED system pseudo-code: Mulli-hop rouline

RoutingEngine.Send(pkt) (application packet)
I. IF (jorv.·ardBufferLisl is nor full)

2. Send(pkr)

3. EnergyMoniror.reduceRemainingEnergy(SEND_OP)

RoutingEngine.Receive(pkt) (application packet)
I. IF (pkr.nexrHopAddress = myLocalAddress)

2. signal packerlnrercepr(pkr)

3. Forward(pkr)

4. Else Snoop(pkr) II save informarion abour sender

5. EnergyMoniror.reduceRemainingEnergy(RECEIVE-OP)

ForwardO
l. IF (jorv.:ardBufferLisr is full) rerum FAIL

2. nexrHop <- Consull RouringLogic

3. Send(pkr)

4. IF (nexrHop I' myLocalAddress)

5. EnergyMonilor.reduceRemainingEnergy(SEND_OP)

RoutingLogic.InitializeO
I. Inirialize neighborTable

2. myParenr <- NULL

3. inClusleringProcess <- NULL

4. Timerl <- Timer(ROUTING_UPDATEJNTERVALj

5. Timer2 <- Timer(CLUSTERING_UPDATEJNTERVAL)

II Timerl expirarion rriggers rouling updares

event Timer2.ExpireO //(c1ustering triggered)
I. inClusleringProcess <- TRUE

2. mySrale <- NON_CLUSTERHEAD

3. myT!;.nraliveCluslerHead, myFinalCluslerHead <- NULL

4. Compure CH _prob as in Eq. I

6. sendRouleUpdale()

7. seIRFPower(lNTRA_CLUSTER...POWER)

8. TimerJ <- Timer(lTERATIONJNTERVALj

event Timer3.ExpireO
II C1usrering logic goes here.

II TimerJ is re-Iriggered Niter-I limes

II Cluslering done: inClusleringProcess=FALSE,

II RFPower=INTER_CLUSTER...POWER

RoutingLogic.Receive(pkt) (routing update packet)
I. updaleNeighborlnfonnarion(pkr.address)

2. IF (inClusreringProcess)

3. updale myTenrariveCluslerHead and myFinalCluslerHead

4. ELSE IF (pkl.address=myFinaICluslerHead and pkl.slale
NON_CLUSTERJiEAD)

5. signal Timer2

6. EnergyMonilor.reduceRemainingEnergy(RECEIVE-OP)

EnergyMonitor.reduceEnergy(deductionReason)
I. IF (deduclionReason = RECEIVE-OP)

2. 10raiEnergy <- 10raiEnergy - RECEIVE-COST

3. ELSE IF (deduclionReason = SEND_OP)

4. 10raiEnergy <- roralEnergy - energyCosl(geIRFPower())

II Orher deduclion reasons go here.



a transmission speed in the order of msec, the entire network
can be triggered in the range of a few seconds. This is within
the granularity of one or two clustering iterations. It is not
important, however, that the entire network is simultaneously
re-c1ustered. As long as every set of neighboring regions
can start re-c1ustering within msec time difference (which
corresponds to the granularity of one-hop inter-cluster packet
transmission), the network can still function correctly. Observe
also that triggering clustering does not require any additional
overhead from a cluster head, except for a routing update
message. For a realistic scenario where the battery lifetime is
in the range of months and loads on cluster heads are balanced,
the clustering process can be triggered at a coarse granularity,
e.g., hours.

4) Energy monitoring: An energy monitor interface is
added to the multi-hop router to manage the CREP system and
provide information on the remaining energy to the clustering
logic. The remaining energy is used as the primary parameter
in probabilistic cluster head election as described in Section II.
Points are deducted for data packet transmission, routing
update packet transmission, radio receive, and energy con
sumption of other components. The conservative assignment
and computations of points causes the CREP system to lose
all points while the battery is still operational. This is handled
well by the clustering logic, which uses a minimum probability
for ejecting cluster heads when the remaining points are close
or equal to zero.

Fig. 4 gives pseudo-code for the energy monitor. For radio
receive, RECEIVE-COST points are deducted from the battery
capacity. This cost may be fixed if the receive pattern of the
radio is known. Otherwise, it will depend on the receive inter

.val. For packet transmission, the cost is computed according
to the power setting of the RF radio. Smaller current values
drawn for the shorter clustering range result in lower consumed
energy, and hence fewer deducted points.

5) Tree aggregation: A cluster head aggregates the data
packets received from its cluster members or tree descendants,
and sends the aggregated value up to the root. To achieve this,
we bind the packet interception at the Routing Engine with
that of the application, thus pushing data up the protocol stack.
The application manipulates data according to the aggregation
operator, increments the count of data packets it has received
within the epoch of time since its last send operation, and for
wards the aggregate when the send timer (appTimer) expires.
Fig. 5 gives the pseudo-code for the application in the iHEED
system. Data aggregation occurs when the packetlntercept(pkt)
event is triggered.

Fig. 6 depicts a detailed description of the iHEED system.
The figure is an extension of the MultiHopRourer in [22].
RoutingLogicM is the module that contains the clustering,
and link estimation and parent selection (LEPS) algorithms.
We show the new timers added for clustering, the use of the
energy monitor interface, and the application interface with
the Routing Engine to intercept packets coming to the node
if it is an elected cluster head. The EnergyMonitor interface
is also used by the Routing Engine to inform the application
whether the battery is still operational. This information is
currently not exploited in our application, except to stop data

Fig. 5. The iHEED system pseudo-code: Application
InitializeO
I. TA <- APPLlCATiON1lMEKRATE

2. appTimer <- Timer(TA)
3. collectedData <- 0

4. numCollectedPoints <- 0

StopO
I. appTimer.Stop()

2. ApplicationConlrol.Stop()

event appTimer.ExpireO
I. reading <- data from ADC (sensing)

2. iF (node is cluster head)

3. collectedData <- colleetedData + reading
4. numColleetedPoints <- numColleetedPoints + I

5. ELSE

6. collectedData <- reading

7. numCollectedPoints <- I
8. sendData()

9. IF (node address i= BASESTATJON)
10. collectedData <- 0

I I. numCollectedPoints <- 0

sendDataO
i. nextHop <- multihopRouter.getParent()

2. Send Packet(colleetedData, numCollectedPoints) to nextHop

event packetIntercept(pkt)
I. IF (node is cluster head)

2. collectedData <- collectedDara + pkt.colleetedData

3. numCollectedPoints <- numCollectedPoinls +
pkt.numCollectedPoinls

transmission. In future applications, the energy monitor can
supply the application with valuable information about the
battery status, which can be used for notifying neighbors of
possible death in the near future, and adjusting the rate or
range of transmission.

The Comm interface, illustrated in Fig. 6, is responsible
for packet capture and transmission. The Message ID is
used to identify whether the packet is an application packet
(AMAPPMSG) sent through the Routing Engine module, or
a routing update packet (AM-MULTIHOPMSG) sent through
the RoutingLogicM module. The QueuedSend interface is
responsible for buffering the packets to be sent in sequence.
Details of these interfaces can be found in [23]. iHEED adds
about 420 lines of code to the MultiHopRourer [22]. The
packet size used is 29 bytes, which is the default in TinyOS.

IV. SENSOR TESTBED MEASUREMENTS

In this section, we evaluate the iHEED system on a testbed
of Berkeley (Crossbow) Mica2 and Mica2Dot sensor motes.
Our performance metrics are: (I) the sensor network lifetime,
(2) the number of successfully transmitted measurements, and
(3) the overhead incurred by certain nodes (as described later).
We start by describing our experimental configuration. Then,



9

Application
InlerceplMsg

(lor cluster heads) EnergyMonilof Timer

Fig. 6. Multi-Hop routing with clustering, aggregation. and energy control (an
extended version of [22]). Arrows show interface provider/user relationships

Fig. 7. The network testbed used in the experiments.

G2---
..4'S .... Mica2

Mica~ ~.- ~;---- ------.../··~·2\

____....1 G~·.~}~/
1 /Oata

Obstacles / transfer

Mica2Dot I I'
~7~'''. A..: ~~

_ 8 09': ;.

·····..~1'O_--.· ~3 - --- ~c Observer

~

in the tree or a cluster head. According to the speed of
the clustering process and the rate of data reporting, the
observer received aggregated reports from different regions
in the network. This ensures that no data is lost during the
clustering process. Using the clustering iteration interval and
the initial clustering probability given above, the clustering
process takes approximately one minute with a reasonably
charged battery. In scenarios where the minimum CHprob

= 0.00 I, the clustering process takes close to 2 minutes. In
real scenarios, clustering typically will be triggered every few
hours hours, and data reporting will be triggered on the order
of a few minutes. This implies that the clustering process is
within practical delay bounds for applications.

We run experiments on the network using our simple
CREP system presented in Section lll-C. We use values of
drawn current from a recent measurement study on the Mica2
radio [20]. For PA...POW = Ox02, the drawn current = 5.3
mA, and for PA...POW = Ox06. the drawn current = 6.7
mA (approximately). The intra-cluster energy consumption
E1 = 5.3 x 3 x 62.4 x 29 x 8 = 230 p,J, and similarly
the inter-cluster energy consumption E 2 = 29 I p,J. Thus, we
assign points in multiples of I pJ. We evaluate the iHEED
system by comparing the performance of a data aggregation
application using two different approaches. One approach
uses a multi-hop routing tree with no clustering (which we
refer to as "COLLECT"), while the other uses a multi-hop
routing data aggregation tree with node clustering (iHEED). In
COLLECT, the latest implementation of MultiHopRouter for
TinyOS [22] is used and augmented with an application that
collects data at the base station. In the iHEED system, a cluster
head v aggregates data packets from its cluster members and
its descendants in the aggregation tree. When its appTimer
expires, v sends one packet representing the aggregated data
(including its own reading) to its parent in the tree.

For deducting points in this application, three issues must be
taken into consideration. First, processor energy consumption
can be assumed to be similar in the two evaluated approaches.
This is because the main processing overhead is in maintaining
the routing table and preparing routing updates. The clustering
process is infrequently invoked, and it involves exceedingly
simple operations, except for the random number generation
in case no cluster head announcements are heard. Second, we

P'QVidef Oefn User
Name ----+ Name

'-------.I Snoop

Interface

Inlercept

Configuration :_-_-_-:Module 0

we evaluate each of the above parameters by running a set of
experiments under different battery capacities. We summarize
our findings at the end of the section.

: MultihopEngineM """So'''' RoutinglogicM
:~ CommSldCon\rol RouleSelect RouleConlfol RouteSelec\

: _ RouleSeleclCnU RouleControl

:~ ~r Commc"Ho' S"bC"'''~1SldControl SldCoRlrol

.~ ~I """"M"O S"'M,,O IdC"Ho' "''''''M', S,,'M,.

:~ -~----: II :-----iL-------: dj d)
~:, ,~~:~L1 ::: :~:u:e:;:d:~e:n:d: :::: Ji. ~ ~ _

~ :!

A. Experimental Configuration

Our network setup is illustrated in Fig. 7. We conduct
indoor experiments in a computer lab. We use 6 Mica2 and
4 Mica2Dot sensors distributed in an area of about 18 ft x
12 ft. The base station is also a Mica2 sensor attached to a
MIB510 programming board, which is connected to the serial
port (COM4) of a Pentium-III desktop running Windows XP.
The configuration of the motes is described in Section III-D,
and the electric current consumption for different components
is given in Table I. Let G 1 be the set of nodes {I ,2,3}, G 2 be
the set {4,5,6}, and G3 be the set {7,8,9,10}. The nodes in
each set are located within a circular area of 1.5 ft diameter.
The average distances between the observer and G 1 , G2 , and
G3 are 6 ft, 15 ft, and 4 ft, respectively. G t and G 2 include
Mica2 motes, while G3 includes Mica2Dot motes. We place
the set G 2 behind one of the lab partitions to create an obstacle
and leave no line-of-sight between this group and the base
station. This necessitates multi-hop communication between
G 2 members and the base station through G 1 members. There
are also a few small obstacles between G 3 members and the
base station. However, the pulses from that set can typically
reach the base station because of their proximity.

We use the following parameters: Cprob = 0.03, clustering
iteration interval length (tc) = I I seconds, routing update
frequency = 6/min, route recalculation frequency = 2/min,
INTRA_CLUSTER...POWER = -20 dBm (PA...POW register
= Ox02), INTER_CLUSTER...POWER = -13 dBm (PA...POW
register = Ox06). The data rate is 0.5 pkts/sec, i.e., the appTi
mer timer of the application expires every 2 seconds. When
the clustering process is in progress, each node aggregates
its own data and does not send it out until it finds a parent



10

60

50 iHEED. CI=6 min. --
iHEED. CI=9 min.

U> 40 COLLECT
Q)

'5
cg 30
Q)

E 20i=

10 .. '

"

0
150 200 250 300 350

Credit points (x 1000)

60

50 iHEED. CI=6 min. --
iHEED, CI=9 min.

U>
COLLECT

~
40

c

I 30
Q)

E 20i=

10

0
150 200 250 300 350

Credit points (x 1000)

Fig. 8. The network lifetime defi ned as the time until fi rst node death

Fig. 9. The network lifetime defi ned as the time until the network gets
disconnected

We can also see that the network lifetime is longer for the
smaller CI interval. This is attributed to the fact that more
frequent clustering tends to distribute energy consumption
more evenly among nodes. This is further supported by the
fact that our clustering protocol has low overhead.

C. Successful Transmissions

The goal of clustering is to prolong the network lifetime,
Node clustering may, however, result in data loss during tran
sient periods of network re-c1ustering. In this experiment, we
measure the number of successful transmissions. Successful
data transmission indicates that a sensor reading is carried
to the root of the tree. In iHEED, the packet containing this
reading does not appear at the root. Instead, the reading is
aggregated at the parent (cluster head) of this node and is
propagated all the way up to the root. Since the number of
these aggregated sensor readings is reported and updated in
each packet going to the root, then it is possible for the root
to compute the number of successful transmissions.

Fig. 10 depicts the number of successful transmissions
for the iHEED and COLLECT approaches. Using clustering
and data aggregation improved the successful transmissions
by at least a factor of 2. This is a direct consequence of
the prolonged network lifetime. The figure also illustrates

fact: node death in a clustered network speeds up after the
first node death. This is obvious since clustering balances
energy consumption among nodes. We have noticed that in
some cases. the entire set G 1 dies within a period of a few
seconds.

assume that the sensor radios are either: (I) in the receive
mode if they are not transmitting, or (2) synchronized for
sleep and wakeup, as in TinyDB [18] (see Section V for
a discussion of the node duty cycle). In either case, the
energy consumed in reception is independent of the number
of received messages. Third, our application does not require
flash memory operations (i.e., zero energy consumption for
this component). Therefore, the main parameters contributing
to energy consumption in this application are the number
of transmitted packets and the power level used for packet
transmission.

In our experiments, we assign the initial battery capacity as a
fixed number of points (e.g., 200,000). For a clustered network,
we deduct 230 points for each intra-cluster communication,
and 291 points for each inter-cluster communication. We as
sume that nodes in the COLLECT approach use a transmission
range similar to the inter-cluster range of the iHEED system.
Below, we present a performance comparison of the iHEED
and COLLECT approaches. For iHEED, we perform our
experiments at two different inter-clustering intervals (CIs).
where CI is the interval between two successive Timer2
expirations (clustering trigger). We examine CI = 6 min, and
CI =9 min. Different clustering intervals have different effects
on network lifetime and overhead as described below.

B. Network Lifetime

There are several possible definitions of network lifetime.
The most common definition is the time until the first (last)
node in the network depletes its energy. In a multi-hop
network, network connectivity is the primary determinant of
network lifetime. That is, if in the set of nodes V, only a
subset of the nodes V' E V can reach the observer in one hop
(full-duplex), then the network practically "dies" when nodes
in V' deplete their energy because of disconnection from the
observer. Therefore. network lifetime in multi-hop networks
can be defined as the time until the first (last) node in V'
depletes its energy.

Using the above definition and our configuration illustrated
in Fig. 7, the set G j = {1,2,3} represents the V' subset
of critical nodes. This is because the G2 members cannot
reach the observer except through G j . We observed that G3

sometimes also reach the observer through G j because of the
small obstacles between its members and the observer. Hence,
we measure the network lifetime in our application as the
lifetime of nodes I, 2, and 3.

Fig. 8 shows the network lifetime for the first node death
definition for the application with and without clustering and
data aggregation. Results indicate that the first node death
is delayed by a factor of up to 4 with the iHEED system.
This significant improvement is attributed to the periodic re
clustering of the network that pushes each node in and out
of the routing overlay to reduce its energy consumption.
Fig. 9 shows the network lifetime for the second definition
(last node dies). The figure illustrates that the observer in
the iHEED system remains connected to the network at least
twice as much when no clustering is applied. This order of
magnitude difference in the two cases indicates an important



II

that different clustering intervals do not result in significant
differences in the number of received transmissions. This is a
bit surprising since the network lifetime is a bit longer for
the smaller CI. The longer lifetime advantage is balanced,
however, by the fact that frequent clustering may result in
data losses during tree construction. This effect is minimal in
our iHEED system because a node aggregates its data without
sending that data until a cluster head is found. A cluster head
also aggregates the data it is receiving until it finds a parent
in the routing tree.

Fig. 10. The number of successful transmissions

iHEED, CI=6 min. -
iHEED, CI=9 min.

COLLECT·
.. / .....

1.2 "---~----Ci~HE=D'--,C""I--:=6:-m-"in~.-_-_-_---,
iHEED, CI=9 min.

COLLECT-Node 1
COLLECT·Node 2
COLLECT-Node 3

"0 0.8
'"Q)

~ 0.6 V:··"·· .....•......._ _~'""--."C"-~!:._ -. -,'1
~

;fl 0.4

packet forwarding operations in iHEED: only cluster heads
forward aggregate measurements. In addition, the clustering
process only requires a few routing updates to carry cluster
head announcements. Therefore, routing update is the main
overhead in iHEED. In this experiment, we report the maxi
mum overhead on any node in G I using iHEED, and compare
it to the overhead of each node in G I using COLLECT. Fig. 12
shows that the maximum overhead in iHEED is less than one
half of the average overhead in COLLECT. This is expected
since packet forwarding in COLLECT consumes significant
energy from nodes in the critical set. In the COLLECT
experiments, most of the nodes that cannot directly reach the
base station tend to use the same parent in the tree. This results
in quickly depleting energy from this parent, which explains
why the first node death in COLLECT is much faster than that
in iHEED.

350200 250 300

Credit points (x 1000)

10000

"'c:
80000

.~

.~
6000c:

;g
:2 4000
~
Q)

8
5l 2000

"
0

150

Fig. 11. Network throughput (packets/sec) measured at the observer

350200 250 300

Credit points (x 1000)

o '----__~ ~__~_---.-J

150

Fig. 12. Overhead of tree construction. tree maintenance, and clustering

0.2 l==~_~====...T•. =O"'..cc...=0.::C...=::I.

E. Summary of Experimental Results

Our experiments indicate that integrating clustering with
data aggregation results in significant performance improve
ments. The network lifetime is prolonged by a factor of up to
4 for the first node death definition, and a factor of 2 for the
network disconnection definition. The number of successful
transmissions is approximately doubled, while the throughput
is similar to that of COLLECT. The average overhead imposed
on the critical nodes in iHEED is about half of that of
COLLECT.

Note that these results represent small-scale experiments in
which the cluster head to regular node ratio is 1:2 to I :3. We
expect more significant performance improvements for larger
cluster sizes.

iHEED, CI=6 min. -
iHEED, CI=9 min.

COLLECT

4

L> 3.5
Q)

~

~
3

.e 2.5
5
B- 2'"::>
~ 1.5f-

1
150 200 250 300 350

Credit points (x 1000)

Although the successful transmissions in iHEED signifi
cantly outnumber those in COLLECT due to the prolonged
network lifetime, it is also important that the network using
iHEED provide a consistent throughput comparable to that of
COLLECT. We compute the network throughput by dividing
the total number of packets successfully received at the root by
the network lifetime. Fig. II shows that the average throughput
in iHEED is indeed comparabl~ to that of COLLECT.

In our iHEED experiments, we noticed that data aggregation
sometimes contributed more than clustering to the lifetime and
throughput improvements. This is primarily attributed to the
small-scale of our testbed. We expect the clustering effect to
be dominant in large-scale networks.

D. Overhead

The overhead in our application is defined as the energy
consumed for routing updates, clustering, and data packet for
warding toward the root of the aggregation tree. We compare
the overhead imposed on the critical nodes {I ,2,3} for the
iHEED and COLLECT systems. Note that there are fewer data

V. NODE CLUSTERING IN LARGE-SCALE NETWORKS

Our testbed experiments use only II nodes (including the
base station), as other motes available to us (older and newer
models) do not intercommunicate with Mica2 motes. In this
section, we consider issues related to deploying node cluster
ing in large-scale sensor networks. In particular, we discuss (1)
network robustness and resilience in harsh environments, (2)
how packet losses, mobility of observers, and the node duty
cycle affect the iHEED system, (3) how clustering provides
an opportunity for spatial-reuse, thus increasing the network
capacity, and (4) scalability of routing in a clustered network.



We give recommendations for future extensions of iHEED to
cope with different conditions and scenarios.

Fault-tolerance: iHEED operates best in environments
where node failures are mainly due to energy depletion. In
hostile environments, such as military fields, nodes may be
destroyed due to other reasons, such as explosions. At the
inter-cluster level, iHEED can easily handle such conditions
by exploiting the routing updates for tree maintenance. At
the intra-cluster level, however, a regular node needs to keep
exchanging heartbeat messages with its cluster head to be able
to detennine whether it is alive. Upon detecting cluster head
failure, several actions can be taken. The simplest action is
that the node switches its state to cluster head and discovers its
inter-cluster neighbors. This is not a favorable solution because
it will be taken by all the nodes of the cluster of the failing
head. Another solution is for a node to go through a cluster
head discovery phase (as newly deployed nodes do) to join
an operating cluster head. If the environment is very harsh,
multiple cluster head overlays can be constructed to provide
backup routing infrastructures, as proposed in [24].

Resilience to adversary attacks: Constructing a routing
tree and clustering a network is vulnerable to many adversary
attacks [25]. For tree construction, an adversary can send false
routing updates with a strong signal to trick nodes into false
shorter paths to the observer (the HELLO flood attack). The
same attack can be applied to trick nodes into selecting a
bogus cluster head that has a very low cost. iHEED is not
susceptible to this attack since a node typically selects a
parent based on link symmetry estimation, and not just the
received signal strength. That is, assume that during clustering
the adversary A uses a transmission range Ra , and a node
v uses the clustering range R e , where R e < Ra . Through
exchanged routing updates, v will realize that A can not hear v
signals, and thus does not consider it to be a viable parent. The
problem of false routing updates in general requires message
authentication. Problems with compromised nodes are much
harder to defeat. Most approaches to handle this problem
propose in-network collaboration to detect the compromised
nodes [26].

Effect of packet losses: The clustering protocol imple
mented in iHEED is resilient to packet losses during the
clustering process. Packet losses, however can lead to less
efficient choices of cluster heads. This effect is mitigated
by the number of iterations that HEED clustering takes. For
example, assume that each packet has a probability p of being
lost. If a node v announces its willingness to become cluster
head in iteration N i , where Niter - N; = 2, then the probability
that neighbor u will not hear this announcement is p3. This is
because a node re-sends this announcement in each remaining
iteration, and packet losses during these iterations are typically
independent.

Sleeping nodes: If the radio of a sensor node has to be
on for extended periods of time for data relaying, this may
result in significant energy dissipation, as we have discussed in
Section II1-C. To mitigate this problem, the radio of the sensor
should go through a duty cycle that involves a power save
mode (sleep mode). This was addressed in TinyDB [18). where
nodes in the tree synchronize their radio sleep and wakeup pe-

12

riods to reduce energy consumption. Synchronization accuracy
may be critical, however, to avoid data losses. If nodes are not
synchronized or data transmission is asynchronous, then nodes
involved in the routing infrastructure have to be listening most
of the time. Such energy dissipation is significantly scaled
down when a clustered network is used. This is because nodes
other than those in the cluster head overlay can go through
their duty cycle independently and report their readings to
their heads whenever they are awake. Since the number of
regular nodes in the network is at least an order of magnitude
larger than that of cluster heads in typical cases (reasonably
dense network and reasonable power levels), this will lead to
tremendous energy savings.

Mobile observers: Node mobility may increase the over
head of tree maintenance. Node clustering, however, is in
dependent of the mobility of the observer (the root of the
aggregation tree). In order not to spend significant network
resources maintaining the tree to keep up with the pace of the
observer, an alternative approach can be used to collect data.
An application defines two routing modes in the network: (I)
the multi-hop tree mode (which we described in this work) and
(2) the reactive routing mode, which uses techniques such as
dynamic source routing (DSR) or Directed Diffusion [15]. An
observer can select a fixed cluster head in the network as the
tree root for data collection as it moves in the field. Then, by
using the reactive routing mode, the observer can query this
root later for data update. This facilitates constructing only one
tree for data collection, while being able to pull data from
that tree anywhere in the field at any particular time. The
SEAD protocol [27] proposed a more flexible approach for
non-clustered topologies. In SEAD, the observer can join an
already existing data dissemination tree through any node on
the tree (which is called an access node). SEAD uses minimum
energy paths to collect data from the delegated access node
for further energy savings.

MAC layer and network capacity: Using shorter transmis
sion ranges and enabling multi-hop communication can signif
icantly increase the network capacity. However, interference
remains problematic even in multi-hop networks when node
density is high. One effective approach to avoid interference
is to assign different CDMA codes or use different channels
for transmission to maximize parallelism. This is difficult
in our distributed ad-hoc environment, though. Fortunately,
the clear distinction between inter-cluster and intra-cluster
communication can alleviate the interference between the two
communication types by assigning a different code for each.
In case the cluster sizes are small, nodes can be synchronized
with their cluster head (e.g., using the RBS protocol [28]) and
a TDMA schedule can be used for intra-cluster communica
tions.

Scalability versus complexity: Scalability is the primary
goal for dense sensor network applications. Constructing a
hierarchical structure, as in iHEED, helps reduce the com
munication overhead and save resources but at the expense
of increasing processing and memory overhead. We conjec
ture (Section IV) that the clustering overhead in iHEED is
insignificant in terms of both processing and memory. This is
true for data aggregation applications, but may not be justified



for applications where nodes are cheap and easily replaceable,
or applications where redundant deployment can effectively
overcome any node failure.

VI. RELATED WORK

TinyOS [23], [6], created at UC Berkeley, was proposed
as the operating system for small sensors. TinyOS provides
network abstractions to facilitate communications. For single
hop communications, the active messages abstraction has been
used for identifying message types and triggering actions
based on this identifier [29]. For multi-hop communications,
several approaches were proposed, such as tree routing, ad
hoc routing, and broadcast and epidemic protocols [7]. Tree
routing is the most suitable for data aggregation. TinyOS
beaconing (AMROUTE) is the earliest tree routing proposal
for TinyOS in which the root sends periodical beacons to
construct the routing tree. Non-beaconing multi-hop routing
was later proposed and implemented in TinyOS, e.g., rnh6 [22]
and its MultiHopRouter implementation.

Data aggregation is crucial for several applications. An
evaluation of the impact of data aggregation on energy conser
vation in sensor networks was presented in [30]. TinyDB [18]
and Cougar [31] were proposed for efficient database querying
and aggregation in sensor networks. TinyDB focuses on the
same class of operators (AVG, MAX, etc.) as in this study.
(These operators were also the focus of other studies, such
as [32], [33].) TinyDB assumes that nodes synchronize their
sleep and wakeup periods for power management. TinyDiffu
sion [34] is the implementation of Directed Diffusion [15], a
protocol that matches observer interests with sensor published
data. TinyDiffusion also exploits in-network data aggregation
as necessary. Both TinyDB and TinyDiffusion are designed to
serve data-driven applications, where the observer queries the
network for specific data of interest. Our approach provides
networking support for both source-driven and data-driven
applications, and thus can be used to construct an underlying
structure for both TinyDB and TinyDiffusion.

Support for other aggregation operators, such as median
and histograms, is considered in [19]. In [35], a schedule
is computed for collecting and aggregating data in order
to maximize the network lifetime. This work is extended
in [36] to use clustering in order to scale down the overhead.
AIDA [37] studies application-independent data aggregation
and proposes a mechanism for concatenating network units
using an adaptive feedback scheme. AIDA was evaluated on
Mica motes and was demonstrated to reduce the end-to-end
transmission delay by 80%. ESPDA [38] uses clustering to
discard redundant data before being forwarded to the observer.
If the data is encrypted, the cluster head just discards similar
patterns. SEAD [27] proposes fixing aggregation points in the
network. A mobile observer can access aggregated values by
querying any nearby node (access point) on the aggregation
tree. Aggregation timing policies are studied in [39] in order to
evaluate their impact on the accuracy of aggregated data. The
work in [40] proposes a mechanism for selecting the minimum
number of aggregation points in the network in order to save
energy consumption.

13

Several clustering protocols have been proposed for ad-hoc
and sensor networks over the last few years, including [4], [2],
[5], [10], [41]. Another recently proposed approach is [42],
which selects a dominating set of nodes that covers the
entire network area. The effect of different communication
paradigms (single hop versus multi-hop) on the performance
of clustering protocols is studied in [43]. Approaches that
perform routing in clustered ad-hoc networks while supporting
mobility can be found in [44], [13]. To the best of our
knowledge, our work is one of the earliest implementations
and testbed measurements of clustering protocols in sensor
networks.

VII. CONCLUSION

In this paper, we presented iHEED, a system that integrates
node clustering with data aggregation trees in sensor networks.
Our approach prolongs the network lifetime, reduces con
tention on the communication channels, and rapidly aggregates
and relays data to the observer. We proposed a simple credit
point system for tracking the energy dissipated in different
components, such as processor, flash memory, sensor, and
radio. By estimating the remaining energy in the sensor mote
battery, more energy-capable cluster heads can be selected.
We implemented iHEED and incorporated it into TinyOS. Our
experiments on a sensor network testbed demonstrate that by
using clustering and data aggregation, the network lifetime is
prolonged by a factor of 2 to 4, the number of successful
transmissions is almost doubled, and the maximum overhead
is reduced to less than half.

This work can be extended in several directions. For
robustness under unexpected failures, multiple cluster head
overlays cab be constructed, instead of only one. Route update
messages should be authenticated to avoid adversary attacks in
malicious environments. Detecting compromised nodes is also
important in such environments. Techniques such as Statistical
En-Route Filtering (SEF) [26] can be employed on the cluster
head overlay to detect compromised nodes and exclude them
from the data aggregation tree. In heterogeneous networks,
where node capabilities are different, new cost definitions can
result in deriving new parameters for the clustering process.
For example, if sensors are used to collect images, then the
sensors that have capabilities for image compression can be
favored as cluster heads. Finally, larger scale experiments and
comparisons with other routing approaches are planned for the
near future.

ACKNOWLEDGMENTS

We are extremely grateful to Saurabh Bagchi (Purdue
University) for his help with the sensor testbed, and to Sam
Madden (MIT), Fan Ye (IBM), and Victor Shnayder (Harvard
University) for several useful discussions.

REFERENCES

[I] D. Estrin. L. Girod. G. Pottie. and M. Srivastava. '1nstrumenting
the World with Wireless Sensor Networks," in III/ematiollal
ColI{erellce all Acoustics, Speech, alld Sigllal Processillg (ICASSP
2001), Salt Lake City, Utah. May 2001. [Online). Available:
http://citeseer.nj.nec.com/estrinOJinstrumenting.html



14

[27] H. S. Kim, T. Abdelzaher, and W. H. Kwon, 'Minimum-Energy Asyn
chronous Dissemination to Mobile Sinks in Wireless Sensor Networks:'
in ACM COI!ferel/ce on Embedded Networked Sel/sor Systems (ACM
SenSys) , November 2003.

[28] J. Elson. L. Girod, and D. Estrin, 'Fine-Grained Network Time synchro
nization Using Reference Broadcasts," in Proceddings of OSDI. 2002.

[29] P. Buonadonna, 1. Hill. and D. Culler. '~ctive Message Communication
for Tiny Networked Sensors," http://www.cs.berkeley.edul jhill/cs294
8/ammote.ps.

[30] L. Krishnamachari. D. Estrin, and S. Wicker, 'The Impact of Data
Aggregation in Wireless Sensor Networks," in IEEE 1I1/emational Con
ferel/ce 01/ Distributed Computil/g Systems, July 2002.

[31] Y. Yao and J. Gehrke, 'The Cougar System to In-Network Query
Processing." in ACM SIGMOD record, 2002.

[32] J. Zhao, R. Govindan, and D. Estrin, 'Computing Aggregates for
Monitoring Wireless Sensor Networks," in Proceedings qfthe First IEEE
Intemational Workshop 01/ Sensor Networks and Applications (SNPA).
2003.

[33] 1. Considine, F. Li, G. Kollios, and J. Byers, ')\pproximate Aggregation
Techniques for Sensor Databases." in Proceeding.l· qf the 20th II/tema
tiol/al COl/ference 01/ Data EI/gineering (ICDE). 2004.

[34] 'Tiny Diffusion," hnp://www.isi.edulscadds/software/. 2004.
[35] K. Kalpakis, K. Dasgupta, and P. Namjoshi, 'Maximum Lifetime Data

Gathering and Aggregation in Wireless Sensor Networks." in IEEE
International Co'!ferel/ce on Networkil1g (ICN), 2002.

[36] K. Dasgupta, K. Kalpakis. and P. Namjoshi, '~n Effi cient Clustering
based Heuristic for Data Gathering and Aggregation in Sensor Net
works." in IEEE Wireless Commul/ications and Networking COl/ferel1ce
(WCNC). 2003

[37] T. He. B. Blum. J. Stankovic, and T. Abdelzaher. ')\ida: Adaptive
application-independent data aggregation in wireless sensor networks."
ACM TrallSactiol/s 011 Embedded Computil/g Systems, vol. 3, May 2004.

[38] H. Cam, S. Ozdemir. and P. N. D. Muthuavinashiappan, 'Espda: Energy
effi rient and secure pattern-based data aggregation for wireless sensor
networks." IEEE Sel/sors. vol. 2. October 2003.

[39] I. Solis and K. Obraczka. 'The Impact of Timing in Data Aggregation
for Sensor Networks." in IEEE Il/tematiol1al COI!ferel/ce on Commul/i
catiol/s. June 2004.

[40] J. AI-Karaki, R. UI-Mustafa, and A. Kamal. 'Data Aggregation in
Wireless Sensor Networks - Exact and Approximate Algorithms." in
IEEE Workshop on High PeJjonnance Switchil/g ami Routing, 2004.

[41] A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh, 'Max-Min
D-C1uster Formation in Wireless Ad Hoc Networks," in Proceedil/gs of
IEEE INFOCOM. March 2000.

[42] F. Kuhn and R. Wattenhofer. 'Constant-Time Distributed Dominating
Set Approximation." in ACM Symposium on Pril/ciples of Distribll/ed
Compll/;I/g (PODC), July 2003.
V. Mhatre and C. Rosenberg, 'Design Guidelines for Wireless Sensor
Networks Communication: Clustering and Aggregation," Ad-hoc Net-
works JOllmal. To appear.

[44] B. McDonald and T. Znati, 'Design and Perfonnance of a Distributed
Dynamic Clustering Algorithm for Ad-Hoc Networks," in AI/nual Sim·
IIlatiol/ Symposium. 2001.

island."duck

H. Balakrishnan. '~n

for Wireless Microsensor
Commllnicatiol/s. vol. I.

great

[2] O. Younis and S. Fahmy, 'Distributed Clustering in Ad-hoc Sensor
Networks: A Hybrid, Energy-Effi cient Approach," in Proceedil/gs of
IEEE INFOCOM. Hong Kong, March 2004, an extended version appears
in IEEE Transactions on Mobile Computing. vol. 3, issue 4, Oct-Dec,
2004.

[3] F. Kuhn, T. Moscibroda, and R. Wattenhofer. 'initializing Newly De
ployed Ad-hoc and Sensor Networks." in Proceedil/gs of the ACMIIEEE
II/temational COl/ferel/ce 01/ Mobile Compll/ing ami Networking (MO
BICOM), September 2004.

[4] W. Heinzelman. A. Chandrakasan. and
Application-Specifi c Protocol Architecture
Networks." IEEE Tral/sactiol/s on Wireless
no. 4, pp. 66D-670, October 2002.

[5] H. Chan and A. Perrig, '~CE: An Emergent Algorithm for Highly
Uniform Cluster Formation," in Proceedil/gs qf tile First European
Workshop on SellSor Networks (EWSN), January 2004.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar. D. E. Culler, and K. S. 1.
Pister. ''System Architecture Directions for Networked Sensors." in Ar
chitectural Support for Programmil/g Lal/guages ami Operatil/g Systems,
2000. pp. 93-104.

[7] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo,
E. Brewer, and D. Culler, 'The Emergence of Networking abstractions
and Techniques in TinyOS," in Proceedings of the USENIXlACM Sym
pO.l'ilOn on Networked Systems Desigl/ al/d Implemel/tatiol/ (NSDl), April
2004.

[8] J. Hill, ''System Architecture for Wireless Sensor Networks," in Ph.D.
Thesis, May 2003.

[9] A. Woo, T. Tong, and D. Culler, 'Taming the Underlying challenges of
Reliable Multihop Routing in Sensor Networks:' in ACM COl/ferel/ce 01/

Embedded Networked Sensor Systems (ACM Sel/Sys), November 2003.
S. Banerjee and S. Khuller, "A Clustering Scheme for Hierarchical
Control in Multi-hop Wireless Networks," in Proceedings qf IEEE
INFOCOM, April 2001.
S. Basagni, 'Distributed Clustering Algorithm for Ad-hoc Networks,"
in Intemational Symposium 01/ Parallel Architectures, Algorithms, and
Networks (I-SPAN), 1999.
C. R. Lin and M. Gerla, ')\daptive Clustering for Mobile Wireless
Networks." in IEEE J. Select. Areas Conl/n/m., September 1997.
M. Gerla, T. J. Kwon, and G. Pei, 'On Demand Routing in Large Ad Hoc
Wireless Networks with Passive Clustering." in Proceedil/g qf WCNC,
2000.
"Crossbow," http://www.xbow.com/. 2004.
C. Intanagonwiwat, R. Govindan, and D. Estrin, 'Directed Diffusion: A
Scalable and Robust Communication Paradigm for Sensor Networks,"
in Proceedings qf the ACMIlEEE II/temational Co/!ference 01/ Mobile
Computing and Networking (MOBICOM). 2000.
'The ZebraNet Wildlife Tracker," http://www.princeton.edu/ mnn/zebranet.htMOJ
2004.
'Habitat monitoring on
http://www.greatduckisland.netl. 2004.
S. Madden, 'The Design and Evaluation of a Query Processing Archi-
tecture for Sensor Networks," Ph.D. Thesis. 2004.
N. Shrivastava, C. Buragohian, A. Agrawal. and S. Suri, 'Medians and
Beyond: New Aggregation Techniques for Sensor Networks." in ACM
Conferel/ce on Embedded Networked Sel/sor Systems (ACM SenSys) ,
November 2004.
V. Shnayder. M. Hempstead, B.-R. C. G. Werner. and M. Welsh.
''Simulating the Power Consumption of Large-Scale Sensor Network
Applications:' in ACM Co/!ference on Embedded Networked Sel/sor
Systems (ACM Sel/Sys), November 2004.
K. Barr and K. Asanovic, 'Energy Aware Lossless Data Compression."
in Proceedil/gs qfthe Firstlntematiol/al Conference on Mobile Systems.
Applications. al/d Services (MobiSys'03), May 2003.
'Multihop Routing for TinyOS," http://www.tinyos.netltinyos-
l.x/doc/multihop/multihop_routing.htmL 2004.
'TinyOS." http://www.tinyos.net. 2002.
O. Younis. S. Fahmy, and P. Santi, 'Robust Communications for
Sensor Networks in Hostile Environments," in the Twelfth Ill1ematiol/al
Workshop 01/ Quality qf Service (IWQoS'04), June 2004.
C. Kariof and D. Wagner. ''Secure Routing in wireless Sensor Networks:
Attacks and Countermeasures." in IEEE Workshop on Sel/sor Network
Protocols ami Applicatiol/s, May 2003.
F. Ye, H. Luo. S. Lu, and L. Zhang, ''Statistical En-route Filtering
of Injected False Data in Sensor Networks," in Proceedings qf IEEE
INFOCOM. March 2004.

[22]

[25]

[26]

[II]

[19]

[23]
[24]

[21]

[16]

[20]

[17]

[12]

[18]

[10]

[14]
[IS]

[13]


	Energy-Efficient Routing and Data Aggregation in Sensor Networks: An Experimental Study
	Report Number:
	

	tmp.1307986960.pdf.mwDeA

