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Workshop scheduling has mainly focused on the performances involving the production efficiency, such as times and quality,
etc. In recent years, environmental metrics have attracted the attention of many researchers. In this study, an energy-efficient
job shop scheduling problem is considered, and a grey wolf optimization algorithm with double-searching mode (DMGWO) is
proposed with the objective of minimizing the total cost of energy-consumption and tardiness. Firstly, the algorithm starts with
a discrete encoding mechanism, and then a heuristic algorithm and the random rule are employed to implement the population
initialization. Secondly, a new framework with double-searching mode is developed for the GWO algorithm. In the proposed
DMGWO algorithm, besides of the searching mode of the original GWO, a random seeking mode is added to enhance the
global search ability. Furthermore, an adaptive selection operator of the two searching modes is also presented to coordinate the
exploration and exploitation. In each searching mode, a discrete updating method of individuals is designed by considering the
discrete characteristics of the scheduling solution, which can make the algorithm directly work in a discrete domain. In order
to further improve the solution quality, a local search strategy is embedded into the algorithm. Finally, extensive simulations
demonstrate the effectiveness of the proposed DMGWO algorithm for solving the energy-eflicient job shop scheduling problem
based on 43 benchmarks.

1. Instruction In recent years, energy-efficient production scheduling
problem has gradually attracted the researchers™ attention.
Yildirim and Mouzon [7] established a mathematical model
of a single-machine system and proposed a multiobjective
genetic algorithm to optimize energy consumption and total
completion time. Shrouf et al. [8] built a mathematical model
of the single-machine sustainable scheduling with variable
energy prices to minimize energy consumption costs. Che et
al. [9] investigated a single-machine scheduling under time-
dependent electricity tariffs. A continuous-time mixed-inte-
ger linear programming model was developed, and an effi-

Job shop scheduling problem (JSP) has a strong theoretical
and applied background, which has been widely concerned
by researchers. In the actual production, many problems can
be taken as a job shop scheduling problem, such as work-
shop scheduling in the industry, departure and arrival times
of logistic problems, the delivery times of orders in a com-
pany, and so on. In the manufacturing field, JSP aims to deter-
mine the processing order between jobs on each machine
to acquire good production performance, e.g., makespan
[1, 2], total weighted tardiness [3, 4], average flow time [5,

6], etc. In previous researches, most work about JSP only
consider the time-related indicators, rather than the environ-
mental factors, such as energy consumption, CO, emissions
and carbon footprint, etc. These studies can not adequately
adapt to the development needs under the global low-carbon
economy.

cient greedy insertion algorithm was proposed to optimize
the total electricity cost within a given makespan. Tang et al.
[10] developed a particle swarm optimization for solving the
dynamic scheduling problem in a flexible flow shop with the
criterion to minimize energy consumption and makespan. Lu
et al. [11] investigated an energy-efficient permutation flow
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shop scheduling problem with sequence-dependent setup
and controllable transportation time. A hybrid multiobjective
backtracking search algorithm was presented to obtain the
optimal makespan and energy consumption. Ding et al. [12]
addressed a permutation flow shop scheduling problem to
minimize the total carbon emissions and the makespan. A
multiobjective NEH algorithm and a modified multiobjective
iterated greedy algorithm were proposed to solve the prob-
lem. Ai and Lei [13] proposed a new neighborhood search
strategy to solve a hybrid flow shop scheduling problem with
the criterion to minimize the carbon emissions.

Regarding the above literature, many energy-efficient
scheduling problems concentrate on the single-machine or
flow shop systems. Considering the importance of JSP, it is
more practical for considering the problem with environ-
mental metrics. Salido et al. [14] investigated an energy-effi-
cient job shop scheduling problem, where each operation can
be processed on one machine at several alternative speeds.
Zhang and Chiong [15] addressed a multiobjective energy-
efficient job shop scheduling problem with a machine speed
scaling framework for minimizing the energy consumption
and total weighted tardiness. May et al. [16] considered the
effects of production scheduling scheme on the makespan
and the energy consumption in a job shop. For such a prob-
lem, the introduction of environmental factor increases the
number of variables and constraints and makes the problem
more complex than the original JSP. It is well-known that
metaheuristic algorithms have shown efficiency for solving
the production scheduling problem. Therefore, the applica-
tion of metaheuristics on solving the energy-efficient JSP will
be also a hotspot in the area of production scheduling.

Inspired from the hunting behavior and the hierarchy
structure of wolf pack in the nature, the grey wolf optimiza-
tion (GWO) algorithm was developed by Mirjalili et al. in
2014 [17]. Due to some characteristics, such as high precision
and fast convergence and ease of implementation, GWO and
its different variants have been used to solve various optimiza-
tion problems, e.g., feature selection [18], maximum power
point tracking [19], UAV path planning [20], global optimiza-
tion [21, 22] and power scheduling [23], etc. The experimental
results in these pieces of literature indicate that GWO is
competitive to other efficient algorithms, such as GA, PSO,
and DE. However, for the scheduling problems, there are
few pieces of literature involving the application of GWO.
Lu et al. [24] developed a multiobjective discrete GWO for
a real-life welding workshop with the criterion to optimize
production efficiency and machine load. Lu et al. [25] pre-
sented a hybrid multiobjective GWO to deal with dynamic
welding scheduling problem. Komaki and Kayvanfar [26]
proposed a grey wolf optimizer to solve the scheduling
problem in a two-stage assembly flow shop. Maharana and
Kotecha [27] evaluated the performance of GWO on five
job shop scheduling problems with parallel machines. The
application of GWO on the production scheduling problems
should be paid more attention. Based on the above analysis
of the energy-efficient JSP and the efficiency of the GWO
algorithm, we propose an improved GWO algorithm, namely,
DMGWO, in this paper. The main novelties of this work are
listed as follows: (1) a new framework with double-searching
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mode is presented in the GWO algorithm; (2) an adaptive
selection method of the two searching modes is proposed
to balance the ability of exploration and exploitation; (3) a
new discrete individual updating method is developed based
on the discrete characteristics of scheduling solution, which
can make the algorithm directly work in a discrete domain.
Extensive experimental results demonstrate that the pro-
posed DMGWO algorithm is effective for the problem under
study.

2. Problem Description

n jobs are required to be processed on m machines in the
workshop with fixed and certain processing times and rout-
ing. In this study, we concentrate on the effects of production
scheduling on the productive and environmental perfor-
mances in a job shop, i.e., total tardiness cost and energy con-
sumption cost.

Some assumptions are involved as follows:

(1) Any job can not be processed on more than one ma-
chine at the same time

(2) Each machine can only process one operation simul-
taneously

(3) No preemption is allowed once a job starts to be pro-
cessed

(4) Setup time and breakdown of machines are not con-
sidered in this paper

(5) Each machine will not stop until the tasks assigned to
it are completed. During the idle periods, each ma-
chine will be on a stand-by mode

For the energy-efficient job shop scheduling problem,
May et al. [16] considered five energetic states. To simplify the
problem, only two states (working and stand-by) are involved
in [14,15]. In this study, the energy consumption is also classi-
fied into two types. The first one is the processing energy con-
sumed for dealing with jobs by machines. The other is the no-
load energy consumed within the idle time interval between
two successive jobs on a machine. To quantify the energy con-
sumption cost, the average processing energy consumption
cost per unit time and the average no-load energy con-
sumption cost per unit time of each machine are predefined.
Because the processing times and routing are certain, the
processing energy consumption cost is fixed. Therefore, in
order to control the total energy consumption cost, it is very
necessary to arrange the processing sequence of jobs on each
machine to reduce the no-load energy consumption cost. In
addition, the tardiness of jobs is an important metrics for
the classical job shop scheduling problem. Therefore, for the
energy-efficient JSP under study, the optimization objective
is to minimize the sum of the no-load energy consumption
cost and the total tardiness cost, which is different from the
objectives in [14, 15]:

min CS = Z)tk (CT, - WLy) + ZVI,- max {0,C; —d;} (1)

k=1 i=1
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Cik — P+ Q (1 - xijk) = Cjjs

(2)
i:1,2,"',f’l; j:kzl)zy"',m
Cie = Ci + Q1 = yie) = pupo .
il=1,20m k=1,2,-m
CikZO’ i=12,m k=1,2,'--,m (4)
CT, =max{Cy}, i=12,--+n (5)
n
WLk:ZPik’ k=1,2,---,m 6)
i1
X €{0,1}, i=1,2,--m jk=1,2,--m (7)
Y €40,1}, i1=1,2--m k=1,2,---,m. (8)

CS is the total cost; A, is the average no-load energy
consumption cost per unit time of machine k; CT) defines
the completion time of machine k; WL, is the workload of
machine k; #; represents the tardiness cost per unit time of
job i; C; defines the final completion time of job i; d; is the
due date of job i; C;;, represents the completion time of job i on
machine k; p;. means the processing time of job i on machine
k; Q is a big positive value; x;; is a 0-1 variable, if machine j
processes job i prior to machine k, x;; =1, otherwise, x;;=0;
Yk is a 0-1 variable, if job i is processed on machine k prior
to job [, y;=1, otherwise, y;;=0.

Equation (1) is the objective function, where the first
item corresponds to the no-load energy consumption cost,
and the second means the tardiness cost. Constraint (2)
represents the precedence relationship between operations in
ajob. Constraint (3) denotes that each machine can only pro-
cess one operation at the same time. Constraint (4) guaran-
tees that the completion time of each operation must be non-
negative. Constraint (5) is the completion time of machine
k. Constraint (6) represents the workload of machine k.
Constraints (7) and (8) represent 0-1 variables.

3. The Proposed DMGWO

3.1. The Original GWO. GWO can be viewed as a typical
swarm-based intelligent algorithm, which mimics the hier-
archy structure and hunting behavior of wolf pack in nature
[17]. Starting with a predefined size of population, wolves
are hierarchically classified into four types («, 3, §, and w)
according to their fitness values, which can be shown in
Figure 1. The leader of the group («) on the first level has a
strong ability in managing the behaviors of other wolves in
the group. The second level of the group (f3) can help « to
make decisions and manage the other wolves on the lower
levels. & locates on the third level which are dominated by
alpha and manage the behaviors of w. w locates on the lowest
level and obeys the other wolves on the higher levels such as
«, 3, and 6.

In the algorithm, «, 3, and § correspond to the best
solution, the second best solution, and the third best solution,
respectively, and all the other solutions are defined as w,

A
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A
A

FIGURE I: The hierarchy structure of the wolf pack [17].

FIGURE 2: An example of the scheduling solution.

whose search behaviors are mainly guided by &, 3, and J.
Wolves have special ability in finding the position of prey and
encircling it. During the hunting process, it is assumed that «,
B, and § can guesstimate the possible location of the prey. The
three best individuals are saved and guide the others to update
their positions in each iteration. The detailed description of
the algorithm can be found in [17].

3.2. Encoding Method. 1t is obvious that the problem under
study is a typical discrete combinatorial problem. However,
the original GWO was proposed for continuous optimization
problems. Some adjustments should be developed to make
the GWO work in a discrete search space. To implement it,
the first step of constructing a GWO is to adopt an appropri-
ate encoding method. Therefore, a discrete operation-based
encoding method is first employed here. Taking a 3 x 3 JSP (3
jobs, 3 machines) for example, the scheduling solution can be
shown in Figure 2.

3.3. Population Initialization. For a swarm-based intelligent
algorithm, population initialization is very crucial for the
performance of the algorithm because it determines the
convergence speed and the solution quality to a great extent.
In this paper, a heuristic algorithm is employed to generate
the active schedule and no-delay schedule [28]. In addition,
the random rule is also used to randomly select operations to
generate the initial operation permutations.

The generation of active schedule can be shown as follows.

Step 1. Choose the schedulable operations to fill the set Q.

Step 2. Evaluate the earliest completion time C; of each
operation in Q.

Step 3. Get the minimum value C* = min{C;},i = 1,2,---,|Q]
and the machine M on which C* can be realized.

Step 4. Identify the operation set L where the start time S; of
each operation on machine M is less than C*.



Step 5. Choose one operation from L and store it into set SD.
If|L| > 1, a random number / € [0, 1] is generated. If ] < 0.5,
the SPT rule is employed to choose an operation from L;
otherwise, the operation is chosen at random.

Step 6. Delete the chosen operation from , and add its imme-
diate successor into Q.

Step 7. 1f all operations are not scheduled, go to Step 2; other-
wise, output the scheduling result according to the selection
order of operations in set SD.

No-delay schedules are produced by modifying Steps 2~4
in the above procedure.

Step 2. Evaluate the earliest start time S; of each operation in
Q.

Step 3. Get the minimum value $* = min{S;},i = 1,2,- - -, |Q]
and the machine M on which S* can be realized.

Step 4. Identify the operation set L in which the start time S;
of each operation on machine M is equal to S*.

3.4. Tracing Mode. In the original GWO, the searching be-
havior of each individual is mainly guided by «, 3, and 6,
which is called tracing mode here. As mentioned before, the
original GWO can not be directly used to deal with the dis-
crete scheduling problem. In the previous research, a dis-
crete GWO was proposed where a new individual updating
method was designed which can make the algorithm directly
work in a discrete domain [29]. The updating method can be
formulized by

F(X,(t),X, (1), rand < é

X (t+1) = {F (X, (0, X5(0)), ~ < rand < % )
F (X, (t),X5(t)), rand > %

X, represents the discrete scheduling solution corre-
sponding to kth wolf; X, X I X define the scheduling solu-
tions of &, 3, and §; F defines the discrete crossover operation,
and rand is a random number inside [0, 1].

According to (9), the crossover operation is performed
following the same probability between the current individ-
ual and the three best individuals. However, the hierarchical
relationship among «, 8, and & is not well reflected in the
updating process. In this paper, we proposed an improved
individual updating method in (10), by which the crossover
probability will be adaptively adjusted according to the fitness
values of the three best solutions:

X, (t+1)
= F(Xk (), Xp (t)), T, <rand < T, + T,
F(X (1), X5(1),

0<rand <7 (10)

T +T, <rand < T, + T, + T3
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VRO O+ f50
B fp(®)
A Tp®)+ f5 () a
L 15 (@)
RO+ [0+ f50)
f , Z is a constant. (12)

"~ Cs

The precedence preserving order-based crossover (POX)
[30] is also employed to implement the crossover operation
in this study. In addition, f is the fitness function, and 7 is
concerned with the crossover probability, i.e., 7, + T, + 73 = 1.

3.5. Seeking Mode. According to (10), it maintained the par-
tial characteristics of the original GWO, but each current
individual is just updated according to the information of
the three best wolves «, 3, and J. It tends to result in the
loss of population diversity and make the algorithm appear
premature convergence. To overcome this drawback, a seek-
ing mode is introduced to the proposed algorithm in order
to enhance the randomicity and improve the global search
ability. In this mode, the POX crossover is conducted between
the current individual and a randomly selected individual.
The updating method can be shown by (13), and X,, 4 re-
presents the randomly selected individual:

X, (t+1) = F (X, (t), X, (1)) (13)

3.6. Adaptive Selection Method of Searching Modes. In this
study, two searching modes are involved in our algorithm
corresponding to local search and global search, respectively.
It is well-known that an effective coordination between global
search and local search can help the algorithm avoid the
premature and obtain the rapid convergence. Therefore, we
developed an adaptive selection method of searching modes,
by which individuals are encouraged to explore the global
search space at the early stage of the optimization, cluster
around the local optimum, and exploit information to con-
verge on the global optimum at the latter stage. Here, a selec-
tion method is developed in (14), where pb is the selecting
probability inside 0 and 1, pb,,,, and pb,;, are the maximum
and minimum values of pb. During the evolutionary process,
a random number rand’ € [0,1] is generated for each indivi-
dual. If rand’' < pb, the individual will be updated by the
method in the seeking mode; otherwise, it will be updated by
the method of in the tracing mode:

t
Pb = Pbmax - (Pbmax - Pbmin) X t— (14)

max

3.7 Local Search. In GWO, the search process is guided by
the three best individuals («, 8, and &) towards the potential
optimum, which means that the quality of «, 5, and § is cru-
cial for the solution quality. Therefore, a local search strategy
is performed on the three best individuals by considering
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their important effects. To implement the procedure, three
neighborhood structures are used here, i.e., Swap, Insert, and
Inverse [31]. The steps of the local search can be shown as
below.

Step 1. Get the initial solution X', and set g,,, «— 3, p «— 1
and the maximum iteration p,,..

Step 2. Set g «— 1.

Step 3. Perform the procedure below until g > g,
if g =1 then X" «— Swap(X')
elseif g = 2 then X"« Insert(X")
else X' «— Inverse(X')
endif
if CS'(X") < CS'(X') then X' «— X", g — 1
elsege—g+1
endif

Step 4.Set p «— p+ 1;if p > p...» 80 to Step 5; otherwise, go
to Step 2.

Step 5. End the procedure and output the local optimal solu-
tion X'.

3.8. Steps of the DMGWO. The steps of the proposed
DMGWO can be shown as follows.

Step 1. Set the parameters of the algorithm and generate the
initial population.

Step 2. Evaluate the individual fitness and find the three best
individuals («, 3, and §).

Step 3. Perform the local search to the best three individuals
and update «, 3, and J.

Step 4. For each individual, generate a random number rand’.
If rand < pb, update the individual according to (13);
otherwise, update the individual according to (10).

Step 5. Check the stopping criterion. If met, output the opti-
mum and end the procedure; otherwise, go to Step 2.

4. Results and Discussion

To evaluate the performance of the proposed DMGWO, we
coded the algorithm in FORTRAN and run it on VMware
Workstation with 2GB main memory under WinXP.

In this section, extensive experiments have been con-
ducted based on 43 benchmark instances to evaluate the
effectiveness of our DMGWO algorithm. For each instance,
10 independent runs are conducted by different algorithms.
Here, the processing times and routing are taken from the
benchmark instances. In addition, A ; and #; are, respectively,
selected from [2, 5] and [1, 3] with discrete uniform distri-
bution. The due date data is set according to the method

developed by Demirkol et al. [32], which can be shown by
d; = (1+(0.3xn)/m)x Z;’:I pij» where p;; is the jth operation
of Job i.

4.1. Effectiveness of Improvement Strategies. In this paper, we
present several improvement strategies to enhance the search
ability of the proposed algorithm, such as the double-search-
ing mode and the new individual updating method in (10).
Here, the effectiveness of these strategies is first verified in
Table 1. In the table, instance names are shown in the first
column, and computational results are reported in the fol-
lowing columns. ‘SMGWO’ represents the single-searching
mode GWO, where only the tracing mode in (10) is used
to update individuals. ‘DMGWO-I" defines the algorithm
with double-searching mode where (9) is used in the tracing
mode. ‘DMGWO’ is the proposed algorithm in this study.
In addition, ‘Best’ is the best value in the ten runs of each
algorithm. ‘Avg’ is the average results of the ten runs. ‘ARPD’
is the average relative percentage difference, i.e., ARPD =
Zle((loo x (Al, — Min))/Min)/R, where ‘R’ is the number
of runs, ‘Min’ represents the minimum values obtained by
all algorithms, and Al, is the obtained value in the rth run
by each algorithm. ‘Time’ is the average time in the ten runs
(in seconds). Boldface represents the optimal value obtained
by all compared algorithms. To facilitate the comparison, the
same parameters are set for the three compared algorithms;
i.e., population size is 200 and maximum iteration is 1000.

Seen from the experimental results in Table 1, it can be
easily observed as follows. (1) In comparisons of the ‘Best’
value, DMGWO obtains 22 optimal values, and the other
two algorithms can only yield 12 optimal values. (2) In
comparisons of the ‘Avg’ value, DMGWO yields 30 optimal
values, which is significantly better than other algorithms. (3)
In comparisons of the ‘ARPD’ value, DMGWO also performs
better than other two algorithms. (4) In comparisons of the
‘Time’ value, the three compared algorithms show almost the
same performance.

Figures 3-5 are the Gantt chart of the DMGWO algorithm
for LA17, LA30, and LA37.

To verify whether the differences from Table 1 are signifi-
cant, an analysis of variance (ANOVA) test is performed in
Table 2. The three compared algorithms are taken as levels
and ARPD is viewed as the response variable. It is well-known
that ANOVA should be conducted on the basis of some
prerequisites: independent sample, homogeneity of variance,
and normal distribution. As mentioned above, the compared
algorithms are independently conducted to obtain the com-
putational results. In Table 2, the variances of ARPD values
obtained by these algorithms are 12.5, 16.7, and 10.9, respec-
tively. Thus, the ratio of the greatest variance and the smallest
one, i.e., 16.7/10.9=1.53, is smaller than 3, which meets the
homogeneity of variance. For the normal distribution, it can
be observed according to Figure 6. After checking the prereq-
uisites, Table 2 indicates that there are significant differences
among the algorithms as p-value is smaller than 0.05.

4.2. Effectiveness of the Proposed DMGWO. To further de-
monstrate the effectiveness of the proposed DMGWO, it is
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FIGURE 4: The Gantt chart of LA30.

compared with TLBO and HGWO in this subsection. TLBO
is the teaching-learning based optimization algorithm for job
shop scheduling problem proposed by Baykasoglu et al. [2].
HGWO is a modified version of the hybrid GWO algorithm
for flexible job shop scheduling problem proposed by Jiang

[33], where the machine selection segment is excluded from
the scheduling solution, the population initialization method
in this paper is adopted to create the initial solutions, and
the variable neighborhood search (VNS) takes place by the
local search in [33] to enhance the local search ability. To
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FIGURE 5: The Gantt chart of LA37.
TABLE 2: ANOVA for ARPD of the compared algorithms.
Source DF Sum of Mean Square F p-value
Squares
Factor 2 145.32843 72.66422 5.44155 0.00541
Error 126 1682.55354 13.3536
Total 128 1827.88197
facilitate the comparison, the population size and the max- obtained by the three algorithms. The variances of converted

imum iteration of the compared algorithms are the same as  values are 0.22, 0.25, and 0.25, respectively. Thus, the ratio of
those of DMGWO; i.e., population size is 200, and the maxi-  the greatest variance and the smallest one, i.e., 0.25/0.22=1.14,

mum of iteration is 1000. In addition, the crossover and muta- ~ is smaller than 3, which meets the homogeneity of variance.
tion rates of HGWO are 0.8 and 0.1, and the maximum itera-  In addition, Figure 7 is the histogram of the ARPD, which
tion of local search is 20. meets the normal distribution. After checking the prerequi-

Seen from the experimental results in Table 3, it can be sites, Table 4 indicates that there are significant differences
easily observed as follows. (1) In comparisons of the ‘Best’” ~ among the algorithms because p-value is equal to 0.
value, DMGWO yields 32 optimal values, which is signifi-
cantly better than the other two algorithms. (2) In compar- 5. Conclusions
isons of the ‘Avg” value, DMGWO yields 34 optimal values,
which is far more than those of the other algorithms. (3) In  In this paper, a kind of grey wolf optimization algorithm with
comparisons of the ‘ARPD’ value, DMGWO also performs  double-searching mode (DMGWO) is presented to solve the
better than the other two algorithms and obtains 34 optimal ~ energy-eflicient job shop scheduling problem.
values. (4) In comparisons of the ‘Time’ value, the proposed (1) At the initialization phase, a discrete encoding mech-
DMGWO spends a shorter time for each instance. anism is first employed to represent the scheduling solution,
To statistically analyze the results in Table 3, an analysis ~ and a heuristic-based initialization method is used to ensure
of variance (ANOVA) test is conducted in Table 4. Each algo- ~ the quality and diversity of the initial population. Two

rithm is taken as a level and ARPD is the response variable. searching modes, named tracing mode and seeking mode,
The prerequisites of ANOVA can be checked by the above  are used to perform global search and local search simulta-
method. Here, to satisfy the homogeneity of variance, thelog- ~ neously. An adaptive selection method of search modes is

arithmic transformation is first executed on the ARPD values  developed to balance the exploration and exploitation during
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TABLE 4: ANOVA for converted values of ARPD.
Source DF Sum of Mean F p-value
Squares Square
Factor 2 96.71517 48.35758 203.28664 0
Error 126 29.97273 0.23788
Total 128 126.6879

the evolutionary process. In addition, a local search strategy
is embedded to further enhance the solution quality of the
algorithm.

(2) A number of experiments based on 43 benchmark
instances are carried out. The effectiveness of improvement
strategies, e.g., a double-searching mode and a new individual
updating method, is first verified by extensive experiments.
Then the proposed DMGWO is compared with two published
algorithms. According to the comparisons results, the pro-
posed DMGWO is effective for solving the energy-efficient
job shop scheduling problem under study.

(3) In the future work, the energy-efficient JSP will be fur-
ther studied by considering some practical constraints, e.g.,
adjustable processing speed of machines, time-of-use elec-
tricity policy, etc. In addition, the energy-eflicient scheduling
problem will be considered in some more complex workshop,
such as flexible job shop and assembly job shop, and so on.
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