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Abstract—We consider the problem of minimizing the energy
needed for data fusion in a sensor network by varying the transmis-
sion times assigned to different sensor nodes. The optimal sched-
uling protocol is derived, based on which we develop a low-com-
plexity inverse-log scheduling (ILS) algorithm that achieves near-
optimal energy efficiency. To eliminate the communication over-
head required by centralized scheduling protocols, we further de-
rive a distributed inverse-log protocol that is applicable to net-
works with a large number of nodes. Focusing on large-scale net-
works with high total data rates, we analyze the energy consump-
tion of the ILS. Our analysis reveals how its energy gain over tra-
ditional time-division multiple access depends on the channel and
the data-length variations among different nodes.

Index Terms—Energy efficiency, fading channels, packet sched-
uling, power-delay tradeoff, wireless networks.

I. INTRODUCTION

AWIRELESS sensor network typically consists of a large
number of sensor nodes distributed over a certain region.

Each node monitors its surrounding area, gathers applica-
tion-specific information, and transmits the collected data to
a “master” node (a.k.a. fusion center or gateway). The fusion
center processes the data and takes appropriate actions if
needed; e.g., it may notify a human operator, or, if the nodes
are equipped with actuators, the fusion center may direct these
nodes to respond to the events autonomously. Compared with
using a single powerful sensor to monitor a large area, a sensor
network with a large number of nodes of limited ability is
more robust, and may provide a more accurate picture of the
monitored area. With advances in microscopic microelectrical
mechanical systems (MEMS), networks of hundreds or even
thousands of miniature sensor nodes may become a reality in
the near future [10].
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A sensor node may need to operate for long periods of time
relying on a tiny battery. It is, therefore, important to optimize
the energy efficiency of all sensor operations, which include
sensing, computation, and communication. This calls for de-
signing communication protocols that are energy-efficient in the
sense of requiring low-complexity processing and low transmis-
sion power. Lowering the computational complexity of commu-
nication protocols is important, because it reduces both hard-
ware cost and energy consumption.

It is known that the energy required to transmit a certain
amount of information is exponential to the inverse of the trans-
mission time [2]. This delay-energy tradeoff principle has been
applied to the design of energy-efficient packet-scheduling pro-
tocols for single-user communication links [8], [11], [14], which
perform smoothing or filtering on the packet arrival-time inter-
vals, resulting in an output packet traffic that is less bursty than
the input traffic, and leading to significant energy savings. In
[9], a discretized version of the “lazy scheduling protocol” of
[14] is applied to a network, where the channel gains between
different users are assumed to be identical. A more realistic set-
ting is used in [6], where channels experienced by different users
may be different, and an iterative algorithm called “MoveRight,”
derived for a multiuser network, is shown to converge to the op-
timal schedule.

In this paper, we consider energy-efficient data fusion in wire-
less sensor networks. The delay-energy efficiency tradeoff in a
sensor network has been studied recently in [17], where sev-
eral energy-efficient protocols have been proposed based on a
data aggregation tree. Our study, on the other hand, focuses on a
single-hop sensor data collection, although the scheduling pro-
tocol we develop can also be used in multihop networks with
multilevel hierarchy to support communication between nodes
and cluster heads, and between cluster heads and higher level
gateways. Supposing time-division multiple access (TDMA),
our objective is to design an energy-efficient TDMA protocol
for the fusion center to collect data from all sensor nodes before
a certain deadline. This problem may arise in several different
application scenarios. For example, a fusion center might want
to receive periodic updates from all sensors (or all cluster heads
in a cluster-type network); thus, within one update period, every
node must transmit to the fusion center the information it col-
lects during the previous period. Another example is a sensor
network with mobile agents [13], [15], where a mobile fusion
center (UAV) makes a pass over the monitored area from time
to time, and thus, all sensors must finish transmission before the
mobile agent leaves the area.

Viewing the sensor-fusion problem as a special case of the
packet-scheduling problem studied in [6], one can readily apply
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the MoveRight algorithm. The MoveRight algorithm, however,
is complicated, and requires knowledge of all users’ channels
as well as their queue lengths. We will develop optimal and
suboptimal centralized scheduling protocols having much lower
computational complexity. To avoid the communication band-
width and power overhead required by centralized protocols,
we also design a distributed scheduling protocol, in which each
sensor needs only to know its own channel and queue length. We
demonstrate that this distributed protocol performs very close to
optimal scheduling, especially in large-scale networks.

The rest of this paper is organized as follows. In Section II,
we formulate the problem and derive the optimal scheduling
protocol. Two suboptimal protocols based on inverse-log sched-
uling (ILS) are developed in Section III. A distributed sched-
uling protocol is presented in Section IV, and is shown to achieve
substantial energy gains over the traditional TDMA. In Sec-
tion V, we conduct asymptotic analysis on the energy consump-
tion of the inverse-log algorithm. Finally, we present our con-
clusions in Section VI.

II. PROBLEM FORMULATION AND OPTIMAL SCHEDULING

Suppose a fusion center needs to collect information from
sensors within the time interval [0, ]. We assume that the th
sensor has a data sequence of bits to transmit, the channel
between it and the fusion center is flat fading over [0, ] with
coefficient , and the noise is additive white Gaussian. Our
objective is to design an optimal scheduling protocol that con-
sumes the least amount of energy.

Suppose, without loss of generality, that the communication
channel bandwidth is , and a time interval of is as-
signed to sensor . If ,1 then the minimum transmis-
sion power needed to transmit bits within this interval is
approximately determined by the channel capacity [4]

(1)

where is the noise power spectral density. The energy con-
sumption (normalized by the noise power) of the th node is,
therefore

(2)

Our objective is to find a set of time allocations for
all sensors, such that the total energy consumption over

is minimized.
Written formally, we need to solve the following constrained

optimization problem:

minimize (3)

subject to (4)

(5)

1Actually, a looser condition of WT=N � 1 suffices for our purpose. If a
particular terminal n is assigned T such that WT is not much greater than
one, then T � T=N . Increasing T to render the information rate sufficiently
lower than the capacity (and thus, realizable) will not have major impact on the
time available to other nodes.

Fig. 1. Energy gain of optimal scheduling.

Remark 1: The energy-consumption function (2) is obtained
assuming that optimal channel coding is adopted. Other en-
ergy-consumption functions may be more appropriate in some
applications. For example, in an uncoded system, the transmis-
sion power may be determined by the target bit-error rate (BER)
and the modulation format [3]. While the algorithms presented
in this paper are designed for the energy-consumption function
(2), the design methodology we develop can also be applied to
other kinds of energy-consumption functions.

The optimization problem described by (3)–(5) can be solved
using Lagrange’s multiplier method, and it is straightforward to
find that the optimal set of should satisfy

(6)

where is determined by the constraint . In
Fig. 1, we plot (in decibels) the energy gain relative to TDMA
of the optimal scheduling protocol for networks of 100 and
10 sensors, respectively. In this simulation, we assume that

. We observe that compared with the traditional
TDMA protocol, the optimal scheduling can reduce the total
energy consumption of a sensor network by more than 8 dB
at high data rates. The energy gain of the optimal scheduling
depends mainly on the total data rate, instead of the number of
sensors in the network. On the other hand, the energy saved by
optimal scheduling is insignificant when the total data rate is
less than 1 b/s/Hz, but increases quickly as the demand on the
total data rate increases.

It is not surprising that the energy gain of the optimal sched-
uling is insignificant when the data rate is low. From (2), we can
see that if is small, then is not
sensitive to the change of . This observation motivates the
focus of this paper on sensor networks with relatively high data
rates.

III. INVERSE-LOG SCHEDULING PROTOCOLS

Given , finding the set of transmission intervals re-
quires one-dimensional searches (one per sensor) to solve (6)
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numerically for each . In this section, we develop suboptimal
scheduling protocols in which is determined in closed-form
for any given , thus reducing the computational complexity
drastically, especially for sensor networks with a large number
of nodes.

A. ILS for High Data Rates

Let us consider the following ILS policy:

(7)

which leads to a closed form for each sensor’s transmission in-
terval

(8)

where is determined by the constraint and can
be obtained by numerical search.

To check whether (7) leads to a good approximation of
the optimal policy at high data rates, consider two nodes

and with corresponding optimal transmission inter-
vals and . Assume without loss of generality that

. Supposing that is much greater
than 1 for all sensors, we can write (6) approximately as

. Considering the latter for
and to eliminate , we arrive at

(9)

From the assumption that , we have

(10)

Hence, . Since , we find
that , unless . But when

, we can use to bound
in (9), which, in turn, bounds as follows:

(11)

Equation (11) leads to

(12)

for . The last equation approximates also cases
for which does not hold, since
implies that .

On the other hand, let us look at the transmission intervals
and assigned by the ILS. Upon defining

, it follows readily from (8) that after
eliminating , we have

(13)

From the similarity of and , we infer that when
the transmission rate is high, the approximation is
indeed accurate; hence, , , and therefore, the closed-
form scheduler in (8) approximates closely the optimal one in
(6).

Compared with (6), (8) presents a much simpler way of deter-
mining for a given . The drawback of the scheduler in (8)
is that a sensor node experiencing a very bad channel state may
be assigned an unreasonably large fraction of the total avail-
able transmission time, leading to a large total energy consump-
tion. To gain more insight on this issue, we derive next an upper
bound on the probability that the interval assigned to sensor

is larger than a certain fraction of the total transmission time
.
Proposition 1: Suppose that in a large sensor network,

and are independent random variables and ,
then the probability that any sensor is assigned a transmis-
sion time such that is upper bounded by

, where .
Proof: Substituting (8) into (4), we find

(14)

where the lower bound follows from Jensen’s inequality. Be-
cause and are independent and , arguing
through the law of large numbers, we have

for (15)

Having established that for sufficiently large,
the wanted probability is

(16)

To appreciate the implication of Proposition 1 to prag-
matic wireless channels, suppose the probability den-
sity function (pdf) of the channel gain satisfies

, where , and
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Fig. 2. Energy gain of ILS protocols.

.2 Using the results
of [16], it follows readily that

(17)

From (17), we observe that for , goes to zero as
goes to infinity. So, energy inefficiency caused by over-

compensating a weak user is not an issue for large .

B. ILS With Clipping for Low Data Rates

For small , however, we observe that the scheduling pro-
tocol of (8) may assign an inordinate amount of transmission
time to a user with a very bad channel, leading to an increase in
the total energy consumption. To remedy this shortcoming, we
propose the following ILS protocol with clipping:

otherwise
(18)

where and .
In Fig. 2, we compare the energy gain over the traditional

TDMA achieved by three different scheduling protocols: op-
timal scheduling (6); ILS (8); and ILS with clipping (18). We
simulate a network of sensors, each of which has
the same amount of data to transmit to the fusion center. The
channels between the sensors and the fusion center experience
independent, identically distributed (i.i.d.) Rayleigh fading with
unit variance. We observe that when the total data rate is very
high, all three protocols exhibit similar performance, which is
expected, because the inverse-log policies are obtained under
the assumption of large . When the data rate decreases,
however, the relative energy efficiency of the inverse-log pro-
tocol prescribed by (8) deteriorates severely. In fact, it demands
more energy than traditional TDMA when the total data rate is
lower than 5 b/s/Hz. On the other hand, using the simple clipping

2The pdf of common wireless fading channels, including, e.g., Rayleigh, Ri-
cian, and Nakagami, satisfies this condition.

Fig. 3. Impact of the clipping threshold on average energy gain of the ILS
protocols.

operation described by (18) with , we largely amelio-
rate this problem, achieving an energy efficiency very close to
that of the optimal policy, even at relatively low values of .

To determine the impact of the clipping threshold on
the performance of the inverse-log algorithm, we evaluate its
average energy gain over traditional TDMA and the variation
of energy consumption among different sensors using different
clipping thresholds. In particular, we simulate a network of

sensors using 1.2, 2, 4, 10, 40. Fig. 3 shows the av-
erage energy gains of the inverse-log protocol with these values
of . We observe that setting the threshold too low limits the
ability of the scheduling algorithm to compensate for bad chan-
nels, leading to an increase in total energy consumption; while
setting the threshold too high renders the clipping operation in-
effective, leading to energy inefficiency at relatively low data
rates. We also observe, however, that the average energy gain of
the inverse-log algorithm is not very sensitive to the values of

, unless either comes very close to one or becomes very
large.

The ratio between the sample standard deviation of sensor
nodes’ energy consumption and the sample mean of sensor
nodes’ energy consumption is plotted in Fig. 4. We notice that
the variation of energy consumption among different sensor
nodes is generally negligible (except for ) at high data
rates, indicating that at high data rates, the inverse-log protocol
is nearly min-max optimal (minimizing the maximal energy
consumption of a sensor). The variation of energy consump-
tion among sensors becomes significant as the total data rate
decreases. In this case, increasing the clipping threshold can
lead to a more fairly distributed energy consumption among
sensors.

IV. DISTRIBUTED INVERSE-LOG SCHEDULING

All the scheduling protocols we described thus far are cen-
tralized protocols, since determining the Lagrange multiplier
requires knowledge of the channel gains and the number
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Fig. 4. Impact of the clipping threshold on the variation (among sensors) of
the energy consumption of the ILS protocols.

of bits to be transmitted . There are two possible
ways in which these centralized protocols can be applied.

1) Each sensor transmits a training sequence and the value
of to the fusion center; the fusion center estimates
the channels between all sensors and itself, and uses
these estimates to compute the transmission times of all
sensors; these transmission times are then fed back to the
sensors.

2) The fusion center broadcasts a training sequence; each
sensor estimates its own channel and exchanges this es-
timate and with all other sensors; so that each sensor
can then compute the transmission time it should use.

Apparently, both of these two schemes will incur a large over-
head in terms of communication bandwidth and energy, espe-
cially in a sensor network with a large number of nodes. If,
on the other hand, we can design a distributed scheduling pro-
tocol that requires only local channel and queue information per
sensor, then this overhead can be greatly reduced.

Evidently, the overhead required by centralized protocols in-
creases with the network size . For this reason, when devel-
oping our distributed protocols, we will be primarily concerned
with large sensor networks.

A. Batch Distributed Scheduling

For simplicity, we first consider the inverse-log protocol
without clipping described by (8). Our objective is to find the
value of such that the sum of the transmission times assigned
to all sensors is equal to the target total transmission time

(19)

Let us rewrite the denominator of the summand in (19)
as

. If the data rate is high, then
is also large. Since the probability of

is very small, we have that
is small; which allows us to use the first-order approx-

Fig. 5. Probability distribution of total transmission time obtained using the �
approximation in (22) (N = 100).

imation to approximate the right-hand side
of (19) as

(20)

where the last approximation follows from the law of large num-
bers and the definition . From (20), we can
obtain the following closed-form approximation:

(21)

The transmission time assigned to sensor can then be ob-
tained using (18) with replaced by its expected value .

To verify the accuracy of (21), we simulate two large sensor
networks with 100 and 1000 sensors, respectively. The channels
between the fusion center and the sensors are assumed to be
i.i.d. Rayleigh distributed with variance one. The target total
transmission time is . For such channels, it can be shown
that , where is the
Euler–Mascheroni constant [1, p. 3]. Hence, for a given ,
we find from (21)

(22)

Figs. 5 and 6 show the probability distribution of the total trans-
mission time obtained using the ILS with clipping in (18), and
with given by (22). We verify that the actual total transmis-
sion time is very close to the target value 1 when the total data
rate is high. As the total data rate decreases, both the mean and
the variance of the actual total transmission time increases. In-
creasing the number of sensor nodes reduces the variance, but
not the bias, of the total transmission time for smaller .

The bias in total transmission time comes from two sources:
1) in (20), we use to approximate , and thus
underestimate the actual transmission time; and 2) the clipping
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Fig. 6. Probability distribution of total transmission time obtained using the �
approximation in (22) (N = 1000).

operation is not considered when determining . To mitigate
this problem, we can use a more accurate approximate of

and also take into account the clipping operation of (18).
Keeping the first terms of the Taylor series expansion for

and denoting

(23)

we can use the following equation to determine :

(24)

where

(25)

(26)

(27)

Equation (24) generally does not have a closed-form solution,
and numerical search is needed to find . Since numerical
searches are computationally costly, they may not be affordable
by microscopic sensor nodes with very limited computational
power. Furthermore, the additional energy consumption re-
quired by this computation may offset the energy savings of
the scheduling protocols. These considerations prompt us to

explore distributed protocols using the simple closed-form
approximate of , as given by (21).

B. Adaptive Distributed Scheduling

To ensure that the scheduling policy dictated by (18) and (21)
meets the prescribed total transmission-time constraint, we de-
velop here an adaptive distributed scheduling algorithm. The
sensors in the network will be numbered from 1 to , and sensor

will start transmitting after sensor ’s transmission ends.
Each sensor will adjust its transmission time according to the
total remaining transmission time and the number of sensors
that have yet to transmit. More specifically, sensor will ex-
ecute the distributed ILS algorithm described by the following
pseudocode.

Initialize:

total number of sensors

remaining available transmission time

Case 1:

if

Case 2:

if

Case 3:
In this adaptive algorithm, we let the last sensors transmit

differently to ensure that the deadline is met without requiring
the last few sensors to spend excessive energy. The remaining
vast majority of sensors belong to Case 1. When sensor
finishes transmitting, sensor first computes according to
the remaining time and the number of sensors, and then uses
(18) to obtain the transmission time it should use. To ensure that
enough time is left for the remaining sensors, we adopt a pro-
gressively decreasing (as increases) target total transmission
time, and scale the preclipping time assigned to sensor by the
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Fig. 7. Performance of the distributed scheduling algorithm (N = 100).

ratio of the percentage of time consumed over the percentage
of sensors that have already finished transmission. The last
sensors must be treated very carefully; otherwise, too little time
might be left for the last few sensors (especially the last one),
leading to a dramatic increase in energy consumption for them,
especially if they happen to be in a bad channel state. To make
certain that this does not happen, we use an additional clipping
operation to further limit the amount of extra transmission time
that can be assigned to these last sensors.

Remark 2: In this distributed algorithm, we assume that
sensor knows when sensor finishes transmission and
starts transmitting immediately. This assumption is realistic,
because we can number the sensors so that the sensor nodes
close in numerical order are also close to each other geograph-
ically, and sensor can reliably monitor the transmission of
sensor .

The energy efficiency of the distributed ILS algorithm is com-
pared with that of the centralized optimal scheduling and sub-
optimal ILS algorithms in Figs. 7 and 8, where we simulate
networks of 100 and 1000 sensors, respectively. We assume,
as usual, that the channels between the sensors and the fusion
center are i.i.d. Rayleigh fading, and all sensors have the same
queue length. For both networks, we set . When the net-
work size is , we observe that there is a gap of 0–2
dB between the centralized and the distributed algorithms, but
the distributed scheduling still achieves a substantial amount of
energy gain over the traditional TDMA protocol. On the other
hand, in a network of sensors, the performance gap
between the centralized ILS and the distributed scheduling is al-
most negligible. This suggests that with the adaptive implemen-
tation, the performance-limiting factor in distributed scheduling
is not the bias, but the variance of the actual total transmission
time shown in Figs. 5 and 6.

In our simulations so far, we have assumed that all sensor
nodes have the same amount of data to report. From the deriva-
tion of the distributed inverse-log algorithm, we can see, how-
ever, that it can also be applied when nodes have different queue
lengths. In Fig. 9, we simulate a network with sensors.

Fig. 8. Performance of the distributed scheduling algorithm (N = 1000).

Fig. 9. Performance of the distributed scheduling algorithm with
Poisson-distributed queue lengths (N = 100).

The simulation setting is the same as the one we used to obtain
Fig. 7, except that the amount of data in each sensor’s buffer is
now assumed to be Poisson distributed. We observe that the dis-
tributed inverse-log protocol still achieves close-to-optimal en-
ergy efficiency. Different from the case of equal queue length,
the energy gain of the proposed scheduling algorithms over tra-
ditional TDMA does not reach a plateau at high data rates, but
continues increasing with the total average data rate.

V. PERFORMANCE ANALYSIS

In this section, we will analyze the energy consumption of
ILS with clipping described by (18) in a large-scale sensor net-
work. To model the channels between the sensors and the fu-
sion center, we use the Nakagami- fading for its flexibility. By
changing the Nakagami parameter , we can obtain different
levels of channel variations. We will assume that ; other-
wise, the average energy consumption will be infinite.
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Using (2) and recalling the definition (23), the total energy
consumption under scheduling (18) is

(28)

Supposing that the total data rate is large, can be approx-
imated by (21). Since for , , we
have

(29)

where the last expression is obtained using the first-order ap-
proximation and the law of large numbers.

For Nakagami- fading, the pdf of is [12]

(30)

where is the Gamma function. From
(21), we have

(31)

where can be shown to be [7, p. 604]

(32)

and is the Digamma function. Further-
more, using the definition of the set in (23), we have

(33)

and

(34)

where (33) and (34) can be readily obtained using the definitions
and for

the upper and lower incomplete Gamma functions, respectively.

Combining (29)–(34), we obtain

(35)

where we have used the approximation

(36)

by noting that goes to zero as
grows large, and that for .
Having also leads to the following approximation [7,
p. 950]:

(37)

and

(38)

Based on (37) and (38), we can further simplify (35) as follows:

(39)

For large , we have from (31) that

(40)

Substituting (40) into (39), we arrive at

(41)

In Fig. 10, we show the ratio between the approximate
given by (41), and the total energy consumption obtained by
Monte Carlo simulation of a 100-node sensor network using the
ILS with clipping for different values of the Nakagami param-
eter . We observe that the approximation (41) is quite accurate
when the total data rate is high, and that the accuracy of the ap-
proximation improves as increases.
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Fig. 10. Accuracy of the approximation in (41).

To determine the energy gain over traditional TDMA (with
uniform time slots), we also compute the total energy consump-
tion of the latter, assuming Nakagami- fading

(42)

Equation (42) depends clearly on the distribution of . For
simplicity, let us assume that and

. The total energy consumption when using tradi-
tional TDMA can then be written as

(43)

Based on (41) and (42), we have thus established the fol-
lowing proposition.

Proposition 2: The asymptotic (for large and ) en-
ergy gain of the ILS with clipping over traditional TDMA is

(44)

Notice that consists of two factors. The first factor
depends only on the channel distribution and

decreases as increases; while the second factor
depends only on the variance of and increases as the vari-
ance increases. A couple of remarks are now in order.

Remark 3: In deriving (44), we have assumed Nakagami-
fading channels and Gaussian-distributed queue-length varia-
tion among different nodes. The insights provided by (44), how-
ever, are also applicable to more general scenarios. We expect
that, in general, the energy gain will increase if the channels

experienced by different sensors and the amount of data in dif-
ferent sensors’ buffers become more disparate.

Remark 4: Equation (44) also explains why the energy gain
of the proposed scheduling protocols continues to increase with
the total average data rate at high data rates in Fig. 9. In ob-
taining Fig. 9, we have assumed that is Poisson distributed,
which means that increases linearly as increases. Since the
Poisson distribution can be approximated by a Gaussian when
its mean is large, (44) predicts that at high data rates, the energy
gain should grow linearly (in decibels) as the average data rate
increases. We confirm from Fig. 9 that this prediction fits the
simulation fairly well.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Energy efficiency is critical to the longevity and performance
of wireless sensor networks. In this paper, we have devel-
oped several centralized and decentralized energy-efficient
scheduling protocols for sensor fusion. By assigning longer
transmission times to sensors experiencing worse channel con-
ditions, we are able to save more than 80% of the energy needed
by the traditional TDMA protocol. The ILS we developed has
very low computational complexity, and incurs negligible
overhead in terms of hardware cost and energy consumption
needed for executing the algorithm.

For sensor networks with a large number of nodes, we also
designed a distributed version of the ILS algorithm. Under this
distributed protocol, each sensor needs only to know its own
channel gain with the fusion center and the amount of data in
its buffer; hence, the communication overhead required by the
centralized protocols is eliminated. Simulations demonstrated
that the distributed ILS achieves near-optimal energy efficiency
in large-scale networks.

To analyze the energy-consumption performance of the in-
verse-log algorithm, we further computed its asymptotic energy
gain over the traditional TDMA protocol. We showed that the
energy gain of the proposed algorithm increases as the channel
variations among different sensor nodes increase. When the total
data rate of a network is high, the energy gain does not depend
on the total data rate, but increases as the variation among dif-
ferent nodes’ queue lengths becomes larger.

The goal of this paper was to demonstrate the potential for
energy savings with nonuniform TDMA scheduling and to
gain insight on the source of these energy savings (channel
and packet-length variations from user to user). A logical next
step in this study would be to use a more realistic setting to
investigate the impact of practical issues, including SNR gap,
guard interval, and channel-estimation errors. Compared with
uniform TDMA, our scheduling reduces the transmission time
given to terminals with good channel conditions and/or small
packet lengths, and increases the transmission time for termi-
nals with poor channel conditions and/or large packet lengths.
If there is a peak power constraint and a terminal experiences a
very poor channel, both our scheduling algorithm and uniform
TDMA may violate the peak power constraint. And such a ter-
minal will experience outage under both schedulers, although
our nonuniform TDMA will exhibit smaller probability of
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outage for a fixed peak-power constraint. Setting a peak-power
constraint and evaluating the outage probability performance of
different scheduling protocols constitutes an interesting future
direction.

In this paper, we focused on the energy consumed by signal
transmission. In applications where the fusion center is close to
the sensor nodes, the energy consumption of the sensor nodes in
the receiving mode and the idle mode may become comparable
to the transmission energy consumption [5], [18]. For these sce-
narios, the techniques developed in this paper can be combined
with other techniques, such as sleeping mode control, to reduce
the total energy consumption.

We have assumed in this paper that the channels remain in-
variant over the data-fusion period and that the resultant fading
is frequency-flat. The distributed scheduling protocols we de-
veloped, however, are applicable as long as the channel remains
constant during the transmission time of one node. In certain
applications, we may have to deal with fast fading and/or fre-
quency-selective channels. The same methodology we used here
can be applied to these more general scenarios, although dis-
tributed implementation will be more difficult. These issues and
the more general problem of optimal resource allocation in wire-
less networks will be the subject of our future investigations.3
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