
Energy Efficient Scheduling of MapReduce Jobs�

Evripidis Bampis1, Vincent Chau2, Dimitrios Letsios1, Giorgio Lucarelli1,
Ioannis Milis3, and Georgios Zois1,3

1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, France
{Evripidis.Bampis,Dimitrios.Letsios,Giorgio.Lucarelli,

Georgios.Zois}@lip6.fr
2 IBISC, Université d’Évry, France
vincent.chau@ibisc.univ-evry.fr

3 Dept. of Informatics, AUEB, Athens, Greece
milis@aueb.gr

Abstract. MapReduce has emerged as a prominent programming model
for data-intensive computation. In this work, we study power-aware
MapReduce scheduling in the speed scaling setting first introduced by
Yao et al. [FOCS 1995]. We focus on the minimization of the total
weighted completion time of a set of MapReduce jobs under a given bud-
get of energy. Using a linear programming relaxation of our problem, we
derive a polynomial time constant-factor approximation algorithm. We
also propose a convex programming formulation that we combine with
standard list scheduling policies, and we evaluate their performance using
simulations.

1 Introduction

MapReduce has been established as a standard programming model for paral-
lel computing in data centers or computational grids and it is currently used
for several applications including search indexing, web analytics or data mining.
However, data centers consume an enormous amount of energy and hence, energy
efficiency has emerged as an important issue in the data-processing framework.
Several empirical works have been carried-out in order to study different mech-
anisms for the reduction of the energy consumption in the MapReduce setting
and especially for the Hadoop framework [6–8]. The main mechanisms for en-
ergy saving are the power-down mechanism, where in periods of low-utilization
some servers are switched-off and the speed-scaling mechanism (or DVFS for
Dynamic Voltage Frequency Scaling) where the servers’ speeds may be adjusted
dynamically [18]. Until lately, most work in the MapReduce framework were fo-
cused on the power-down mechanism, but recently, Wirtz and Ge [17] showed

� This work was partially supported by the European Union (European Social Fund
- ESF) and Greek national funds, through the Operational Program ”Education
and Lifelong Learning”, under the programs THALES-ALGONOW (E. Bampis, G.
Lucarelli, I. Milis) and HERACLEITUS II (G. Zois), and the project “Mathemati-
cal Programming and Non-linear Combinatorial Optimization” under the program
PGMO (E. Bampis, V. Chau, G. Lucarelli).

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 198–209, 2014.
c© Springer International Publishing Switzerland 2014

Energy Efficient Scheduling of MapReduce Jobs 199

that for some computation intensive MapReduce applications the use of intel-
ligent speed-scaling may lead to significant energy savings. In this paper, we
study power-aware MapReduce scheduling in the speed scaling setting from a
theoretical point of view.

In a typical MapReduce framework, the execution of a MapReduce job creates
a number of Map and Reduce tasks. Each Map task processes a portion of
the input data and outputs a number of key-value pairs. All key-value pairs
having the same key are then given to a Reduce task which processes the values
associated with a key to generate the final result. This means that each Reduce
task cannot start before the completion of the last Map task of the same job.
In other words, there is a complete bipartite graph implying the precedences
between Map and Reduce tasks of a job. However, the Map tasks of a job can
be executed in parallel and the same holds for its Reduce tasks.

In what follows we consider a set of MapReduce jobs that have to be exe-
cuted on a set of speed-scalable processors, i.e., on processors that can adjust
dynamically their speed [18]. Each job consists of a set of Map tasks and a set
of Reduce tasks, with every task having a positive work volume. Each job is
also associated with a positive weight representing its importance/priority, and
a release date (or arrival time). Like in [4, 5], we consider that the Map and
the Reduce tasks of each job are preassigned to the processors and in this way
we take into account data locality, i.e. the fact that each Map task has to be
executed on the server where its data are located. Given that the preemption of
tasks, i.e. the possibility of interrupting a task and resuming it later, may cause
important overheads we do not allow it. This is also the case often in practice:
Hadoop does not offer the possibility of preemption [12]. The scheduler has to
decide the time interval and the speed over time at which a task is executed,
taking into account the energy consumption. High processor’s speeds are in favor
of performance at the price of high energy consumption. Our goal is to schedule
all the tasks to the processors, so as to minimize the total weighted completion
time of jobs respecting a given budget of energy.
Related Work. Chang et al. [4] consider a set of MapReduce jobs with their Map
and Reduce tasks preassigned to processors and their goal is to minimize the to-
tal weighted completion time of jobs. They proposed approximation algorithms
of ratios 3 and 2 for arbitrary and common release dates, respectively. However,
they do not consider neither distinction nor dependencies between Map and
Reduce tasks of a job. Moreover, their model falls into a well-studied problem
known as concurrent open-shop (or order scheduling) for which the same ap-
proximation results are known (see [10] and the references therein). Extending
on the above-mentioned model, Chen et al. [5], proposed a more realistic one
which takes into account the dependencies among Map and Reduce tasks and
derived an 8-approximation algorithm for the same objective. Moreover, they
managed to model also the transfer of the output of Map tasks to Reduce tasks
and to derive a 58-approximation algorithm for this generalization. In a third
model proposed by Moseley et al. [12], the dependencies between Map and Re-
duce tasks of a job are also taken into account while the assignment of tasks to

200 E. Bampis et al.

processors is not given in advance. The authors studied the preemptive variant
for both the case of identical and unrelated processors. They proposed constant
approximation ratios of 12 and 6, respectively. For the unrelated processors case,
they focused on the special case where each job has a single Map and a single
Reduce task. For the latter case on a single map and a single reduce proces-
sor they also proposed a QPTAS which becomes a PTAS for a fixed number of
processing times of tasks.

In the energy-aware setting, Angel et al. [2] proposed approximation algo-
rithms for the problem of minimizing the total weighted completion time on
unrelated parallel processors, under a model where the processing time and the
energy consumption of the jobs are speed dependent. Moreover, Megow et al.
[11] recently proposed a PTAS for the problem of minimizing the total weighted
completion time on a single speed-scalable processor.
Our Results and Organization of the Paper. We adopt the MapReduce model
of [4] where the tasks are preassigned to processors but extended with dependen-
cies between Map and Reduce tasks as in Chen et al. [5, 12] in the speed scaling
setting [18]. In Section 2, we present formally our problem and we introduce our
notation. In Section 3, we present a constant-factor approximation algorithm.
Using discretization of the possible speed values we give an interval indexed LP
relaxation of our problem and we transform an optimal solution to this LP to a
feasible solution for our problem by list scheduling in the order of tasks’ α-points
(see e.g. [9, 13]). This leads to a O(1)-energy O(1)-approximation algorithm, that
is an algorithm that may use energy augmentation. More specifically, we call a
schedule c-energy ρ-approximate if its objective function is at most ρ times far
from the objective function of an optimal schedule and it exceeds the given en-
ergy budget by a factor of at most c (see e.g. [14]). Our algorithm describes
a tradeoff between the approximation ratio and the energy augmentation as a
function of α. By appropriately choosing α, our result becomes a constant-factor
approximation for our problem. In Section 4, we are interested in natural list
scheduling policies such as First Come First Served (FCFS) and High-
est Density First (HDF). However, in our context we need to determine the
speeds of every task in order to respect the energy budget. For that, we propose a
convex programming relaxation of our problem, for a prespecified order of jobs,
which can be solved in polynomial time by the Ellipsoid algorithm. Then we
combine the solution of this relaxation with FCFS and HDF and we compare
experimentally their effectiveness.

2 Problem Statement and Notation

In the sequel we consider a set J = {1, 2, . . . , n} of n MapReduce jobs to be
executed on a set P = {1, 2, . . . ,m} of m speed-scalable processors. Each job is
associated with a positive weight wj and a release date rj and consists of a set
of Map tasks and a set of Reduce tasks that are preassigned to the m processors.
We denote by T the set of all tasks of all jobs, and by M and R the sets of
all Map and Reduce tasks, respectively. Each task Ti,j ∈ T is associated with a
non-negative work volume vi,j .

Energy Efficient Scheduling of MapReduce Jobs 201

We consider each job having at least one Map and one Reduce task and that
each job has at most one task, either Map or Reduce, assigned to each processor.
Map or Reduce tasks can run simultaneously on different processors, while the
following precedence constraints hold for each job: every Reduce task can start
its execution after the completion of all Map tasks of the same job.

For a given schedule we denote by Cj and Ci,j the completion times of
each job j ∈ J and each task Ti,j ∈ T , respectively. Note that, due to the
precedence constraints of Map and Reduce tasks, Cj = maxTi,j∈R{Ci,j}. By
Cmax = maxj∈J {Cj} we denote the makespan of the schedule, i.e., the com-
pletion time of the job which finishes last. Let also, wmin = minj∈J {wj},
vmin = minTi,j∈T {vi,j : vi,j > 0}, wmax = maxj∈J {wj}, rmax = maxj∈J {rj}
and vmax = maxTi,j∈T {vi,j}.

In this paper, we combine this abstract model for MapReduce scheduling
with the speed scaling mechanism for energy saving [18] (see also [1] for a recent
review). In this setting, the power required by a processor running at time t with
speed s(t) is equal to P (s(t)) = s(t)β , for a constant β > 1 (typically, β ∈ [2, 3])
and its energy consumption is power integrated over time, i.e., E =

∫
P (s(t))dt.

Due to the convexity of the speed-to-power function, a key property of our
problem is that each task runs at a constant speed during its whole execution.
So, if a task Ti,j is executed at a speed si,j , the time needed for its execution
(processing time) is equal to pi,j =

vi,j
si,j

and its energy consumption is Ei,j =
vi,j
si,j

sβi,j = vi,js
β−1
i,j .

Moreover, we are given an energy budget E and the goal is to schedule non-
preemptively all the tasks to the m processors, so as to minimize the total
weighted completion time of the schedule, i.e.,

∑
j∈J wjCj , without exceeding

the energy budget E. We refer to this problem as MapReduce problem.
All omitted proofs can be found in the full version of this work, available at

http://arxiv.org/abs/1402.2810.

3 A Linear Programming Approach

In this section we present an O(1)-energy O(1)-approximation algorithm for
the MapReduce problem. Our algorithm is based on a linear programming
relaxation of the problem and it transforms the solution obtained by the linear
program to a feasible schedule for the MapReduce problem using the technique
of α-points. Note that, by allowing energy augmentation we are able to describe
a tradeoff between energy and performance. Moreover, we can derive a constant-
factor approximation ratio (without energy augmentation) for the MapReduce
problem by appropriately choosing some parameters.

3.1 Linear Programming Relaxation

To give a linear programming formulation of our problem, we first discretize the
possible speed values. In order to do this, we need to compute an upper and a

http://arxiv.org/abs/1402.2810

202 E. Bampis et al.

lower bound on the speed of each task. An upper bound of
(

E
vmin

) 1
β−1

is easily

obtained since the energy consumption of any task can not exceed the energy
budget. A lower bound on the speed values is vmin

C , where C is an upper bound
to the makespan of any optimal schedule; C can be computed by considering
all jobs executed after the maximum release date. Then, by loosing a factor of
(1 + ε) with respect to an optimal solution, we can prove the following.

Lemma 1. There is a feasible (1+ε)-approximate schedule for the MapReduce
problem in which each task Ti,j ∈ T runs at a speed s ∈ V, where V is the set of
all possible discrete speed values and ε ∈ (0, 1).

Next, we discretize the time horizon (0, C] of an optimal schedule by parti-
tioning it into the intervals (0, λ], (λ, λ(1 + δ)], (λ(1 + δ), λ(1 + δ)2], . . . , (λ(1 +
δ)u−1, λ(1+δ)u], where δ > 0 is a small constant, λ > 0 is a constant that we will
define later, and u is the smallest integer such that λ(1 + δ)u−1 ≥ C. Let τ0 = 0
and τt = λ(1+δ)t−1, for 1 ≤ t ≤ u+1. Moreover, let It = (τt, τt+1], for 0 ≤ t ≤ u,
and |It| be the length of the interval It, i.e., |I0| = λ and |It| = λδ(1 + δ)t−1,
1 ≤ t ≤ u. Note that, the number of intervals is polynomial to the size of the
instance and to 1/δ, as u = �log1+δ

C
λ�+ 1.

Let pi,j,s =
vi,j
s be the potential processing time for each task Ti,j ∈ T if it

is executed entirely with speed s ∈ V . For each Ti,j ∈ T , t ∈ {0, 1, . . . , u} and
s ∈ V , we introduce a variable yi,j,s,t that corresponds to the portion of the
interval It during which the task Ti,j is executed with speed s. In other words,
yi,j,s,t|It| is the time that task Ti,j is executed within the interval It at speed s, or

equivalently,
yi,j,s,t|It|

pi,j,s
is the fraction of the task Ti,j that is executed within It at

speed s. Note that the number of yi,j,s,t variables is polynomial to the size of the
instance, to 1/ε and to 1/δ. Furthermore, for each task Ti,j ∈ T , we introduce a
variable Ci,j , which corresponds to the completion time of Ti,j. Finally, let Cj ,
j ∈ J , be the variable that corresponds to the completion time of job j. (LP)
in the next page, is a linear programming relaxation of the problem where each
task Ti,j ∈ T runs at a single speed s ∈ V .

Our objective is to minimize the sum of weighted completion times of all
jobs. For each task Ti,j ∈ T , the corresponding constraint (1) ensures that Ti,j

is entirely executed. Constraints (2) enforce that the total amount of processing
time that is executed within an interval It cannot exceed its length. In [16], the
authors proposed a lower bound for the completion time of a job. This lower
bound can be adapted to our problem and for the completion time of a task
Ti,j ∈ T leads to a corresponding constraint (3). Constraints (4) ensure that the
completion time of each job is the maximum over the completion times of all its
tasks. Constraint (5) ensures that the given energy budget is not exceeded. Note
that the value sβ for each s ∈ V is a fixed number. Constraints (6) imply the
precedence constraints between the Map and the Reduce tasks of the same job,
as they enforce that the fraction of a Map task that is executed up to each time
point should be at least the fraction of a Reduce task of the same job executed
up to the same time point; hence, each Map task completes before all Reduce

Energy Efficient Scheduling of MapReduce Jobs 203

(LP) : minimize
∑

j∈J
wjCj

subject to :

∑

s∈V

u∑

t=0

yi,j,s,t|It|
pi,j,s

= 1, ∀Ti,j ∈ T (1)

∑

j:Ti,j∈T

∑

s∈V
yi,j,s,t ≤ 1, ∀i ∈ P , 0 ≤ t ≤ u (2)

Ci,j ≥ 1

2

∑

s∈V
yi,j,s,0|I0|

(
1

pi,j,s
+ 1

)
+

u∑

t=1

∑

s∈V

(
yi,j,s,t|It|
pi,j,s

τt +
1

2
yi,j,s,t|It|

)
, ∀Ti,j ∈ T (3)

Cj ≥ Ci,j , ∀Ti,j ∈ T (4)

∑

Ti,j∈T

∑

s∈V

u∑

t=0

yi,j,s,t|It|sβ ≤ E (5)

�∑

t=0

∑

s∈V

yi,j,s,t|It|
pi,j,s

≥
�∑

t=0

∑

s∈V

yi′,j,s,t|It|
pi′,j,s

,

∀Ti,j ∈ M, Ti′,j ∈ R, 0 ≤ � ≤ u (6)

yi,j,s,t = 0, ∀Ti,j ∈ T , s ∈ V, t : τt < rj (7)

yi,j,s,t, Ci,j , Cj ≥ 0, ∀Ti,j ∈ T , s ∈ V, 0 ≤ t ≤ u (8)

tasks of the same job. Constraints (7) do not allow tasks of a job to be executed
before their release date.

In what follows, we denote an optimal solution to (LP) by (ȳi,j,s,t, C̄i,j , C̄j).

3.2 The Algorithm

In this section we use (LP) to derive a feasible schedule for the MapReduce
problem. Our algorithm is based on the idea of list scheduling in order of
α-points [9, 13]. In general, an α-point of a job is the first point in time where
an α-fraction of the job has been completed, where α ∈ (0, 1) is a constant that
depends on the analysis. In this paper, we will define the α-point tαi,j of a task
Ti,j ∈ T as the minimum 	, 0 ≤ 	 ≤ u, such that at least an α-fraction of vi,j is
accomplished up to the interval I� to (LP), i.e.,

tαi,j = min

{

	 :

�∑

t=0

∑

s∈S

ȳi,j,s,t|It|
pi,j,s

≥ α

}

.

Thus, once our algorithm has computed an optimal solution (ȳi,j,s,t, C̄i,j , C̄j)
to (LP), it calculates the corresponding α-point, tαi,j , for each task Ti,j ∈ T .
Then we create a feasible schedule as follows: For each processor i ∈ P , we

204 E. Bampis et al.

consider a priority list σi of its tasks such that the tasks with smaller α-point
have higher priority. A crucial point in our analysis is that we consider that a
task Ti,j ∈ T becomes available for the algorithm after the time τtαi,j+1 > rj .
Moreover, if Ti,j ∈ R then we need also all tasks Ti′,j ∈ M to be completed in
order Ti,j to be considered as available. For each task Ti,j ∈ T , we use a constant
speed si,j =

vi,j
pi,j

, where

pi,j = γ

tαi,j∑

t=0

∑

s∈V
ȳi,j,s,t|It|

is the processing time of Ti,j used by our algorithm, and γ > 0 is a constant that
we define later and describes the tradeoff between the energy consumption and
the weighted completion time of jobs. In fact, speed si,j is determined by the
needs of the analysis and it serves as a tool in order to upper bound the energy
augmentation used for the execution of Ti,j and also the completion time of Ti,j

in a schedule produced by the algorithm. At each time point where a processor
i ∈ P is available, our algorithm selects the highest priority available task in
σi which has not been yet executed. Note that our algorithm always create a
feasible solution as we do not insist on selecting the highest priority task if this is
not available. Algorithm MR(α, γ) gives a formal description of our method.

Algorithm MR(α, γ)

1: Compute an optimal solution (ȳi,j,s,t, C̄i,j , C̄j) to (LP).
2: for each task Ti,j ∈ T do
3: Compute the α-point tαi,j , the processing time pi,j and the speed si,j .
4: for each processor i ∈ P do
5: Compute the priority list σi.
6: for each time where a processor i ∈ P becomes available do
7: Select the first available task, let Ti,j , in σi which has not been yet executed.
8: Schedule Ti,j , non-preemptively, with processing time pi,j .

Let Ci,j be the completion time of task Ti,j .
9: for each job j ∈ J do
10: Compute its completion time Cj = maxi∈P Ci,j .

Note that the processing time of a task Ti,j ∈ T to an optimal solution to
(LP) is p̄i,j =

∑u
t=0

∑
s∈V ȳi,j,s,t|It|. Hence, the energy consumption Ēi,j =∑u

t=0

∑
s∈V ȳi,j,s,t|It|sβ for the execution of Ti,j to an optimal solution to (LP)

may be smaller or bigger than the energy consumption Ei,j for the execution
of Ti,j by the algorithm. The next lemma gives a relation between these two
quantities.

Lemma 2. Let Ēi,j and Ei,j be the energy consumption of the task Ti,j ∈ T
in an optimal solution to (LP) and in the solution of Algorithm MR(α, γ),
respectively. It holds that Ei,j ≤ 1

γβ−1αβ Ēi,j .

Energy Efficient Scheduling of MapReduce Jobs 205

We also need to lower bound the completion time C̄i,j of the task Ti,j ∈ T
given by the (LP). This is done by the following lemma.

Lemma 3. If λ < α vmin

smax
, then for each task Ti,j ∈ T it holds that C̄i,j ≥

(1− α) · τtαi,j .

Using Lemmas 2 and 3 as well as Lemma 1 we can prove the following theorem.

Theorem 1. Algorithm MR(α, γ) is a 1
γβ−1αβ -energy

γ2+3γ+1
1−α (1+ε)-approxi-

mation algorithm for the MapReduce problem, where γ > 0 and α, ε ∈ (0, 1).

By choosing γ = 1
α β−1

√
α
, no energy augmentation is used and Algorithm

MR(α, γ) becomes a constant-factor approximation for the MapReduce prob-
lem, and the following theorem holds.

Theorem 2. There is a α β−1
√
α)2+3α β−1

√
α+1

(α β−1
√
α)2(1−α)

(1+ε)-approximation algorithm for

the MapReduce problem, where α, ε ∈ (0, 1).

In Fig.1 we depict the tradeoff between energy augmentation and approxima-
tion ratio for some practical values of β.

For special instances of our problem where there are no precedence constraints
between Map and Reduce tasks or even all jobs have a common release date (as
in [4]) our results are improved as follows.

Corollary 1. There is a α β−1
√
α+1

α β−1
√
α(1−α)

(1 + ε)-approximation algorithm for the

MapReduce problem without precedence constraints between Map and Reduce
tasks, and a 1

α β−1
√
α(1−α)

(1 + ε)-approximation algorithm for the MapReduce

problem without precedence constraints between Map and Reduce tasks and jobs
with common release dates, where α, ε ∈ (0, 1).

Our ratios are optimized by selecting the appropriate value of α for each β.
Table 1 gives the achieved ratios for practical values of β.

15 20 25 30 35
0

20

40

60

80

100

approximation ratio

en
er
g
y
a
u
g
m
en
ta
ti
o
n
(%

)

β = 2
β = 2.5
β = 3

Fig. 1. Tradeoff between energy aug-
mentation and approximation ratio
when β = {2, 2.5, 3}

Table 1. Approximation ratios for
the MapReduce problem for differ-
ent values of β

β general
no prece-
dence

no precedence &
no release dates

2 37.52 9.44 6.75
2.2 34.89 8.84 6.29
2.4 33.01 8.41 5.97
2.6 31.59 8.09 5.72
2.8 30.50 7.84 5.53
3 29.62 7.64 5.38

206 E. Bampis et al.

4 A Convex Programming Approach

We are interested in natural list scheduling policies such as First Come First
Served (FCFS) andHighest Density First (HDF). However, in our context
we need to determine the speeds of every task in order to respect the energy
budget. For that, we propose a convex programming relaxation of our problem
when an order of the jobs is prespecified.

4.1 The Convex Program

Let σ = 〈1, 2, . . . , n〉 be a given order of the jobs. Consider now the restricted
version of the MapReduce problem where, for each processor i ∈ P , the tasks
are forced to be executed according to this order. We shall refer to this problem as
the MapReduce(σ) problem. Note that, the order is the same for all processors.
We write j ≺ j′ if job j ∈ J precedes job j′ ∈ J in σ. We propose a convex
program that considers the order σ as input and returns a solution that is a
lower bound to the optimal solution for the MapReduce(σ) problem.

In order to formulate our problem as a convex program, for each task Ti,j ∈ T ,
let pi,j be a variable that corresponds to its processing time and Ci,j a variable
that determines its completion time. Let also Cj , j ∈ J , be the variable that
corresponds to the completion time of job j. Then, (CP) is a convex programming
relaxation of the MapReduce(σ) problem.

(CP) : minimize
∑

j∈J
wjCj

subject to :

∑

Ti,j∈T

vβi,j

pβ−1
i,j

≤ E (9)

rj′ +

j∑

k=j′
pi,k ≤ Ci,j , ∀Ti,j , Ti,j′ ∈ T , j′ ≺ j (10)

Ci′,j + pi,j ≤ Ci,j , ∀Ti,j ∈ R, Ti′,j ∈ M (11)

Ci,j ≤ Cj , ∀Ti,j ∈ T (12)

si,j , Ci,j , Cj ≥ 0, ∀Ti,j ∈ T , j ∈ J

The objective function of (CP) is to minimize the weighted completion time of
all jobs. Constraint (9) guarantees that the energy budget is not exceeded; note
that we have substituted the energy consumption Ei,j of each task Ti,j by its

equivalent Ei,j = pi,js
β
i,j = pi,j(

vi,j
pi,j

)β , where si,j =
vi,j
pi,j

is the speed of task Ti,j .

Constraints (10) and (11) give lower bounds on the completion time of each task
Ti,j ∈ T , based on the release dates and the precedence constraints, respectively.
Note that, if we do not consider precedences between the tasks, then (CP) will
return the optimal value of the objective function, instead of a lower bound on

Energy Efficient Scheduling of MapReduce Jobs 207

it, as constraints (10) describe in a complete way the completion times of the
tasks. However, this is not true for constraints (11) which are responsible for the
precedence constraints. Finally, constraints (12) ensure that the completion time
of each job is the maximum over the completion times among all of its tasks.

As the optimal solution to (CP) does not necessarily describe a feasible sched-
ule, we need to apply an algorithm that uses the processing times found by (CP)
and the order σ so as to create a feasible schedule for the MapReduce(σ) prob-
lem, and hence for the MapReduce problem. It suffices to apply, the lines 6-8
of Algorithm MR(α, γ), by considering the same order for all processors.

4.2 Experimental Evaluation of Scheduling Policies

We propose different orders of jobs and discuss how far is an optimal solution
for the MapReduce(σ) problem using these orders with respect to an optimal
solution for the MapReduce problem. Consider the following standard orders.

First Come First Served (FCFS): for each pair of jobs j, j′ ∈ J , if rj < rj′

then j ≺ j′ in σ.

Highest Density First (HDF): for each pair of jobs j, j′ ∈ J , if
wj∑

Ti,j∈j vi,j
>

wj′∑
T
i,j′ ∈j′ vi,j′

then j ≺ j′ in σ.

The following proposition gives negative results concerning the approximation
ratio that we can achieve if we use the FCFS or the HDF order.

Proposition 1. There are instances for which the optimal solutions to the Map-
Reduce(FCFS) and the MapReduce(HDF) problems are within a factor of
Ω(n) from the optimal solution to the MapReduce problem.

In what follows we compare the FCFS and HDF policies with respect to the
quality of the solution they produce. Our simulations have been performed on a
machine with a CPU Intel Xeon X5650 with 8 cores, running at 2.67GHz. The
operating system of the machine is a Linux Debian 6.0. We used Matlab with
cvx toolbox. The solver used for the convex program is SeDuMi.

The instance of the problem consists of a matrix m × n that corresponds
to the work of the tasks, two vectors of size n that correspond to the weights
and the release dates of jobs, a precedence graph for the tasks of the same job,
the energy budget and the value of β. Similarly with [5], the instance consists
of m = 50 processors and up to n = 25 jobs. Each job has 20 Map and 10
Reduce tasks, which are preassigned at random to a different processor. The
work of each Map task is selected uniformly at random from [1, 10], while the
work of each Reduce task vi,j ∈ R is set equal to a random number in [1, 10]

plus
3
∑

T
i′,j∈M vi′,j

|{Ti′,j∈M}| , taking into account the fact that Reduce tasks have more

work to execute than Map tasks. The weight of each job is selected uniformly at
random from [1, 10] and the release date of a job, is given as a Bernoulli random
variable with probability 1/2 for every interval (t, t+1]. The energy budget that
is used equals E = 1000, while β is set β = 2. We have also set the desired

208 E. Bampis et al.

accuracy of the returned solution of the convex program to be equal to 10−7.
For each number of jobs, we have repeated the experiments with 10 different
matrices. The results we present below, concern the average of these 10 instances.
The benchmark and the code used in our experiments are freely available at
http://www.ibisc.univ-evry.fr/~vchau/research/mapreduce/.

As mentioned before, the (CP) does not lead to a feasible solution for our
problem. In order to get such a solution we apply the following algorithm. At
each time t where a processor becomes available we select to schedule the task
Ti,j of higher priority such that: (i) Ti,j is already released at t, (ii) if Ti,j is
a Reduce task, then all Map tasks of the same job must have been already
completed at t, and (iii) Ti,j has not been yet executed.

5 10 15 20 25
0

50

100

150

200

number of jobs

∑
w

j
C

j

FCFS

HDF

CP(FCFS)

CP(HDF)

Fig. 2. Comparing solutions for FCFS and HDF (scaled down by a factor of 103)

As shown in Fig. 2 the heuristic based on FCFS outperforms the heuristic
based on HDF. In fact, the first heuristic gives up to 16 − 21% better solu-
tions than the second one for different values of n. Surprisingly, the situation
is completely inverse if we consider the corresponding solutions of the convex
programs. More precisely, the convex programming relaxation using HDF leads
to 26%− 43% smaller values of the objective function compared to the convex
programming relaxation using FCFS. Moreover, we can observe that the ratio
between the final solution of each heuristic with respect to the lower bound for
the MapReduce(σ) problem given by the convex program is equal to 1.46 for
FCFS and 2.43 for HDF; the variance is less than 0.1 in both cases.

5 Conclusions

We presented a constant-factor approximation algorithm based on a linear pro-
gramming formulation of the problem of scheduling a set of MapReduce jobs
in order to minimize their total weighted completion time under a given bud-
get of energy. Moreover, in the direction of exploring the efficiency of standard
scheduling policies, we presented counterexamples for them, as well as, we exper-
imentally evaluated their performance, using a convex programming relaxation
of the problem when a prespecified order of jobs is given. It has to be noticed

http://www.ibisc.univ-evry.fr/~vchau/research/mapreduce/

Energy Efficient Scheduling of MapReduce Jobs 209

that our results can be extended also to the case where multiple Map or Reduce
tasks of a job are executed on the same processor. An interesting direction for
future work concerns the online case of the problem. However, it can be proved
that there is no an O(1)-competitive deterministic algorithm (see Theorem 13
in [3]). A possible way to overcome this is to consider resource (energy) augmen-
tation, or to study the closely-related objective of a linear combination of the
sum of weighted completion times of the jobs and of the total consumed energy.

References

1. Albers, S.: Algorithms for dynamic speed scaling. In: STACS, pp. 1–11 (2011)
2. Angel, E., Bampis, E., Kacem, F.: Energy aware scheduling for unrelated parallel

machines. In: Green Computing Conference, pp. 533–540 (2012)
3. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. SIAM J. on

Computing 39(4), 1294–1308 (2009)
4. Chang, H., Kodialam, M.S., Kompella, R.R., Lakshman, T.V., Lee, M., Mukherjee,

S.: Scheduling in mapreduce-like systems for fast completion time. In: INFOCOM,
pp. 3074–3082 (2011)

5. Chen, F., Kodialam, M.S., Lakshman, T.V.: Joint scheduling of processing and
shuffle phases in mapreduce systems. In: INFOCOM, pp. 1143–1151 (2012)

6. Feller, E., Ramakrishnan, L., Morin, C.: On the performance and energy efficiency
of Hadoop deployment models. In: BigData Conference, pp. 131–136 (2013)

7. Feng, B., Lu, J., Zhou, Y., Yang, N.: Energy efficiency for MapReduce workloads:
An in-depth study. In: ADC, pp. 61–70 (2012)

8. Goiri, I., Le, K., Nguyen, T.D., Guitart, J., Torres, J., Bianchini, R.: GreenHadoop:
leveraging green energy in data-processing frameworks. In: EuroSys, pp. 57–70
(2012)

9. Hall, L.A., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion
time: Off-line and on-line algorithms. In: ACM-SIAM SODA, pp. 142–151 (1996)

10. Mastrolilli, M., Queyranne, M., Schulz, A.S., Svensson, O., Uhan, N.A.: Minimiz-
ing the sum of weighted completion times in a concurrent open shop. Oper. Res.
Letters 38(5), 390–395 (2010)

11. Megow, N., Verschae, J.: Dual techniques for scheduling on a machine with varying
speed. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part I. LNCS, vol. 7965, pp. 745–756. Springer, Heidelberg (2013)

12. Moseley, B., Dasgupta, A., Kumar, R., Sarlós, T.: On scheduling in map-reduce
and flow-shops. In: ACM-SPAA, pp. 289–298 (2011)

13. Phillips, C.A., Stein, C., Wein, J.: Minimizing average completion time in the
presence of release dates. Math. Programming 82(1-2), 199–223 (1998)

14. Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence
constraints. Theory Comput. Syst. 43, 67–80 (2008)

15. Roemer, T.A.: A note on the complexity of the concurrent open shop problem.
Journal of Scheduling 9, 389–396 (2006)

16. Schulz, A.S., Skutella, M.: Scheduling unrelated machines by randomized rounding.
SIAM J. Discr. Mathematics 15(4), 450–469 (2002)

17. Wirtz, T., Ge, R.: Improving MapReduce energy efficiency for computation inten-
sive workloads. In: IGCC, pp. 1–8 (2011)

18. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced cpu energy.
In: IEEE- FOCS, pp. 374–382 (1995)

	Energy Efficient Scheduling of MapReduce Jobs
	1 Introduction
	2 Problem Statement and Notation
	3 A Linear Programming Approach
	3.1 Linear Programming Relaxation
	3.2 The Algorithm

	4 A Convex Programming Approach
	4.1 The Convex Program
	4.2 Experimental Evaluation of Scheduling Policies

	5 Conclusions
	References

