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Abstract—With the negative effects of the popular Dynamic Voltage and Frequency Scaling (DVFS) technique on transient faults
being considered, the Primary/Backup approach has recently been exploited to save energy while preserving system reliability. In
this paper, with the objectives of tolerating a single permanent fault and maintaining system reliability with respect to transient faults,
we study energy-efficient dynamic-priority based scheduling algorithms for periodic Primary/Backup tasks on multiprocessor systems.
Specifically, by separating primary and backup tasks on their dedicated processors, we first devise two schemes based on the idea of
Standby-Sparing (SS): For Paired-SS, processors are organized as groups of two (i.e., pairs) and the existing SS scheme is applied
within each pair of processors after partitioning tasks to the pairs. In Generalized-SS, processors are divided into two groups (of
potentially different sizes), which are denoted as primary and secondary processor groups, respectively. The main (backup) tasks are
scheduled on the primary (secondary) processor group under the partitioned-EDF (partitioned-EDL) with DVFS (DPM) to save energy.
Next, instead of dedicating some processors to backup tasks, we propose schemes that allocate primary and backup tasks in a mixed
manner to better utilize the slack time on all processors for more energy savings. On each processor, the Preference-Oriented Earliest
Deadline (POED) scheduler is adopted to run primary tasks at scaled frequencies as soon as possible (ASAP) and backup tasks at
the maximum frequency as late as possible (ALAP) to save energy. Online power management and recovery strategies are further
discussed to address the problem with multiple permanent faults. Our empirical evaluations show that, for systems with a given number
of processors, there normally exists an optimal configuration of primary and secondary groups for the Generalized-SS scheme, which
leads to better energy savings compared to that of the Paired-SS scheme. Moreover, the POED-based schemes normally perform
more stable and achieve better energy savings compared to those of the SS-based schemes.

Index Terms—Real-Time Systems; Multiprocessor; Fault Tolerance; Primary/Backup; Energy Management; DVFS; DPM;
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1 INTRODUCTION

Fault tolerance has been a traditional research topic in real-
time systems as computing devices are subject to different
types of faults at runtime. In general, to tolerate various
faults and guarantee that real-time tasks can complete their
executions successfully in time, the existing fault tolerance
techniques normally adopt different forms of redundancy. For
instance, as a simple and well-studied approach, hot-standby
exploits hardware/modular redundancy and runs two copies of
the same task concurrently on two processors to tolerate a sin-
gle fault [32]. However, by their very nature, such redundancy-
based fault-tolerance techniques demand more system re-
sources, which can lead to excessive energy consumption (e.g.,
hot-standby has 100% energy overhead).

On the other hand, with the ever-increasing power density
in modern computing systems, energy has been promoted as
the first-class system resource and energy-aware computing
has become an important research area [24]. As a common
energy saving technique, dynamic power management (DPM)
can power down (or turn off) components when they are
not in use. Moreover, as a fine-grained power management
technique, dynamic voltage and frequency scaling (DVFS) can
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operate computing systems at different low-performance (and
thus low-power) states when the performance demand is not
at the peak level by simultaneously scaling down their supply
voltage and processing frequency [34].

Although both redundancy-based fault-tolerance [6], [17]
and DPM/DVFS-based energy management schemes [34],
[55] have been independently studied extensively, the co-
management of system reliability and energy consumption has
caught researchers’ attention only very recently [14], [30],
[37]. Note that, fault-tolerance and energy-efficiency are nor-
mally conflicting design objectives in computing systems since
redundancy generally means more energy consumption [2].
Moreover, recent studies show that DVFS has a negative
effect on system reliability due to significantly increased
transient fault rates at low supply voltages [11], [15], [50].
With such intriguing interplay between fault-tolerance and
energy-efficiency, it becomes imperative to develop effective
techniques that can address both aspects while guaranteeing
the timeliness of real-time tasks.

By taking the negative effects of DVFS on transient fault
rates into consideration, a series of reliability-aware power-
management (RAPM) schemes have been studied for vari-
ous real-time systems based on the backward recovery tech-
nique [13], [19], [29], [33], [44], [45], [46], [47]. Basically,
RAPM exploits system slack (i.e., temporal redundancy) for
both reliability preservation and energy savings. Here, RAPM
ensures that there is always a recovery task scheduled before
scaling down the processing frequency of any task using the
remaining slack time. By enforcing the recovery task to be
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executed at the maximum frequency when the scaled task does
incur transient faults, RAPM guarantees to achieve a desired
system reliability level [29], [44], [47]. Although RAPM can
guarantee system reliability with respect to transient faults
(which were shown to be more common [26]), there is no
provisions for tolerating permanent faults.

With the objective of tolerating a single permanent fault
while guaranteeing system reliability with respect to transient
faults, the Standby-Sparing (SS) schemes were recently studied
for both aperiodic [12] and periodic tasks [22], [23] running
on a dual-processor system based on the Primary/Backup (PB)
fault-tolerance technique. Essentially, the SS schemes schedule
primary and backup tasks separately on the primary and
secondary processors, respectively, to tolerate one permanent
fault. Note that, to improve system efficiency and reduce
execution overhead (thus to save energy), the backup tasks
are normally cancelled as soon as their corresponding primary
tasks complete successfully [6] and should be scheduled
as late as possible [37]. Hence, for energy-efficiency (and
reliability preservation), the SS schemes execute primary tasks
at scaled frequency as early as possible and backup tasks at
the maximum frequency at their latest times on their dedicated
processors, respectively [12], [22], [23].

Although the SS schemes are effective to tolerate a single
permanent fault while obtaining some energy savings, the
available slack time on the secondary processor is not effi-
ciently utilized with the adopted DPM technique. Instead of
dedicating one processor for backup tasks, the primary and
backup tasks can be allocated in a mixed manner on both
processors and all available slack time can be exploited by
the DVFS technique for better energy savings [20].

Specifically, each processor will have a mixed set of pri-
mary and backup tasks where primary tasks exploit the slack
time and run at scaled frequency with the DVFS technique.
Moreover, the tasks are scheduled with the preference-oriented
earliest-deadline (POED) scheduling algorithm, which can
differentiate them and execute primary tasks as soon as possi-
ble (ASAP) while backup tasks as late as possible (ALAP) [18],
for better energy savings. With the same idea of allocating
tasks in a mixed manner, the Secondary Execution Time Shift-
ing (SETS) heuristic was studied for periodic tasks running on
multiprocessor systems to delay backup tasks and reduce the
overlapped execution with their corresponding primary tasks
and thus save energy) [37].

However, the aforementioned studies either focused on dual-
processor systems [12], [20], [22], [23] or did not consider
the more effective DVFS power management technique [37].
To the best of our knowledge, there is no existing work that
address how to effectively schedule periodic primary/backup
tasks in multiprocessor systems to save energy with the
DPM/DVFS techniques while tolerating a single permanent
fault and preserving system reliability with respect to transient
faults. Considering the increasing popularity of multicore
processors, we focus on such a problem and propose several
energy-efficient fault-tolerance (EEFT) schemes. In particular,
the contributions of this work are summarized as follows:

• First, we study two Standby-Sparing (SS) based EEFT
schemes: Paired-SS organizes processors as groups of

two (i.e., pairs) and adopts the existing SS scheme
for dual-processor systems within each processor pair;
Generalized-SS divides processors into primary and sec-
ondary processor groups (of potentially different sizes)
and then schedules primary (backup) tasks on the pri-
mary (secondary) processors under the partitioned-EDF
(partitioned-EDL) with DVFS (DPM) to save energy;

• Second, by allocating primary and backup tasks in a
mixed manner on all processors to better utilize their
slack time for more energy savings, we propose two
additional EEFT scheme based on the POED scheduling
algorithm; Here, once primary tasks are partitioned to all
processors (e.g., according to the Worst-Fit-Decreasing
heuristic), backup tasks can be allocated to processors
following either Cyclic or Mixed approach;

• Third, the recovery strategies are further discussed for the
proposed schemes to obtain smaller recovery windows
and address the problem of multiple permanent faults;

• Finally, the proposed EEFT schemes are evaluated
through extensive simulations and the results show their
effectiveness on energy savings.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the closely-related work. Section 3 presents
system models and states the assumptions of this work. The
Standby-Sparing based schemes are discussed in Section 4 and
the POED-based schemes are investigated in Section 5. The
online power management with wrapper-tasks and recovery
strategies for the proposed EEFT schemes are addressed in
Section 6. The evaluation results are presented and discussed
in Section 7 and Section 8 concludes the paper.

2 CLOSELY RELATED WORK

Both fault-tolerance and energy management for comput-
ing systems have been extensively (but independently) stud-
ied. Based on the primary/backup fault-tolerance technique,
Bertossi et al. studied several fixed-priority RMS scheduling
algorithms for periodic real-time task running on multipro-
cessor systems to improve system resource utilization through
backup deallocation [6]. In [5], the authors further explored
the backup phasing delay technique to reduce the overlapped
executions between the primary and backup tasks. However,
the work did not consider energy management. Based on the
EDF scheduling, Unsal et al. studied an offline Secondary
Execution Time Shifting (SETS) heuristic for a set of indepen-
dent periodic real-time tasks running on multiprocessor sys-
tems [37]. Here, to obtain an energy-efficient static schedule
within the least common multiple (LCM) of tasks’ periods,
SETS iteratively delays the release time of backup tasks to
reduce the overlapped executions with their corresponding
primary tasks and thus to reduce system energy consumption,
but without exploiting the more effective DVFS technique.

By exploiting the DVFS power management technique,
Melhem et al. derived the optimal number of checkpoints,
uniformly or non-uniformly distributed, to achieve the min-
imum energy consumption while tolerating a fixed number
of transient faults for a duplex system (where two hardware
units are used to run the same software concurrently for fault
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detection) [30]. In [14], Elnozahy et al. studied an Optimistic-
TMR (OTMR) scheme to reduce the energy consumption in a
traditional Triple Modular Redundancy (TMR) system. OTMR
allows one processing unit to run at a scaled frequency with
DVFS provided that it can catch up and finish the compu-
tation before the deadline if a fault does occur on other two
units. The optimal frequency settings for OTMR was explored
in [51]. For independent service requests, Zhu et al. studied
the optimal redundant configuration for server processors to
tolerate a given number of transient faults [52].

Assuming that transient faults follow a Poisson distribu-
tion with a constant arrival rate, Zhang et al. studied an
adaptive checkpointing scheme to tolerate a fixed number
of transient faults during the execution of a single real-time
task [40]. The adaptive checkpointing scheme was extended
to a set of periodic real-time tasks on a single processor
system with the EDF scheduling algorithm [42]. In [41], the
authors further considered the cases where faults may occur
within checkpoints. Following a similar idea and considering
a fixed-priority RMS algorithm, Wei et al. studied an efficient
online scheme to minimize energy consumption with the
consideration of the run-time behaviors of tasks and fault
occurrences while still satisfying the timing constraints [38].
In [39], the authors extended the study to multiprocessor real-
time systems. Izosimov et al. studied an optimization problem
for mapping a set of tasks with reliability constraints, timing
constraints and precedence relations to processors and for
determining appropriate fault tolerance policies (re-execution
and replication) for the tasks [27].

However, despite the effectiveness of DVFS on reducing
energy consumption, recent studies shown that it has a negative
effect on system reliability due to the significantly increased
transient fault rates at low supply voltages [15]. In particular,
an exponential fault rate model with scaled voltage was
proposed in [50]. Taking such negative effects of DVFS
into consideration, Zhu studied a Reliability-Aware Power
Management (RAPM) scheme that schedule a recovery task
before exploiting the remaining slack time to scale down the
execution of the primary task [46]. Here, to preserve system
reliability with respect to transient faults, the recovery task is
executed at the maximum frequency only if transient faults
cause an error during the primary task’s execution. Later, the
RAPM scheme was extended to consider multiple tasks with a
common deadline [53] as well as periodic real-time tasks [47].
For periodic tasks that have different reliability requirements,
Zhu et al. investigated the schemes that selectively recover a
subset of jobs for each task [54]. Moreover, for tasks with
known statistical execution times, an optimistic RAPM was
studied that deploys smaller size recovery tasks while still
preserving the system reliability [48].

To address the conservativeness of RAPM that schedules
an individual recovery task for any scaled task, Zhao et al.
studied the Shared-Recovery (SHR) technique [45], where
several scaled tasks can share one recovery task to leave more
slack for DVFS to save more energy. To achieve an arbitrary
system-level target reliability, SHR has been further extended
to the generalized shared recovery (GSHR) technique where a
small number of recovery tasks are shared by all the tasks [43],

[44]. A similar study was also reported recently in [29]. Global
scheduling based RAPM schemes for both independent [33]
and dependent [19] real-time tasks running on multiprocessor
systems were studied as well.

Moreover, based on the exponential fault rate model de-
veloped in [50], Ejlali et al. studied a number of schemes
that combine the information about hardware resources and
temporal redundancy to save energy and to preserve system
reliability [13]. Considering dependent tasks represented by
directed acyclic graphes (DAGs), Pop et al. proposed a novel
framework by studying the energy and reliability trade-offs
for distributed heterogeneous embedded systems [31]. By
employing a feedback controller to track the overall miss
ratio of tasks in soft real-time systems, Sridharan et al. [35]
proposed a reliability-aware energy management algorithm
to minimize the system energy consumption while still pre-
serving the overall system reliability. Dabiri et al. studied
the problem of assigning frequency and supply voltage to
tasks for energy minimization subject to reliability as well
as timing constraints [10]. For a real-time application running
a dual-processor system, Aminzadeh and Ejlali performed a
comparative study of different DVFS and DPM schemes to
tolerate a given number of transient faults [2]. Although the
above work can preserve system reliability with respect to
transient faults, there is no provision for permanent faults.

To tolerate a single permanent fault while taking transient
faults into consideration, Ejlali et al. investigated a Standby-
Sparing (SS) scheme to save energy for dependent and aperi-
odic real-time tasks running on a dual-processor system [12].
SS executes primary tasks with DVFS on one processor
(denoted as the primary processor) at their earliest times while
backup tasks with DPM on another (spare) processor at their
latest times to reduce their overlapped executions and thus
to save more energy. The work was extended later with a
light-weight feedback system for better energy savings [36].
With the same idea of separating tasks on different processors,
Haque et al. extended standby-sparing to a more practical
periodic task model based on the earliest deadline schedul-
ing [22]. Here, for energy efficiency, primary and backup tasks
are scheduled according to EDF with DVFS and EDL [8] with
DPM on their dedicated processors, respectively. The fixed-
priority (i.e., RM) based standby-sparing scheme was further
studied in [23]. Observing the inefficient usage of slack time
with DPM on the spare processor, Guo et al. proposed to
schedule a mixed set of primary and backup copies of different
tasks on both processors, where all available slack time can
be utilized to scale down primary tasks with DVFS for better
energy savings [20].

Different from all existing research, the generalized
Standby-Sparing schemes for periodic primary/backup tasks
running on multiprocessor systems have been reported in our
preliminary work of this study [21]. Based on the Preference-
Oriented Earliest Deadline (POED) algorithm [18], additional
energy-efficient fault-tolerance (EEFT) schemes are investi-
gated in this paper. Moreover, recovery strategies are also
discussed for the problem with multiple permanent faults.
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3 PRELIMINARIES AND SYSTEM MODELS
In this section, we present the system models and state
our assumptions that this work is based upon. The problem
description is also given at the end.

3.1 Task, System and Power Models
We consider a set of n independent periodic real-time tasks
Γ = {T1, . . . , Tn}, where each task Ti is represented as a tuple
(ci, pi). Here ci is Ti’s worst-case execution time (WCET)
under the maximum available processor frequency and, pi is
its period. The tasks are assumed to have implicit deadlines.
That is, the jth task instance (or job) of Ti, denoted as Ti,j ,
arrives at time (j− 1) ·pi and needs to complete its execution
by its deadline at j · pi. Note that, a task has only one active
task instance at any time. Hence, when there is no ambiguity,
we use Ti to represent both the task and its current task
instance. The utilization of a task Ti is defined as ui = ci

pi
.

The system utilization of a given task set is further defined as
the summation of all tasks’ utilization: U(Γ) =

∑
Ti∈Γ ui.

The tasks are to be executed on a shared-memory system
with m processors, which have identical functionalities. As
power management features have become common in modern
processors [1], [9], we assume that all processors adopted in
the system have the dynamic voltage and frequency scaling
(DVFS) capability, which allows them to operate at one of
the L discrete frequency (and voltage) levels (F1 < F2 <
. . . < FL). With normalized frequencies being considered, the
maximum frequency is assumed to be Fmax = FL = 1.0.

With the shrinking technology size, the static and leakage
power increases in a faster pace when compared to that of
dynamic power [28]. Hence, it becomes more important to
manage power consumption at the system-level with all power
consuming components being considered [3], [25]. To ease
the discussion and analysis, we adopt in this work a simple
system-level power model, which has been widely exploited
in recent studies [29], [33], [47]. Specifically, for a system
with m processors (that operate at f1, . . . , fm, respectively),
its power consumption can be expressed as:

P (f1, . . . , fm) = Ps +
m∑
i=1

~i(Pind + Cef · fk
i ) (1)

where Ps stands for the static power, which can be removed
only by powering off the whole system. However, due to the
prohibitive overhead of turning off and on the system [14]
in periodic real-time execution settings, we assume that the
system is in on state at all times and that Ps is always
consumed. That is, we will focus on the energy consumption
related to system active power, which is given by the second
item in the above equation.

For each processor, if it is actively executing tasks, two
types of active power will be consumed: the frequency-
independent active power Pind (which is assumed to be the
same for all processors) and the frequency-dependent active
power (which depends on the system-dependent constants Cef

and k, as well as the processor’s frequency fi). That is, if the
i’th processor is active, we have ~ = 1. Otherwise, if there
is no ready task on the i’th processor, it can switch to the

sleep state through the dynamic power management (DPM)
technique and does not consume any active power (i.e., ~ = 0).

Considering the fact that modern processors can switch to
sleep states in a few cycles [1], [9], we assume that the time
overhead for a processor to enter/exit its sleep state is negli-
gible. Moreover, to simplify the discussion, the overhead for
frequency (and voltage) changes under DVFS is also assumed
to be included into tasks’ WCETs or can be incorporated with
the slack reservation mechanism [49].

From the above system-level power model, an energy-
efficient frequency, Fee = k

√
Pind

Cef ·(k−1) , can be derived, below
which DVFS consumes more energy to execute a task [33].
In what follows, we assume that all available frequency levels
are energy-efficient and there is Fee ≤ F1.

3.2 Fault and Recovery Models
During the operation of a real-time system, different faults may
occur due to hardware failure, software errors or electromag-
netic interferences. While transient faults can be tolerated with
temporal redundancy, permanent faults can only be tolerated
through modular/hardware redundancy. Historically, it has
been reported that transient faults are much more common than
permanent faults [26]. With the scaled technology size [15]
and widely-adopted DVFS power management technique,
modern computing devices are more susceptible to transient
faults [11]. In particular, as supply voltage is reduced with
DVFS to save energy, the rate of transient faults may increase
exponentially [50]. Although the occurrence of permanent
faults is very rare, a comprehensive framework should have
provisions for both transient and permanent faults in a safety-
critical multiprocessor real-time system.

With the objective of tolerating both transient and perma-
nent faults, we adopt the Primary/Backup (PB) fault-tolerance
technique in this work. That is, for each task Ti, there is a
periodic backup task Bi. To distinguish between them, we
occasionally use the term primary (or main) task to refer to
Ti. Here, to ensure that there is a proper backup for every
task instance of Ti, we assume that Bi has the same timing
parameters1 (i.e., ci and pi) as Ti. Hence, in addition to the
original primary task set Γ, we have a set ΓB of backup tasks
that have to be properly scheduled.

The same as in most existing fault-tolerance work, we
assume that fault detection mechanisms are available in the
system and the detection overhead has been incorporated into
the WCETs of tasks [2]. Specifically, for soft errors caused
by transient faults, they are detected at the end of a task’s
execution with the sanity (or consistency) checks (e.g., parity
or signature checks) [32]. For permanent faults, we assume
the failure-stop model and a faulty processor can be detected
by other working ones at the earliest completion time of a
task through the message-based mechanism [32]. Hence, we
do not use the backup tasks for fault detection, which are for
fault-tolerance only to replace the faulty execution whenever
a transient or permanent fault is detected.

1. Note that, as long as Bi’s WCET is no more than that of Ti (i.e., Bi can
be either a reduced version or the replication of Ti), the proposed schemes can
guarantee system reliability with respect to transient faults [12], [29], [47].
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Fig. 1: A set of three tasks T1(1, 5), T2(2, 6) and T3(4, 15) running on a three-processor system.

Problem Description: With DPM and DVFS techniques
being exploited to save energy, the problem to be addressed
in this paper is: how to efficiently schedule the main and
backup tasks on a multiprocessor system to maximize the
energy savings under the conditions of a) tolerating a single
permanent fault; and b) preserving system reliability with
respect to transient faults (in the absence of permanent faults).

The same as in [12], [22], the backup tasks adopted in this
work have dual purposes. First, with one backup for each main
task, the system is inherently robust to a single permanent fault
on any processor provided that the main and backup copies
of the same task are scheduled on different processors [6].
The second objective of the backup tasks is, in the absence of
permanent faults, to preserve system reliability2 with respect to
transient faults when the execution of primary tasks is scaled
down with DVFS to save energy. For such a purpose and
considering the negative effects of DVFS on transient fault
rates [50], backup tasks should be executed at the maximum
frequency [12], [29], [47].

4 STANDBY-SPARING FOR MULTIPROCESSOR

For dual-processor systems, the central idea of Standby-
Sparing (SS) is to run separately the main and backup tasks
on primary and secondary processors, respectively [12], [22].
Here, the main tasks are executed at scaled frequency with
DVFS on the primary processor while backup tasks run at
the maximum frequency on the secondary processor but are

2. Higer levels of system reliability can be achieved with additional
replicated copies of tasks [29], [44]. However, exploring this direction is
beyond the scope of this paper and will be investigated in our future work.

delayed to reduce the overlapped executions with their corre-
sponding main tasks for energy savings with DPM. Following
the same idea of separating main and backup tasks on their
dedicated processors, we first study two SS-based schemes for
multiprocessor systems: Paired-SS and Generalized-SS, which
have been reported in our preliminary work [21].

4.1 An Example: Three-Processor Systems
When there are more (i.e. > 2) processors in a system, a
natural question to ask would be: “how to configure such
processors for better energy efficiency?” We can either have
additional primary processors to execute main tasks at further
reduced frequencies or have more secondary processors to
further delay the execution of backup tasks. Clearly, this
is not a trivial problem considering the intriguing interplay
between the scaled frequency of main tasks and the amount
of overlapped execution with their backup tasks.

Before presenting the solution for the general problem
for multiprocessor systems, we first investigate the simple
case of three-processor systems. Here, we have two options
for the configuration of the processors: a) one primary and
two secondary processors (denoted as “X1Y2”); and b) two
primary and one secondary processor (denoted as “X2Y1”).

A Motivational Example: Consider a task set with three
periodic real-time tasks Γ = {T1(1, 5),T2(2, 6), T3(4, 15)}.
We can easily find that the system utilization is U = 0.8
and the least common multiple (LCM) of tasks’ periods is
LCM = 30. Suppose that the processors have four discrete
(normalized) frequency levels {0.4, 0.6, 0.8, 1.0}.

Figure 1a first shows the tasks’ schedule on a dual-processor
system with the Standby-Sparing technique within LCM [22].
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Here, the primary processor executes the main tasks under
Earliest Deadline First (EDF) at a scaled frequency of 0.8
while the secondary processor schedules the backup tasks with
Earliest Deadline Latest (EDL) [8] for energy savings. By
assuming Pind = 0.01, Cef = 1 and k = 3 in the power
model, we can find the active energy consumption within LCM
is ESS−SPM = 27.2 when all tasks take their WCETs and
there is no fault at run-time. Here, most executions of the
backup tasks are cancelled, which are marked with an ’X’.

For the X1Y2 configuration of a three-processor system,
where the extra processor is used as an additional secondary,
the schedule of tasks is shown in Figure 1b. Here, the primary
processor P1 still runs at the frequency 0.8 to execute the
main tasks. However, backup tasks can be re-allocated, where
backup task B2 is allocated to processor P2 and B1 and B3 to
processor P3, to further delay and reduce their overlapped ex-
ecutions. It turns out that, although the overlapped executions
can be reduced slightly, the additional energy consumption
from the frequency-independent active power (i.e., Pind) of
the extra processor overshadows such benefits and leads to
the total active energy consumption of EX1Y 2 = 27.45, which
is slightly more than that of the traditional Standby-Sparing
scheme for the dual-processor system.

However, when the extra processor is utilized as an addi-
tional primary, Figure 1c shows the schedule of tasks under
the X2Y1 configuration. Here, the main task T2 is allocated to
processor P1 and other two tasks (T1 and T3) to P2, which can
run at the scaled frequencies of 0.4 and 0.6, respectively. The
total active energy consumption under this configuration can
be found as EX2Y 1 = 23.37, which is a 14% improvement
over the traditional Standby-Sparing scheme.

4.2 Standby-Sparing Based Schemes
From the above example, we can see that different configura-
tions of primary and secondary processors can have important
effects on the energy efficiency of multiprocessor systems.
Following the ideas and principles of the traditional Standby-
Spring scheme [22], we propose in what follows the Paired
Standby-Sparing (Section 4.2.1) and Generalized Standby-
Sparing (Section 4.2.2) schemes for periodic real-time tasks
running on multiprocessor systems [21].

4.2.1 Paired Standby-Sparing (P-SS)
Considering the fact that the traditional Standby-Sparing
scheme was designed for dual-processor systems [22], a simple
and straightforward approach is to first organize the processors
in a system as groups of two (i.e., pairs). Then, the existing
Standby-Spring scheme can be applied directly to each pair
of processors after partitioning (main and backup) tasks to
the processor pairs appropriately, which is thus named as the
Paired Standby-Sparing (P-SS) scheme.

From the results in [22], we know that different system uti-
lizations of tasks have a great impact on the energy efficiency
of a dual-processor system under the Standby-Sparing scheme.
The reason is that, both the scaled frequency for the main tasks
on the primary processor and the delayed execution of backup
tasks on the secondary processor depend heavily on system

loads. When the system utilization of a given task set is high,
the Standby-Sparing scheme could perform quite worse due to
higher execution frequency for main tasks and the increased
amount of overlapped execution between the main and backup
tasks. On the other hand, once the scaled execution frequency
of the main tasks reduces to the minimum (available) energy-
efficient frequency, additional energy savings are rather limited
with further reduced system loads [22].

Therefore, the key factor for the energy efficiency of a
multiprocessor system under P-SS will be the mapping of
tasks to processor pairs. However, it is well-known that the
problem of finding a feasible mapping of a given set of
periodic real-time tasks in a multiprocessor system is NP-
hard. Therefore, finding the optimal mapping of (main and
backup) tasks among the processor pairs in P-SS to minimize
the system energy consumption is NP-hard as well. Note
that, without fault-tolerance being considered, the balanced
workload among processors has been shown to have the
best energy efficiency for tasks running on a multiprocessor
system [4]. Hence, following this intuition and considering
its inherent ability to obtain a load-balanced mapping, we
adopt the Worst-Fit Decreasing (WFD) heuristic in P-SS when
mapping (main and backup) tasks to the processor pairs.

Note that, to apply the traditional Standby-Sparing within
each processor pair, the main and backup of the same task
(e.g., Ti and Bi) have to be mapped to the same pair of
processors. Therefore, in P-SS, we can first map the main tasks
in Γ to the processor pairs according to the WFD heuristic.
That is, each processor pair will be allocated a subset Γq of
the main tasks, where 1 ≤ q ≤ ⌊m

2 ⌋ as there are at most ⌊m
2 ⌋

processor pairs for a system with m processors. Then, for each
backup task Bi, it will be allocated to the processor pair that
contains the corresponding main task Ti,

With the Standby-Sparing scheme being adopted within
each processor pair, the main and backup tasks are scheduled
under EDF and EDL on the primary and secondary processors,
respectively [22]. Recall that backup tasks have the same tim-
ing parameters (i.e., utilizations) as their main tasks. Therefore,
the resulting WFD mapping {Γq} (and corresponding {ΓB

q })
is feasible if there are U(Γq) ≤ 1 (1 ≤ q ≤ ⌊m

2 ⌋).
Once the feasible WFD mapping is obtained, the processor

pairs under P-SS will operate independently. Although each
processor pair acting as a Standby-Spring system can tolerate
one permanent fault [22], it is possible for multiple permanent
faults hit both processors in one pair. Hence, with each task
having one backup, P-SS can only tolerate a single permanent
fault in the worst case scenario. However, once the processor
affected by permanent fault(s) is identified and isolated, we can
re-configure the system with the remaining (m−1) processors
and/or re-map the tasks to tolerate additional permanent faults,
which will be further discussed in Section 6.2.

4.2.2 Generalized Standby-Sparing (G-SS)
For the example system with three processors (Section 4.1),

we have seen that having two primary processors to execute the
main tasks while sharing one secondary processor among the
backup tasks can lead to higher energy efficiency. Following
this principle and generalizing the idea of Standby-Sparing,
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Algorithm 1 : G-SS for a given (X , Y )-configuration
1: Input: task sets Γ and ΓB ; X and Y (= m−X);
2: Output: Scaled frequencies for primary processors and

EDL schedules for secondary processors;
3: Find the (X,Y ) WFD partitions of Γ and ΓB :
4: Π(X) = {Γ1, · · · ,ΓX} and ΠB(Y ) = {ΓB

1 , · · · ,ΓB
Y };

5: if (∀i, U(Γi) ≤ 1 and ∀j, U(ΓB
j ) ≤ 1) then

6: //Suppose the first X processors are primary processors
7: for (each primary processor Px: x = 1 → X) do
8: fx = min{Fi|Fi ≥ U(Γx), i = 1, . . . , L};
9: end for

10: for (each secondary processor Py: y = 1 → Y ) do
11: Generate the offline EDL schedule for tasks in ΓB

y ;
12: end for
13: end if

we propose the Generalized Standby-Sparing (G-SS) scheme,
which organizes the m processors of the system into two
groups: the primary group of X processors and the secondary
group of Y processors, where m = X + Y . Then, the main
and backup tasks are separately scheduled on the processors
in the primary and secondary groups, respectively.

Considering the fact that the EDF/EDL schedulers are
exploited in the P-SS scheme and the simplicity of partitioned
scheduling, we adopt the partitioned-EDF and partitioned-
EDL for G-SS to schedule the main and backup tasks, re-
spectively. Hence, for a given (X,Y )-configuration of the
processors, Algorithm 1 summarizes the major steps of G-SS.

First, the main and backup tasks are partitioned among the
X primary and Y secondary processors, respectively (lines 2
and 3). Again, to obtain the mappings with balanced-workload
for better energy savings, the WFD heuristic is adopted [4].
Then, the schedulabilities of the resulting WFD mappings
for both the main and backup tasks under the EDF and
EDL schedulers on the primary and secondary processors,
respectively, are examined (line 4).

If any processor is overloaded with the resulting mappings
Π(X) and ΠB(Y ), we say that the (X,Y )-configuration is not
feasible. Otherwise, to save energy, the scaled frequency for
each primary processor to execute its main tasks is determined
(lines 6 and 7); in addition, assuming that backup tasks run at
the maximum frequency, the EDL schedule for each secondary
processor is generated offline (lines 9 and 10).

With all backup tasks running on different processors from
their main tasks, G-SS is able to tolerate a single permanent
fault. Moreover, the system reliability with respect to transient
faults can also be preserved since all backup tasks are assumed
to run at Fmax. Note that, the same as in the traditional
Standby-Sparing scheme [22], if a main (or backup) task
completes successfully on one processor at runtime, the related
processor will be notified to cancel the execution of the
corresponding backup (or main) task for energy savings.

It is clear that different configurations of the processors
in G-SS have a great impact on the energy efficiency of a
multiprocessor system. For the special case that has the same
number of primary and secondary processors (i.e., X = Y ),
we can find that G-SS will be effectively reduced to P-

Algorithm 2 : Find the optimal configuration for G-SS
1: Input: task sets Γ and ΓB; m (number of processors);
2: Output: the optimal processor configuration (i.e., Xopt)

for G-SS to minimize energy consumption;
3: Xmin = ⌈U(Γ)⌉; Xmax = m−Xmin;
4: Emin = ∞; Xopt = −1; //initialization
5: for (X = Xmin → Xmax) do
6: Y = m−X; //number of secondary processors
7: if (Γ is schedulable under G-SS with X/Y ) then
8: Get EG−SS(X,Y ) from emulation in LCM;
9: if (Emin > EG−SS(X,Y )) then

10: Xopt = X;
11: end if
12: end if
13: end for

SS since they adopt the same WFD mapping heuristic and
the backup tasks have the same timing parameters as their
corresponding main tasks. However, for the configurations that
have different numbers of primary and secondary processors
(i.e., X ̸= Y ), it is very likely that the backup tasks are
mapped to different secondary processors in G-SS even if their
main tasks are mapped to the same primary processor. This
is quite different from P-SS, where each primary processor
has a dedicated secondary processor and the same subset of
main and backup tasks are always executed on these two
processors, respectively. Due to such implications, it is quite
difficult to identify the overlapped execution regions between
the main and backup tasks in the EDF and EDL schedules
on different processors, which makes it impossible to find
the optimal configuration of processors for G-SS to minimize
energy consumption analytically.

4.2.3 Optimal Processor Configuration for G-SS
For a given task set Γ running on a m-processor system, we
present an iterative algorithm to find out the optimal processor
configuration for G-SS to minimize system energy consump-
tion, where the major steps are shown in Algorithm 2. Note
that, with the system utilization of U(Γ), the minimum number
of required primary processors for the tasks to be schedulable
under partitioned-EDF can be obtained as Xmin = ⌈U(Γ)⌉.
Xmin also gives the minimum number of required secondary
processors. Thus, the maximum number of primary processors
can be found accordingly Xmax = m−Xmin (line 3).

For each possible (X,Y )-configuration of the processors,
the schedulability of the given task set Γ under G-SS can be
checked using Algorithm 1 (lines 5 to 7). If Γ is schedu-
lable, the system energy consumption under G-SS can be
obtained from the emulated execution of the tasks within
LCM (line 8). During such emulations, we assume that tasks
take their WCETs and no fault occurs. Finally, searching
through all feasible configurations of the processors, the opti-
mal (Xopt, Y opt)-configuration with the lowest system energy
consumption can be found out (lines 9 and 10). As shown in
Section 7.1, such an optimal configuration for G-SS normally
has more primary processors and can lead to better energy
efficiency when compared to that of the P-SS scheme.
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Fig. 2: An example of two tasks T1 = (1, 5) and T2 = (2, 10)
running on a dual-processor system.

5 SCHEMES WITH MIXED PRIMARY/BACKUP
The separation of main and backup tasks on their dedicated
processors simplifies the scheduling algorithm on each pro-
cessor for the SS-based schemes. However, since backup
tasks need to run at the maximum frequency for reliability
preservation, the available slack time on secondary processors
can only be used to idle processors with the DPM technique
to save energy. As illustrated in the following example of a
dual-processor system, better energy savings can be obtained
if the main and backup tasks are allocated in a mixed manner
on both processors [20], which can more efficiently utilize all
available slack time with the DVFS technique.

5.1 Inefficient Slack Usage in Standby-Sparing
Consider a dual-processor system with two periodic tasks T1 =
(1, 5) and T2 = (2, 10). The schedule within the LCM of
tasks’ periods under the Standby-Sparing scheme is shown in
Figure 2a. Here, the main tasks T1 and T2 are executed at
the scaled frequency of 0.4 on the primary processor under
EDF, while the backup tasks B1 and B2 are scheduled on the
secondary processor under EDL [22]. Clearly, as B1 and B2

are required to run at the maximum frequency for reliability
preservation, the slack time on the secondary processor can
only be exploited by DPM to idle the processor.

However, it is well-known that slack time can be more effi-
ciently utilized by the DVFS technique [34], [55]. Therefore,
instead of dedicating one processor for backup tasks, we can
allocate the main and backup tasks to both processors in a
mixed manner as shown in Figure 2b. Here, T1 and B2 are
allocated to the first processor while T2 and B1 to the second
processor. Hence, each processor can utilize its slack time for
its main task and it turns out that, with DVFS, both T1 and
T2 can be executed at the scaled frequency of 0.25.

Suppose that tasks take their WCETs and no fault occurs
during tasks’ execution. When tasks are executed according to
the schedule within the LCM in Figure 2b, most executions
of backup tasks will be cancelled (marked with ’X’). Hence,
when compared to the case of the Standby-Sparing schedule
as shown in Figure 2a, about 20% more energy savings can
be obtained under the new scheme with mixed allocations of
main and backup tasks on both processors.

However, we should point out that it is not trivial to obtain
such a schedule in Figure 2b, which is neither an EDF nor
EDL schedule. From the figure, we can see that, to obtain more
energy savings, the main tasks on each processor are executed
at their earliest times while the backup tasks are delayed
as much as possible (without causing any deadline miss).
To efficiently generate such schedules, in what follows, we
first review the basic ideas of the preference-oriented earliest
deadline (POED) scheduling algorithm [18], which forms
the foundation of the novel energy-efficient fault-tolerance
schemes with mixed allocations of main and backup tasks.

5.1.1 A Preference-Oriented Scheduling Algorithm
Basically, POED is a dynamic-priority based scheduler to
schedule a set of periodic real-time tasks on a single processor
system. However, different from the conventional earliest-
deadline schedulers, such as EDF and EDL [8] (which treat all
tasks uniformly and schedule them at their earliest and latest
times, respectively), POED can distinguish different execution
preferences of tasks, which can be either as soon as possible
(ASAP) or as late as possible (ALAP) [18].

To incorporate such execution preferences of tasks, POED
follows two principles when making scheduling decisions [18].
First, even if an ASAP task has a later deadline than that
of an ALAP task, the ASAP task should be executed before
the ALAP task if it is possible to do so without causing any
deadline miss; Second, the execution of ALAP tasks should
be delayed as much as possible given that it does not cause
any deadline miss for both current and future tasks.

Given these two principles, at any scheduling event (such
as the arrival or completion of a task, or a timer interrupt),
the basic steps of the POED scheduler can be summarized
as follows. For cases where the ready task with the highest
priority (i.e., earliest deadline) has ASAP preference, POED
will execute the task normally as in EDF. However, in case
an ALAP task has the earliest deadline, POED will focus on
a look-ahead interval from the invocation time to the earliest
deadline of an ASAP task. All (current and future arrival) tasks
within this interval will be considered to see whether it is safe
to delay the ALAP task’s execution and if yes, for how long
can it be delayed. We have shown that POED can guarantee to
meet all tasks’ deadlines when scheduling them according to
their preferences. In particular, we have the following theorem
regarding to the schedulability of a task set under POED.
Interested readers can refer to [18] for the detailed analysis.

Theorem 1 (POED Schedulability [18]). For a set Γ of
periodic tasks with either ASAP or ALAP preferences, no task
will miss its deadline under POED if there is U(Γ) ≤ 1.

Therefore, with the POED scheduler, the main tasks (i.e.,
T1 and T2) in the above example will have ASAP prefer-
ence while the backup tasks (i.e., B1 and B2) have ALAP
preference on their respective processors. Moreover, with the
scaled frequency for the main tasks being 0.25, the inflated
system utilization is exactly 1 on both processors. Hence, from
Theorem 1, the mixed sets of main and backup tasks on both
processors can be successfully scheduled under POED, which
results in the schedule as shown in Figure 2b.
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Algorithm 3 : Major steps of POED-based EEFT schemes
1: Input: task sets Γ and ΓB ; number of processors m;
2: Step 1: Allocate main tasks in Γ to m processors;
3: Suppose the WFD partition is Π = {Γ1, . . . ,Γm};
4: Step 2: Allocate backup tasks in ΓB to all processors;
5: Suppose backup partition is ΠB = {ΓB

1 , . . . ,Γ
B
m};

6: Step 3: Calculate scaled frequencies for main tasks;
7: for (i : 1 → m) do
8: fi = min{Fx|Fx ≥ U(Γi)

1−U(ΓB
i )

, x = 1, . . . L};
9: Assign fi to the main tasks in Γi;

10: Assign fmax = FL to the backup tasks in ΓB
i ;

11: Step 4: Execute tasks on each processor under POED;
12: for (i : 1 → m) do
13: Assign ASAP preference to main tasks in Γi;
14: Assign ALAP preference to backup tasks in ΓB

i ;
15: Execute Γi and ΓB

i on Pi under POED;

5.2 POED-Based EEFT Schemes

From the above example, we can see that, significant energy
savings can be obtained when a mixed set of main and backup
tasks are allocated to each processor and scheduled under
POED. The reasons come from two aspects: First, the slack
time on all processors can be efficiently exploited by their
main tasks with the DVFS technique. Second, with the POED
scheduler, most executions of backup tasks can be effectively
cancelled at runtime as such executions are delayed as much as
possible while the corresponding main tasks are executed (on
another processor) at their earliest times. By generalizing these
ideas, the major steps of the POED-based energy-efficient
fault-tolerance (EEFT) schemes for multiprocessor systems
can be summarized in Algorithm 3.

The first step is to allocate main tasks in Γ (line 2). Without
the need to dedicate processors for backup tasks, all processors
in the system are accessible to the main tasks. Again, we
assume that the WFD heuristic is adopted to balance the
workload of main tasks among the processors (line 3).

After that, the second step is to allocate the backup tasks in
ΓB to all processors (lines 4 and 5). Recall that, to tolerate a
single permanent fault, a main task Ti and its backup task Bi

have to be allocated to different processors [32]. Following
this principle, we consider in this work two approaches when
allocating backup tasks.

Cyclic Backup Allocation: First, considering that the WFD
partition obtained in the first step has relatively balanced work-
load of main tasks among the processors, a simple approach is
the Cyclic Allocation of the backup tasks. That is, for the main
tasks allocated to processor Pi, the corresponding backup tasks
will be mapped to the next neighbor processor Pi+1 and so on
(i = 1, . . . ,m − 1). For the main tasks on the last processor
Pm, their backup tasks are allocated to the first processor P1,
forming a cyclic chain allocation of backup tasks (and the
scheme is denoted as POED-Cyclic).

The cyclic allocation is easy to implement and can simplify
the messages among processors at runtime when no permanent
fault occurs. Here, the backup task of a main task can

always be found on its next neighbor processor and vice
versa. However, as discussed later, once a processor fails, the
recovery steps can be quite complicated to re-establish such a
cyclic allocation of backup tasks, which may require all tasks
to be re-mapped among the remaining processors and have a
rather long recovery window.

Mixed Backup Allocation: To avoid such cyclic dependency
between processors, the second approach is to scatter backup
tasks among all processors. Specifically, by considering one
processor Pi (i = 1, . . . ,m) at a time, the corresponding
backup tasks of its main tasks are allocated to all other
processors. Again, for the purpose of load-balancing, the
WFD mapping heuristic is adopted. At the end, each processor
will be allocated a completely mixed set of main and backup
tasks and thus the scheme is denoted as POED-Mix.

After backup tasks are allocated, each processor Pi will
have a subset Γi of main tasks and a subset ΓB

i of backup
tasks. Suppose that, for every processor, its allocated main
and backup tasks are schedulable under POED. That is, there
are U(Γi) + U(ΓB

i ) ≤ 1 (i = 1, . . . ,m). As the third
step, the spare capacity (i.e., static slack) in the amount of
(1 − U(Γi) − U(ΓB

i )) on each processor Pi is exploited and
the scaled frequency for the main tasks on that processor
is calculated accordingly (lines 7 and 8). Then, the scaled
frequency and the maximum frequency are assigned to the
main and backup tasks, respectively (lines 9 and 10).

As mentioned previously, to cancel as much execution of
backup tasks as possible at runtime, they should be delayed to
the maximum extent and are given the ALAP preference while
the main tasks have the ASAP preference on each processor
(lines 13 and 14). Moreover, the inflated system utilization on
each processor, which takes the scaled frequency of main tasks
into consideration, is ensured to be no more than 1. Therefore,
after frequency assignment for the (main and backup) tasks,
they are guaranteed to be schedulable on each processor under
POED (from Theorem 1). Hence, the last step is to execute
the tasks on each processor under POED, which is actually
the online phase of the POED-based schemes (line 15).

The same as in the Standby-Sparing scheme, once a main
task successfully completes its execution, it will notify the
processor that has its backup task and cancel its execution.
As the evaluation results shown in Section 7, compared to
that of the SS-based schemes, the POED-based schemes are
more effective to cancel the execution of backup tasks due to
their delayed execution as well as early execution of main task
under the POED scheduler. Thus, better energy savings can be
obtained under the POED-based schemes.

With backup tasks being forced to run at the maximum
frequency, the system reliability with respect to transient faults
can be preserved (in the absence of permanent faults). More-
over, since both the POED-Cyclic and POED-Mix schemes
schedule any main task and its backup task on different
processors, it guarantees to tolerate a single permanent fault
on any processor at runtime. The recovery strategies for the
POED-based schemes to handle additional permanent faults
are further discussed in the next section.
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6 RUNTIME MANAGEMENT

As the two major runtime issues, in what follows, we briefly
address the online power management and recovery strategies
for the proposed energy-efficient fault-tolerance schemes.

6.1 Online Power Management with Wrapper-Tasks

In both SS-based and POED-based schemes, the scaled fre-
quencies for main tasks are obtained with the assumption that
all tasks take their WCETs. However, it is well-known that
real-time tasks normally take only a small fraction of their
WCETs at runtime [16]. Hence, significant amount of dynamic
slack can be expected, which should be exploited to further
scale down main tasks for more energy savings.

Many online techniques have been studied for real-time
tasks to exploit such dynamic slack at runtime [34], [55].
In this work, we study a generic online power management
scheme, which can be applied to both the SS-based and
POED-based EEFT schemes, based on the wrapper-task tech-
nique [47]. Essentially, a wrapper-task represents a piece of
dynamic slack with two parameters (c, d), where the size c
denotes the amount of slack and the deadline d equals to that
of the task giving rise to this slack. At runtime, wrapper-tasks
are kept in a separate wrapper-task queue with the increasing
order of their deadlines. Under the earliest-deadline based
scheduling, a task can safely reclaim any slack that has a
deadline being no later than that of the task [47].

Considering the partitioned scheduling adopted in both
the SS-based and POED-based schemes, each processor will
manage its own slack time (i.e., wrapper-tasks) independently.
Specifically, since backup tasks are executed at the maximum
frequency on the secondary processors according to the offline
generated EDL schedules in the SS-based schemes, only
primary processors need to manage dynamic slack with the
wrapper-task technique and, if possible, to further scale down
the execution of their main tasks at runtime.

For the POED-based schemes, since each processor has
a mixed set of main and backup tasks, all processors need
to manage dynamic slack, which may come from the early
completion of main tasks or cancellation of the backup tasks.
However, on each processor, only the main tasks may reclaim
(and actually utilize) the dynamic slack for further scaled
execution. Un-used slack time will compete for the processor
with other active tasks based on their priorities (i.e., deadlines).
When the slack (i.e., wrapper-task) has the earliest deadline,
it can either be pushed forward (i.e., lent to an active main
task and returned with a later deadline) or consumed to idle
the processor and further delay the execution of backup tasks.
Detailed steps for such slack management with wrapper-tasks
and its application under the POED scheduler can be found in
[18], [47], which are omitted due to space limitation.

6.2 Recovery Strategies: Multiple Permanent Faults

By scheduling main tasks and their backup tasks on different
processors, both the SS-based and POED-based schemes can
tolerate a single permanent fault. Once a processor fails due
to permanent faults and is detected, recovery strategies are

needed to re-configure the system for it to tolerate additional
permanent faults. The duration of recovery operations is re-
ferred to as recovery window, which denotes the time interval
from the detection of a faulty processor to the time instance
after which an additional permanent fault can be tolerated [32].
Here, to preserve system reliability with respect to transient
faults, the main tasks whose backup tasks are on the faulty
processor are assumed to run at the maximum frequency
during the recovery process. Hence, in general, it is desired to
have a smaller recovery window.

Considering the periodicity of the tasks, a simple recovery
strategy that can be applied to all the proposed EEFT schemes
would be to re-map the (main and backup) tasks to the remain-
ing processors at the beginning of the next LCM of all tasks
in Γ (denoted as Global-LCM). Clearly, such a simple strategy
can have an extremely large recovery window (with the size
of Global-LCM). Instead of re-allocating the affected tasks
on the faulty processor all at once at the Global-LCM, we
may consider the LCM of the tasks on a particular processor
(pair), which is denoted as Local-LCM, and gradually migrate
the affected tasks to other processors (or pairs) one at a time.

Suppose that a subset of affected (main and/or backup) tasks
can be feasibly re-mapped to a working processor (pair) that
has its existing set of (main and/or backup) tasks. At the
time of the new Local-LCM (which considers both existing
and to-be-mapped affected tasks), it is safe to re-calculate
the scaled frequency for the main tasks or re-generate the
EDL schedule for the backup tasks on that processor (pair).
Therefore, based on such a Local-LCM principle, recovery
strategies with smaller recovery windows can be devised by
considering the specific features of different EEFT schemes.

Note that, Paired-SS can only deploy an even number of
processors in a system. Therefore, if m is an odd number
initially and there is one leftover processor, it may replace
the faulty processor once it obtains the correct states of all
tasks from another processor in the pair, which can lead to
a much smaller recovery window. Another special case is
POED-Cyclic, extra steps are needed to re-map the tasks on
all remaining processors to obtain the balanced workload and
re-establish the chain of backup tasks on these processors. The
detailed discussions on the recovery strategies of the proposed
EEFT schemes can be found in Appendix A.

7 EVALUATIONS AND DISCUSSIONS
In this section, we evaluate the performance of the proposed
SS-based and POED-based EEFT schemes for multiprocessor
real-time systems through extensive simulations. For such
purposes, we developed a discrete event simulator using C++.
From our previous studies [22], [20], we know that, in addition
to the guarantee of tolerating a single permanent fault, the
Standby-Sparing and the POED-based schemes can preserve
the original system reliability with respect to transient faults
by enforcing backup tasks run at the maximum frequency.
Since the schemes studied in this paper follow the same design
principle for fault tolerance, the reliability goals (in terms of
tolerating both permanent and transient faults) can be ensured
as well. Therefore, in what follows, we focus on evaluating
the energy efficiency of the proposed schemes.
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Fig. 3: The effects of XY-configuration in G-SS for a 16-CPU system under different loads.

Considering the fact that most modern processors have
a few frequency levels [1], [9], we assume that there
are seven frequency levels, which are normalized as
{0.4, 0.5, 0.6, 0, 7, 0.8, 0.9, 1.0} in the evaluations. Moreover,
for the parameters in the power model, we assume that
Pind = 0.01, Cef = 1 and k = 3, where similar parameters
have been used in previous studies [22], [55]. Moreover, we
consider a system with up to 16 processors.

The utilizations of tasks are generated according to the
UUniFast scheme proposed in [7], where the average task
utilization is set as uave = 0.1 and uave = 0.05, respectively.
For each task set, we generate enough number of tasks so
that the system utilization reaches a given target value. That
is, for a given system utilization U , the average number of
tasks in a set will be U

uave . The periods of tasks are uniformly
distributed in the range of [10, 100] and the WCET of a task is
set according to its utilization and period. Each data point in
the figures corresponds to the average result of 100 task sets.

7.1 Optimal Configuration for G-SS vs. P-SS

First, we illustrate the variations in energy consumption under
different primary and secondary processor configurations in
the G-SS scheme for a 16-processor system and compare
them against that of the P-SS scheme. Here, we assume that
all tasks run at their statically assigned frequencies and take
their WCETs at run-time. Moreover, it is assumed that no
fault occurs during the execution of tasks and backup (main)
copies of tasks are cancelled under both schemes once their
corresponding main (backup) copies complete successfully3.
We show the normalized energy consumption, where the one
under the basic P-SS scheme with both primary and secondary
processors running at the maximum frequency is used as the
baseline.

For a 16-processor system, the upper-bound of the total
main task system utilization schedulable under the proposed
schemes would be 8 (since a similar processor capacity
should be reserved for backup tasks). For the cases of system
utilization U = 3.0, 4.0, 5.0 and 6.0, Figure 3 shows the results
for the G-SS scheme with varying numbers (Y ) of secondary
processors as well as that of the P-SS scheme for comparison.
Here, the average task utilization is set as uave = 0.1.

3. Note that, due to independent scheduling of tasks’ main and backup
copies under EDF and EDL, respectively, it is possible for a task’s backup
copy finishes earlier than its main copy in the SS scheme [22].

Not surprisingly, for different processor configurations (i.e.,
as the number of secondary processors varies) in the G-SS
scheme, the system energy efficiency can have rather large
differences (from 30% to 45%). As in our example in Sec-
tion 4.1, for a given system utilization, the optimal processor
configuration that can lead to the best system energy efficiency
normally has more primary processors (i.e., smaller values
of Y ). On the other hand, since the backup copies of tasks
have to be executed at the maximum frequency for reliability
preservation [22], the spare capacity on secondary processors
is normally wasted, which leads to inferior performance for
G-SS when more processors are used as secondaries.

From the results, we can also see that, with a judicious
selection of the processor configurations (i.e., the values of
X and Y ), G-SS can outperform P-SS with up to 7% more
energy savings. In the remaining evaluations, for any given
task set, we assume that the G-SS scheme always adopts the
optimal processor configuration for better energy efficiency.

7.2 Performance with Offline Scaled Frequencies
Without considering the online slack reclamation (which will
be evaluated next), Figure 4 shows the performance of both
SS-based and POED-based schemes with offline determined
scaled frequency under varying system utilizations. Again,
tasks are assumed to take their WCETs and no fault occurs
during the execution. First, the results show that, compared
to the P-SS scheme, the G-SS scheme with optimal processor
configuration can always perform better in terms of obtaining
more energy savings under different system utilizations.
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Fig. 4: Performance of the SS-based and POED-based schemes
with offline determined scaled frequencies for main tasks.

However, the performance difference between P-SS and G-
SS diminishes at very low or high system utilizations. The
reason is that, at low system utilizations (i.e., U ≤ 2.5),
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Fig. 5: Performance of both SS-based and POED-based schemes with online techniques under different system loads.

all main tasks can be executed at 0.4 (the lowest available
frequency) while most backup tasks can be cancelled under
both schemes. At high system utilizations (e.g., U = 7.0),
there is only one feasible processor configuration (i.e., X = 8)
for the G-SS scheme, which makes G-SS to act exactly the
same as P-SS due to the same WFD heuristic when partitioning
main and backup copies of tasks.

For the POED-based schemes, POED-Cyclic and POED-
Mix have very close performance on energy savings even
though they have different backup partitions. However, in most
cases, POED-based schemes can outperform P-SS and G-SS
with up to 20% more energy savings. The reason is that, with
mixed allocation of main and backup tasks on the processors,
POED-based schemes can better utilize the available slack to
slow down main tasks and reduce the overlapped execution
with their corresponding backup tasks.

Interestingly, for the case of uave = 0.1 (i.e., relatively large
tasks), Figure 4a shows that POED-based scheme may perform
worse compared to that of the SS-based schemes when system
utilization is very low (U ≤ 3.0). This comes from the fewer
number of available tasks, which cause unbalanced partitions
of tasks among the processors under the POED-based schemes.
For smaller tasks (i.e., uave = 0.05) where there are more
tasks for the same system utilization, Figure 4b shows that
the POED-based schemes perform no worse than the SS-based
schemes.

7.3 Performance of Online Schemes

In this section, by varying the ratio of average over worst case
execution times of tasks, we further evaluate the performance
of the SS-based and POED-based schemes with different
online techniques. For comparison, we also implemented both
ASSPT and CSSPT techniques [22] for the P-SS scheme,
which are denoted as “P-SS-ASSPT” and “P-SS-CSSPT”,
respectively. For the online scheme based on wrapper-tasks,
it can be applied to the primary processors under both P-SS
and G-SS, which are denoted as “P-SS-Wrap” and “G-SS-
Wrap”, respectively. The POED-based schemes enhanced with
the online wrapper-tasks based technique are further denoted
as “POED-C-Wrap” and “POED-M-Wrap”, respectively.

Here, we set uave = 0.1. To emulate the dynamic execution
behaviors of tasks, we use a system wide average-to-worst
case execution time ratio α. For each task Ti, its average-
to-worst case execution time ratio αi is generated randomly
around α. Then, at run-time, the actual execution time for each

instance of task Ti is randomly generated around αi ·ci, where
ci is task Ti’s WCET. Essentially, α indicates the amount of
dynamic slack that will be available at runtime where lower
values indicate more slack.

Figures 5 show the performance of the schemes with
varying α (average-to-worst case execution times of tasks)
under different system utilizations (i.e., U = 3.0, 4.0, 5.0
and 6.0, respectively). Again, when the system utilization is
low (i.e., U = 3.0), the main tasks can be executed at the
lowest frequency of 0.4 and most backup tasks are cancelled,
which leads to very close (within 6% difference) normalized
energy consumptions for P-SS and G-SS with different online
techniques.

For cases with α = 1, there is no dynamic slack at run-time.
However, due to the limitation of discrete frequencies, there
will be some spare capacity on each primary processor, which
can be exploited by the wrapper-task based schemes and some
additional energy savings can be obtained when compared to
that of ASSPT and CSSPT. Therefore, with the limited benefits
of the online techniques with α = 1, G-SS outperforms P-SS
slightly, which is consistent with the results obtained in the
last section.

When the system utilization gets higher (i.e., U = 4.0, 5.0
and U = 6.0), we can see that the ASSPT technique can
cause dramatical performance degradation for P-SS as the
dynamic load of tasks increases (i.e., with higher values of
α). The results are in line with what have been reported
in [22]. The reason comes from the aggressive slack usage
under the ASSPT technique, which executes the main tasks
at very low frequency at the beginning of the schedule. Such
scaled executions force remaining main tasks to run at much
higher frequencies and cause more overlapped executions with
their backup tasks on the secondary processors.

To address the above mentioned problem, based on the static
and dynamic loads of tasks, the CSSPT scheme statically de-
termines a lower bound for the scaled frequency for executing
tasks’ main copies when reclaiming slack at run-time [22].
With such a scaled frequency bound, CSSPT can effectively
prevent the aggressive usage of slack time in the early part
of the schedule. Therefore, when compared to ASSPT, P-
SS performs much better with the CSSPT online technique,
especially for tasks with higher dynamic loads.

For the wrapper-task based online technique, we can see
that its performance is pretty stable under different dynamic
loads of tasks. Although it performs (slightly) worse than that
of ASSPT and CSSPT for the P-SS scheme at low dynamic
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loads (i.e., α ≤ 0.5), its performance is very close to that of
CSSPT at higher dynamic loads of tasks. However, different
from CSSPT, the wrapper-task based online technique does not
requires the pre-knowledge of tasks’ average-case workloads.

Moreover, as a generic online technique, wrapper-tasks can
also be applied to the primary processors in the G-SS scheme,
which is shown to have a stable performance as well. Although
the performance gain of applying the wrapper-task technique
on G-SS is rather limited (within 5%) when compared to that
of P-SS, we can see that G-SS-Wrap always performs better
than that of P-SS-CSSPT at higher dynamic loads of tasks.

For the POED-based schemes, when the system utilization
is low, the main tasks can be executed at the lowest frequency
0.4 and most backup tasks can be cancelled. However, the
same as before, due to the unbalanced workload among the
processors at very low system utilization (i.e., U = 3.0), the
POED-based schemes can have slightly inferior performance
compare with SS-based schemes.

Moreover, as system utilization increases (i.e., for the cases
of U = 4.0, 5.0 and U = 6.0), both POED-Cyclic and
POED-Mix with wrapper-task based online technique can
achieve much better and more stable energy savings comparing
with the SS-based schemes. Again, this comes from the fact
that with more workload in the system, both POED-based
schemes can utilize the available system resource (CPU time)
more efficiently. Specifically, by mixing the main and backup
tasks on all processors, with the wrapper-task based online
technique, all available (static and dynamic) slack time can
be exploited to slow down the execution of main tasks and/or
delay the execution of backup tasks, which results in much
reduced overlapped executions.

8 CONCLUSIONS
In this paper, with the objectives of tolerating a single per-
manent fault while preserving system reliability with respect
to transient faults, we study energy-efficient fault-tolerance
(EEFT) schemes for periodic tasks running on multiprocessor
systems. Specifically, based on the idea of Standby-Sparing
(SS) technique, we first propose the Paired-SS scheme, where
processors are organized as groups of two (i.e., pairs) with
the traditional Standby-Sparing being applied directly to each
processor pair after partitioning tasks. Then, we propose a
Generalized-SS technique that partitions processors into two
groups, which are for primary and secondary processors,
respectively. The main and backup tasks are executed on the
primary and secondary processor groups under the partitioned-
EDF and partitioned-EDL scheduling, respectively, to reduce
their overlapped executions and thus to obtain more energy
savings. Moreover, based on the preference-oriented earliest
deadline (POED) scheduling algorithm, we further study two
POED-based schemes (i.e., POED-Cyclic and POED-Mix),
which allocates the main and backup tasks in a mixed manner
on all processors to better utilize the available slack time. An
online power management with wrapper-tasks is also studied,
which can be applied to both SS-based and POED-based
schemes for more energy savings. The recovery strategies for
the proposed EEFT schemes are also addressed to handle
multiple permanent faults.

The proposed EEFT schemes are evaluated through exten-
sive simulations. The results show that, for systems with a
given number of processors, there normally exists an optimal
configuration of primary and secondary processors for the
Generalized-SS scheme, which can have better energy savings
when compared to that of the Paired-SS scheme. Moreover,
POED-based schemes can outperform SS-based schemes re-
garding to energy savings, especially for systems with modest
to high system loads.
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APPENDIX
A. RECOVERY STRATEGIES
In previous chapters, with the goals of preserving system
reliability with respect to transient faults and tolerating one
permanent fault, we introduced SS and POED based schemes
for fault-tolerant multiprocessor systems, with emphasis on
energy efficiency. The detailed experimental results have il-
lustrated the energy savings. Although having a fault during
the execution of an application has rather low probability,
the strategies on how the system should react when faults
(transient and/or permanent) happen on those systems have
not been discussed yet. Note that efficient recovery strategies
are necessary to recover the system from fault(s) and keep
functional with continuous tolerance to future faults. The
problem will be addressed in this chapter.

.1 Recover from Transient Faults
From previous studies [12], [22], [20], we know that both SS
and POED based schemes can preserve the original system
reliability with respect to transient faults by enforcing tasks’
backup copies to be executed at the maximum frequency. Since
the proposed schemes follow the same design principle for
fault tolerance, the reliability goal for tolerating transient faults
can still be ensured. When a transient fault happens on one
copy (main or backup) of a task, the sanity (or consistency)
check executed afterwards will detect the soft error. Therefore,
the other copy of it gets fully executed to tolerate such a
transient fault.

.2 Recover from Permanent Faults
To facilitate the discussion of recovery mechanisms for perma-
nent faults, we have defined Mean Time to Failure (MTTF) and
Time to Second Failure (TTSF) in Section 3. MTTF represents
the frequency of the occurrence of permanent faults on the
system, whereas TTSF is seen to be the recovery window
after that the system is ready to tolerate another permanent
fault. The design of the recovery mechanisms should have
the following properties to achieve the satisfactory capability
of tolerating more than one future permanent faults and
maintaining energy efficiency:

• small TTSF for quick recovery
• low overhead with limited number of task migrations
• keep balanced load for energy efficiency after recovery
In order to recover from a permanent fault and provide the

ability to tolerate the next one as soon as possible when there
is no spare processor in the system, all tasks on the failed
processor should be re-allocated to other functional ones.
Note that it is always feasible to do task re-partition for the
whole task set (main and backup) to the remaining functional
processors at the beginning of the next LCM of the task set
(we denote it Global LCM in this chapter) for all SS and
POED based schemes, as long as no processor with workload
exceeds its capacity (with utilization larger than 1). However,
the problem is that the corresponding TTSF could be as long
as the Global LCM, which might be too large. Therefore, we
discuss below some improvement we could achieve for each
scheme, respectively.

.2.1 P-SS

Since P-SS can only use an even number of processors in
the system with its paired nature, the failure of one processor
in a pair causes the system to abandon the other one after
TTSF (although it can be treated as a spare once another
processor failed in the future). Moreover, because of the
static EDL scheme applied to the spare processor in each
pair, it is prohibited to migrate tasks to other pairs between
their corresponding LCMs. Therefore, the basic idea of this
improvement is to migrate all tasks in the failed processor
pair to other functional ones at their corresponding Local
LCMs. Here, the Local LCM is defined as the LCM of all
tasks’ periods allocated to that pair/processor, which include
the existing tasks and future migrated tasks. It can also be
understood as the time point at which all tasks (existing and
future migrated tasks) will arrive.

Algorithm 4 Basic Steps for the P-SS Recovery
1: Input: number of processors m, main tasks for each pair

ΨT
1 , . . . ,Ψ

T
m
2

;
2: //processor Pk in pair i (1 ≤ i ≤ m

2 ) is detected to be
failed at time t0, and there is no extra spare processor;

3: if (Pk is a spare processor) then
4: corresponding primary processor execute in fmax from

t0;
5: end if
6: scheduler emulate the process of partition tasks in pair

i (ΨT
i ) to m

2 − 1 functional pairs according to a given
(e.g., WFD) heuristic, getting ΨT

i,1, . . . ,Ψ
T
i,j , . . . ,Ψ

T
i,m2

(1 ≤ j ≤ m
2 , j ̸= i);

7: for ((1 ≤ j ≤ m
2 ) && (j ̸= i)) do

8: get Local LCM (LCMj) for pair j with tasks ΨT
j ∪ΨT

i,j ;
9: ΨT

i,j migrate to pair j at tj , with tj − t0 ≤ LCMj ;
10: end for

The main recovery steps for the P-SS scheme when a
permanent fault happens are summarized in Algorithm 4.
Suppose the main copies of tasks allocated to each pair is
represented as ΨT

1 , . . . ,Ψ
T
m
2

, in which ΨT
i (1 ≤ i ≤ m

2 ) is
allocated to pair i. If a permanent fault is detected at time
t0, the system will switch to the emergency operation mode,
during which the system can’t tolerate another permanent fault.
Specifically, if the primary processor in pair i is detected to
be failed, tasks in the spare processor should keep executing
with no change. On the other hand, if the spare processor
fails in pair i, all tasks in the primary processor should start
executing at the maximum frequency fmax to keep preserving
the system’s original reliability with respect to transient faults
(line 3 and 4). The functional processor in pair i should
keep operating until all tasks in its pair get migrated to other
functional ones.

Meanwhile, the scheduler should emulate the process of
partition tasks in the failed pair (i.e., ΨT

i ) to other m
2 − 1

functional ones. Again, the WFD heuristic is applied to get
balanced partition for both feasibility and energy savings (line
5). Moreover, for each functional processor pair (i.e., pair j,
1 ≤ j ≤ m

2 , j ̸= i), an updated Local LCM is calculated
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with all tasks’ periods from its own local task set (ΨT
j ) and

the future migrated task set (ΨT
i,j) (line 7). Note that ΨT

i,j

is designated as a group of main tasks in pair i that will
migrate to pair j. This updated Local LCM serves as the
upper bound of the transition window, within which tasks in
ΨT

i,j can migrate to pair j safely (line 8) . Finally, the P-SS
scheme (Section 4.2) can be re-applied to the corresponding
pair after the migration. Once all tasks have been migrated
from pair i, the system could return to the normal operation
mode and have the ability to tolerate another permanent fault
in the future. Note that for this recovery algorithm, the size
of the recovery window is bounded by the maximum of all
updated Local LCMs, which could be much smaller than
the Global LCM in most cases, and the corresponding TSSF
should be extremely reduced.

We show through an example in Figure 6 to further illustrate
the idea of P-SS recovery. Suppose we have a multiprocessor
system with 6 processors. During its execution, a permanent
fault is detected at time t0 on processor P2. Under this cir-
cumstance, the system will switch to the emergency operation
mode. If P2 is a spare processor, P1 needs to schedule all tasks
in the maximum frequency from t0. Moreover, ΨT

1,2 and ΨT
1,3

is generated using WFD heuristic for pair 2 and 3, respectively.
And the corresponding Local LCMs (i.e., LCM2 and LCM3)
are obtained based on each pair’s local and future migrated
tasks from the pair 1. The migration can only happen at the
time point when all local and future migrated tasks arrive
together (i.e., t1 and t2), at which the EDL algorithm can
generate the static schedule for the spare processor in each
functional pair. And the transition windows (i.e., t1 − t0 and
t2 − t0) will be bounded by LCM2 and LCM3, respectively.
The recovery step is finished at the instance when the last
migration happens at t2, and the system will switch back to
the normal operation mode.

.2.2 G-SS
To reduce the size of the recovery window for quick recovery,
the same idea of using Local LCMs for migration points can
be applied to G-SS as well. However, since G-SS organizes
the processors into primary and secondary groups with main
and backup copies of tasks executing in the corresponding
group separately, different situations need to be considered
when either one of the primary or secondary processors failed.

The main steps for G-SS recovery when a permanent fault
occurs are summarized in Algorithm 5. Note that the main
(backup) copies of tasks allocated to X primary (Y sec-
ondary) processors are represented as ΠM = {ΨT

1 , · · · ,ΨT
X}

(ΠB = {ΨB
1 , · · · ,ΨB

Y }). Moreover, ΨT
k,j (ΨB

k,j) is designated
as a group of main (backup) tasks in processor Pk that will
migrate to Pj .

Specifically, if a permanent fault is detected at time t0, the
system will switch to the emergency operation mode. If the
fault happens on one of the X primary processors (i.e., Pk,
1 ≤ k ≤ X), it won’t affect the execution of the backup tasks
in Y secondary processors. The scheduler should emulate the
process of partition tasks in Pk to other X − 1 functional

Algorithm 5 Basic Steps for the G-SS Recovery
1: Input: task set Ψ, X and Y = (m − X), with WFD

partitions of Ψ:
ΠM = {ΨT

1 , · · · ,ΨT
X} and ΠB = {ΨB

1 , · · · ,ΨB
Y };

2: //processor Pk is detected to be failed at time t0;
3: if (Pk is a primary processor) then
4: scheduler emulate the process of partition tasks in Pk

(ΨT
k ) to X − 1 functional ones according to a given

(e.g., WFD) heuristic, getting ΨT
k,1, . . . ,Ψ

T
k,j , . . . ,Ψ

T
k,X

(1 ≤ j ≤ X , j ̸= k);
5: for ((1 ≤ j ≤ X) && (j ̸= k)) do
6: get Local LCM (LCMj) for Pj with tasks ΨT

j ∪ΨT
k,j ;

7: ΨT
k,j migrate to Pj at tj , with tj − t0 ≤ LCMj ;

8: end for
9: else

10: main tasks with backup copies in Pk start executing in
fmax from t0;

11: scheduler emulate the process of partition tasks in Pk

(ΨB
k ) to Y − 1 functional ones according to a given

(e.g., WFD) heuristic, getting ΨB
k,1, . . . ,Ψ

B
k,j , . . . ,Ψ

B
k,Y

(1 ≤ j ≤ Y , j ̸= k);
12: for ((1 ≤ j ≤ Y ) && (j ̸= k)) do
13: get Local LCM (LCMj) for Pj with tasks ΨB

j ∪ΨB
k,j ;

14: ΨB
k,j migrate to Pj at tj , with tj − t0 ≤ LCMj ;

15: end for
16: end if

ones, and WFD heuristic is adopted to again balance workload
among processors (line 4). Moreover, for each functional
primary processor (i.e., Pj , 1 ≤ j ≤ X , j ̸= k), an updated
Local LCM is calculated with all tasks’ periods from its own
local task set (ΨT

j ) and the future migrated task set (ΨT
k,j)

(line 6). Again, this updated Local LCM serves as the upper
bound of the transition window, within which tasks in ΨT

k,j

can migrate to Pj (line 7). Finally, all tasks in Pj can be
scheduled using EDF after the migration. Once all tasks have
been migrated from the failed processor Pk, the system could
return to the normal operation mode and have the ability to
tolerate another permanent fault in the future.

The same steps can be applied to the recovery of the
failure occurs in one of the Y spare processors (line 9 to
13). Except that when the failure is detected at time t0, the
corresponding main tasks dispersed in X primary processors
with backup copies on the failed processor (i.e., Pk) should
be executed in fmax to still preserve the system’s original
reliability with respect to transient faults. They can return to
the scaled frequencies when their corresponding backup tasks
(i.e., ΨB

k ) migrate to other spare processors.
We show through examples on how G-SS recovery steps are

applied when a primary or spare processor failed, respectively.
As illustrated in Figure 7a, suppose we have a multiprocessor
system with 6 processors, in which P1, P2, P3 and P4 are
primary processors, while P5 and P6 are spares. Assume that
a permanent fault is detected at time t0 on P1, the system
will switch to the emergency operation mode. The scheduler
generates partitions of ΨT

1 for the rest of functional primary
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processors using WFD heuristic and gets ΨT
1,2, ΨT

1,3 and ΨT
1,4.

In the meantime, the corresponding Local LCMs (i.e., LCM2,
LCM3 and LCM4) are obtained with their local tasks and
future migrated tasks from P1. Again, the migration can only
happen at the time point when all local and future migrated
tasks arrive together (i.e., t1, t2 and t3). And the transition
windows (i.e., t1 − t0, t2 − t0 and t3 − t0) are bounded by
LCM2, LCM3 and LCM4, respectively. In Figure 7a, after
t3, the system will finish the recovery and switch back to the
normal operation mode.

Similarly, in Figure 7b, we still have a multiprocessor
system with 6 processors, in which P1, P2 and P3 are primary
processors, while P4, P5 and P6 are spares. In this case, a
permanent fault is detected on P4 at t0. Therefore, the system
will switch to the emergency operation mode and all main
tasks with backup copies allocated in P4 should start execute
using fmax. The rest of the recovery steps are the same
as before. However, when the system finishes the recovery
and switches back to the normal operation mode at t2, those
main tasks with execution frequency switched to fmax during
emergency operation mode could switch back to their original
scaled frequencies for energy savings.

.2.3 POED-Cyclic
As discussed in Section 5, the allocation constraint from
POED-Cyclic makes it difficult to improve the TTSF from
Global LCM.

.2.4 POED-Mix

Algorithm 6 Basic Steps for the POED-Mix Recovery
1: Input: number of processors m, task set Ψ, with tasks’

main and backup allocation:
ΠM = {ΨT

1 , · · · ,ΨT
m} and ΠB = {ΨB

1 , · · · ,ΨB
m};

2: //processor Pk is detected to be failed at time t0;
3: for ((1 ≤ j ≤ m) && (j ̸= k)) do
4: main tasks in Pj with backups in Pk start executing in

fmax;
5: for main tasks in Pk, convert their backups in Pj (ΨB

j,k)
to be main copies (ΨT

j,k), but still execute in fmax ;
6: generate the partition for ΨB

j,k to all processors except
for Pk and Pj , getting ΨB

j,k,l, 1 ≤ l ≤ m, l ̸= k, l ̸= j;
7: for backup tasks in Pk which is for main copies in Pj

(ΨB
k,j), generate the partition to all processors except

for Pk and Pj , getting ΨB
k,j,u, 1 ≤ u ≤ m, u ̸= k,

u ̸= j ;
8: end for
9: for ((1 ≤ j ≤ m) && (j ̸= k)) do

10: //denote tasks that will migrate to Pj as Ψmig
j ;

11: get Local LCM (LCMj) for Pj with tasks ΨT
j ∪ΨB

j ∪
Ψmig

j ;
12: Ψmig

j migrate to Pj at tj , with tj − t0 ≤ LCMj ;
13: end for

As discussed in Section 5, the mixed nature of POED-Mix
scheme can benefit the permanent fault recovery. The main
steps are summarized in Algorithm 6. Note that the main

(backup) copies of tasks allocated to m processors are rep-
resented as ΠM = {ΨT

1 , · · · ,ΨT
m} (ΠB = {ΨB

1 , · · · ,ΨB
m}).

Moreover, different from the denotation in Section B.1
and B.2, ΨT

i,j (ΨB
i,j) is designated as a group of main (backup)

tasks in processor Pi whose backup (main) copies are in Pj .
And the task set in ΨT

i,j (ΨB
i,j) that will migrate to processor

Pk is denoted as ΨT
i,j,k (ΨB

i,j,k).
Specifically, once a processor (i.e., Pk) is detected to be

failed at time t0, the system will switch to the emergency
operation mode. For all backup tasks allocated to it (i.e.,
ΨB

k ), the corresponding main copies on other processors
should start executing using fmax to preserve the system’s
original reliability with respect to transient faults (line 4). Their
execution can be scaled down again once the system returns to
the normal operation mode. Then, for all main tasks allocated
to the failed processor (i.e., ΨT

k ), the corresponding backup
copies have already been evenly distributed among remaining
processors. We can convert these backup copies as their new
main tasks (line 5). However, they still need to execute in
fmax, again to preserve the transient fault rate. And they
can be slowed down as normal main tasks after the recovery.
Moreover, the corresponding backups for ΨT

k still need to be
mixed allocated to all processors except for Pk and itself. The
partition is generated using WFD heuristic (line 6).

The same strategy applies to the backup copies on Pk by
migrating them to other processors (line 7). After figuring
out the tasks that will be migrated to each functional
processors, their corresponding Local LCMs can be generated
as well using all tasks’ periods from its local (i.e., ΨT

j

and ΨB
j ) and future migrated tasks (i.e., Ψmig

j ) (line
10). Here, Ψmig

j represents all tasks that will migrate
to processor Pj , which can be formally represented as
{ΨB

k,x,j ∪ ΨB
x,k,j , 1 ≤ x ≤ m,x ̸= k, x ̸= j}. Again, these

updated Local LCMs are the upper bounds of the transition
windows for each processor for task migration. And the actual
task migration happens within the transition window when
both local and migrated tasks arrive at the same time (line
11). After the final migration point, the system can switch
back to the normal operation mode to provide tolerance to
another permanent fault in the future.

The idea of Algorithm 6 is further illustrated in Figure 8.
Suppose a permanent fault is detected in processor P1 at t0
in a multiprocessor system with 4 processors. For all main
tasks in P2, P3 and P4 with backups in P1, they should start
executing in fmax to preserve the transient fault rate. For main
tasks in P1 (i.e., ΨT

1 ), the corresponding backup copies can
be found in other processors as ΨB

2,1, ΨB
3,1 and ΨB

4,1. They
are converted to main tasks but still execute in fmax. The
partition for their corresponding backups are generated using
WFD heuristic (i.e., ΨB

2,1,3 for P3 and ΨB
2,1,4 for P4, ΨB

3,1,2

for P2 and ΨB
3,1,4 for P4, ΨB

4,1,2 for P2 and ΨB
4,1,3 for P3). For

backup copies on P1 (i.e., ΨB
1 ), their migration destinations

are generated as well (i.e., ΨB
1,2,3 for P3 and ΨB

1,2,4 for P4,
ΨB

1,3,2 for P2 and ΨB
1,3,4 for P4, ΨB

1,4,2 for P2 and ΨB
1,4,3) for

P3). After figuring out the tasks for migration, the Local LCM
for each functional processor is obtained as LCM2, LCM3
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Fig. 8: Example of recovery steps for POED-Mix

and LCM4, respectively; and the actual migrations happen
at t1, t2 and t3. In the example, the system will finish the
recovery and switch back to the normal operation mode at t3.

We can see that after applying failure recovery strategies
above for each SS and POED based schemes, the system can
be quickly recovered to the status that can provide tolerance to
future permanent faults again. Moreover, the system’s original
reliability with respect to transient fault can still be preserved.
Although the worst case TTSF could be as long as the Global
LCM, the idea of using Local LCMs for migration points can
extremely reduce TTSF in most cases.

APPENDIX
B. MORE EVALUATION RESULTS

This section illustrates all available evaluation results for SS
and POED based schemes in online execution (Figure 9 and
Figure 10).
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Fig. 9: Performance of P-SS, G-SS, POED-Cyclic and POED-Mix with online techniques under different system loads. (uave =
0.1)
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Fig. 10: Performance of P-SS, G-SS, POED-Cyclic and POED-Mix with online techniques under different system loads.
(uave = 0.05)


