1540

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11,

Energy Efficient Scheduling of Real-Time
Tasks on Multicore Processors

Euiseong Seo, Jinkyu Jeong, Seonyeong Park, and Joonwon Lee

Abstract—Multicore processors deliver a higher throughput at lower power consumption than unicore processors. In the near future,
they will thus be widely used in mobile real-time systems. There have been many research on energy-efficient scheduling of
real-time tasks using DVS. These approaches must be modified for multicore processors, however, since normally all the cores in a
chip must run at the same performance level. Thus, blindly adopting existing DVS algorithms that do not consider the restriction will
result in a waste of energy. This article suggests Dynamic Repartitioning algorithm based on existing partitioning approaches of
multiprocessor systems. The algorithm dynamically balances the task loads of multiple cores to optimize power consumption during
execution. We also suggest Dynamic Core Scaling algorithm, which adjusts the number of active cores to reduce leakage power
consumption under low load conditions. Simulation results show that Dynamic Repartitioning can produce energy savings of about
8 percent even with the best energy-efficient partitioning algorithm. The results also show that Dynamic Core Scaling can reduce

NOVEMBER 2008

energy consumption by about 26 percent under low load conditions.

Index Terms—Real-time systems, real-time scheduling, low-power design, power-aware systems, multicore processors,

multiprocessor systems.

1 INTRODUCTION

MOBILE real-time systems have seen rapidly increasing
use in sensor networks, satellites, and unmanned
vehicles, as well as personal mobile equipment. Thus, the
energy efficiency of them is becoming an important issue.
The processor is one of the most important power
consumers in any computing system. Considering that
state-of-the-art real-time systems are evolving in complexity
and scale, the demand for high-performance processors will
continue to increase. A processor’s performance, however,
is directly related to its power consumption. As a result, the
processor power consumption is becoming more important
issue as their required performance standards increase.
Over the last decade, manufacturers competed to
advance the performance of processors by raising the clock
frequency. However, the dynamic power consumption
Piynamic of a CMOS-based processor, the power required
during execution of instructions, is related to its clock
frequency f and operating voltage Vys as Puynamic < V3, - f-
And, the relation Vy; o< f also holds in these processors. As
a result, the dramatically increased power consumption
caused by high clock frequency has stopped the race, and
they are now concentrating on other ways to improve
performance at relatively low clock frequencies.

e E. Seo is with the Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA 16803.

E-mail: euiseong@gmail.com.

e |. Jeong, S. Park, and]. Lee are with the Computer Science Division, Korea
Advanced Institute of Science and Technology, 373-1 Guseongdong,
Yuseonggu, Daejeon 305-701, Korea.

E-mail: {jinkyu, parksy}@calab.kaist.ac.kr, joon@kaist.ac.kr.

Manuscript received 29 Oct. 2007; accepted 13 June 2008; published online
17 June 2008.

Recommended for acceptance by I. Ahmad, K'W. Cameron, and R. Melhem.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2007-10-0397.
Digital Object Identifier no. 10.1109/TPDS.2008.104.

1045-9219/08/$25.00 © 2008 IEEE

One of the representative results from this effort is
multicore architecture [1], which integrates several proces-
sing units (known as cores) into a single chip. Multicore
processors, which are quickly becoming mainstream, can
achieve higher throughput with the same clock frequency.
Thus, power consumption in them is a linear function of the
throughput. As the demand for concurrent processing and
increased energy efficiency grows, it is expected that
multicore processors will become widely used in real-time
systems.

The problem of scheduling real-time tasks on a multicore
processor is the same as that of scheduling on a multi-
processor system. This is an NP-hard problem [2], and
existing heuristic solutions can be divided into two
categories. Partitioned scheduling algorithms [3], [4], [5]
require every execution of a particular task to take place in
the same processor, while global scheduling algorithms [6],
[7], [8] permit a given task to be executed upon different
processors [6]. Partitioned algorithms are based on a divide-
and-conquer strategy. After all tasks have been assigned to
their respective cores, the tasks in each core can be
scheduled using well-known algorithms such as Earliest
Deadline First (EDF) [9] or Rate Monotonic (RM) [10]. Due to
their simplicity and efficiency, partitioned scheduling
algorithms are generally preferred over global scheduling
algorithms.

In addition to the innovation of multicore architecture,
many up-to-date processors also use dynamic voltage
scaling (DVS). DVS adjusts the clock frequency and
operating voltage on the fly to meet changes in the
performance demand.

Multicore processors can also benefit greatly from DVS
technology. Because all the cores in a chip are in the same
clock domain, however, they must all operate at the same
clock frequency and operating voltage [11], [12]. It seems

Published by the IEEE Computer Society

Authorized licensed use limited to: UNIST. Downloaded on May 26, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

SEO ET AL.: ENERGY EFFICIENT SCHEDULING OF REAL-TIME TASKS ON MULTICORE PROCESSORS

that this limitation will remain in force for some years at
least because the design and production of multicore
processors with independent clock domains is still prohibi-
tively expensive.

There has been much research [13], [14], [15], [16], [17]
on how best to use DVS in a unicore processor for real-
time tasks. In systems consisting of multiple DVS
processors, DVS scheduling is easily accomplished using
those existing algorithms on each processor after partition-
ing [13], [14], [15]. In multicore environments, however,
the benefit of this approach is greatly reduced by the
limitation that all cores must share the same clock. Even
though the performance demands of each core may differ
at a given scheduling point, this limitation forces all cores
to work at the highest frequency scheduled. Compared to
a multiprocessor system, a multicore system will thus
consume more power needlessly if the existing DVS
method is adopted blindly.

This paper suggests a dynamic, power-conscious, real-
time scheduling algorithm to resolve this problem. In
general, multicore processors have some caches that are
shared among their cores. Task migration between cores
thus requires less overhead than migration between fully
independent processors. With an exploitation of this
property, Dynamic Repartitioning, which is the suggested
scheme tries to keep the performance demands of each core
balanced by migrating tasks from the core with the highest
demand to the one with the lowest demand. Similar to
multiprocessor systems, the dynamic performance demand
of each core is given by existing DVS algorithms, and the
migration decisions are made at every scheduling time. This
repartitioning of tasks is expected to reduce the dynamic
power consumption by lowering the maximum perfor-
mance demand of the cores at any given moment.

In addition to dynamic power, there is another source of
power consumption that must be considered. Different
from dynamic power, which is consumed during instruc-
tion execution, leakage power is consumed as long as there
is electric current in the circuits. In general, this energy loss
is proportional to the circuit density and the total number of
circuits in the processor. Leakage power has thus been
taking up an increasing proportion of the total power, up to
44 percent in 50 nm technology for an active cycle of a
uniprocessor [18]. And, it will become even more in a
multicore processor for the vastly increased circuits.

In this paper, we also suggest a method of reducing the
leakage power by adjusting the number of active cores.
Dynamic Core Scaling decides on the optimal number of
cores for the current performance demand and tries to meet
this criterion as far as all deadlines are guaranteed.
Dynamic Core Scaling is expected to save a considerable
amount of leakage power in low load periods, where the
leakage power makes up a large fraction of the total power
consumption.

The suggested Dynamic Repartitioning and Dynamic
Core Scaling methods were evaluated through simulations
by applying them to a well-known processor power model.
The target task sets in the simulations were designed to
demonstrate the behavior of the algorithm under diverse
environments.

1541

TABLE 1
Example Task Set [13]

Task Period WCET Utilization cc

1 ceo
T 8 ms 3 ms 0.375 2 1
T2 10 ms 3 ms 0.300 1 1
3 14 ms 1 ms 0.071 1 1

The rest of this paper is organized as follows: Section 2
reviews existing research on the use of DVS in real-time
unicore processor systems and on the development of
energy-efficient scheduling algorithms in multiprocessor
and multicore systems. Section 3 defines the problem and
describes the power consumption model used in this paper.
In Section 4, we describe Dynamic Repartitioning algorithm
as a way of efficiently reducing clock frequencies. In
Section 5, we introduce Dynamic Core Scaling algorithm,
which reduces the leakage power by adjusting the number
of activated cores. Section 6 presents simulation results for
the two algorithms, and Section 7 summarizes our
conclusions.

2 REeLATED WORK

2.1 DVS on a Unicore Processor

In this paper, the WCET of a task will be taken as the time
required to finish the worst-case execution path at
maximum performance. The actual WCET of a task is the
scaled value of its WCET to the current performance, and it
increases linearly as performance degrades. In this paper,
we will use the term utilization of a task to refer to its WCET
divided by its period. It means the fraction of processor
time dedicated to the task at maximum performance. A
matter of course, the relative utilization of a task which is
based on its actual WCET is also grows as the performance
degrades.

EDF is the optimal algorithm for preemptible periodic
real-time task scheduling. Defining the utilization of a task
as the value of its WCET divided by its period, EDF can
guarantee meeting the deadlines of all task sets for which
the sum of all task utilization is less than one. Based on this
property, Pillai and Shin [13] suggested three DVS schedul-
ing heuristics: Static, Cycle conserving, and Look ahead.

The Static algorithm adjusts the clock frequency so that
the total relative utilization of all tasks is 1.0. For example,
the total relative utilization of the task set in Table 1 is 0.746.
If the execution time of all tasks is inversely proportional to
the clock frequency, then we can achieve the highest
possible energy efficiency while still meeting all deadlines
by scaling the performance down to 0.746 times the
maximum clock frequency.

A given task may be finished earlier than its WCET, and
the actual execution time changes with every period. If the
tasks in Table 1 have actual execution times as given in
columns cc¢; and ccy during their first and second periods,
respectively, then idle periods will result even executing at
the frequency given by the Static algorithm. This means that
the frequency could be lowered further.

To exploit this phenomenon, the Cycle-conserving
algorithm adopts the notion of dynamic utilization, which

Authorized licensed use limited to: UNIST. Downloaded on May 26, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

1542
E L0 gz
F ozs v
(49
0504 ¢, ts ! () 31
T - T — >
i} 5 10 I5 Time
Ulty):0.375—0.25
(a)
% 1,00+
% 0.546
"N
0504 1, . r—n e
= - - - i - ,_,_,-;r'__l_‘
o 3 10 15 Time
Utt,): 0.375
(b)
oy
g 1007 0746
2 0751 0.546 .
-2 0.421).496 0.206
0504 ¢
: Ly 1
0 5 10 15 Ti
U(t):0375— 025 U(t)): 0375 e
(c)

Fig. 1. Cycle-conserving algorithm on the example task set [13]. (a) After
finish of executing ;. (b) After finish of executing » and 73. (c) Actual
execution flow for two rounds.

is updated whenever the tasks are scheduled and finished.
On the completion of a task, it updates the utilization based
on the task’s actual execution time. The next time the task
begins executing, however, its utilization is restored to the
original value based on the task’s WCET. In this manner,
the Cycle-conserving algorithm may choose a lower
frequency than the Static algorithm during the period
between a task’s completion and the start of its next period.
It thus saves more energy than the Static algorithm.

Fig. 1 shows an example of the Cycle-conserving
algorithm at work. The actual execution time of 7; is 2 ms
(Fig. 1a). The utilization of 7; is thus updated from 3/8 to
2/8 after its first execution, and the total utilization of the
task set decreases to 0.621. At this point (Fig. 1b), the
processor will be operated at 0.621 times the highest
frequency. The utilization of 7 drops from 3/10 to 1/10
after completion, and as a result, 73 can be executed at
0.421 times the highest frequency. The actual execution
flow under the Cycle-conserving algorithm for both rounds
is shown in Fig. lc.

Cycle conserving is expected to lead to a higher energy
efficiency than the Static algorithm, because it reduces the
frequency during idle periods. As shownin Fig. 1c, at the start
of each new period, it assumes the worst case for the current
task. As a result, the frequency tends to start high and
decrease gradually as tasks are completed. If the actual
execution times of most tasks fall short of their WCET,
however, it is better to start with a low frequency and defer
the use of high-frequency processing as long as all deadlines

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11,

NOVEMBER 2008

can be met. This is the basic concept of the Look-ahead
algorithm. When actual execution times usually fall short of
their corresponding WCETs, the Look-ahead algorithm gives
better results than Cycle-conserving. In cases where the
actual execution times are usually close to their WCETs,
however, Cycle conserving is the better choice.

A variety of DVS algorithms have been proposed in
addition to these. Aydin et al. [14], for example, have
suggested the Generic Dynamic Reclaiming Algorithm
(GDRA) and Aggressive Speed Adjustment (AGR) algo-
rithms. GDRA is in many respects similar to the Cycle-
conserving algorithm; AGR, however, sets the frequency
based on the execution history of the tasks. Gruian [15]
suggested an algorithm that starts at a low frequency and
increases the processing speed gradually based on the
statistics of the actual execution times. Kim et al. [17] also
suggested the method to utilize slack time, which is based
on the expectation of the slack time occurrences. These
alternative approaches are helpful in cases, where trends are
visible in the actual execution times, for example, when the
most recent execution time is related to the previous one.

2.2 Power-Aware Scheduling on Multiprocessors

Besides the problem of deciding which task to execute at a
certain time, multiprocessor real-time systems must also
decide which processor the task will run on. Partitioned
scheduling is the most widely used solution to this NP-hard
problem. In partitioned scheduling, every processor has its
own task queue, and in an initial stage, each task is
partitioned into one of these queues. Each processor’s task
set is scheduled with a single-processor scheduling algo-
rithm such as EDF or RM [3], [5]. The partitioning itself is
one variant of the well-known Knapsack problem, for
which a number of heuristics such as Best Fit, Worst Fit, and
Next Fit are known to work well.

The partitioning approach has the advantage of utilizing
DVS. Any of the many possible DVS algorithms described
in Section 2.1 can be used to adjust the frequency of each
processor and its associated task set. To maximize the
energy efficiency, however, the utilizations of each parti-
tioned set should be well balanced [4]; this is because the
dynamic power consumption increases as the cube of the
utilization.

Aydin and Yang [4] proved that it is also an NP-hard
problem to partition a list of tasks into a given number of
sets that are optimally load balanced, with the guarantee
that each task set can be scheduled on the system. They also
showed that among well-known heuristics, worst fit
decreasing (WFD) generates the most balanced sets. WFD
applies the worst-fit algorithm to the tasks after sorting
them in order of decreasing task utilization.

There are also many scheduling heuristics for the variety
configurations of target environments. Gruian [19] proposed
a simulated annealing approach in multiprocessor energy
efficient scheduling with the considerations of precedence
constraints and predictable execution time for each task.
Chen et al. [20] suggested an approximation algorithm
with different approximation bounds for processors with/
without constraints on processor speeds for the task set with
common periods. Anderson and Baruah [21] suggested the

Authorized licensed use limited to: UNIST. Downloaded on May 26, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

SEO ET AL.: ENERGY EFFICIENT SCHEDULING OF REAL-TIME TASKS ON MULTICORE PROCESSORS

Number of Cores Clock Freguency

- 100 %

- 5%

- 50 %

= 26%

Clock Frequency

- Time
_ Period

Fig. 2. Example schedule generated by heuristic algorithm [12] for
DVS-CMP.

trade-off between increasing the number of processor and
increasing the performance of each processor is explored,
and they also suggested algorithms to solve the problem
with static analysis. However, even though the many works
have been done, most of them are based on the static
analysis of the WCETs of tasks and have little consideration
for utilizing slack time.

2.3 Power-Aware Scheduling on Multicores

While much research has examined the problem of energy-
efficient scheduling for single-processor or multiprocessor
systems, little work has been done on multicore processors.

Nikitovic and Brorsson [22] assumed an adaptive chip-
multicore processor (ACMP) architecture, in which the
cores have several operating modes (RUN, STANDBY, and
DORMANT) and can change their state dynamically and
independently according to the performance demand. They
suggested some scheduling heuristics for ACMP systems
and demonstrated that these heuristics save a significant
amount of energy for non-real-time task sets compared to a
high-frequency unicore processor. Although this work
introduced the benefits of processors with multiple cores
that can change their operating mode independently, it
does not take into consideration the demands of real-time
task sets.

The first energy-efficient approach to real-time scheduling
on a multicore processor was suggested by Yang et al. [12],
who assumed a DVS-enabled chip multiprocessor (DVS-
CMP). In DVS-CMP systems, all cores share the same clock
frequency but a core can “sleep” independently if it has no
work to do. Yang et al. proved that the energy efficient
scheduling of periodic real-time tasks on DVS-CMP system is
an NP-hard problem. They thus suggested a heuristic
algorithm for scheduling a framed, periodic, real-time task
model. In this model all tasks have the same period, share a
deadline which is equal to the end of the period, and start at
the same time. As shown in Fig. 2, the suggested algorithm
starts executing tasks at a low performance. As time goes on,
cores with no tasks to run will be set to the sleep state. When
the number of sleeping cores increases, the frequency must
also increase to meet the deadlines of tasks that have not been
finished yet. In this manner the number of cores running in a
high frequency mode is reduced, and a significant amount of
energy will be saved. The applications of this algorithm are
limited, however, because it can be only used for the framed
real-time systems in which all tasks have same dead-lines
and starting points. Moreover it is also a static approach. In
other words, it does not take into account cases where the

1543

actual execution times may be shorter than the WCETs,
which are close to the real world. If this is so, then additional
energy can be saved with a dynamic approach.

3 SysTEM MODEL

3.1 Task Set Model

The assumed target tasks are executed periodically, and
each should be completed before its given deadline. A
completed task rests in sleep state until its next period
begins, at the start of which the task will again be
activated and prepared for execution. The tasks have no
interdependency.

A task set 7 is defined by (1), where 7, is the
ith individual task in 7. Each task has its own predefined
period p; and WCET w;; the latter is defined as the
maximum execution time required to complete 7; at the
highest possible processor frequency. The real worst-case
execution time of 7; thus increases from w; as the clock
frequency decreases. The nearest deadline at the current
time is defined as d;:

T = {Tl(plvwl)v LR Tn(pmwn)]“ (]‘)

The utilization w; of task 7, is defined by (2). A
proportion u; of the total number of cycles of a core will
be dedicated to executing 7;:

U, the total utilization of 7, is defined as (3):

U= Z Uj. 3)

vr,eT

The processor S consists of multiple cores and is defined
in (4). The nth core in S is denoted as C,,. The number of
cores in S is denoted as m. Each core is assumed to have
identical structure and performance. We also assume that
resource sharing between the cores does not introduce any
interference overhead. We have

S={C,...,Cpn}. (4)

I, the relative performance of S and the scaling factor for
the operating clock frequency, is a number between 0 and 1.
If the performance demand on S is F, then the actual
frequency is the highest possible frequency of S multiplied
by the factor F.

The system follows the partitioned scheduling approach;
any well-known heuristic such as BFD, NFD, etc., may be
adopted. The partitioned state of 7 on S is denoted P, and
the partitioned task set allocated to core C), is denoted as P,,.
The utilization of P, is defined by (5):

U= Y u. (5)

For ease of description and explanation, we further
define the two functions given by (6) and (7). II(7;) gives the
core that 7; was initially partitioned into, and ®(7;) gives the

Authorized licensed use limited to: UNIST. Downloaded on May 26, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

1544

core that 7; is currently located in. This distinction is
necessary because we will dynamically migrate tasks
between the cores:

II(7;) = C; in which 7; was initially partitioned, (6)

®(7;) = C; in which 7; is currently partitioned. (7)

Each partitioned task set is scheduled using EDF on its
corresponding core. The performance demand of each core
is decided by running the Cycle-conserving algorithm on
each core individually.

To apply the Cycle-conserving algorithm, we define
some dynamically updated variables. The Cycle-conserving
utilization [; of task 7;, which is initially equal to w;, is
defined by (8). After the execution of a task, {; is updated
using the most recent actual execution time cc; as the
numerator of (2) instead of w;. After the period p; elapses,
the task will be executed again and may now meet the worst
case execution conditions; the utilization of the task will
thus be reset to u;. As a result, /; is updated after every
deadline of 7;:

I, = { w; /p;

cci/pi

if 7; is unfinished
if 7; is finished.

(®)

L,, the dynamic utilization of core C,, is defined by (9).
L, is the current performance demand on C,,. Thus, as long
as I is greater than L,, all the deadlines of tasks in C;, will
be met by the EDF scheduling algorithm. We will also use L
to refer to the Cycle-conserving utilization of a core when
the context is unambiguous. Thus, L of C; also means L;:
Sy o 9)

Y un finished 7,€P,, bi

L'n = -
Y finished 7,€P,, bi

3.2 Power Model

The total power consumption of a CMOS-based processor
consists of its dynamic power Fjyynqmic and its leakage power
Projage- We construct a processor model to evaluate the
energy efficiency of the proposed algorithms.

Most of Pyyamic is the capacitive switching power
consumed during circuit charging and discharging. Gen-
erally, it is the largest part in the processor power during
executing instruction. Pyy,qmic can be expressed in terms of
the operating voltage V4, the clock frequency f, and the
switching capacity ¢; as follows [23]:

§ 2
denamic =q - V:jd . f

The clock frequency f is itself related to several other
factors, as given by (11). The threshold voltage V};, is a
function of the body bias voltage Vi, as seen in (12). Here,
Vin,, €, K1, and K> are constants depending on the processor
fabrication technology. Generally, € is between 1 and 2, so
raising Vj; above the threshold voltage enables the
processor to increase the clock frequency. In the assumed
processor model, the change of f is assumed to accompany
with switching Vj; to the lowest allowable point:

(10)

f- (Vaa — Vin)©
LyKg ’

V;fh, :‘/th] _Kl V:id_KZ‘/bs

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11,

NOVEMBER 2008

TABLE 2
Constants Based on the 70 nm Technology [24]
Variable Value Variable Value
K 0.063 I 4.80 x 10~ 10
Ka 0.153 o 4.3 x 1010
K 5.38 x 10°7 L4 37
K4 1.83 Ly 4 x 108
Ks 4.19 € 1.5
Kg 5.26 x 1012 fmin 1% 109
Vbs -0.7 fmu,.;: 3 x J.Uu
Vini 0.244

Pojage is caused by leakage current, which flows even
while no instructions are being executed. To calculate the
leakage power consumption, we adopt a processor power
used in existing research [24], [25]. Prcajage mainly consists of
the subthreshold leakage current Iy, and the reverse bias
junction current I;. Pgi.g can be expressed as a function of
these two variables, as in (13).

Lo is defined by (14), where L, is the number of
components in the circuit. K3, Ky, and K5 are constants
determined by the processor fabrication technology:

]:)lcak‘aga = Ly . (‘/dd . Isubn + | ‘/bs ‘ . Ij)v (13)

Touim = K - 61&1‘/,141 . eKaVbs. (14)

The processor cores are assumed to consume both Pyyamic
and Pygiqg While executing instructions, and only Pcagage
during idle periods.

A multicore processor actually has some shared compo-
nents as well, such as processor caches, buses, and so on. In
this paper, we do not count the power consumption from
these shared components because our goal is to reduce the
power consumption of the cores themselves. The power
consumption of a multicore processor is thus simply
obtained by summing the power consumption of the
individual cores.

The core is assumed to have two operating modes: an
active state, in which it is able to execute instructions and a
sleep state in which it ceases working and rests with
minimized power consuming. In the sleep state, the only
possible operation is a transition into the active state. In this
paper, we assume that the state transition introduces no
additional overhead because this factor can be treated easily
in practical implementations.

In the sleep state, it is assumed that there is no Pyynamic
and that Pqpage is 3 percent of Pigjqge at the active state with
current frequency f [26].

To simulate the power consumption model just de-
scribed, we adopt the realistic constants [24] given in Table 2.
These constants have been scaled to 70 nm technology and
are based on the original values [25] of Transmeta’s Crusoe
Processor which uses 180 nm technology.

By adopting the constants in Table 2, we obtain the
power consumption function depicted in Fig. 3. As f
decreases, the ratio of Pigkage t0 Pioar increases. Below
1.5 GHz, Pigge is greater than Pyynamic- Paynamic increases
rapidly as f increases, however, and Py thus rapidly
increases in the high f domain.

Authorized licensed use limited to: UNIST. Downloaded on May 26, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

SEO ET AL.: ENERGY EFFICIENT SCHEDULING OF REAL-TIME TASKS ON MULTICORE PROCESSORS

1.0
: V4
- Total Power)
Dynamic Power /
U8 |awn Leakage Power yd
]
Z 06
a p
= ;
8
T e
5 0.4r B
= o =
02— e i
0 i 1

1 15 2 25 3
Clock Frequency (GHz)

Fig. 3. Power consumption of a 70 nm core as a function of clock
frequency.

4 DyNAMIC REPARTITIONING

Because Pjynamic 7, minimizing Pyemic in a multicore
processor for a given task set is essentially the problem of
generating partitioned task sets with the most balanced
utilization [4]. However, even though the initial partitioned
state is well-balanced the performance demand on each
core changes frequently during runtime. Thus, to achieve a
consistently low power consumption, the performance
demand of each core must stay balanced during operation.

The intuitive way to solve the temporal unbalance is
migrating some tasks on the fly from the core with high
load the core with low load. To migrate tasks safely we
made a simple analysis.

Notion of safe temporal task migration. At a time
point 7" in the current period of 7;, the remaining dynamic
utilization of 7;, u}, is defined as (15). ¢m; is executed time
of 7; normalized to the maximum performance by the
present time in this period. It shows how much additional
processor performance is required to finish the remaining
work of 7; until its next deadline d;. To be completed
before d;, the processor performance as much as u; should
be reserved for 7; from now to d;:

, w; — Ccmy;
u. =

—_— 1
1 d77T (5)

If a certain task 7; is migrated from C,,. into Cyy at T,
then Ly, and Ly, should be adjusted for matching the load
change. The new Ly is decided as (16). By adding }, the
sufficient processor cycles to finish the remaining part of 7;
before d; will be provided to Lg.

7; will be finished before d; in C,,, and all the additional
processor cycles to process 7, will be supplied and
consumed by that time. Therefore, L/, will be same as
Ly after d;:

until d;

after d;. (16)

Last + uj
Law = { Lr]if

As a matter of course, L/, is larger than L,y until d;.
Thus, before migrating a task, the maximum L/, should be
guaranteed not to exceed 1.0. Let us define the maximum L,

1545

from the current time to a certain time point ¢ according to
the current schedule as M,,;. Importing 7; into Cys can be
done only when u; + Myq 4, < 1.0.

If 7; has the nearest deadline among the unfinished tasks
scheduled in C,,., exporting 7; can be treated as if it was
finished at that time. Thus, L, can be updated using (9). In
this paper, we will allow the migration of a task only if it
has the nearest deadline among the unfinished tasks in Pj,..

This migration is only effective for the current period.
After the period, the migrated task should be returned to its
original core. However, returning to the original core is only
conceptual. If the condition can be met, the task that was
executed in a foreign core can be exported into the same
core again right after the next release and this will be seen
as the task remains for its next period.

A migrated task may be finished earlier than its worst
case execution time. It allows reducing L, as (17), which is
a combination of (16) and (9):

g, = { L+ 55
s Ldst

until d;

after d;. (17)

The migration operations can be overlapped and taken
in recursive manner. In other words, a task executed in a
foreign core that was migrated from the original core can
be exported to the other core within the period as long as
the conditions are met. Moreover, if a core has imported a
task that is not completed yet, it can export multiple tasks
to the other cores as long as the tasks have the nearest
deadline among the unfinished tasks in the core at the
exporting time.

We now suggest a dynamic approach to balancing the
dynamic utilizations of each core as follows:

Notion of dynamic repartitioning. Let us assume that
the partitioned state P has been generated as defined in
Section 3.1. We further define the variables L,,,, and L,,;, as
the maximum and minimum L values among all cores at
calling time:

VCTI, E 57 Lmn,.r Z LTI,? (18)

\V/Cn € 57 Lmz"rL S L7L~

(19)

For each core, C,,... and C,,;,, which are the cores that
have Ly, and L, respectively, if 37 such that
(Tk € Prmaz) N (W), + Lipin < Lpnay), temporally migrating 7,
from Pps t0 Prin will lower the performance demand of
processor S.

Our approach will replace P with P that (P, =
Pmaz— {Tk}) A (P;nm =Pmin +{Tk}) A (Von €S- {Cmam Cmin}7
73;7, = P,) until d;. Under the initial partitioned state P, all
deadlines are guaranteed to be met because VC,, € S, U,, < 1
by the assumption. If the above conditions are met, then all
deadlines will also be met under P'. As this partition is the
result of migrating 7, € Ciqz to Ciiy,, it follows that VC,, € S,
U, < 1. Similarly, the repartitioned state P” based on P’ is
obtained by temporarily migrating a certain task 7; from C/
to C,;,, (as determined on P’) until d; and P” also guarantees
all deadlines until a certain task 7, € {P! _UP” . 1.

If we compare L,,q; (of P) to L! . (of P'), it will always
be true that Ly, > L/, ., at least until a new period starts

for one of the tasks in C’ All the cores except for Cyq,

max*®

Authorized licensed use limited to: UNIST. Downloaded on May 26, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

1546

and C,,;;;, remain unchanged. Thus, while using P’ instead
of P, all the cores will be operated at the frequency
conforming to L/ not L,,,,. This frequency will always be
lower, so the power consumption will be reduced.

Algorithm 1 describes the proposed Dynamic Reparti-
tioning algorithm in detail. The repartitioning function is
called whenever a task is completed or a new task period
starts. Its purpose is to balance the dynamic utilizations of
all cores by migrating tasks between the cores. The function
migrates the task in C,,,, with the lowest required
utilization at that time to C,,;,.

Algorithm 1. Dynamic repartitioning.
I'(C) returns a task 7, such that:
V7; where &(1;) = C,
(d; > d, >0)A(u. > 0) A (®(7,) = C)
Cinax returns the core with the highest L
Cinin returns the core with the lowest L
M, ; returns the maximum L,, from the calling point
to the time i with the current schedule
Vm € S, Ly, is calculated by
(9) and (16) at every use
V1, € T, d; is updated
to the next dead-line of 7; at every release of 7,
V7 € T,) is decided by (15)

repartitioning():
while (true)

Csrc — Cmaw

7—T(Cye)

Cast=—Chnin

if ((Ldst + u; < LSTC) A (ui + Masr g, <1 .O))
® (7—7) — Cdst

else
break

upon task_release(r;):
&(7i)—II(m)
repartitioning()

upon task_completion(r;):

repartitioning()

This migration process continues until the difference
between the most recent calculations of L,,,, and L,,;, is less
than the remaining dynamic utilization of the task currently
scheduled in Cy,,,. In other words, after repartitioning is
complete the maximum difference between the dynamic
utilizations of the cores will be less than the remaining
dynamic utilization of the scheduled task in C),q,. This
approach thus restores the balance whenever the actual
performance demands among cores changes significantly.

The performance demand of the source and the destina-
tion cores are corrected following (9) and (16), which are
based on Cycle-conserving EDF algorithm after each
migration. Before task migrations, the described safe
temporal migration conditions are checked. Therefore, the
schedules after calling repartitioning will keep all the
deadlines as long as the original schedules guaranteed all
the deadlines.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11,

NOVEMBER 2008

The suggested algorithm uses the currently scheduled
task in C,, as a victim to be migrated. This way of
selecting the victim simplifies the calculation of the
performance demand in the source core of the migration
into that of Cycle-conserving algorithm.

If the victim is chosen among all the unfinished task, the
possibility to pick a victim successfully will be heightened.
However, in those cases, the performance demand for the
source core should be summing the remaining dynamic
utilization values of unfinished tasks in the core. And, the
performance demand update from early completed tasks
should be changed based on that.

In addition to that method, if a system designer knows
the characteristics of target tasks and systems in advance,
there can be introduced many heuristics for picking up
victims to be more efficient and more effective. Also, the
task migration and scheduling overhead can be considered
in a heuristic.

However, since the primary purpose of this paper is not
suggesting the best heuristics algorithm, we will not
describe those heuristics in detail and also the evaluation
for dynamic repartitioning scheme will be done with the
basic algorithm described in Algorithm 1.

5 DyNAMIC CORE SCALING

Multicore processors have a higher energy efficiency than
equivalent unicore processors because they can produce the
same throughput at lower clock frequencies. This benefit,
however, is primarily due to the reduction of their dynamic
power consumption.

But, the situation is not same for leakage power. Leakage
power increases as the scale of fabrication technology
advances. Generally, a fivefold increase in leakage current,
which is the source of leakage power is predicted with each
technology generation [27]. And, it is proportional to the
total number of circuits, which is significantly larger in a
multicore processor than in a traditional processor. Thus,
multicore processors and finer fabrication technologies both
increase the proportion of total power consumption that can
be ascribed to leakage.

The ratio of leakage power to total power also gets higher
as the operating frequency decreases, because dynamic
power is a cubic function of the frequency, and leakage
power is a linear function. As a result, increasing the
number of cores may result in a lower energy efficiency at
low loads under a certain threshold, where the increased
leakage power from the increased core dominates the
decreased dynamic power. The relationship between power
consumption, operating frequency, and number of cores is
depicted in Fig. 4. While under high task loads, having
more cores is always more efficient; below a certain task
load, having more cores actually consumes more energy. In
the assumed environment, this point lies at about 1.2 GHz
or 0.4 times the maximum performance.

Most commercial multicore processors are designed with
the ability to dynamically adjust the number of active cores.
Each core is independently able to make a transition to any
of the standard ACPI processor states [28], [29]. Some
leakage power can thus be saved by simply adapting the
number of active cores to the task set load at the initial stage

Authorized licensed use limited to: UNIST. Downloaded on May 26, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

SEO ET AL.: ENERGY EFFICIENT SCHEDULING OF REAL-TIME TASKS ON MULTICORE PROCESSORS

0.75

2 Cores
8 Cores

‘ = = = = 4 Cores

0.5

Normalized Power Consumption

025

0 05 1 15 2
Task Load

Fig. 4. Expected power consumption as a function of task load for

various multicore processors.

statically. Because the dynamic utilization is always chan-
ging, however, an even higher energy efficiency can be
achieved with dynamic approach. In this section, we
suggest a Dynamic Core Scaling algorithm that changes
the state of each core on the fly.

To determine the optimal number of cores, the relation-
ship between task set utilization, the number of active cores,
and the total power consumption must be identified. We
analyze this relationship using the power model introduced
in Section 3.2.

Because the execution pattern of a task is not related to
the number of active cores, the relative performance F'is a
function only of Uy, and the total core number m, as given
by (20):

F = Uyptar/m. (20)

As we are concerned with dynamic behavior, we should
use the dynamic utilization instead of the static utilization:

F=L/m. (21)

Furthermore, recall that the real clock frequency is

expressed by (22):
f=F" Fou. (22)

Equation (23) defines the power consumption expectation
function X. Its parameters are n, the number of active cores,
and L, the dynamic utilization of the task set. This equation
is derived from (10) and (13). V4 is expressed by (24), which
is derived from (11) and (12):

X(L,n) =n(aVif + Ly(VadLaun + [VislI;)), (23)

1
(fLaKg)" + Vinr — KoV,

24
K1 (24)

The function X can be used to determine the number of
active cores n that minimizes X for a given L.

1547

Equation (23) will be frequently used but is sufficiently
complex that it may introduce a non-negligible overhead.
For real-world implementation, we therefore recommend a
hash table that maps L to the optimal number of active
cores. This allows the optimal number of active cores to be
decided at a constant and minimal time cost.

Returning to the main problem, note that the appropriate
core number for a system is not always the power-optimal
core number derived from X. It may happen that a given
task set simply cannot be scheduled on the power-optimal
number of cores. The problem of deciding the power-
optimal core number able to schedule a given task set is of
NP-hard complexity because the power-optimal scheduling
problem of framed real-time task sets, which is the special
instance of the problem we are dealing have NP-hard
complexity [20]. Conversely, whether or not the optimal
number of cores can schedule a given task set is thus also an
NP-hard problem [4]. As a result, we need to find a heuristic
algorithm that can obtain a near-optimal solution. We
suggest the following Dynamic Core Scaling algorithm for
this purpose, as defined in Algorithms 2 and 3.

Algorithm 2. Dynamic core scaling.
Il is the set of inactivated C
A\ is the set of activated C
Q(L) returns
n for the lowest X under L in (23)
Neyr returns the number of currently activated cores
Ceyp returns the core with the highest U in II
Cinay returns the core with the highest L in A
C,in returns the core with the lowest L in A
I'(C) returns a task 7; such that:
V7, where ®(1;) = C,
(d7 > d]' > O) A (u; > 0) A ((I)(TJ) = C)
M, returns the maximum L,, from the calling point
to the time ¢ with the current schedule
VYm € S, L,, is calculated
by (9) and (16) at every use
V7, € T, d; is updated
to the next deadline of 7; at every release of 7,
V7, € T, v} is decided by (15)

upon task_release(r;):
if (I(r;) € &)
& (1) —TI(r,)
else
if (try_to_migrate(r;, Conin) = failure)
Activate TI(7;)
O(7;)—II(7)
while (N, < (L))
Activate Cyy,
repartition()

upon task_completion(r;):
Nopr—(L)
while (ngf, < Nm”)
if (try-to_shrink() = failure)
break
repartitioning()

Authorized licensed use limited to: UNIST. Downloaded on May 26, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

1548

Algorithm 3. Dynamic core scaling (continued).
repartitioning():
while (true)
Csre+—Chax
Ti‘—r(osrc)
Cast<—Chnin
if (Lgst +) > L))
break
if (try-to-migrate(ri, Cast) = failure)
break

try_to_shrink():
Csrc — Cmi,n
while (37; such that ®(r;) = C,.)
7i—I(Cye)
if (TI(1;) € &)
Cdst = H(T7)
else
Cdst = Cm’m
if (try_to-migrate(ri, Cast) = failure)
return failure
Inactivate C,.

try_to_migrate(r;, Cp,):
if (M4, + u; < 1.0)
q)(Ti)‘—Cm
return success
else
return failure

The algorithm is called when a new period starts and
when a task is completed. It determines the optimal core
number for given L, which is newly updated with each
change in the task state. If the optimal number is smaller
than the current number of active cores, try_to_shrink will be
called to reduce the number of active cores. If the optimal
number exceeds the current number of active cores, the
Activate function will be called to increase the number of
active cores.

All the tasks in a core to be shrunk need to be migrated to
other cores. Thus, try_to_shrink chooses the core with the
lowest L because it will probably have the fewest tasks to
migrate.

The core that was chosen as a victim since it has the
lowest performance demand should migrate all the tasks
scheduled in it to the other cores. Similar to repartitioning in
Algorithm 1, choosing the task for migration is done in the
earliest deadline-first order. The chosen task will be
migrated into the core with the lowest performance demand
at that point. The finished tasks need not to be considered in
this stage since they will be migrated into the core that have
the lowest performance demand at that time. The victim
core will be inactivated after migrating all the unfinished
tasks in it.

When try_to_shrink is called, it is usually the case that all
the partitioned sets have low L. On many occasions, it is
thus possible to migrate all the victim’s tasks to other cores.
There are also many conditions, however, where this is
impossible. If try_to_shrink confirms that migration opera-
tions cannot proceed, it signals failure and stops its

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11,

NOVEMBER 2008

TABLE 3
Parameters Used in the Evaluation
| Parameters | Values
x 0.3
Number of Cores (im) 4,8 and 16

Task Load (Z)

.

Ratio of cc to WCET

about 0.5 and 0.75
Uniform distribution within
{0.3+£0.2, 0.5+0.2 and 0.74+0.2}

operation. In such cases, the algorithm gives up no more
task exporting and returns to the caller. In this case, the
victim core might export many tasks already. However,
calling repartitioning after shrinking operations will remedy
the problem.

An activation of a slept core occurs when the current
active core number is less than the power-optimal number.
The decision of whether or not to expand is made whenever
L increases. It is also done when a task was newly released,
and it is unable to be scheduled in C,,;,. Activation
operation does not include importing tasks into the newly
activated core. This will be done by repartitioning function,
which will be called after the activation operations.

The repartitioning function of this algorithm, which
balances the L values of the cores, is not very different
from repartitioning function of Algorithm 1. It moves the
earliest unfinished deadline task in C,,,, to the C,..

As Dynamic Repartitioning, the heuristic algorithm
suggested in Algorithm 2-Algorithm 3 is suggested for
proving of concept. If L varies rapidly in large values, we can
set a threshold L value for shrinking operation to prevent
excessively frequent shrinking and expanding operations.
Also known properties of a target system will help building
more efficient and effective heuristic algorithms.

6 EVALUATION

The suggested algorithms were evaluated by simulating the
model described in Section 3.2. The simulator randomly
generates task sets with user-defined properties such as
average period, average WCET, Uy, and so on. It can also
generate initial partitions for the task sets with a variety of
heuristics, including Best-Fit Decreasing (BFD), First-Fit
Decreasing (FFD), Next-Fit Decreasing (NFD), and the
aforementioned WEFD. The results of the suggested algo-
rithms were compared to Cycle-conserving algorithm for
each task set.

There are many factors that can affect energy consump-
tion in real-time DVS. Based on related research [13], [21],
[4], [14], [7], [15], we identified the factors given in Table 3
as especially important and varied their values to simulate
different situations.

The number of integrated cores is from 4 to 16.
Considering that a few quad core processors are already
in the market and within a decade processors with tens or
hundreds cores may be shipped [30], it is close to real-world
configurations.

a in Table 3 is an upper limit on the v that a task can
get. The u of the tasks are randomly generated and follow
a uniform distribution under o. The task load is U

Authorized licensed use limited to: UNIST. Downloaded on May 26, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

SEO ET AL.: ENERGY EFFICIENT SCHEDULING OF REAL-TIME TASKS ON MULTICORE PROCESSORS

@ Multicore W Multiprocessor

0.9

Normalized Energy

0.8

4 8 16
Number of Processing Units

Fig. 5. Energy consumption on multicore and multiprocessor,
task load = 0.75 and the average cc = 0.5.

divided by m. This refers to the relative static perfor-
mance demand of a core when the tasks are partitioned
into well-balanced sets.

The actual execution time of a task is generated
whenever its new period starts during the simulation. It is
drawn from a uniform random distribution within one of
the predefined ranges given in Table 3. The benefits of the
suggested algorithms are expected to depend on the
relationship between actual execution times and the WCET.
We thus define three different distribution ranges to obtain
results under a variety of realistic operating conditions.

Before the evaluation of the suggested algorithms, as a
preliminary study, we made a simple experiment to
evaluate the energy loss from the shared clock frequency
among cores, which is dealt in this paper. Fig. 5 shows the
difference of energy consumption between a multicore
system and a multiprocessor system for the same task sets.
Each processor in the multiprocessor system is assumed to
have equivalent performance and power consumption to a
core in the multicore system. The number of processors in
the multiprocessor system is same as the number of cores in
the multicore system.

The difference of energy consumption grows as the
number of the processing elements equipped in the system

H Cycle Consarving B Dynamic Repartition [Core Scaling

Normalized Energy
~h @

0.9 |

0.8 |

WFD BFD NFD FFD
Partitioning Algorithm

(a)

1549

increases. About 10 percent of energy was lost with the 4-core
processor and about 20 percent of additional energy was
consumed with 16-core processor. It is because, as the more
cores are integrated, the probability grows that only a core
have exceptionally high-performance demand while those of
the other cores remain low.

As mentioned earlier, in traditional multiprocessor
environments, the WFD method produces the most en-
ergy-efficient partition. This result is verified by our
simulations in the assumed multicore environment as well.
Fig. 6 shows the results of combining different partitioning
heuristics with the suggested algorithms. The energy
consumption is normalized in each case to that of the
WED partition. WED is definitely the most energy-efficient
partitioning approach under the multicore system.

As expected, WFD is also the most energy-efficient
partitioning approach under our Dynamic Repartitioning
algorithm. The energy consumption is noticeably reduced,
however, under all four initial partitions. Under low load
conditions (0.5) and the Cycle-conserving algorithm, the
difference between BFD and WEFD is 54 percent. Under
Dynamic Repartitioning, the difference between BFD and
WED is only about 15 percent. This is because the balance
between the partitions was improved during runtime by
Dynamic Repartitioning. Even under high load conditions,
Dynamic Repartitioning conserves 28 percent of the energy
consumed by the Cycle-conserving algorithm. (This number
refers to the BFD partition, but the other two non-WFD
partitions produce similar results.) Because WFD produces
well-balanced partitions to begin with, the benefit of
Dynamic Repartitioning is significantly reduced but still
significant.

Considering Core Scaling under low load, there is much
performance margin and for that a shrink operation
successes with high probability. Thus, the number of
active cores (and thus, the energy efficiency) chosen by the
algorithm barely depend on the initial partition. Because
during the shrink operations, many repartitioning opera-
tions are done, and the repartitioning operations are based
on WFD. Compared to Cycle Conserving, Dynamic Core
Scaling consumed about 40 percent less energy in cases not
based on WFD and about 13 percent even in cases based
on WED.

B Cycle Conserving W Dynamic Repartition [Dynamic Core Scaling

wlhl

BFD NFD FFD
Partitioning Algorithm

(b)

Normalized Energy

Fig. 6. Normalized energy consumption for four initial partitioning algorithms and three scheduling algorithms, at m = 8 and an average of cc = 0.5.

(a) Task load: 0.5. (b) Task load: 0.75.

Authorized licensed use limited to: UNIST. Downloaded on May 26, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

1550

[Cycle Conserving M Dynamic Repartitioning O Dynamic Core Scaling |

1
N I_‘ m I_|
0.6

0.3 0.5 0.7

Average cc

(@)

o
w

o
=}

Momalized Energy

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11,

NOVEMBER 2008

B Cycle Conserving @ Dynamic Repartitioning [Dynamic Core Scaling

(1]

Average cc

(b)

Momalized Energy
e o
-] @

(=1
-~

o
=]

Fig. 7. Normalized energy consumption at m = 4. (a) Task load: 0.5. (b) Task load: 0.75.

E Cycle Conserving B Dynamic Repartitioning [CC Dynamic Core Scaling

1
M I_‘ I_‘ I—I
0.3 0.5 0.7

o
w

Nomalized Energy
o
@

0.6

Average oo

(@)

E Cycle Conserving M Dynamic Repartitioning O Dynamic Core Scaling
1.1

1
- . ._‘ I_|
0.3 0.5 0.7

(=1
©«

Nomalized Energy
o
@

0.6

Average co

(b)

Fig. 8. Normalized energy consumption at m = 8. (a) Task load: 0.5. (b) Task load: 0.75.

[Cycle Conserving M Dynamic Repartitioning [Dynamic Core Scaling

1

" I ._‘ m

0.6 - . . .
0.3 0.5 0.7

Average cc

(a)

(=]
o

Nomalized Energy
(=]
o

M Cycle Conserving M Dynamic Repartitioning [Dynamic Core Scaling

1
N . h I_|
0.3 0.5 0.7

o
w

Momalized Energy
o
-]

0.6

Average cc

(b)

Fig. 9. Normalized energy consumption at m = 16. (a) Task load: 0.5. (b) Task load: 0.75.

The effect of the suggested algorithms on efficiency
depends heavily on the task set load, the actual execution
times, and the number of cores in the processor.

Fig. 7 presents the evaluation results of various actual
execution time ranges under the two task loads in a 4-core
processor. At 0.5 task load and 0.3 average cc, if all the tasks
are evenly partitioned, then the L of each core will be
somewhere between 0.05 and 0.5. After some time,
unfinished tasks and finished tasks may coexist because
the tasks have different periods. The actual L of a task thus
tends to be less than 0.5. In the assumed environment, the
lowest available frequency is 0.33 times the maximum
frequency. Thus, when L is usually below 0.33, there may

be little difference between the Cycle-conserving and
Dynamic Repartitioning algorithms. This tendency is well
illustrated in Figs. 7a, 8a, and 9a.

As the difference between WCET and cc becomes more
important, Dynamic Repartitioning is expected to work
better. This tendency is also apparent in the evaluation
results when the task load is high, and the average cc is low.
In the case with average cc=0.3 in Fig. 7, Dynamic
Repartitioning conserves 6 percent of the energy consumed
by Cycle conserving.

Having more cores in a processor will lead to a greater
waste of energy when the performance demands on each
core are very different. The effect of Dynamic Repartitioning

Authorized licensed use limited to: UNIST. Downloaded on May 26, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

SEO ET AL.: ENERGY EFFICIENT SCHEDULING OF REAL-TIME TASKS ON MULTICORE PROCESSORS

therefore grows with increasing core number. The corre-
sponding bars in Figs. 7b and 9b show that about 2 percent
of the energy was saved more when m = 16 compared to
m = 4. But, the difference is not as great as that obtained by
varying the relation between WCET and average cc.

As expected, Dynamic Core Scaling provides its best
results when the task load and average cc are low. When the
task load is 0.5 and the average ccis only 0.3, 26 percent of the
energy consumed by Cycle-conserving was saved (Fig. 8).
When the task load and average cc are high, however, the
power-optimal number of cores exceeds the number of cores
in the system; Dynamic Core Scaling thus provides no
additional benefit beyond Dynamic Repartitioning.

As Dynamic Core Scaling is founded on Dynamic
Repartitioning, the task load has less influence on its
effectiveness than the dynamic utilization. In other words,
even when the task load is high, as long as the average L of
the cores is low, then Dynamic Core Scaling will work well.
When the task load is 0.75 and the average cc is 0.3, for
example, Dynamic Core Scaling still reduced energy
consumption 9 percent to 17 percent more than Dynamic
Repartitioning alone.

Finally, it is apparent that increasing m strengthens the
effect of Dynamic Core Scaling. More cores means a finer
control over the power consumption and performance of
the processor. For example, consider the case of m =4,
U = 3.0, and a task load of 0.75. Under these conditions, if
any core drops into the sleep state, then U will be 1.0. In the
equivalent case of m =16, U = 12, and a task load of 0.75,
dropping one core only increase the task load to 0.80—that
is, by 0.05. In other words, the increase in average
performance demand caused by shrinking a core goes
down as the number of cores goes up. Dynamic Core
Scaling thus produces better results in processors with more
cores.

7 CONCLUSION

This paper tackles the problem of reducing power con-
sumption in a periodic real-time system using DVS on a
multicore processor. The processor is assumed to have the
limitation that all cores must run at the same performance
level.

To reduce the dynamic power consumption of such a
system, we suggest two algorithms: Dynamic Repartitioning
and Dynamic Core Scaling. The former is designed to reduce
mainly the dynamic power consumption, and the latter is for
the reduction of the leakage power consumption.

In the assumed environment, the best case dynamic
power consumption is obtained when all the processor
cores have the same performance demand. Dynamic
Repartitioning tries to maintain balance in the performance
demands by migrating tasks between cores during execu-
tion accompanying with deadline guarantee.

Leakage power is more important in multicore proces-
sors than in traditional unicore processors due to their
vastly increased number of integrated circuits. Indeed, a
major weakness of multicore processors is their high
leakage power under low loads. To relieve this problem,
Dynamic Core Scaling deactivates excessive cores by
exporting their assigned tasks to the other activated cores.

1551

The suggested algorithms were evaluated by simulations
based on the system model and methodologies from
existing research. The evaluations show that Dynamic
Repartitioning can conserve up to 25 percent of the energy
consumed and that Dynamic Core Scaling can conserve up
to 40 percent. When the WFD algorithm is used to
determine the initial task partition, Dynamic Repartitioning
conserves about 8 percent, and Dynamic Core Scaling
conserves about 26 percent of the energy consumed.

As mobile real-time systems grow more common, the
demand for high-performance processors will also grow. It
seems likely that in the future, the throughput of processors
will be improved mainly by increasing the number of
integrated cores. The suggested algorithms efficiently
reduce both the dynamic power and leakage power of
multicore processors. They are, thus, expected to be useful
in mobile real-time systems of future.

On the other hand, the suggested algorithms do not take
into account all the characteristics of various target task sets.
In particular, if dependencies exist among the tasks or there
are patterns in the actual execution times, these heuristics
can be further improved by exploiting them.

ACKNOWLEDGMENTS

This research was supported by the Korea Research
Foundation Grant funded by the Korean Government
(MOEHRD) (KRF-2007-357-D00199) and also by the Minis-
try of Knowledge Economy of Korea under the Information
Technology Research Center (ITRC) Support program
supervised by the Institute of Information Technology
Advancement (IITA) (IITA-2008-C1090-0801-0020).

REFERENCES

[1] Multi-Core Processors—The Next Evolution in Computing, white
paper, Advanced Micro Devices, Inc., 2005.

[2] J. Leung and]. Whitehead, “On the Complexity of Fixed-Priority
Scheduling of Periodic, Real-Time Tasks,” Performance Evaluation,
vol. 2, no. 4, pp. 237-250, 1982.

[3] JM. Lopez, M. Garcia, J.L. Diaz, and D.F. Garcia, “Worst-Case
Utilization Bound for EDF Scheduling on Real-Time Multi-
processor Systems,” Proc. 12th Euromicro Conf. Real-Time Systems
(ECRTS '00), pp. 25-33, 2000.

[4] H. Aydin and Q. Yang, “Energy-Aware Partitioning for Multi-
processor Real-Time Systems,” Proc. Int’l Parallel and Distributed
Processing Symp. (IPDPS "03), p. 113b, 2003.

[5]1 J.M. Lopez, M. Garcia, J.L. Diaz, and D.F. Garcia, “Minimum and
Maximum Utilization Bounds for Multiprocessor RM Schedul-
ing,” Proc. 13th Euromicro Conf. Real-Time Systems (ECRTS '01),
pp. 67-75, 2001.

[6] S.K. Baruah, “Optimal Utilization Bounds for the Fixed-Priority
Scheduling of Periodic Task Systems on Identical Multiproces-
sors,” IEEE Trans. Computers, vol. 53, no. 6, pp. 781-784, June 2004.

[71 S. Funk, J. Goossens, and S. Baruah, “Energy Minimization
Techniques for Real-Time Scheduling on Multiprocessor Plat-
forms,” Technical Report TR01-030, 1, Univ. of North Carolina,
Chapel Hill, citeseer.ist.psu.edu/funk0lenergy.html, 2001.

[8] S.Lauzac, R. Melhem, and D. Mosse, “Comparison of Global and
Partitioning Schemes for Scheduling Rate Monotonic Tasks on a
Multiprocessor,” Proc. 10th Euromicro Workshop Real-Time Systems
(ECRTS '98), pp. 188-195, 1998.

[9] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment,”]. ACM, vol. 20,
no. 1, pp. 46-61, citeseer.ist.psu.edu/liu73scheduling.html, 1973.

[10] J.Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior,”
Proc. Real Time Systems Symp. (RTSS '89), pp. 166-171, Dec. 1989.

Authorized licensed use limited to: UNIST. Downloaded on May 26, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

1552

(1]

[12]

(13]

(14]

(15]

[16]

(17

(18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]

[20]

(27]

(28]

[29]

[30]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

G. Magklis, G. Semeraro, D.H. Albonesi, S.G. Dropsho,
S. Dwarkadas, and M.L. Schott, “Dynamic Frequency and
Voltage Scaling for a Multiple-Clock-Domain Microprocessor,”
IEEE Micro, vol. 23, no. 6, pp. 62-68, 2003.

C. Yang, J. Chen, and T. Luo, “An Approximation Algorithm
for Energy-Efficient Scheduling on a Chip Multiprocessor,”
Proc. Design, Automation and Test in Europe Conf. and Exhibition
(DATE °05), pp. 468-473, 2005.

P. Pillai and K.G. Shin, “Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems,” Proc. 18th ACM
Symp. Operating Systems (SOSP '01), pp. 89-102, 2001.

H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Avarez, “Power-
Aware Scheduling for Periodic Real-Time Tasks,” IEEE Trans.
Computers, vol. 53, no. 5, pp. 584-600, May 2004.

F. Gruian, “Hard Real-Time Scheduling for Low-Energy Using
Stochastic Data and DVS Processors,” Proc. Int’l Symp. Low Power
Electronics and Design (ISPLED '01), pp. 46-51, 2001.

Y. Shin, K. Choi, and T. Sakurai, “Power Optimization of
Real-Time Embedded Systems on Variable Speed Processors,”
Proc. IEEE/ACM Int'l Conf. Computer-Aided Design (ICCAD '00),
pp- 365-368, 2000.

W. Kim, J. Kim, and S. Min, “A Dynamic Voltage Scaling
Algorithm for Dynamic-Priority Hard Real-Time Systems Using
Slack Time Analysis,” Proc. Conf. Design, Automation and Test in
Europe (DATE '02), p. 788, 2002.

D. Duarte, N. Vijaykrishnan, M.J. Irwin, H.-S. Kim, and
G. McFarland, “Impact of Scaling on the Effectiveness of
Dynamic Power Reduction Schemes,” Proc. Int'l Conf. Computer
Design (ICCD ’02), pp. 382-387, Sept. 2002.

F. Gruian, “System-Level Design Methods for Low-Energy
Architectures Containing Variable Voltage Processors,” Proc. First
Int’l Workshop Power-Aware Computer Systems-Revised Papers
(PACS ’00), pp. 1-12, 2000.

J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C. Pang, and
T.-W. Kuo, “Multiprocessor Energy-Efficient Scheduling with
Task Migration Considerations,” Proc. 16th Euromicro Conf. Real-
Time Systems (ECRTS '04), pp. 101-108, 2004.

J.H. Anderson and S.K. Baruah, “Energy-Aware Implementation
of Hard-Real-Time Systems upon Multiprocessor Platforms,”
Proc. 16th Int'l Conf. Parallel and Distributed Computing Systems
(PDCS '03), pp. 430-435, 2003.

M. Nikitovic and M. Brorsson, “An Adaptive Chip-Multiprocessor
Architecture for Future Mobile Terminals,” Proc. Int’l Conf.
Computers, Architectures, and Synthesis for Embedded Systems
(CASES '02), pp. 43-49, 2002.

T.D. Burd and R.W. Brodersen, “Energy Efficient CMOS Micro-
processor Design,” Proc. 28th Hawaii Int’l Conf. System Sciences
(HICSS '05), vol. 1, pp. 288-297, 1995.

R. Jerjurikar, C. Pereira, and R. Gupta, “Leakage Aware Dynamic
Voltage Scaling for Real-Time Embedded Systems,” Proc. 41st
Ann. Technical Conf. Design Automation (DAC '04), pp. 275-280,
2004.

S.M. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined
Dynamic Voltage Scaling and Adaptive Body Biasing for Lower
Power Microprocessors under Dynamic Workloads,” Proc. IEEE/
ACM Int’l Conf. Computer Aided Design (ICCAD '02), pp. 721-725,
2002.

M. Fleischmann, “Longrun Power Management,” technical report,
Transmeta Corp., 2001.

R. Jejurikar and R. Gupta, “Dynamic Slack Reclamation with
Procrastination Scheduling in Real-Time Embedded Systems,”
Proc. 42nd Ann. Conf. Design Automation (DAC '05), pp. 111-116,
2005.

Advanced Configuration and Power Interface, Acpi Specification
Rev. 3.0, http:/ /www.acpi.info/spec.htm, 2006.

A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabukswar,
K. Krishnan, and A. Kumar, “Power and Thermal Management
in the Intel Core Duo Processor,” Intel Technology |., vol. 10, no. 2,
pp- 109-122, May 2006.

Platform 2015: Intel Processor and Platform Evolution for the Next
Decade, white paper, Intel Corp., 2005.

oy

Euiseong Seo received the PhD degree in
computer science from the Korea Advanced
Institute of Science and Technology. He is
currently a research associate in the Computer
Science and Engineering Department, Pennsyl-
vania State University. He is affiliated with the
Computer System Lab, and his research inter-
ests are in power-aware computing, real-time
systems, embedded systems, and virtualization.

Jinkyu Jeong received the BS degree from the
Computer Science Department, Yonsei Univer-
sity, and the MS degree in computer science
from the Korea Advanced Institute of Science
and Technology. He is currently a PhD candi-
date in the Computer Science Division, Korea
Advanced Institute of Science and Technology.
His current research interests include real-time
systems, operating systems, virtualization, and
embedded systems.

Seonyeong Park received the BS degree in
computer science from Chungnam National
University and the MS degree in computer
science from the Korea Advanced Institute of
Science and Technology. Currently, she is a
PhD candidate in the Computer Science Divi-
sion, Korea Advanced Institute of Science and
Technology. She had researched at the Electro-
nics and Telecommunications Research Insti-
tute. Her research has focused primarily on

embedded file systems and ubiquitous computing services.

[

Joonwon Lee received the BS degree in
computer science from Seoul National Univer-
sity in 1983 and the MS and PhD degrees from
the Georgia Institute of Technology in 1990 and
1991, respectively. Since 1992, he has been a
professor at the Korea Advanced Institute of
Science and Technology (KAIST), Daejon,
Korea. His current research interests include
low power embedded systems, system software,
and virtual machines.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: UNIST. Downloaded on May 26, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

